Evalutionary Delivery versus the "Waterfall [lodel”

byy Tom Gilb, Independent Consultant,
Box 102, Kolbotn, lorway

Shert Bbstract:

The conventional wisdem ef planning software engineering
projects, using the widely cited “waterfali modet™ is not the
enly useiful soflware development process moedel. in fact, the
-waterfal! medei” may be unrealistic, and dangersus ta the
primary objectives of any soflware project.

The aiternative model, mhich [ choose to call
-epoiutionary delivery” is not widely taught or practiced yet.
But there is already more than a decade of practical
experience in asing It, In varlous forms. it 1s quite clear from
these experiences that epelutionary delivery is a pawerful
general teol Tor Bath software depelcpment and associated
systems development.

pimost all experienced softmare developers do make use
of some of the ideas in epolutionary deveiopment atl one time
ar ansther. But, this is eften unplanned, informal and it is an
incompiete expleitaticn of this powerful methed. This paper
will try te expose the theoretical and practical sspects of
the methed in & fulier perspective. We need to learn the
theary foliy, so that we can appiy and learn it completely.

EVO-3 Types Dev Disk=DBO2

The "revolutisnarg”™ or “big bang™ model.

EVO 841225.1700 TsG

The ®le Sysien Exists 430“9-'
f"‘ The
mmn‘ New

s ] gy Syitem Revol

o .
ww‘” eing developed [ution

time & 0 @ &

The Phased delivery approach.

Phase 4 §

B Ol System BE] Phase 3 §
Phase 2 § Swiller
! Phase 1 F Revolgtioni

6% 8% ¢86T [nf € ON OT [0A SHLON ONIFHANIONT HYVM.LIOS LAOSDIS WOV



MAIN PAPER
INTRODUCTION

Most textbooks, and most software engineering models today are
based on the “waterfall model”. This con take several dialects. But,
the principl% characteristic is that;

- all planning is oriented towards a single delivery date,

- all analysis and design are done in detail, before coding & test.

The delivery date is typicaily one or more years after project start.

There may be some effort to improve the design by means of
prototypes. But, these prototypes wiil typicaily be "throw mway”, ond
may see littie or no real useful work by real users being done on them.

The evolutionary delivery (CEPO" method for short) is based on the
following simple principle:

a. Deiiver something to a real end-user;

b. measure the added-value to the user in all critical dimensions;

c. adjust both design and objectives based on ebserved realities.

This “eternal cycle” (Deming-85) starts early. It usually will attempt
to modify some existing system, rather than te build o totai new
system. This solves the problem of "critical mass”, of getting enough
of a system together to give a design idea a realistic try.

The basic EDVD concepts are firmly rooted in other engineering
literature, ond in engineering practice. it is the software community
which has been slow to recognize the potential of the EH0 method and
to expicit it fully.

fi SIMPLE MODEL; A PC PROGRAMMER-USER.

The simplest softwore-orea modei of EU0 is a personal computer user
building 'an application for themseives interactively.” The personal
computer programmer is then both the user, the setter of objectives,
the anaiyst, the designer, the coder, the tester. There is constont and
early iteration as the system is built up. The iteration cycle is typicatly
measured i: minutes, ot years. The system being built is real and
evolying. 1i:2 user can modify both design, coding detail and even their
final objectives.

THE CO.4PLETE EVD MODEL.

There are many concepts which can be put in the basket we call
evolutionary delivery. Each individual has a set of their own concepts.
I will give my personal list of the foctors which 1 believe are vitol to

EV0841220.1735 TSGILB

[‘ﬁm@ Eite rnalgDevelopmenitftycle J

ANABLYSIS Set llew
St Objectives

"What did gand TEST" ]

TBESIEN"
leam'?"

Shemart / Demmg
Observe Cgcle Find
effects of _SEL[_ -MEKE Snlutmns
change.
'I'est them

0 “There is no such thing as a best
first step in the Shewart cgcle”

0 " There are no quick cures, bhut
heartening results can come
within (2 to 3 gears)”

0 "By working in the cycle, everyone will

see what he can de, and what only tep

management can de”. (Team effort).

0 " In use in Japan since 1950"

O "it is hampered in America by the annual

rating of performance “(kills teammork).

