
 Introducing Measurable Quality Requirements: A Case Study
 Stephan Jacobs

 Ericsson Eurolab Deutschland
 Stephan.Jacobs@eed.ericsson.se

Abstract
 In this paper a case study on improving requirements
engineering is presented. Improving requirements
engineering was initiated in a department at Ericsson
Eurolab after an analysis had shown that many of the
problems in software development had their root cause in
insufficient understanding of the customer and in unclear
requirements. A method - in respect to Tom Gilb who
supported us in this field - called Gilb Style was
introduced. This method focuses on
• quality (or non-functional) requirements
• quantification
• strict separation between design and requirements
• constraints and assumptions
 After a year of experience and several projects using
this method, the findings are presented. The biggest
benefit in using this method is a change of culture
towards requirements. This change is not limited to
requirements specifications for software but includes e.g.
requirements on internal service functions. The common
understanding of requirements has drastically increased.
Several positive side effects include more effective
inspections, introduction of weekly reviews, simpler
definition of test cases. The biggest problems were
communication problems to (internal) customers, who
did not participate in the introduction of the method.

1. Introduction
 In this paper a case study on improving requirements
engineering is given. Two issues shall be communicated.
• Introducing requirements engineering is a change of

behavior and culture and not only an introduction of a
technology.

• The understanding of quality (non-functional)
requirements is essential. This understanding can be
reached by making quality requirements measurable.

Although a practical foundation of requirements
engineering has been asked for on several occasions (e.g.
[4]) there are only a few case and field studies in the field.
Some of them are aiming for an overview in the field of
requirements engineering [5, 13], others look for specific
aspects like traceability [9, 15], or the use of scenarios
[16]. The problem of learning and the education of
requirements engineering has hardly been addressed.
Thus, there is still a big gap between research and practice
in this field [1].
 The focus in requirements engineering usually lies on
functional requirements. Nevertheless, quality or non-
functional requirements will be addressed in this paper as

well. Research in this field has concentrated on the
modeling and representation of quality requirements (e.g.
[14]), and on negotiation of conflicts between different
requirements (e.g. [3]). The relations between functional
and quality requirements has been studied only rarely
although this is necessary in understanding requirements,
especially in the industry [12]. There is hardly any
publication which addresses the measurability of quality
requirements.
 The paper is structured in the following way. Chapter
2 and 3 describe where and how the case study was
performed. Chapter 4 summarizes the findings of the root
cause analysis and the conclusions based on these
findings. Chapter 5 gives an overview of the method we
now use for specifying requirements, chapter 6 outlines
our findings.

2. Background
 Ericsson is one of the big companies in the
telecommunication industry. Ericsson’s business lies in
developing and selling all kind of telecommunication
products from small mobile handsets to complex
switches.
 The department, in which this case study was
performed, is responsible for developing software, starting
from requirements engineering until maintenance. Since
1996 the department uses the Capability Maturity Model
(CMM) [11] as a guideline for it’s improvements. In
1996, effort was put into configuration management. In
1997, project planning and tracking were improved. In
both years, the same improvement strategy was used
successfully, namely to concentrate the effort to improve
on only a few issues. For 1998 we decided to focus our
efforts on requirements engineering. The following case
study deals with the improvements achieved in this field.

3. The Case Study
 The case study is based on five (sub)projects which
until now have used the new way of requirements
engineering. Three of them started directly after the
method was introduced. The other two started half a year
later and are based on the experiences we got in the first
projects. The persons who contributed to the study were
designers, line management, project management, and
persons responsible for the product. The study is based on
the following input:
• A systematic analysis of weaknesses in our software

process using the seven management tools. This
analysis has been performed twice, at the very
beginning of the study, which actually led to the

improvement program. The second time one year
later, after several projects had made experiences with
the new way of requirements engineering.

• Interviews with involved parties. The used questions
are shown in figure 1. However, the questions were
not intended to be used as a questionnaire but as a
guideline. In fact, the interviews took usually up to
half an hour.

