
Value Design:
 selecting design and architecture, based on qualities and costs,

a serious engineering approach

(a 3 Hours BCS SPA SG ** Online Course)

For initial presentation
Wednesday 29nd April 2020, 19:00 to 21:00 +

Video URL= https://www.youtube.com/playlist?
list=PLKBhokJ0qd3_wlvr0j85YhmNfNj8ZJ8M-

 Slide Location: = http://concepts.gilb.com/dl972

By Tom Gilb, in Norway (Kolbotn, near Oslo)
tom@Gilb.com
www.Gilb.com

@ImTomGilb (Twitter)
www.linkedin.com/in/tomgilb

Co-sponsored by BCS Specialist Group on Quality

1

** British Computer Society, Specialist Group SPA, Software Practice Advancement, http://www.bcs-spa.org/index.php

Kolbotn Lake, 5 minutes walk
from my flat
(near Oslo)

Quarentining
And preparing course

Today at my Summer cabin
On the Oslofjord

https://www.youtube.com/playlist?list=PLKBhokJ0qd3_wlvr0j85YhmNfNj8ZJ8M-
https://www.youtube.com/playlist?list=PLKBhokJ0qd3_wlvr0j85YhmNfNj8ZJ8M-
mailto:tom@Gilb.com
http://www.Gilb.com
http://www.linkedin.com/in/tomgilb

2

The ‘Design Theory’ Icon

3

A Value
Requirement

A Design Impact

Function

<- The design area ->

This course in a graphical ‘nutshell’

Yes I have designed a graphical icon language for design

“A General Theory of Design: ‘Planguage’ “

http://concepts.gilb.com/dl956

51 Page paperGet a free e-copy of ‘Competitive Engineering’ book.
 https://www.gilb.com/p/competitive-engineering

(The ‘Planguage’ design language standard
4

http://concepts.gilb.com/dl956
https://www.gilb.com/p/competitive-engineering

3 Hour Course Content
Main subjects:
Value Requirements: the foundation (previous value objectives course, not a prerequisite,
but quite useful) of the design problem articulation.

What is Design?

1. Basics for Valid Design
2. How not to evaluate a design
3. Simple ways to evaluate and compare designs
4. More powerful ways to evaluate design options
5. Starting a larger project, first design week.
6. Decomposing designs, some more ideas
7. Risk management for value design
8. Design Prioritisation.
9. Dynamic Design to Requirements
10. Organising the value design process

The star of this show is the Value Decision table aka Impact Estimation Tables) which
allows us to see any set or level designs, with their estimated or real effects on our critical
objectives and costs. A unique general tool for all designers. Complex systems at a glance,
on a page or screen.

5

Documentation: the course is based on our recent digital textbook
“Value Design:

How to get the Qualities you need to win and succeed,
using advanced design thinking.”

Book Price normally = £1,000 (as of April 1 2020)
Digital copy free to course participants.
Book Knowledge Value > £1,000,000,000

 https://tinyurl.com/FreeValueDesign

https://tinyurl.com/FreeValueDesign

6

Stakeholders

Values

Solutions

DecomposeDevelop

Deliver

Measure

Learn

Evolutionary
Value
Optimisation

Gilb Value Cycle
Copyright 2020 kai@Gilb.com

mailto:kai@Gilb.com

7

Stakeholders

Values

Solutions

DecomposeDevelop

Deliver

Measure

Learn

Identify Stakeholders
Who and what cares about the
outcome of our project?

8

Stakeholders

Values

Solutions

DecomposeDevelop

Deliver

Measure

Learn

Value Capturing
Find & specify quantitatively
Stakeholder Values, Product Qualities
& Resource improvements.

9

Stakeholders

Values

Solutions

DecomposeDevelop

Deliver

Measure

Learn

Solution Prioritization
Find, Evaluate & Prioritize Solutions
to satisfy Requirements.

10

Stakeholders

Values

Solutions

DecomposeDevelop

Deliver

Measure

Learn

Evo Cycles
Decompose the winning Solutions
down into smaller entities,
then package them so they deliver
maximum Value.

11

Stakeholders

Values

Solutions

DecomposeDevelop

Deliver

Measure

Learn

Develop
Develop the packages that
 deliver the Value.

12

Stakeholders

Values

Solutions

DecomposeDevelop

Deliver

Measure

Learn

Deliver
Deliver to Stakeholders
improved Value.
(not always a thing or code)

13

Stakeholders

Values

Solutions

DecomposeDevelop

Deliver

Measure

Learn

Measure Change
Measure how much the Values
changed.

14

Stakeholders

Values

Solutions

DecomposeDevelop

Deliver

Measure

Learn

Learn & Change
Learning is defined as a change in
behavior.

15

Stakeholders

Values

Solutions

DecomposeDevelop

Deliver

Measure

Learn

Value Management
Learning Process

 © 2008 Kai Gilb © Kai@Gilb.com

Stakeholders

Values
Measure

Learn

Value Management
Learning Process

16

Solutions

DecomposeDevelop

Deliver
Evo Development / Scrum

Architecture /
Engineering

Business AnalystRe
ali

ty

(B
us

ine
ss/

Arc
hit

ec
tu

re
/En

gin
ee

rin
g/

Dev
elo

pm
en

t)

17

Stakeholders

ValuesMeasure

Learn

Value Management
Learning Process

Solutions

DecomposeDevelop

Deliver

Scrum

Value Requirements: the foundation (previous value
Requirements course, not a prerequisite, but quite

useful) of the design problem articulation.

 Wednesday 22nd April
2020

Video URL=
https://lnkd.in/dNEDuc6

Slide Location: =
http://concepts.gilb.com/

dl970

18

https://www.dropbox.com/s/hxg1rx9rzesw2id/
Value%20RequirementsPDF%20BEST%20%2070MBQ%20011019%202245%202.pdf

?dl=0

Free download During Corona
Normal Price £ 1,000 from 1st April 2020

Value: > £1 million/project. :) avg.

https://lnkd.in/dNEDuc6
http://concepts.gilb.com/dl970
http://concepts.gilb.com/dl970

Value Requirements
and Resource Constraints

19

In our planning language, Planguage,
these 3 levels might be expressed like this.

Security is the reference tag for the entire
specification.

Scale is a parameter in Planguage for defining a
value variable, such as Security, so that the various
levels of Security can be expressed numerically.

Status gives us the moving current change of
status in the level. Step by step feedback.

Tolerable gives us the bare minimum level
which is acceptable. Worst acceptable case.

Wish is the stakeholder-desired, or
stakeholder -needed, level of Security, on that
Scale.

 Wish = The ‘Success level.
20

Security:

Scale: % probability of detecting a hacker
within 5 seconds.