Modified from: Manuseript by ¥ Edwards Deming.
ot of Crisis”(working title} MIT Press 1985 .See also ¥alter E.
wart, STATISTICAL METHOD.. (GRAD. SCHOOL, DEPT AGRIC.1939)

“1994atsh
oy 3

09 2384 9861 IN[ £ ON 0T [°A SHLON ONIHIANIONE FIVM.LAOS LIOSHIS WOV



full exploitation of the method. A plannef can choose to ignore some
of these concepts, but | believe that the methed will lose some of it's
power if they de.

8/ planner may well find additional ideas to those which | mention
here, which will increase their pewer in using the method. | find that !
am constantly learning, by experience and by experimentation, new
ways to use the basic concpis better. Thus, | do not pretend that my
model s complete. 1t is hewever richer than most models which |
have found in the litersture or in practice.

Here is a list of the main critical concepts; this may be token as o
superficial definition of whet } mean by "EVD" or evolutionery delivery
planning.

1. MULTI-0BJECTIDE DRIVEN.

2. ERRLY, FREQUENT ITERATION.

3. COMPLETE ANALYSIES, DESIGN, BUILD AND TEST IN EACH STEP.

4. BESIGN BY @BJECTIUES.

S5, USER ORIENTATION.

6. SYSTEMS APPROACH, NOT MERELY ALGORITHM-ORIENTATIEN.

7. OPEN-ENDED BASIC SYSTEMS RRCHITECTURE

8. RESHLT GRIENTATION, NOT PROCESS ORIENTRTION

Let me treat each of these subjects in somewhat more detsil betow.

EVQ-

LIFE CYC

v0-841228

I
1T

—

" ihg T Sofitmare Liks

r—_C]

Analysis

Desig

1]

s

Plan b
Budget_
F V-

Build

20
]
Eyele
Test a
Run

Maint-

ain it

ik

end of life

&

1¢ 28 J 9861 INf € ON 01 [°A SALON ONIYIANIONT JUVMLAOS LJAOSDIS WOV



SOME DETRILS 0N THE CRITICAL CHARACTERISTICS OF
EVO-DELIVERY

1. MULTI-GBJECTIUE DRIDEN.

Conventional software planning is overwhelmingly "FUNCTION®
oriented. The planning is in terms of the functional deliverables. These
are more concerned with WHAT the software will do, rather than “HOW
WELL?" (guality attributes) and "AT IPHAT C€OSTS?" (the resource
attributes). 1t is my firm belief that software engineering currently
places too littie emphasis on contrel of the critical quality and
resource attributes of the system; and thereby loses control of these
attributes. R simpie example is the general ignorance among software
engineers and teachers on such elementary subjects as how to define
critical attributes like “usability” (see Gilb-1FIP-84 for a detailed
example} or “maintainabiliiy (see Gilb-$SD-26). These subjects are
today so wvital to the success of most software projects, that
ignorance of how to specify measures of them is roughly equivalent to
an electsnics engineer not knowing what volts and watts are.

Evolutionary delivery, in my view must be based on iteration towards
exiremely clear and measurable multi-dimensional objectives. The set
of objectives must contain all functional, quaiity and resource
objectives which are vital to the lang-term and short term survival of
the system being developed. (See Gilb~BBO, and Gitb-SM-76).

{f this discipline is missing, and it is gverwhelmingly missing frem
most every international software project | have encountered, though
same are better than gthers, the evolutionary process becomes
meaningiess. The project is not, thenr, related to the vital real world
needs of the user.

EVO v+ REVO Disk=DB0 ¢ Bue BBHE D, Chptrs Paeg 1 SAS 841224.0007 TsG

Bhials e dfanid v
ﬂw@ﬂ%mmw]ﬁ

B SUIS

Byoglufiion

— 4

Initial budgets gears/mill
[Honths->Years then deliv.
Short changeover to new.
Human shock at change.
Changes threaten sgystem.
Big capital cost before ROI
Req. changes unwelcome.
“Goldbricking”; uncritical
Early gears unprofitable.

], Must finish to get any K0!

1710 -> 1/100th complete stp

Dags, weeks to results.

Build away from present syst.

Time for adjustment.
Hdaptation i1s "native”.
Excellent cash-flow.

Nlew requirements natural.