• Analysis and comparison of several old requirements
specifications and five requirements specification
using the new style.

• Informal communication and observation.

• Is the Gilb-Style used in your current project?
What was the reason to use/ not use the style?

• What are the advantages/disadvantages of the
style compared with the "old" way to specify
requirements?

• Why has the introduction of the Gilb-Style
been successful?

• What are the next issues to address in
requirements engineering?

Figure 1: Interview Questions
 Our primary intention was not, however, to perform a
case study but to improve requirements engineering.
Thus, the case study at times has the flavor of a personal
report.
 Measurements are constantly performed to get insight
into quality, project duration and effort, or stability of
requirements. The measurements show a clear
improvement in all three fields since we introduced the
new way of requirements engineering. But as several other
factors have changed as well (problem domain, project
partners, level of experience, ..), it is not possible to
quantify the effect of the changes caused by the new way
of requirements engineering.

4. Root Cause Analysis
 In the fall 1997 an analysis of the software
development process was performed. The analysis was
done by experienced software designers, project
management and line management. The goal was to
define actions to increase the quality in terms of fault
density and to decrease the lead time, i.e. the time from
the first idea of a product until delivery to the customer.
 The root cause analysis identified “Missing
Understanding of Customer Needs“ as the main obstacle
for decreasing fault density and lead time. Related
problems were “Too many, too big documents do not
give a clear picture of requirements and use cases“,
“Requirements are often unclear ... especially
performance requirements“ and “Everybody has a
different understanding of what should be developed“.
All findings were aggregated under the heading “No
common understanding of ‘What to do’“.
 These problems were taken as the basis for the second
part of the analysis, which aimed at defining counter

measures. Proposals to improve common understanding
were defined. Most of the proposals focused on testing
the quality of requirements rather than on producing good
requirements. Typical examples were “Insist on clear
requirements“, “Don’t work on something that is not
clearly defined“, or “Force people to write clear
requirements“. There was no proposal on how to get clear
requirements, nor a clear understanding what a clear
requirement is.
 It became obvious, that we did not just have a
technical but a problem of culture and behavior
• Requirements specifications did not contain the

information needed for software development
• Requirements specifications contained inconsistencies
• Inspections on requirements specifications were not

taken sincerely and hardly detected any faults.
• Tests were not based on the requirements

specifications
• Changes in the project scope were not incorporated

into the requirements specification.
• Requirements were not taken as commitments [11].
• Requirements were not taken seriously.
 The whole way in which we were defining and dealing
with requirements was made doubtful. Consequently, a
new tool, a changed process, or another policy would not
have solved the problem. A massive effort was required to
effect a change of culture and behavior.
 As a first step we invited a consultant, Tom Gilb, to
discuss our problem. Each software team in the
department had the chance to present a requirements
specification and discuss it. In the end, there was a
common understanding in the management and in the
software design teams, that a course by the consultant
would be the right step to go for. There was an
agreement, that all people involved in software design had
to participate in this course. Requirements engineering
should not be a subject for product management only. A
date was fixed, all projects were put on ice for a week,
and all software developers participated in a one-week-
training on requirements engineering.

5. The Method
 In this chapter the main concepts of the introduced
method - the Gilb-Style - are explained. The chapter first
presents an analysis of the weak points in our old
requirements specifications. Then the concepts of the new
style are presented.

5.1 The old style
 When analyzing our own requirements specifications
the following shortcomings became obvious:
• Requirements specifications were long and monolithic

based on narrative text. The requirements were
unstructured. There was no conceptual difference
between for example functional and non-functional
requirements. There was no hierarchical structure, all
requirements were just put into a long list.

• Several of the requirements were no requirements but
design proposals, e.g. "there has to be Pull-Down-
Menu for file handling", "the database has to be ...",
or "use a password mechanism to secure ...".

• Quality requirements were not precisely defined.
Typical examples were "increase the usability" or "the
system has to become more reliable".

• Costs in terms of elapsed time, man-hours, or money
were not stated as a requirement at all.