Status: 10% last year.
 (Benchmark level)

Tolerable: 80% by End this year.
 (Constraint Level)

Wish: 98% by End Next Year.
 (Target Level)

 Scale [Parameters]
[Scale Parameters] might seem ‘complicated’
at first sight.

 But it is in fact a way of simplifying very
complex problems,

by allowing us to carefully extract,
something simple

that we can work on, and

deliver some value improvements early,
for critical subsets. (Hint: ‘Agile as it should be’)

Early partial value delivery is also about

‘learning about complex realities’,

…. before we commit to ‘scaling up’.
21

Vehicle Safety:

Scale: Star Rating number for [Person Type] and [Car Specs] for
[Safety Equipment] with [Alternative Model Validity] for a
[Publication Date] by a [Rating Agency].

Wish: 5 Stars, by Next Year,

Person Type = All,

Car Specs= {Tesla 3, RWD, 4 Door, 2019}, Safety Equipment= {Front
Airbag, Belt Pretensioner, Belt Load Limiter, Knee Airbag, Side Head
Airbag, ...},

Alternative Model Validity=Dual Motor AWD Model 3,

Publication Date =2019,

Rating Agency= All.

Detailed
‘Value Requirement’

specification

(1-line/statement
view)

One of the critical
value requirements

 in previous slide

“Air Quality’
Source BCS Exercise Sept 2017, ‘London
Congestion for Air Quality’. Notice that
this is also a definition of ‘Project Value’
using the 11 decomposed different
values, as the definition-by-subset..
Figure 1.19 in Value Requirements book

22

Predictability of Time To Market:
• TTMP: Predictability of Time To Market:

– Ambition: From Ideas created to customers can use it. Our ability to
meet agreed specified customer and self-determined targets.

– Scale: % overrun of actual Project Time
compared to planned Project Time

– Project Time: Defined: time from the date of Toll-Gate 0 passed, or other
Defined Start Event,
to, the Planned- or Actually- delivered Date of All [Specified Requirements], and
any set of agreed requirements.

– Specified Requirements: Defined: written approved Quality requirements for
products with respect to Planned levels and qualifiers [when, where,
conditions].
And, other requirements such as function, constraints and costs.

– Meter: Productivity Project or Process Owner will collect data from all projects, or
make estimates and put them in the Productivity Database for reporting this
number.

– Past [1994, A-package] < 50% to 100%> <- Palli K. guess.
[1994, B-package] 80% ?? <- Urban Fagerstedt and Palli K. guess

– Record [IBM Federal Systems Division, 1976-80] 0%
<- RDM 9.0 quoting Harlan Mills in IBM SJ 4-80

– “all projects on time and under budget”
– [Raytheon Defense Electronics, 1992-5] 0% <- RDE SEI Report 1995

Predictability.
– Fail [All future projects, from 1999] 5% or less <- discussion level TG
– Goal [All future projects, from 1999] 0% or less <- discussion level TG

23

From Ericsson case study on engineering productivity in the Value Requirement slides

 The Evo Process., the One Page Summary

A Systems Engineering Agile Process

Stakeholder Value Requirements
Clarify your environment: critical-stakeholders’ territory

1.Identify your critical stakeholders: the ones that can make or break your
project

2.Identify their critical values

3.Quantify and clarify your critical values: what degree of values do you expect

the design to deliver to stakeholders

4.Identify design constraints: legality, political, cultural, policy, other plans

5.Identify design resource-limitations: time, money, operational costs for

example.

Top-Level Design: Architecture Level
6.The Project Startup Week: an architecture overview
7.Identification and prioritization of top-level architecture

8.Decomposition of top-level architecture into design components.

Value Delivery Cycle (Designs deliver the value !)
9.The Evo Value delivery steps (about a week, or 2% of total project budget)

1.Select your highest priority value, and the most-critical scale-parameter
attributes.

2.Find a design component which will deliver the most value-for-resources to
your priority requirement.

3.Ready the design component for delivery: integration to the existing
system.

4.Deliver the design component to the real system

5.Measure the results (values and costs) of the design increment

6.If results are negative, attempt design improvement, and redeliver.
7.If results ok then repeat this value delivery cycle, scale up, until ‘done’.

Project Completion: All Value is delivered
10.When all value requirements are reached, or when critical resources are

used up. Stop. 24

Stakeholders

Values

Solutions

DecomposeDevelop

Deliver

Measure

Learn

Evolutionary
Value
Optimisation

Gilb Value Cycle
Copyright 2020 kai@Gilb.com

Top Level Design
Value Delivery

Value
Requirements

Project
Completion

mailto:kai@Gilb.com

Part 0. What is Design ?
A design is

 a suggested solution
to the problem specified

 by the design requirements.

It might not turn out to be valid, or as
efficient as alternative solutions.

A perfect valid design specification would

 deliver all value requirement levels within

their deadlines

 While not exceeding any resource budgets

 And not exceeding any other specified

constraints
25

Function Req

PERFECT DESIGN
Value Impact

PERFECT DESIGN
Cost extent

Cost

The Design costs
Do not exceed

Resource constraint,
Budgets

The design impacts
Values

So that all Goal
levels are reached

‘Design’ basic concept synonyms:
Architecture, Technology, Means,

Solutions, Strategies

Design Specification Example

26

Part 1.
Basics for Valid Design

Validating that the design will deliver enough value.

ARE WE FOCUSED ON A CRITICAL GOAL AND DEADLINE? The Value
Requirement levels specified (example, Goal 2030, 95%) is the driving force of the design
process.

ALL CONCURRENT DESIGNS MUST MEET ALL CRITICAL VALUE REQUIREMENTS: We
look at those value requirement specs, and each one of our design problems is ‘defined’ by the
total set of several value requirement statements.

WE NEED TO RESPECT A SET OF OTHER CONSTRAINTS TOO: We need to ask ourselves,
for example

which design will get me to 95% by the year 2030 (including the other [conditions]
detail, included in our problem specification)?

WHAT IF WE HAVE NO VALID DESIGN IDEAS? If we have no design ideas at all, and neither
does anyone else we communicate with;

then we might possibly have a problem spec,

for which there is no ‘known’ design solution.

That means we cannot satisfy the requirement level, yet.

WE NEED AN ENGINEERING DISCIPLINE TO VALIDATE MANY DESIGNS AND
REQUIREMENTS: If we have several valid ideas, then the design process needs to get more-
disciplined.

Looking at several design options

Looking for side effects on other value requirements

Looking at various resources needed, costs.

27

Design Impact —>

Value Target —>

Goal

More Design Discipline: some questions to ask about your designs.
1. REALISTIC GOAL?: Has anyone ever actually reached such a level (95%) with any design

at all? Even with designs we cannot realistically consider.

2. TIMELY?: Has anyone ever reached such a level within the deadline (2030, X years from

when we start)?