Small steps evaluated by ROI

Earliast steps deliver Hi ROI

We can "stop In the middle”

L Bhhellottom@hneg o |

1. MBT. AT MERCY OF IMPL |

INGT. It FULL CONTROL

29 238 9861 [N € ON 0T [°A SHLON DNIMFANIONT FIVMLIOS LIOSDIS WOV



2. EARLY, FREGUENT ITERRTION.

in most softwore engineering projects, the plenning scheduies
delivery of practical and useful results, one or more years sway.
There are o series of plausible excuses for this lack of confrontation
with reolity. But, in my view the excuses are invalid and due to
professicnal ignorance. | have found that the original planners of such
projects, are themselves the first to argee that there 1s, in fact, a real
possibility of esrlier delivery, which they had not yet considered. Their
probiem in finding early and frequent software delivery cycles is one
of both "lack of motivation” and "lack of method".

The management invoived would, of course, dearly love to get some
results on the tabie as early as possible. But, even that same
management, accepts the cenventional wisdom of the long initiel
cycle, before even the first useful phase is delivered.

Biten they believe that their "Phased” project does in fact give them
the earliest possibie delivery of something useful. My experience is
that most first phases can be sub-divided into ten to one hundred
smaller and earlier steps of useful delivery.

Phased planning asks a dangercus question: "How mueh can we
accomplish within some critical constraint ( budget, deadline, storage
space)?”

Evoiutionary Planning asks a very different question: "How little
resource can we expend, and still accomplish something quite useful
in the direction of our ultimate objectives?”

More formaliy, in Lli0-planning today, we use the concept of
selecting the potential steps ivith the highest user-value to
development-cost ratio for earliest implementation. This is like
skimming the cream eff the top of the milk.

t would like to stress thet seiection of high value/cost steps is a
fundamental difference in my formal conception of ewvolutionary
planning, and that which | find elsewhere. I actuely find that there is
little or no conscicus thought about this "cream” selection potential
Bi, ] find that the first phases are known to give little or no real value
- but they are thought te be "pathwaoys to the future’. in one cose
which | euxperienced, in an European Airline project, the first 50
work-years of 8 250 work-year project were concerned with buiiding
¢ datobase system, which gave sbsslutely no value in the direction of
the critical objectives.

3. COMPLETE ANALYSIES, BESIGN, BUILB AND TEST IN ERCH STEP.

One of the great time-wasters in software projects is detailed

EVD-toop Disk=DBO 2 EV0 841223.1910 TG

b ¢

Set horizon Objectives.

O IOy -,

Py
XXXXXXXXXXX

1Eluhal open” Hrt:hltm:tura

LE XX

IO OO TIPS x;;x
YYYYYYYYYY PASAAESAAAMLLLLILLAS

Feedback

L LL X

S
kide

{Hough evolutionary plan.

Engineering the step
(attrihmes, solntions, snh—stﬂps)

Construct the planned step. g 1Y

Deliver it to a real user.

- Evaluate results. == %%

X S 0 G it s 0 o D 0 0 G

P

€9 988 986T [N € ON 0T [°A SHLON ONIHAANIONH HIVM.LIOS LAOSDIS WOV



requirements analysis analysis, followed by detailed design, foliswed
by full coding and testing phases. We believe in it fike a religion.

If we only had the intellectual capacity, and professional knowiedge
to reaily do those things accurately! We must admit that we cennot
tackie such a tosk well, for any but triviaily small projects. There are
too many unknewns, too much dynamic change, and too complex a set
of interreiationships in the systems we build. We must take a more
humbie approach!

Ibe must set initial measurable horizon objectives { s far as
we can reasonably have on opinion about the future. We must be
prepared to modify these objectives, as soon es euperience ( of
partial delivery !) dictates. We wmust design o suitable general
architectural framework { 1 call it the "Infotecture) for enabling us
to meet these objectives, in spite of obstacies along the way.

We must set measurable objectives for the next small delivery
step, but even these are subject to modification as we learn. 1t is
simply not possible to set an ambitious set of multiple quality,
resource and functional objectives, and be sure of meeting them all as
pianned. We must be prepared for compromise and frade-offs. e
must then design { engineer ) the immediate technical solution. Build
it, test it, deliver it - and get feedback. This feedback must be used
lo medify the immediate design if necessary, modify the major
architectural ideas - if necessory, and modify both the short-term and
the long-term objectives - if necessary.

Itis silly to spend, nay “waste”, so much time in the beginning of
s project, to speculate on requirements and technicel design
attributes, which con be measured much more cheapiy end reliably, if
it is done while we impiement a real system.