• Requirements were rarely "sourced", i.e. it was not
possible to see if a requirement was based on an
explicit customer wish (e.g. stated in an interview), if
it was stated by the product manager, by the designer
or anybody else or if it was based on a rule or a law.

 The most dramatic effect of these shortcomings was,
that the requirements specifications were not really used.
The requirements on the product were communicated
informally rather than through the documentation. As the
informal communication was not precise enough, the
misunderstandings detected in the analysis (cf. chapter 2)
were introduced.
 Moreover, the following side effects were noticed:
• Requirements specifications were not maintainable.

They included e.g. inconsistencies which were not
detected. Introducing new requirements and analyzing
their relations to other requirements was not possible.

• Only parts of the requirements were tested. Especially,
the non-functional requirements (increase usability)
were hardly checked.

• As their were no rules, how to write a requirements
specification, inspections could not check these rules.
Formal inspections of the documents were "degraded"
to walkthroughs or reviews.

• It was not possible to trace requirements, not to their
source nor to their target. Thus it was not possible, to
contact persons who had introduced a requirement. It
was not possible to check which parts in the design
could be dropped because of a removed requirement.

5.2 The "Gilb Style"
 The goal of the Gilb Style is to overcome the above
described shortcomings. The style goes for
• a clear distinction of different type of information,
• a breakdown of requirements into sub-requirements,
• measurable quality requirements (non-functional

requirements)
• tags to uniquely identify all requirements
• source information for all requirements
 None of these ideas is new in requirements
engineering, and nearly all textbooks in the field
recommend this in one or the other way. Nevertheless,
most of these requirements (on requirements) are not used
- not only in our department! Obviously, it is not enough
to request these ideas but it is necessary to say, how these
ideas can be fulfilled.
 Structuring Information: To implement these
concepts a certain level of structure or formalism is
needed. We achieved this by taking a subset of

Planguage, a language to communicate about
"engineering and management work" [8]. Using
Planguage, the following three main categories of
information are defined:
• Assumption
• Requirement
• Glossary
 Assumptions can be characterized as facts which are
valid, or assumed to become valid, in some point of
time. It is the nature of assumptions, that they can not be
proven to be correct. Violating an assumption now or
later can risk the requirements. The whole requirements
specification is based on the understanding that the
assumptions are valid. For example, an assumption could
state that a product is based on the GSM standard.
 The glossary is used to specify terms used in the
specification in more detail. This is, to assure common
understanding and to avoid hidden assumptions.
 Requirements are divided into
• Functional Requirements
• Quality Requirements
• Constraints
• Cost Requirements
 Functional requirements describe the what of a
system. In the Gilb-Style the functional requirements
focus on the mission of a system, that is on the high
level requirements. The detailed requirements are usually
not required as they specify how certain quality
requirements shall be reached.
 The focus of the Gilb-Style lies in quality
requirements. Quality requirements describe how well the
defined functionality has to work. Quality requirements
specify the soft and analog element of functional
requirements. To be precise, quality requirements have to
be quantified. Typically, they are divided into several
sub-requirements to cover different aspects of global
terms. For example, the quality requirement usability
could be divided into the requirements easy to use, easy
to learn, fast to use, etc. These requirements can then be
divided further. Usually, quality requirements make the
biggest part of a requirements specification in Gilb-Style.
Moreover, it is most tricky to specify them.
 Constraints form a restriction that must be taken into
consideration when designing the complete product.
Constraints restrict the solution space for the
requirements. A constraint could be for example a
limitation that a product has to run on a PC.
 Cost requirements are a special case of quality
requirements. They are mentioned explicitly since often
costs are not regarded as a part of the product
specification. However, a system is never accepted for any
price. The term cost covers not only money, but all kind
of resources like time, space, people, satisfaction,
reputation, etc. As these resources are always limited,
they are a crucial part of the requirements specification.
Only if the costs are specified, it is possible to balance
cost-benefit decisions.