3. REALISTIC SUGGESTED DESIGN?: Has anyone ever reached such a level using the design

‘hypothesis’ (= we think it might work) which we have suggested?

4. IS THE DESIGN CONSISTENTLY SUCCESSFUL?: Have people regularly reached such a

level, using our design hypothesis?

5. IS PILOT EXPERIMENT FEASIBLE?: How costly would it be to try out (pilot, prototypes,

experiment) with the design hypothesis, and see how it works for us, before committing to

it, on a longer-term, larger-scale basis?

6. IS THE DESIGN SPEC UNAMBIGUOUS?: Is the design idea so vaguely specified, that

interpretations, in fact, could include both winning designs, and failures? (and we might

implement a failure).

Do we need to clarify design specs, so the successful interpretations are the only

possible interpretations .

7. NO CURE NO PAY GUARANTEE? Would a sub-supplier agree to a no-cure no-pay

contract, based on actual value delivered, with ‘95%’ (the Goal) or better, giving a them

double bonus?

The answers to these questions will guide you into pursuing or abandoning the design idea,

and if necessary looking for other better ideas. 28

Value Target —>

Design Impact —>

Value Target —>

Design Impact —>

Yes

No

Understanding that we probably have the required resources
 to use the design.

Can we afford it? Are there cheaper ideas?

29

 Let’s assume you have one or more design candidates that are acceptable, in terms of
the questions above.

And let us assume all candidates look roughly as good as any other.

So they might deliver the value levels you require.
But can you afford them?
And is any option much cheaper or faster than the others?

We can ask the following questions about the design options, in order to pick
a ‘resource winner’:

1. is the design specified in enough detail, that we can hope to estimate costs roughly ?

(Order of magnitude, or maximum).

2. Vague ideas have a very broad ‘cost range’.

3. Do we know any resource information (time, people, money) at all about any previous

uses of our design options, by anyone, anywhere?

4. Can we get a sub-supplier to give us a fixed price, fixed-delivery-time contract, for

the design options?

These questions will help you point to a likely, cost-effective (‘efficient design’) candidate.

In some situations, that might be enough to go ahead and try the promising-designs out.

In other situations you would be gambling, too much of someone else’s money and lives; so you might like
some even-more-advanced design-methods for those cases.

Function Req

DESIGN A B & C
Value Impact

DESIGN A
Cost extent

LIMIT

DESIGN B
Cost extent

DESIGN C
Cost extent

Cost-effective design
Efficient Design

Making sure that the design does not violate any other specified constraints.
 It is not enough to have a cost-effective design.

It would be nice if it were ‘legal’ too!

There are a number of other considerations, we call them ‘[design
constraints]’, that your design needs to satisfy.

You can ignore them, and no one will bother you for a while.
But recent Facebook and Google negative (EU, Congress) publicity
is a reminder of the price of arrogance.

Design Constraints need to be formally specified, integrated into the
overall rquirements, and acknowledged, as valid stakeholder needs,

Have we identified and documented all critical constraints?
Are the designers/Architects aware that we need to respect
constraints 100%, or if not, then we are in legal/financial/reputation
trouble?
Is there any rigorous review, or quality control, showing that designs
actually respect the list of all constrants? (like Spec QC process))

Stakeholder analysis will give you access to many design constraints.
Hard experience reminds you of others.
Did your organization learn anything specific, from previous projects
that had problems?
 Is this experience embedded in reusable checklists of design
constraints that apply in most of your projects?
Try to lay your hands on that checklist!

30

Design Impact —>

Value Target —>+++

[]

Invalid
Design

Example
‘Illegal’

Costs are irrelevant,
when a design exceeds other constraints,

such as legal, national, policy.

AGILE INSPECTIONS: Reviews by sampling and measuring defects.
 Extreme inspection and reviews based on objective and quantitative review methods.

http://www.gilb.com/dl239

DESIGN CONSTRAINT CHECKLIST

Take another look at your 50+ stakeholder list.

Do any stakeholders have any potentially critical design

constraints?

Asking stakeholders what they want, is not the same as

asking what they will not tolerate (constraints)

Would all stakeholders accept any design

(even if it killed Whales, with plastic bags?)

Do not limit yourself to what the stakeholders would demand up front.

What would they say if later confronted with that fact that ‘you

chose plastic over wood’ for xample?

Would you prefer to ‘surprise them’ later?

CONSTRAINT EXAMPLES

Contract conditions

Laws: council, national, international

Regulations: health, finance, transport safety, building,

employment

Organizational Policy, Partner Policy

Local culture, environmentalist, equality, consensus, anti-

corruption

Public Opinion, media, respect

31

Competitive Engineering (book), glossary page 343

Planguage Concept Glossary as edited in Competitive Engineering book 2005 (10% of Full Glossary)
http://www.gilb.com/DL387

DESIGN CONSTRAINT Examples

Performance constraint:

Tolerable 50%

Resource constraints:

Budget £30M

Tolerable £40M

Design Constraint:

Constraint [Data Storage]: National cloud

only

Function Constraint:

Function [Access]: Password and Secret

Daily-Code.

Condition Constraint:

Goal 50% For People [Over 80 Years], Living

[At Own Home], Pre-existing Conditions

[None Known].
32

Competitive Engineering (book), glossary page 343

Planguage Concept Glossary as edited in Competitive Engineering book 2005 (10% of Full Glossary)
http://www.gilb.com/DL387

Part 2.

How not to evaluate a design
Everybody is using that design

The design is effective for X-ility

The Powers That Be have asked for a particular design.

We always use that design

We do not know of any other design

The supplier recommends this design

Our architect has specified this design

It is the cheapest option

Other designs will take too long to implement

This design is necessary because of another design

33

‘Everybody’ is using that design

Popularity is not a good reason for you to use a
design.
Your only valid reason is that the design will credibly
deliver the value required.
The popular design might be good enough for other
people’s value levels.

 But maybe your value requirements are different,
and your design needs to be different.

Maybe they have all chosen a bad design,
because it was well marketed,
and they are getting bad results;
or getting results that they do no realize are so
bad,

since they have no clear numeric idea of
the level they need, or the level they got.

34

‘The design is effective for X-ility’ (a quality)
The design is the best for ‘security’, or some value of interest.

This might, or might not be true.
Is there serious evidence to prove that?
Or is it just a subjective opinion,

by someone who does not even know what ‘serious
evidence’ means?

But even if it is, the best, there are other considerations

before we make a design commitment.

What negative side-effects does it have on other critical

values, like Usability?

What does it cost, now and later, in money and time?

Does it steal all the budget?

Does it violate any of our constraints?

Is it legal in all our markets?

In other words, such an argument (‘best’) is insufficient to
lead to adoption of the design. 35

http://lsspmp.com/sixsigma.html

‘The Powers That Be have asked for a particular design.’
The ‘Power’ might be a big potential customer, your boss, your biggest client, the contract,
even the ‘law’.