The major objection to this line of action is the fear, based on
erperience, that we will "paint ourselves into a corner”, that when we
get negative feedback, it will be too tate. We will have committed too
many resources to the wrong solution. This objection is not valid.
tvolutionary delivery gives us early warning signals of impending
unpieasant realities. Unpleasantries do occur, but never beceme too
large. And, the key to reducing our major fear is that we must learn to
design far more "open-ended” system architectures (1 call them
"open Infotectures"),

e have perceived our problem os one of analyzing things in
enough detail, before ony construction takes place, to prevent
tonstructien errors. | assert that this is not as easy, or productive, as
the evolutionory aiternative. Start with o basic design which is easy
to modify, adapt, port ond chonge; both in the long and short term {
we KNOW we need that anyway). Then jump in tha water, and learn
even more, even earlier - whiie being useful.

EVO-spresd cycle Dizk=DB02

EV0 841223.2110 TsG

The BYE byels "gread aul®

?

o

Hnalgsis@ol;‘}‘ Hng #n3{ [Ana] [Bnd
Solut.ions N L 2 2 2 2 2
Design Qﬂes? Desi nes:f DBSY
) 2 o S o A == .0 = S
> | Planning Plaﬂ" Pla| |Plaj |Pla
| "3_ 3
mvﬂ Divy] [Divr] [Divs
oinggle
Yeqr 1 V4RI IBN4
& Q@
Feedback
and Step Level
Correciion

Note: this illustrates the fact that with evolution-
ary delivery cycles, the various development

activities are intermixed and spread out
throughout the life cycle: each oneo feeding the
others with practical insight and fact.

¥g 288 9861 INf € ON 0T [°A SALLON ONIHIAANIONT TIVM.LIOS LAOSDIS WOV



4. DESIGN BY DBSECTIVES (*DBG").

Evolutionary detivery can, in theory ,be praocticed in spiend i 8 isolation
from other methods. But, 1 wouid argue, as | have already begun lo
abouve, that there is a larger seftware development context in which it
witl be most fruitfully opplied. For me personally, as a mansgement
and design consultant to large software producers, it is oniy ene of
seperal simufteneous metheds which should be applied for fullest
effect.

The major collection of methods which | recommend in this
contest, | give the umbrelia title of “Design_by_8bjectives” (See
Gilb-DBO and other references by 6Gilb, most of which ore related to
this subject}.

The major components of "DBO" are:

1. System Altribute Specification Measurable multi-dimensional
specification of critical objectives - as discussed above.

2. System Functienal Specification: where functional concepts are
broken down into o large number of possible deliverable ideas, and
they sre identified by "Tags® { for tracing deliverables, throughout the
entire development process). Each deliverable has individually
estimated value ond development-cost factors, to help decide which
deliverables should be done first, as discussed above.

3. Softwere Engineering Handbooks: are lists of all the methods,
structures, technigues, languages end other potential design ideas at
our disposal. Each idee has a documented set of expected wvolues for
attributes of potential interest to a design engineer. ({See
Gilb-SEN-SEH-81). This will increase our accuracy of making decisions
about EUC steps and their design components. 1t wili reduce the
probability of failure, and the need to re-work ideas.

4. Tagan's INSPECTION: Fagan's Inspection method needs to be
applied to oif paris of the software engineering process, in particular
to the high-level design specification phases - where the evolutionary
steps, and their underlying architectures, are planned. (Ref. FAGAN-76)

5. impect Estimation: lle need to apply a teol for estimating the
gualititative impact of every design technigue on every design
objective. 1 howe deveioped a simpie toble, which works well in
etectronic spreadsheet applications, for making and updating these
estimates, and their uncertainty factors. { See Gitb-IFIP-84]).

These are the central DBO tools to help EV0 delivery work better.

EVO-IBMFSDBQuinnan Disk=DBO 2

EVD 841222.2005 T26

[l

B
Federal Systems Division

%f° Evolutionary Estimation

{Gost Tawrget

Quaiitty

@le’signtioacosii

1B 89 4/00 Dufmmem,

Baseline

Design

P

Estimate
Cost

Is

)Ta?rget

(Estimate

Respecify Quality
Attribute Reqt

Respec.

Cost

- L

Devalop
& Test
Next
Increment

|date estimaie]

BRevisa finish

99 99%J 986T [NL € ON 0T [°A SHLON ONIHAANIONT JYVM.LIOS LAOSDIS WOV



5. USER ORIENTATION.

Software projects are not famous for adapting to what the market or
user really needs or wantis. The orientation is towards ihe machine,
the algorithm, or the deadline - but toc rarely the user. Many
software developers literally never see their product in action with
real users.