 Design ideas are no requirements. For example a
statement like "a pull down menu has to be used" is no
requirement but a design idea, a proposal for a solution. If
these design ideas are not negotiable, they can be
expressed as constraints.
 Quantification: To be precise, it is necessary to make
requirements measurable. Functional requirements are
binary, i.e. they are either implemented or not
implemented. It is more difficult - and essential - to make
quality requirements measurable. From the concepts
offered in Planguage we use Gist, Scale, Meter, Past,
Record, Must, Plan, and Wish. These concepts are made
visible in our requirements specifications by using
keywords in bold letters (cf. example in the annex).
 Gist is a rough summary of the requirement; an
explanation of what shall be measured afterwards. The
Gist is useful to get an overview of all requirements
without going into the details. The Gist for the quality
requirement Maintainability could be "The system has to
be maintainable to allow future expansion of the system".
The Gist helps to write down the requirement before
becoming precise.
 Scale defines the unit in which the requirements has
to be measured. Scale defines a set of measures to express
notions of qualities and costs. The scale for the efficiency
requirement could be "Number of man-hours required to
add a new module to the system" or "Number of modules
which have to be changed when adding a new module to
the system".
 Meter defines the way how the measurement will be
performed. It can, for example, specify a test. The meter
for the above examples could be "Based on our historical
data estimate the number of man-hours which are required
to add a module that sends the output of the system to
the printer rather than to the monitor". The second scale
could be measured in the following way "Take the average
number of modules each module calls within the system".
 Past and Record are benchmarks. Past is a value
which is typical for (own) products developed in the past.
It is important to know the own level as the customer
will know it and compare new products against this
already achieved level. Typically, a customer expects that
at least this level is reached. On the other hand Record
represents the best value which has been achieved for this
meter. To target a product on the market it is crucial to
know both values.
 In contrast to Past and Record which are historical
values, Must, Plan and Wish envisage the future. Must,
Plan and Wish characterize the system that is to be built.
As the names indicate Must represents the minimal goal
level. Not reaching the must level for a single requirement
can be a show-stopper for the whole product. Failure to
reach the must level indicates a failure level for the
system in general. Plan is the envisaged level for a
requirement. However, not reaching the plan level
indicates a failure only for this requirement, not for the
whole system. Finally, the wish level represents the level
which is aimed for under optimal circumstances. The

Wish value is usually not committed to due to resource
limitations.
 Sourcing Requirements: To trace the requirements to
their source, it is essential to know, where the
requirements are coming from. Sources can be a person’s
name (e.g. Steve Miller) or a role (product management).
Sources can point to comparisons in newspapers or other
kind of literature (e.g. when defining the record, or the
planned level). Graphically, the source is represented by
an arrow pointing backwards. For example "Must: Time
< 1 sec ß Steve Miller" means that the corresponding
must-level for the requirement goes back to Steve Miller.
 Tagging Requirements: Each requirement including
constraints and costs and each assumption has to be
uniquely identifiable. To assure this, unique tags have to
be assigned to each requirement.
 Be precise, what is not precise: If it is not possible
to explicitly specify a term, it has to be put into brackets
like <>. This incomplete or inprecise specification will
typically be clarified later. In this sense <> can be used as
To-Be-Done markers.

6. Findings
 In the following chapter, the findings we made after
introducing the Gilb-Style are summarized.

6.1 Improved Understanding of
Requirements
 Improving requirements engineering was initiated by
the analysis described above (cf. chapter 4). The main
findings were missing understanding of the customer,
unclear requirements, and differing understanding of
requirements.
 In this respect, the whole initiative was successful.
Unclear requirements have not been an issue in the
projects using the Gilb-Style. In an analysis, similar to
the one described above (performed in the fall 1998)
problems with requirements were not longer mentioned as
a problem.