However, that does not automatically mean you blindly and unquestioningly use that design.

Why not?
The design might be obsolete in many ways, replaced by better ones
The design might simply be their way of telling you what their values are, but not
really intended as an unconditional demand from them to you.
The the design might have negative side effects that they are unaware of, and would
not accept.
The design might cost far more sooner or later, than the Powers know about and
would accept.
The Power behind the Power might have changed: a new Chief Technical Officer in
power, might like to be consulted, on their ineffective predecessors’ bad decisions.

We can treat the design request with respect. But we need, to be ‘design responsible’,
to be the professional designers they employ; to shed light on it,
 both for the Power,
and for our own reputation and responsibility’s sake.

Consequently we need to do the following Design Request analysis.

Are there any clearly superior alternatives now available, which might have been overlooked
or have recently emerged?
What are the measurable expected side effects of this design request on any and all value
requirements?
What is the estimated consumption of our budgeted resources (time, money, maintenance
costs, conversion costs, training, ...)
Are there, for the design request, any potential violations of legal or other constraints, in any
potential area of deployment?

A written analysis should be submitted to the Power, with a recommendation about what to
do, and requesting their written answer. Put the monkey on their back, or the monkey is still
on yours. 36

‘We always use that design’

Well that is fairly safe.
A conservative option.
But the times they are a
changing, and

a designer is responsible
to their client
to be aware of interesting
new options,
and to at least point them
out.

A table comparison of the
options

 would be one way to
explain the differences,
and to give the Powers a
real and responsible
choice.

37

A VALUE DECISION TABLE. DESIGNS ARE TOP COLUMNS (‘DATABASE DESIGN’) AND
THEY ARE RATED AGAINST 4 VALUES, AS TO % ABILITY TO MEET THE VALUE WISH ON
TIME. WHICH DESIGN DO YOU THINK IS THE BEST OVERALL OPTION ? LOOK AT THE
‘SUM OF VALUES’ NUMBER. BUT CONSIDER UNKNOWNS (‘????’) <- TECHNOSCOPES.

Design
Specification

Example

38

<- Design Tag

‘We do not know of any other design’

39

There is, you should safely assume, always some better design out
there.

If you cannot think of near alternatives even, then you can also
assume your design competence is low.

To avoid being found out as incompetent, you need to find someone
who has better ideas.

The simplest and cheapest way to do that initially is an internet
search.

Look for criticisms of the ‘one design’ you have, which will probably
contain suggestions for better designs.

Try the search key words: “what’s wrong with xxxxx’

‘The supplier recommends this design’
Sometimes suppliers have really valid reasons for recommending certain products
or services.

In which case we should be able to ask questions and get good answers:

Exactly why are you recommending this design to us?

Are there better alternatives, if we pay more, from you or others?

Can you give us some references from people who have used your recommendation

Are there any weaknesses with your recommendation that you do not think we care

about ?

What would you recommend if we said, we do not care about the initial cost as long

as we get lifetime good quality from it?

Are you willing to give a total refund guarantee if we are unhappy with the design?

How many years have you been using that design?

Have you recommended this because we asked for a low bidder fixed price?

You and I know that a supplier, might have unspoken reasons for recommending a
design.

And for not telling us about better alternatives.
Forgive them for that.
You might act the same in their shoes.

But there are many ways of finding out if there are some designs you might actually
like better, even at a price, or maybe even a lower price.

40

12 Tough questions questions paper
http://www.gilb.com/dl24

‘Our architect has specified this design’
There are many kinds of ‘architects’.

Some have proper qualifications and ethics.
Some do not.

The architects are a type of supplier, and deserve the same analysis as for suppliers
above.

In a business I wander in, high tech, and IT, there are some people who went on a 4 day
Enterprise Architecture course, and title themselves Enterprise Architects.

Needless to say they cannot be compared with proper architects with years of
formal education, and practice in architecture firms.

They have no training and discipline in quantified values and costs at all.
They talk about it in print and ignore it in practice.
The opposite of this book/Talk/Course where we get quite serious about values
and costs in practice, and measurably.
Not with nice-sounding platitudes.

But I have seen with my own eyes that they recommend extremely expensive designs,
in the 1 million to 1 billion category (who cares currency),

and these design options are part of some very expensive and public failures:
for which the ‘architect’ takes no blame, or legal or financial responsibility.

This makes me very angry, as a taxpayer, and sometimes angry as a services (health,
tele, finance) consumer.

I have concluded that I should not blame the pseudo-architects.
 I should blame the management who employs and listens to them.
 Who do not ask enough hard questions about their decisions.
The MBAs, Mean to Blame the Architects gang.

Get yourself a proper Architecture Engineer! Not a buzzword ‘architect’.

What is that? This book. 41

‘It is the cheapest option’
Well, cheap is good,

all other factors being the same.

But we need to analyze
that all other value and cost
factors
that we consider critical,
are really ‘the same’.

Assume not, until proven otherwise,
might be a safe way
to make decisions.

42

‘Other designs will take too long to implement’
Maybe, maybe not.

If this is true, and it is critical
then that might be a good reason.

but surely you are not so innocent that you simply believe
such a claim as an oral meeting answer?

How do you know how long it will really take to implement in
practice?

What guarantees do you have in place for that?
“Can we have it totally free if you are delayed more than
1 week for any reason?” No?? Let’s talk about why?”

And those other designs, maybe from their competitors,
 have you checked with them about their guarantees,
and experiences with delivery times?
Is there an Express Delivery option, at a price?

It may be worth it to dig deeper into the delivery time
question.

It is rarely simple, and things are far too often delayed, with
any design.

43

‘This design is necessary because of another design’

Dependencies.

Maybe that ‘other design’
can be replaced with a
better design

which does not have such
dependencies attached to
them.

44

See decomposition based on independence of implementation
Value Planning book, Ch 5 Decomposition by Value” in my Dropbox:
https://tinyurl.com/VPDecomposition or VP book gilb.com

https://tinyurl.com/VPDecomposition
http://gilb.com

Part 3.
Simple ways to evaluate and compare designs

45

An Impact Opinion Table (IOT)
An Impact Opinion Table (IOT):

 looking at ideas from several value
points of view

Before we do go into more detail
(with the best and most advanced design
methods),
let's look at some potentially useful ways of
evaluating, and prioritizing, any design.
At least for simple problems.

This is an Impact Table.
 In fact let me be blunt and call it a Subjective
'Impact Opinion Table'.

It is a simplified way to look at our Value
Requirements and our Designs for attaining them.

I will comment on it in more detail just below.
46

Designs ->

Value
Requirements
v

Diet Invest-
ment

Sharing Startup Continu-
ous
Learning

Health ?? ? ? ? ?
Wealth ? ?? ? ? ?
Happiness ? ? ?? ? ?
Career ? ? ? ?? ?
Education ? ? ? ? ??