Most users never see the face of the designers and programmers.
They den’t even know their names. Even if the developers did want to
make a product which the users were really happy with, it may be toe
late and too impractical to do so, by the time the developers find out
what the user really wants.

With Evelutionary delivery, the situation is changed. The
developer is specifically charged with "listening” to user reactions,
early and often. The vser can play a direct role in the development
process. Neither the budget, nor the deadline are overyun. The oversll
system architecture is "open ended”, and we are mentally,
economically, and technically prepared to iisten to what the user or
customer wants.

The ruie of selecting the highest availsble value-to-cost ratio
step nent is a dynamic one. User values can change or aiter as they
get eaperience, and user ideas of velue can give the planners 8 fiow
of new ideas, not originally planned.

fvery software developer enperiences this feedback and changed
ideas of value, design and know-how about real costs. We also know
how ihis mechanism works once we get into maintenance phases. The
guestion here is whether we ere going to apply this learning and
selection mechanism earlier, more consciously, and more frequently in
the development process than we customarily do.

J-SAILING COMPARISON  Dizk-DBO &

850104.2010 TsG

It Like Balling

{Enhance-
Ravisad
Objectives ‘Accepted’

Boal
9]

Original
Objective

Bevised
Objectives

@

o}

Original
Objective

ment & Maint.) ‘

gg 988 J g86T [0 € ON 0T [°A SHLON ONIYHANIONT HIVMLAOS LIOSDIS WOV



U. JTIILIMY NEFHURLE, NUI MEHELY HLOUHITHM-0RIENTATION.

Many of our software engineering methods hove a common weokness.
They are exclusively ortented towards current computer programming
languages. They do net even treat software, in the broadest (. e.
“non-hardware*) sense of that term. They do precious littie about the
Bate Engineering {(see Gilb-DE-?6 and Gilth/Weinb-HI-83) aspects of
sofiware, and do even less about less-cbuicus concerns such as
documentation, training, marketing, and motivation (See "Metivational
Techniques for Reliability” in 6ilb-DE-?6). A contrast to all this will be
found in the suecessful fApple Macintosh design effort - where
everything was designed in & fully integrated manner (see Byte-2/84).

! frequently speculote that the real problem with software
engineering is the lack of total architectural co-ordination of the total
system design process, of which softwrare is merely a part. | express
my ideas by using the term "Infotecture” (for which | must thank
the french). Infotecture is of course carried ocut by a trained
"infoiect”. The infoltect is the leader of the entire design effort, and
of course has a number of specialist software engineers working
within the infotecture quidelines and under infotect control.

Evolutisnary delivery is o method which is not merely limited to
software, in the narrow sense of that word. it is admirably suited to
the total process of creation in which we are involved. 11 insists that
ivory tower pregrammers meet the real world eariy, often, and
brutelly - if necessary.

EYO-IBM FSD Hills Disk=DBO 2 EVO 541222.0033 T2

IBH" ety

Federal Systems Division %

Harlan D. Mills, IBM SJ 4/1980

- "management has learned to expect
on-time, within-budget deliveries”

in 45 incremental deliveries.

O
Vo

"LAMPS ...4 year ... 200 person-years

Every one

i ithose deliveries was g ‘,(:

0
on time and under budget.”

- .. NASA space program .... @'

7000 person-years software dev...

few late or overrun .. in .. decade,

and none at all in the past 4 years~

- "evolution in .. software eng. ideas..
evolution in .. people using (them)
evolution ... not without pain
programming .. evelved to a

precision design process ...
software engineering has evolved

tiz

from an undependable __activity

to a... manageable activity for

meeting schedules. budgets. quality”

Y

MR

W

W

St AN

LS @38 9861 [Nf € ON 0T [°A SHLON DNIYFHANIONT HYVM.LIOS LIOSDIS WOV



2. OPEN-ENDED BASIE SYSTEMS ARCHITECTURE

Sofuware designers ( most of whom we should not dignify with the
title software engireer) seem to knew only one single way, at most
to build the functions we need. In some cases we know of no way, and
fail. My vision of a really good design engineer, or of an architect is a
person who knows a very wide variety of ways of sclving a probiem
(see Frank Lioyd Wright's autobiography, Horizon Press N¥, for an
exciting insight into this).