6.2 Change of Behavior
 As indicated in the analysis, bad requirements
specifications were not just a technical problem but a
behavioral one. There was no culture, to be precise, to be
committed to requirements. This was true for several type
of documents but it became most obvious in the
requirements specifications.
 There are several indications, that the culture has
changed in this respect.
• The new style is introduced into new projects not by

management, process engineers, or quality personnel,
but by designers. They see their benefit in improved
communication and understanding – both internal and
external. Moreover, it is essential for the designers to
have a clear commitment with the customer, which
can only be achieved with precise requirements.
Designers see, that their position is strengthened if
they are precise.

• If new colleagues show up, the designers advertise the
new Gilb-Style.

• The usage of the Gilb-Style is not limited to
requirements on software but used in other situations
as well. For example, the goal for a workshop or
demands on service functions have been described in a
more precise way using the same style.

6.3 Communication Problems with
Customers
 The biggest problem we have experienced were
communication problems with our (internal) customers
and with other related projects. The initiative to improve
requirements engineering was only performed in our
department. Thus, our communication partners, expecting
specifications in the old style, were "disturbed" by the
new way. Although nobody argued, that the new style
was bad the „project’s rhythm“ was effected.
 This miscommunication made two issues obvious.
First, even a good approach can be problematic if not all
parties are involved and trained. This is especially true for
behavioral changes. Second, requirements specifications
are not only the basis for the design but serve several
other purposes, for example as the commitment to the
customer or as a foundation for marketing information.

6.4 Focus on Quality Requirements
 All requirements specifications written in the new
style focused on quality requirements. From our
experience, it is crucial, to have a common understanding
of the quality requirements rather than to go into the
details of the functional requirements. To focus on
detailed functional requirements has often a flavor of a
solution and not of a requirement. Detailed functional
requirements often have no source but are explained with
statements like "to increase the usability". This, however,
points on quality requirements.

6.5 Cost Requirements are not used
 So far, we have not succeeded in specifying cost
requirements. The reason for this lies in the organization
of the projects. The responsibility and authority for
products and projects is distributed. That means, costs are
often not variable, but fixed from the beginning. Elapsed
time is not negotiable, thus it is not a cost requirement
but a constraint.
 This leads to the fact, that balancing costs and
requirements is not done. As a consequence, costs are not
specified as requirements stating different kind of must-,
plan-, or wish-level. Costs are specified as constraints.

6.6 Inspection Quality and Effectiveness
Increased
 Based on improved requirements specifications, our
inspections have become more effective and more
efficient. We find more faults in a shorter time.
 Formal inspections, in contrast to reviews and
walkthroughs are based on formal rules that the document

has to fulfill [6]. Unclear requirements on requirements
specifications led to an absence of formal rules for
inspections. Consequently, we could hardly find any
faults in the inspections on our old specifications. This
has been changed with the new style. The number of
faults found per page has drastically increased.
 At first sight, the increased number of faults could be
interpreted as a disadvantage when using the new style.
On the other hand, we regard this as one of the biggest
advantages! Preciseness is a prerequisite for really
deciding if something is correct or not. An inprecise
demand like "high usability" is always correct and thus of
no value. Therefore, finding no faults during inspections
is no good sign, but an indication that something is
going wrong.
 Some projects have changed their way of working and
perform weekly inspections on the requirements
specifications. As the formal rules for the Gilb-Style are
quite clear, so are the inspection rules. Assigning rules to
designers, i.e. not everybody has to check every rule,
leads to more efficient inspections. This allows us, to
perform inspections more often (e.g. weekly) and by that
to get feedback for the specifications earlier. The big
inspection effort is not done on the final document at the
end of requirements engineering but continuously.

6.7 Test Cases
 Inexact requirements can hardly be tested.
Consequently, quality requirements like "increase
usability" were not tested. Defining quantified
requirements enables the definition of test cases based on
the measurements. Moreover, by specifying the meter, a
test case is already defined in the requirements
engineering phase. To make requirements measurable
means to make them testable.