FIGURE:
 A BASIC VALUES VERSUS DESIGNS
TABLE STRUCTURE,
INITIALLY WITH UNKNOWNS

LIFE DESIGN Booklet
https://www.gilb.com/store/kCBGcG6L

Multidimensional Design Evaluation
Multi-dimensional Design Evaluation
Let me declare at this point, that evaluating one design, on one
value-dimension, is never going to be a safe evaluation.

We always have two concurrent needs:
Understanding side-effects on all other values and costs, of
any design
Comparing one design with other designs

Complementary designs, to see which should be used
first
Competitive designs, to pick a winner

For both purposes, we need a table structure. Values versus
designs.

We need to look at any set of designs, that interest us.

We need to evaluate all interesting designs,
with respect to any set of values and resources that interest
us.

That multi-dimensional design-evaluation process, will give us a
more-complete view of the design situation, so that we can:

select the best mutually-exclusive architectures and designs.
prioritize delivery of design components,
so we can build a value-stream early, continuously

 and with good cost-effectiveness.

47

Designs ->

Value
Requirements
v

Diet Invest-
ment

Sharing Startup Continu-
ous
Learning

Health ?? ? ? ? ?
Wealth ? ?? ? ? ?
Happiness ? ? ?? ? ?
Career ? ? ? ?? ?
Education ? ? ? ? ??

Knowing what you do not know
Here is an explanation of the ‘starting point’ (all unknowns) for the Table above.

I inserted a ?? at the intersection between a Requirement and the Main Design
for each Requirement.

Then I inserted a simple '?' for all the other potential impacts, which that Main
Design might cause, like it or not; ‘?’ for all the other Requirements: the
'Side Effects'.

This ?-filled table is our 'initial state of ignorance', until we begin to estimate
the potential impacts of our ideas on each value objective.

'??' means we do not understand anything about the main effect of our Design
on the main value, which it was chosen for 'good impact' on.

or, at least, we have not shared and documented our understanding yet
Nobody else knows what we pretend to know

'?' means we do not yet pretend to know anything about the side-effects of
that idea, on all our other values.

These side-effects could, theoretically, be so bad as to ruin our life or
project!

Confucius said: "True wisdom is knowing what you don't know."

The Impact Opinion Table, with ??s, is a tool for helping you see what you do
not know, yet. This ?? Cultures extends to more-advanced design evaluation
tools. Discussed later. (VDT or IET). 48

Designs ->

Value
Requirements
v

Diet Invest-
ment

Sharing Startup Continu-
ous
Learning

Health ?? ? ? ? ?
Wealth ? ?? ? ? ?
Happiness ? ? ?? ? ?
Career ? ? ? ?? ?
Education ? ? ? ? ??

Getting some rough idea of what we think we know about ideas:
filling out the estimates without pushing your grey cells too much.

Your Designs can have positive impacts
(+), negative impacts (-) or no impacts (0).

Your Designs can have minor impacts (+),
medium impacts (++) or strong impacts (+++).

But this rough method is not good enough for all
large systems,

such as health service, transportation,
communication, government operation,
international products services and trade.

Now, at this point (in methods presentation) I am
just looking for a 'rough feeling' for 'which one'
of the Designs is significantly better than the
others.

That's the one you probably want to start
‘value deliveries’ with.

49

Designs ->
Requirem
ents v

Diet Invest-
ment

Sharing Startup Contin-
uous
Learning

Health +++ - + -- +

Wealth - ++ - - +

Happi-
ness

- -- +++ - +

Career ? + ++ ++ ++

Education 0 ++ + ++ +++

Net
Advantage

3-2 =1 & ? 5-3 =2 7-1 = 6 4-4=0 8

Weaknesses with this simple Impact Table
1. Ambiguous Value Specs: There is no guarantee of rigorous value

definition with a scale of measure. The detail might be nice sounding
words (‘We need to get a competitive level of market flexibility!’).

	 This implies that nobody can be sure of what the value requirement
level actually is, and all evaluations are ambiguous. Worthless.

2. Ambiguous Design Specs: There is no guarantee that this design
name points to a sufficiently clear and detailed design specification.
Sometimes the name is all you have got, which is too common.

	 This means that the ‘impact evaluator person’ will be at liberty to
interpret the design specification in any different ways. And they will not
tell you which misinterpretation they decided on.

3. Very Rough +++ evaluations: The + ++ and +++ are rough
impressions, but what exactly do they mean ?

	 Does +++ mean you will meet your success targets? Does ++ mean
you will deliver above the worst acceptable case? Or is that the + ?

Is there any significant

4. Evidence Please? On what basis did the estimator decide on their +++
? Were there some known experiences, or facts, as the basis? Can we be
let in on this interesting secret? What is the source or these facts, and is is
a credible source at all, or is it just SWAG (Scientific Wild-Assed Guess)?

5. Responsibility: if the evaluations are wrong, but we act on them in a
large project. Who is to blame? Will these consultants give us our money
and honor back? Are they even named here?

50

Designs ->
Requirem
ents v

Diet Invest-
ment

Sharing Startup Contin-
uous
Learning

Health +++ - + -- +

Wealth - ++ - - +

Happi-
ness

- -- +++ - +

Career ? + ++ ++ ++

Education 0 ++ + ++ +++

Net
Advantage

3-2 =1 & ? 5-3 =2 7-1 = 6 4-4=0 8

The Impact Table ‘over-simplifications’ include:
No 'explicit' definitions,

 let alone 'quantified' definitions of your objectives.
You think you know what you are thinking about.
 I'd be careful about that assumption!

No detailed definition of the design ideas, or strategies,
you know roughly what you mean by them.
It is surprising what happens, when you actually define them
in writing!

No exact numbers,
to rate the expected impacts, just simple + ++ +++ etc.

No necessity to back up your subjective ratings with
evidence.

It's just your gut feel.
No systematic look at cost aspects, or consequent
calculation of value for resources.
No information about any critical stakeholder constraints
(laws, contracts, policies)

If you are looking for deeper truths, good risk analysis, and clear
communication: then that list above amounts to too many
weaknesses.

But there are always simpler, smaller, local, individual problems
that can benefit from a simpler tool.

We do not always need to use an electron microscope, when a
magnifying glass will satisfy our needs.
Binoculars see the starry night amazingly well, 51

Designs ->
Requirem
ents v

Diet Invest-
ment

Sharing Startup Contin-
uous
Learning

Health +++ - + -- +

Wealth - ++ - - +

Happi-
ness

- -- +++ - +

Career ? + ++ ++ ++

Education 0 ++ + ++ +++

Net
Advantage

3-2 =1 & ? 5-3 =2 7-1 = 6 4-4=0 8

So, here are the positive (++) aspects of the Impact Table:
It gives us a look at multiple objectives (ends) simultaneously
(avoiding over-focus on single objectives).