]

ke sure disk

a

&

prolect hoie is open Tom|

('Error Type 44" |

: » 5 o 2128
ft good designer can always list at feast ten reasonable ways to 3 t; * = 8 E o ;3
solse a design problem. In addition, the desigh engineer has é - z E P[ e | ; K E T
knowledge of the principie attributes of quality and resource which 5 2 E‘E E & é -;, o - @
ore the essential differentiators between the alternative solutions. 2 é‘ '; i gép 't':L E = * =
& e :“‘;j = g = I w k 'g' P
Among the principal attributes of any system, ore those which E é-; Sl=l2 e Bz 8
alfow it to survive snd succeed under the inewitable changing = - =
conditions in the passage of time. A good software engineer, or = 'E,@ g :’O 212
infotect, should hove made o detailed continuing study of the many S x E g i — .i:- HEles
available design technologies which lead to systems which are more — Eﬁl = |8 EQE MIES
adaptable than others. There are several messurable technical £ i< é“ P :E § kS f;
properties here - such as maintainabilty, portability and extendability — B 3 m _‘g x| E2liE
(Gilb-SET-83). ASIE = HREES R
S EWETE BOEEE
We seem to me to be like a 6reek-isiand house-builder who bhuilds = B A ol R T
uthite-painted stone houses in the traditon of his forefathers, and will
not admit to flexible technologies such as the sound-proof
sliding-wall of the hotel conference-facility.
There is o clear need for o literature and teachings on the
open-endec¢ {echnological seolutisns - the hundreds of them. Not
mereiy the "pop" approach of "standards”, "de facto standards”, and . ATTT )
"structures”. 0ld foxes learn by experience, but how shall we teach < n &5 9 (_} H
the young fones what the cid ones have learned so painfully - in_time EI - s F @ o
to awoid creating disasters ? 8 5 2 2 - =
in terms of evolutionary delivery planning, open architectures are ! E. E a = B ?
essential pre-requisites. Without them the effort wil probably get - @ & = 5 = =
caught in the oli-too-familiar swamp of meintenance of today. The g = =4 K = 5 g
blame will be Iaid at the wrong doer. "We didn'i plan in enough detail =3 =~ |7 3 g = = =
before e strrarted coding!” they will say. But, the real truth is that S E- £ % E &
it was aiways impossible to know so much complex deteil in advence E: a - = - -
of real enperience. The real truth is that they didn't have an open = g [2) ® - t
ended enough structure 1o tolerate the sterms of change { see Rivin ® W ooq 5] = ] E ‘
Toffler; Both "Future Shock” and "The Third Wave"). E : :V 3 é‘% “:5@ » B E“; . &2
i AHIDeE S I
© T L d )
@82 2¢ P Ia
FEE@ A Sf = £

89 ©3eJ g86T Inf € ON 0T [°A SHA.LON ONIHHANIONT HYVMA.LAOS LAOSDIS WOV

development. Here are some samples lo 1hiurirate the concepl.

Comment: Evoiutionary dovelopments proceed more stmoolhly
al the level of logicvare

when you choose open Infotsciures as your dbase for



8. RESULT ORIENTATION, NOT PROCESS ORIENTRTION

m traditionat waterfall software development cycles, the process
itseif seems more important than the resuit. How ofien have | seen
my clients software engineering people paralyzed by the formalities
of o process, when there were cleorly no ciear objectives, towaerds
which to steer that effert. The situation is so awful world-wide that i
can be certain that all large software engineering efforts at present
have extremely unclear, unmeasurabie and unsiated objectives in
critical guality end resource areas. You cen try "Usability" and
"Mainteinability” just for sterters.

Evolutionary delivery forces the developers to get outside of the
building precess for a moment, frequently ond early - and find out
whether their ship is navigeling successfully towards that port of call
many cycies of delivery sway. You sannot heip be resull oriented
when confronted with the need to observe your designs ond programs
working with real working users.

CONCLUSION

Qur software engineering community needs to take a long hard look 8t
the evolutionary delivery method - by whatepver name. They need to
teach it to most praticing seftware prefessionals, to manageris, and to
the new peopie entering our ranks. We don't have to invent anythling
new - just to be 8 bit more humbie in our approach to our task - and
to apply wisdom which Is thousands of yeers cld. “Deal with Nttle
troubles before they become big” and “the longest jsurney began
with a first step” { from "Tag Teh King~ by Lao Tzu about 570 b.c, F.
Unger Publishing, 1980). Unfertunately, | had to learn the theory by
practical observation - and it took a long time. ! hope others can get
knowtedge of this ancient wisdom at an earlier stage of their careers.