7. Summary
 In this paper, a case study has been described on
introducing requirements engineering into a department
responsible for software development. The report
describes the analysis which led to the decision to
improve requirements engineering. It describes the Gilb-
Style and the way, in which it was introduced and finally
it summarizes our findings after several projects used this
method.
 The following lessons have been learned:
• Introducing requirements engineering may require

a change of behavior. Based on the maturity of the
organization, introducing requirements engineering is
a change of culture and behavior and not just a change
of process or technology. It is much more difficult to
implement a change of culture than a change of
technology.

• Change of behavior requires commitment from all
involved parties. Behavioral changes can not be
enforced top-down. An agreement has to be reached by
all parties (management, project, designers, ..) on the
weak points and on how to tackle these weaknesses.

• Change of behavior requires massive training. All
involved parties have to participate in an adequate
training. Training only a few persons and hoping on
the multiplier-effect is likely to fail. This approach
might be sufficient for introducing a new technique or
process but not for a change of behavior.

• Importance of quality requirements. One
characteristic of the Gilb-Style is the focus on quality
rather than on functional requirements. The experience
we have made so far supports this idea. Having a
common understanding of the quality requirements is
essential for a common understanding of the product.
Going into the details of the functional requirements
often results in working on a solution rather than on
requirements.

What are the next steps for our department? In trying to
answer this question, three issues were brought up,
namely the specification of cost requirements, the need for
making decisions on cost and benefit in the requirements
specifications, and the handling of requirements in
projects following incremental development.
As mentioned in chapter 6.5 we have not used the cost
requirement so far due to the organization of our projects.
There is a common understanding that cost requirements
will become an issue, if the responsibility for projects and
products are changed.
 If cost requirements are included, we have to balance
cost-benefit (or cost-quality), at least. One tool to manage
this could be with the use of simple tables. The idea of
using tables to support this kind of decisions is for
example suggested by Gilb (Impact-Estimation-Tables),
by the method Quality Function Deployment (House of
Quality) and is already implemented in some requirement
management tools (Doors, RequisitePro, ..). We have to
investigate if and how these techniques can be used to
balance cost-quality trade-offs in our projects.
 We are currently changing the life-cycle of our
software development projects. One large waterfall-like
development phase is replaced by several increments.
These increments always include a phase of re-defining
requirements. The impact of this change on the way we
specify requirements is not well understood. We have to
have a commitment with the customer for the whole
project and for the next increment. Both commitments
have to be based on requirements. It is not clear how to
specify and relate these long term requirements with the
requirements for each increment. One solution could be to
relate different kind of quality levels (similar to the must,
plan and wish level) to each increment. In this respect, we
see more potential in the Gilb-Style.

8. Literature
[1] D.M. Berry, B. Lawrence: "Requirements

Engineering", IEEE Software, vol.15, no.2, pp.26-
29, 1998

[2] B. Boehm, J.R. Brown, H. Kaspar, M. Lipow,
G.J. MacLeod and M.J.Merrit: "Characteristics of

Software Quality", North-Holland Publishing Co.,
1978

[3] B.Boehm and H. Ih: "Identifying Quality-
Requirement Conflicts", IEEE Software, vol.13,
no.2, pp, 25-35, 1996

[4] Janis Bubenko: "Challenges in Requirements
Engineering", IEEE International Symposium on
Requirements Engineering, RE’95, York 1995

[5] K.E. Emam, N. Madhavji: "A Field Study of
Requirements Engineering Practices in Information
Systems Development", IEEE International
Symposium on Requirements Engineering, York,
UK, 1995

[6] M.E. Fagan: "Design and Code Inspections to
Reduce Errors in Program Development", IBM
Systems Journal, vol.15, no.3, pp.182-211, 1976

[7] T. Gilb: "Principles of Software Engineering
Management", Addison-Wesley, 1988

[8] T. Gilb: "Planguage - A Handbook for Advanced
practical Management", manuscript, access via
http://www.stsc.hill.af.mil/SWTesting/gilb.html,
1996

[9] O.Gotel and A. Finkelstein: "Extended
Requirements Traceability: Results of an Industrial
Case Study", International Symposium on
Requirements Engineering, Annapolis,1997, pp.
169-179