This encourages us to look at side-effects, and the larger
picture.

It clearly considers a set of complimentary, or optional, Design
Ideas (means), with some ability to see their differences.

It registers someone's subjective opinion (the + 0 -), about the
relationships,

and sometimes they can explain their judgement in practical,
or experiential, terms if asked.
what if 2 or more people independently built Impact Tables,
and we compared their opinions?

It can help us distinguish 'very promising' Design Idea options, from
total 'losers'

So the Impact Table can be used as a rough quick draft, preliminary
to a possible better analysis of the designs.

In simple terms, if your entire family’s lives were at stake, would you
like to use this simple tool to evaluate your options in the hostage
situation?

52

Designs ->
Requirem
ents v

Diet Invest-
ment

Sharing Startup Contin-
uous
Learning

Health +++ - + -- +

Wealth - ++ - - +

Happi-
ness

- -- +++ - +

Career ? + ++ ++ ++

Education 0 ++ + ++ +++

Net
Advantage

3-2 =1 & ? 5-3 =2 7-1 = 6 4-4=0 8

Part 4.
More-powerful ways to evaluate design options

Ways of Using the Impact Estimation Table aka Value Decision Table

1. Value Decision Making: analyzing how to get the Values you want at costs you can
afford. We call this use Value Decision Table (VDT)

2. Presentation: presenting analysis, decision arguments in meetings, papers, books,

3. As a database for graphical presentation: the structures, and numeric data structured
and defined, in tables and spreadsheets invite a variety of simplified graphical
presentations.

4. For selection of winners, or top contenders, of mutually exclusive options
(architectures, designs)

5. For determining the priority of delivery, of design subsets, for incremental value delivery

6. For documenting, and logically considering, risks of evaluation: best and worst case,
source credibility.

7. For tracking incremental progress towards value targets: project management. Is the
project going in the right direction, at the right rate of speed, at the right costs?

8. For managing dynamic design to cost: early and frequent (2% steps) proof-of-design
cost-effectiveness, and adjustment immediately.

9. For modeling complex systems, especially values, costs and designs: at related
hierarchical levels.

10. For forcing complete analysis of all values and costs, and recognizing incomplete
design thinking

11. As documentation for decisions made earlier. Lawsuits, Contracting basis,
organizational learning.

12. Relationship analysis: for seeing and presenting complex system relationships, up and
down a hierarchy, and side-ways, at any given level.

53

Impact Estimation (IE)
Design —> Requirements

The Impact Estimation Table aka Value Decision Table Structure
Any number and type of designs can be considered.

Any number of Value requirements can be considered

Any number of resource requirements can be considered

Normally a table is about 10x10

and if it gets larger, than a page or a screen,

we can decompose it into smaller detail tables,

or summary tables

The Name Tags of Designs and Values and Costs on the table,

refer to any ‘quantity of detail’ in the corresponding specification

objects.

The ‘real Scale’ numbers are recomputed to a % impact

(100% meets planned level on time)

which makes possible ‘% summaries’,

which would be impossible, when Scales differ in nature.

The table can use any kind of ‘table software’,

or be drawn.

But spreadsheets allow some automation and

presentation advantages.

Specialized Planguage tools like ValPlan.net permit more

automation, presentation, and integrations than spreadsheets. 54

Clarity, Relations, Quantification , Overview

http://ValPlan.net

The IE Table tool ties several
process steps together

 THE TABLE IS THE BASIC TOOL FOR
DETERMINING IF A DESIGN HAS GOOD
VALUES AND COSTS,

AND IF A DESIGN FITS IN WITH THE
OTHER DESIGNS,

MEANING ‘THIS DESIGN MOVES US IN
THE DIRECTION OF THE PLANNED
VALUE LEVELS,

WITHOUT USING TOO MUCH
RESOURCE’

55

Real IE Table example:
simple and small

 The right-hand column keeps track of the ‘sum of all
currently evaluated designs’, for any one horizontal row of
values or costs.

In theory you need a total of 100% for your set of design
ideas, to have a chance of meeting your requirements.

But, like the good engineering practice of having a safety
factor,

we usually aim for a sum of at least 200%,
twice the design we need in theory,
‘to be on the safe side’.
Color codes warn of ‘too much cost’ or ‘too little
value’.

The estimates are necessarily rough.
There are dozens of known factors which influence
the real outcome, and they are not included here.

56
a real Health service, UK, table, successful project (source: http://www.gilb.com/dl582). Man-Chie Tse and Ravinder Ravi Singh Kahlon

http://www.gilb.com/dl582

Confirmit Example

57

 © 2008 Kai Gilb
58

IET, project step planning and accounting:
using an Impact Estimation Table

IET for MR Project – Confirmit 8.5
Solution: Recoding

Make it possible to recode variable on the fly from Reportal.
Estimated effort: 4 days
Estimated Productivity Improvement: 20 minutes (50% way to Goal)
actual result 38 minutes (95% progress towards Goal)

40
66 20

10

40

http://www.gilb.com/DL32
Confirmit Case paper

 © 2008 Kai Gilb
59

EVO Plan Confirmit 8.5
4 more product areas were attacked concurrently

http://www.gilb.com/DL32
Confirmit Case paper

 © 2008 Kai Gilb

Technical Debt Engineering – ”green” week

60

1 week every month
used for delivering towards
Internal Stakeholder Requirements.

In these ”green” weeks, some of the
deliverables will be less visible for the
end users, but more visible for our QA
department.

We manage code quality through an
Impact Estimation table.

Green Week Confirmit Case
The Green Week: Reducing

Technical Debt by Engineering
http://www.gilb.com/dl575

May 2013

A Detailed IE Table
A MORE DETAILED
TABLE.
THERE IS AN
UNDERLYING SET
OF DATA FOR
EVERY ESTIMATION,

AND EVERY
VALUE
REQUIREMENT
SPECIFICATION.

SO WE CAN
CHOOSE TO
DISPLAY MORE OR
LESS

AS OUR
PRESENTATION
NEEDS DICTATE.

61

Detail of estimates, uncertainty, evidence, source
(managing risks of designs)

62

Design Spec
example

Is there enough
info
Here

to
Estimate impacts

And costs

63

 Value Presentation to/for/by the Architecture process

 The Table is a basic tool for

Developing architecture

Evaluating Architecture

Presenting Architecture

Tracking architecture delivery impact

The Architect’s Tasks

find a set of designs (the
‘architecture’) which arguably will
deliver the planned Value Levels,
within the resources budgeted.

document your ideas with estimates
and evidence, on an Impact
Estimation Table (CE, VP) also called
Value Decision Table.