Finally, we must set this method into & whelistic contexrt. It needs
nourishment from clear goa! setting, from Engineering Handbooks,
and from multi-dimensional analysis techpigues. 1t must functien in a
totai  systems environment. Software (5 net an island of
self-sufficiency. Our dear algorithms can only produce interesting
results in the company of @ great many other perties. e must learn
to evolve documentation, data designs, interfaces, hardware hosts,
and not teast people - t(heir traditions and weaknpesses. An
euvolutionary test cycle is nothing compared to the glory of improving
the life of the user !

0-¥/£ Ex Step Disk= DBO &

st

3 27

S o025

] -w

EV0-841229.1550 TsG
Value / Cost Method
fr determining

ValuefCost
toUsr $

Step idea =

from a reai case: Chemical preduction

Provide critical
profitability reports.

Build an online DB Sys.
ad hoc Mkting inquiry.

generate optimum pro-
duction sequence plan.

include "profitability”
in purchasing.

improve clerical proc.

change manager pay
scheme; profit based.

89 238 G86T [N € ON 0T [°A SALON DNIYAANIONA AIVM.ILIOS LIOSDIS WOV



LITERATURE REFERENCES FOR THIS ARTICLE:

Boehm-SEE-81; B. W. Boehm, "Software Engineoring Economics’. This
book covers incremental development “as a refinement of the waterfall model”
Meny of the principles of Evolutionary Delivery as described here, are present. But, it
does not go as far as Mill's{ref. below). It is more-like a healthy phased delivery
model,

BYTE-2/84 Cover story articles about the Macintosh development. Pages
30 and 58. Confirm the integrated, result-oriented, evolutionary process
whereby a Mac becomes a Mac,

Deming-85, W. Edwards Doming. The men who brought successful US quality
control methods to Japan. had as a principel idea the eternal ¢ycle of development.
which he credits his teacher, ¥alter E. Shewert ("Statistical method”, 1939). Demings

o¥m recent work is “Out of Crisis™ (MIT Press, 1985) .

FAGAY-76: M. E. Fagan, Design and Code Inspections to Reduce
Errors in Program development’, IBM Systems Journal, 15, No. 3
1976, pp 182-211. This article is cited because it laid the cornerstone, and is
essily aveilable. There is a wealth of follow-on literature available, especially from
The Librarian, IBM. Kingston, New York. The essence of this article, and some

additional technical data will be found in Gilb-SM. Inspection gives early control over
design cycle products, even before evolutionery results appesr.

Gilp-DBO: "Design by Objectives”, Planned 1985, North-Holland.

Gilb-DE-76: Gilb, T, 'Data Engineering’, Studentlitteratur AB, Lund,

Sweden. This book treats open-ended design idees by directly and systematically
exploring many sttributes of data design including portebility. extendability and
mainteinability. It also treats the subject wholistically, including “motivation” which
is given amajor chapter.

Gilb/Weinb -HI: Gilb and Weinverg, G. M,"Humanized InputTechniques

for Reliable Keyed Input’, New edition 1983 QED In¢. MA, This book
systematically describes the open-ended attributes of each technique.

Meny of the techniques here have been used in evolutionary software projects by the
authors to support ease of change from old to new.

Gilb-IFIP-84: Proceedings of the IFIP Conferemce on Human Machine
Interactions (“Interact’) Sept. 1984, London. My talk on "The Impact
Analysis {(Estimation) Table in Human Factors design’ is included
there. It gives a picture of the Impact Estimation tools mentioned here, and
of a metric breakdown for "usablility”, from my industirial practice.

Gilb-SEN-81-E :T. Gilb, "Evolutionary Development”, ACM Software Eng.
Notes, April 1981.

Gilb-SEN-SAS-81. ACM Soft. Eng. Notes. T. Gilb, "System Attribute
Specification: A cornerstone of software engineering”, p.78-7G.

EDB-HHR 850130 Ts6. ".HHH.28.€U0 Bel® on Toml

GENERAL PRINCIPLE: Everything, without exception,
which contributes to the completeness, usefuiness and
planned quality or resource attributes of the product at

that stage.
1. Rl Functional configuration items planned for that cycle.
2. Rl guality levels pianned for that cycle, at the planned level.
3. All ressurce objectives must be met at the planned level
4, Unpatched seurce ceds for all logic.
5. Campiled cede in runable form { linked together)

6, Input tost casez for all medules. Complete set; mesting test standards. Al
non-computer-readable cases (flipping switches etc.) to be recorded end included.