[10] J.R.Hauser, D. Clausing: "The House of Quality",
Harvard Business Review, May June, 1988,
pp.63-73

[11] W.S. Humphrey: "Managing the Software
Process", Addison-Wesley, 1990

[12] Dieter Landes: "Requirements Engineering for
Quality Requirements – Industrial Problem
Statement", Fourth International Workshop on
Requirements Engineering: Foundations of
Software Quality REFSQ’98, Pisa, Italy, 1998

[13] M. Lubars, C. Potts, C. Richter: "A Review of the
State of the Practices in Requirements Modeling",
IEEE International Symposium on Requirements
Engineering, pp.2-14, San Diego, CA, 1993

[14] J. Mylopoulos, L. Chung, B.Nixon:
"Representing and Using Non-Functional
Requirements: A Process Oriented Approach",
ACM Transaction on Software Engineering,
vol.18, no.6, pp.483-497, 1992

[15] B. Ramesh, T. Powers, C. Stubbs, M. Edwards:
"Implementing Requirements Traceability: A Case
Study", IEEE International Symposium on
Requirements Engineering, pp. 89-97, York, UK,
1995

[16] K. Weidenhaupt, K. Pohl, M. Jarke, P. Haumer:
"Scenarios in System Development: Current
Practice", IEEE Software, vol.15,no.2, pp.34-45,
1998

Annex

 In the following, an example expressed in the Gilb-
Style is given. The product called enote (electronic note)
is a product something similar to today’s organizers,
having a traditional notebook as metaphor. Of course, the
example should not be taken as a complete requirements
specification. There is an example for mission,
assumption, constraint, functional and quality
requirement.

Mission:
Enote will be the modern equivalent of the traditional
notebook enhanced by functions which can only be
implemented on electronic devices, like alarm-clock
functions for calendar, search functions etc.

Assumptions:
The project is not responsible for the development of the
<input device> and the <output device>.

The product is aimed only for the european/american
market, i.e. it has to support only latin letters. ß
Marketing

Constraints:
The target hardware will be a X234 offering 2MFlops/sec
and 2 MByte ROM/RAM. ß Senior Management

Functional Requirements:
Defintion: Enote has to have a calendar.
Motivation: Each notebook has a calendar! To have no
calendar is a show stopper for a product like Enote.
ß Marketing

Definition: Enote has to support a To-Be-Done-List
Motivation: This is weak point in classical notebooks.
Having a To-Be-Done-List with attributes like category
or priority is an enhancement in comparison to paper
based notebooks.

Quality Requirements:
Easy to learn:
Gist: Enote has to be easy to learn. The <target group> is
not willing to read short manuals. The functionality has
to be intuitively understandable, based on the notebook
metaphor.

Scale: Time which is required until <basic functions> are
understood

Meter: Time which a manager from our company needs,
until he enters the first address having all <introduction
material>.

Must: 1 min ß No manager is willing to spent more
than one minute with the manual, Marketing

Plan: 30 Seconds ß Steve Miller, intuition
Wish: 0 Seconds ß The Metaphor is perfectly
implemented (cf. Record)

Record: 0 Seconds ß Notebook
Past: 3 Min ß Laptop
Easy to use
Gist: Enote has to be easy to use. The motivation for
Enote is to more efficiently handle data. Thus, the tool
has to be easy to use.

Scale: Time used for performing functions for a trained
person.

Meter: Let a person become familiar with Enote. Measure
the time the person takes to a) add an address, b) find
and delete an Action Point specified by a category, c)
add an appointment for a given date.

Must: 3 Minutes ß intuition, design
Plan: 1,5 Minutes ß time it takes on a notebook (tests
performed)

Wish: 1 Minute ß beat the notebook by supporting the
search function required in each operation.

Costs:
Elapsed Time:
Scale: Time between approval of requirements
specification and first delivery to the market.

Meter: -
Must: 8 Month ß Tool has to be presented at the next
office fair

Plan: 6 Month ß Competitor plans to release it’s
product

Wish: 5 Month ß