64

Resource BudgetsHere are some interesting
resource categories:

Up Front Costs: before
producing Value

•Capital Costs Money

•Calendar Time

•Work Hours

Lifecycle Costs

•Money for recurrent lifetime
operational costs

•System Maintenance, bug
fix, port to new platforms

•Software Licenses

•Premises and Hardware
rental

•Training Costs

•Internet Costs

65

Design Cost
Est.

Simplifying the Values/Costs Design Options
From complex table to bar charts

Do you think it is a good
practice to implement the
most credible designs before
the less credible designs?

Do you think we should use
the lowest value estimates
and the highest cost
estimates as a basis for our
priorities?

66

Many ‘risk level’ options for ‘Design Efficiency’ (Cost Effectiveness)
Optimist, Uncertainty, Credibiliy, Both (U+C), Actual Result

HERE ARE A VARIETY OF PLANNING
LEVELS FOR THE DESIGNS, COUPLED
WITH THE FEEDBACK FROM ACTUAL
IMPLEMENTATION.

We can see how good we are are
understanding designs, and estimating
their worth.

In this case things are working out better
than estimated initially. That is why the 3
columns on the right side are much taller.

Some designs are far better than others,
and this makes that fact visually clearer.

Notice that his presentation is not just for
effectiveness, but for cost-effectiveness.

67

Part 5.
Starting a larger project,

Planning Optimisation Week
DAILY AGENDA

1. Quantify the critical values

2. Draft the best designs to reach the values

3. Build a Table to see if you have pretty good

design for the values.

4. And - next part of this book - decompose the

designs into weekly do-able value increments

5. Get approval from the ‘Powers That Be’, to

start rolling out results, for r4eal, next week.

68

Top-Level Planning Week
This process can be shortened to 2 days and even 1 day if you need
to.

But my experience is that it is then too hectic.
You get what you pay for here.
The full week gives people time to learn, buy in, discuss,
argue, and feel pretty good about the proposals.
A week is a small investment to get a big project started
better.

We build a top-level critical model of our project.
We get a balanced idea of the key values to aim for, and the
key constraints to respect.

This top level model, with updates, will become the primary control
center for the project.

 It is for the project management level, and all levels they
report to.
The essentials of project control on a one page control panel.

There is only one essential question: are we delivering values as
planned, for budgets and deadlines we planned?

We do not use ‘yellow stickies’: we digitize the planning,
even just in spreadsheets,
so we can build on it,
as we detail the planning,
and progress the value delivery and learning process.

No ‘Infra-structure only’,
just incremental improvements to previous incremental status

 in the plans
and in the real systems.

69

1. Quantify Critical
Few Objectives

2. Pick Most
Powerful Strategies

3. Estimate Power
and Costs of

Strategies, for
reaching our Goals

4. Decompose
Strategies and find

something doable next
week

5. Present to
Management and

Get OK, try to
deliver value next

week

1. Clarify your
critical values

2. Decide the main
means to deliver

those values

3. Evaluate the cost
effectiveness of our

chosen means

4. Select a very high
value sub-strategy to
try out shortly for real

5. Get management OK
to get practical, and

deliver value next week

The Planning Week Schedule

Purposes of each days tasks

Learning by Doing
Participants learn the Planguage methods, on the fly, by doing it.

No other training necessary.
But a competent coach is necessary,

someone who knows what is in this book! You.

I have personally coached 5 real project teams at once in the same week, and
repeated the feat 5 different weeks (= 25 projects) at McDonnell-Douglas
Aircraft (now part of Boeing), for aircraft design projects.

They liked the results so much they commissioned me to train their
coaches and certify them as competent.
We always got approval to deliver measurable results from the next
week and onwards.
What manager could resist?
There are many more case studies of the ’startup week’ method.

 (like Ericsson, HP, JP Morgan Bank, DoD)

We do not build prototypes or mockups of our design.
We test our design ideas by implementing them

on real existing systems:
but usually on a small scale,
a week’s work,
before we scale up.

I personally do not trust mockups and prototypes at all.
Not for large projects.
 I do not believe they give us credible enough information.
They certainly do not deliver any real value to stakeholders.

 Real and small increments cost roughly the same as prototypes and
mockups:

but they deliver much more credible feedback from the real world,
and above all, they deliver real and measurable value.

70

1. Set
numeric
goal for the
cycle 2. Choose exact

sub-strategy, and
exact target
environment

3. Build (if
necessary),
Acquire (if
necessary)

4. Implement Evo
Step in chosen
environment5. Measure

results,
gather
other
feedback

6. Learn from
results and
feedback.
Feed to
Project
Control

7. Act on that
learning. Feed to
Project Control.

8. If all goals
reached, or all
resources
expended: stop this
process

‘Weekly’ ‘sprints’: Deliver Value and Learn

The big trick to use real, small, value-delivery steps,
on large projects

is knowing:

How to decompose design into small implementable
delivery steps (architecture -> sub-designs)

How to safely deliver these small steps to real live existing
systems, products, services.

Before you ‘get skeptical on me’, let me inform you that
Elon Musk increments real assembly-line
productionTesla cars,
 with average 20 incremental changes (half hardware,
half software) weekly.

And he makes a damned fine vehicle for me, too.

This is the same method I am talking about. Here

 Safest car in the world, one of my ‘Very personal’ values!
71

FIGURE: TESLA S SAFETY, DESIGNED IN INCREMENTALLY,
AND MODEL 3 GOT BETTER.

NOT BAD FOR A BEGINNER IN CAR INDUSTRY.

WE should NEVER REALLY ‘BUILD A NEW SYSTEM’ FROM SCRATCH
(no matter how radical the vision and architecture)

It is worth mentioning that this (Evo, with POW start) is not a process which always assumes
we are starting from scratch.

I have often used it for a major upgrade of existing systems, several years old.
For example the 8 years old US DOD Persinscom system.

I normally can assume that the previous system/product/service is out there, right now, in the
field, being used by real people.

 I can also assume that the old system badly needs value improvements now, and that is why
we are ‘starting this project’.

Your project is not, ever, to ‘create a new system/product/service’.
The real project is always, without exception, to improve the critical values, of the ‘old’
system.
But this will be a cultural shift for many, and require leadership.
“Building and spending are not the game, real value delivery is the scoring
mechanism!”

We can therefore exploit this reality (of existing systems) for these purposes:

As a realistic playground for experiments in design: see how well things really work.

As a possibility to actually improve the ‘old’ system immediately, in critical priority areas. Put

design to immediately-useful value improvement. Prove you know how to design usefully.

As a major risk management strategy, where we do things in small steps, and get feedback

before committing more resources. Big failure is impossible with this method.

Of course there are all kinds of things that are bad and not cost-effective, with the old system.