1. Maduls test sutput, for the above test cases, in megnetic form { for automatic
compare when regression testing.

¢, Cress-reference listimg to ali Configuration ltems (Cis, Tags) which are
sxercised by the test cases. See test standards fer cross-referencing.

9, Complete system spacificatien, in deotail, with Cl Tags attached,
in teut processor format.

19, Complete set of wsar decamentation,in test processor format, cross
refersnced with Tags of test cases which purport to test particular statements

11, Complete set of Integratien Tasting Test cases, sutputs,
Cress rafersaces; as indicated abous Tor module testing. Rnything necessary to
easliy and safely repeat the testing process, after modifications are made. Ait

12, Bardware configuration presumptions. R list of the sxact
hardware configuration for which this testing is applicable.

131. A signed statement that the tastimg for this cycle is _complete and correct: by
1. Quality Contre! Officer. 2. Technical Controlier., and 3. Project Leader.

e e e . PR AT NR Bdnb akbme far mham thice rucin iz Inteaded.

09 °8%d 9861 [Pf € ON 0T [CA SHLON ONIHHAIANIONH HIVMILIOS LIOSOIS WOV



Software Engineering Notes, Oct. 1981, p. 30-31.

Gilb-SEN-84:  T. Gilb,"Software Engineering Using Design by
Objectives™ ACM Software Engineering Notes, April 1484, pp 104-113

Gilb-SET-83: "Software Engineering Templates’, sbout 40 pages
unpublished manuscript. Course documentation. Freely copiable. It defines & number
of fundamental software metrics in hierarchical measuratle form.

Gilp-55D-79: Gilb, T. "Structured Design Methods for Maintainability”
in Infotech State of the Art Report on Structured Software Development,
1979. See also Data Processing (UK) ‘Maintaining Software Systems”,
June 1884. Also extracts of it in Gilbert-83 , pp186-192.

Gilb-SM-76: “Software Metrics,, Winthrop USA (now out of print) and

Studentlitteratur 4B, Lund, Sweden (in print) Three pages (187, 214, 217)
direcily treat ewvolutionary development concepts. It is interesting &s an early
reference. Fegan's Inspection method is also ireated extensively in the book (see
Fagen-1976 reference here).

GILBERT-83: Gilbert, Philip, "Software Design and Development’,

SRA Publishers, 1983, Has several references to evolutionary development, and
incremental delivery. He also hes references 10 Design by Objectives - but, he does not
quite put it all together, nor distinguish it clearly from phased delivery.

Mills, Harlan, Dyer, Michael, Quinnan: Articles on Evolutionary Delivery

(also called iterative enhancertent). IBM Systems Journal NO, 4, 1980.

IBM Federal Systems Divition reports exiensive successfui use of the
method.

Wong, Carolyn, "A Successful Software Development”, IEEE Trans on

Software Engineering, Nov. 1984. The SDC experience with evolutionary delivery
is stated in the context of anumber of other successtul methods used with it

[Sol'h.-(a Dowelopment :cé’
Lﬂnn-rlmamt | "g'
t 5 b+
. ?
= \ ; E ._.U)\Lé) §
Re g = | = TN B
=a Tert, Gperations, and By = oy o : (g 2
g a Deployraent Beportment [x] = g B -3 @ v
R sIE=RR e €
- =R K ] e [ B
R “HE= 2 g B~
o3 -3 E = [ [ = @ U
=€ =] 15 2 8 o 0 &
€3 g = 2 <
2e ) = 3= @ = L.,
C & = X =
£t 3 o ]
2 e 5 =223
s =] o B = Lo o
s E_ E Qm = g
3 E = & & ~ 13
€3 = - ~ o}t
Jo o @ o g
Ra - - » (7> 3 8
s E’ 23 - b= 4
3 =5 Eg . 8
3 =% -
3 Lk o
= B 3=
; sq
-0
T3
£

U>NW 001 $ARA (Y 81 JRASUR 2Y 123pNQ B UILILA O
Ak U YINT AOYH, X5¢ fasuus(d Areuonniosay

3

[
Ge61

2]
- bag
23 "
Es 3
g 2
] 4
] I
3z e
S ¢
35 o
33 3
I
)
23
<

19 93%J 86T [N[ € ON 0T [°A SHLON ONIHHANIONH HYVM.LAOS LIOSDIS WOV