And there are all kinds of new improved designs that need to be put in place. But these can
both be done, in their own time. Perhaps as an increment, and hopefully a cost-effective
increment.

But there is no need to do major investments in system replication, before proving that you
can design for real value quickly, when and where it counts. 72

The Unity Method 111111

for decomposition into iterative value delivery steps

http://www.gilb.com/DL451

http://www.gilb.com/DL451

The ‘Greedy Conspiracy’ Will Destroy Your Success.
How to make sure your designs are worth paying for!

Surely you know there are self-interested powerful forces that want to rebuild the system anew, from scratch.
They are internationally experienced at seducing weak managers,
and your own professionals to believe that his major swap-out is ‘absolutely necessary’; the only option.

This is their opportunity
to make a pile of money,
selling you hardware and services,
you really do not need, in order to deal with improving your critical values quickly.

There is a way of testing their sincerity.
Offer them a pure ‘no cure (Values) no pay’ contract.

Offer them 50% more than their fixed price offer,
but only if they deliver your quantified critical value levels on time.
Watch them run away and make invalid or false excuses.

 They want your money up front, as they build,
even when no critical value results are visible.
They want to keep that money, even when the project is a total failure,
or the value is a great disappointment.
Do you really want to be their next victim?

The greedy irresponsible suppliers are bad enough,
but the willing victims, usually using someone else’s money (taxpayers money),
are a reflection of poor management and business school training.

They are not Value focussed, I have found.
 Money Money Money.
They do not learn to quantify and manage most critical values.

To top it all off, your own professional staff is keen to support the idea of a completely new system,
since they will get updated skills,
so they can leave you when the project fails, for better pay.

If you need a refresher on Big Bang project failure,
google it.
It is pervasive. (Failure, reports, cases, analysis of failures)

73
No Cure Paper

http://www.gilb.com/DL38

Twelve Tough Questions:

Tools to fight the greedy suppliers
A way to sum up this paper for managers!

1. Numbers

Why isn’t the improvement quantified?

2. Risk

What is the degree of risk or uncertainty, and why?

3. Doubt

Are you sure? If not, why not?

4. Source

Where did you get that information? How can I check it out?

5. Impact

How does your idea effect my goals and budgets, measurably? 6. All critical factors

Did we forget anything critical to survival?

7. Evidence

How do you know it works that way? Did it ‘ever’?

8. Enough

Have we got a complete solution? Are all requirements satisfied?

9. Profitability first

Are we planning to do the ‘profitable things’ first?

10. Commitment

Who is responsible for failure, or success?

11. Proof

How can we be sure the plan is working, during the project, early?

12. No cure, no pay

Is it ‘no cure, no pay’ in a contract? Why not?

http://www.gilb.com/dl24

http://www.gilb.com/DL38

An advanced ‘Design Sprint’ for grownups.
• The Startup Week*. Agile Value Delivery **
• Monday

– Quantify critical stakeholder values
• Tuesday

– Identify top 10 strategies or designs to each the values
• Wednesday

– Rate strategies versus values and costs, and risks on an
Impact Table

• Thursday
– Decompose best strategy, and rate value/costs of details to

choose next week’s value delivery
• Friday

– meet with managers to get OK
• Next week (and every week later)

– deliver some measurable stakeholder value
– measure results, costs
– learn about problems early
– adjust designs for future

• * source is ‘Polish Export’ examples in ‘Innovative Creativity’
book (gilb.com) chapter 9. Done over 2 days with 60 people in
20 teams. Warsaw, at Startberry (startup Incubator)

• ** http://www.gilb.com/dl812, gilb.com/dl568
• DL812: extensive slides, DL568: short paper, see ‘Presenter

Notes ‘in this slide. 74

http://gilb.com
http://www.gilb.com/dl812
http://gilb.com/dl568

‘Project Startup’ versus ‘Design Sprint’

• Engineering Based
• Systems Applicable (UX)
• All Values Quantified
• Risk Mgt (±.Cred, Prty)
• Scale-Free
• Decades of Experience
• Research Published: HP
• Many publ.Case Studies
• AI Prioritization Val/€
• Design estimates V&€
• Actual incr. measures
• Digital Planning Long Term

75

• Programming Craft
• Software and UI Limited
• Values Not Quantified
• No Explicit Risk Mgt.
• Not proven large scale
• Hot new idea
• No known research
• Can’t find cases, yet
• Role player decides pri.
• No estimates
• Dodgy Prototype
• Yellow Sticky Culture

Planguage
Evo

gilb.com/dl568
An Agile Project Startup See Presenter Notes for references

http://gilb.com/dl568

Design Sprint ‘Claimed Benefits’ <-Jake
(of course YOU are skeptical, and know this.)

“8 incredible Design Sprint benefits for your business”
“Here are the 8 amazing Design Sprint benefits you get in your business by
employing this methodology of Google:
1. Design Sprint helps you save time and money
Design Sprint is designed to work quickly and intensely to get a solution to a business problem through design.
By using Design Sprint you reduce the time you spend on the design process and the process of defining your
product, going from months to days
This is a great benefit because you save a lot of time and money and allows you to define a validation plan based on the feedback from your users.
2. Design Sprint Quickly Reduces Product Development Cycles
Derived from the above, development times are dramatically reduced, as Design Sprint work on a connecting problem with the solution. This helps
you to test whether an idea works or not, without developing products with very long production cycles (Idea, Design, Approve, Develop, Launch
and Validate).
With the Design Sprint you become a more agile organization
Before investing in the development of your product or a new functionality that requires an expensive process you can dedicate 5 days so that the
team understands the problem that your company is facing, designing the solutions, creating a functional prototype and validating your ideas in a
matter of hours. Becoming a more agile organization.
3. Real feedback with Design Sprint
Knowing the feedback of your product is fundamental to developing successful products. Many times when we get this information is when we have
finished the project.
With the Design Sprint, you know firsthand and quickly the real feedback from your customers. This feedback is
crucial because it helps you improve your product or service at the same time you design it
On the other hand, your team is actively working on the process, as the production cycle involves different sources of information within your
organization.
4. Validate your business ideas with Design Sprint
Without validation, it is difficult for ideas and products to work. That is precisely what you will do on the last day of the Sprint in a very concrete way.
Through Design Sprint you can design the validation plan of the business idea or functionality of your product
Being clear how the process will be, the time you are going to invest and the type of results with which we can continue the process of transferring
your product to the market.
5. Generates business and innovation.
Design Sprint gives your team a way of working to solve complex problems in a week.
So you can achieve a new approach to the project that would have taken months, even years
6. Align expectations with your team
Making all departments share knowledge, needs, and strategy so that the result is a solution that satisfies and meets needs.
Being able to make your step to deploy is a cycle of continuous product integration
7. Help you measure
The sprint design uses measurement processes in the different phases that the methodology uses.
What allows you to measure the results obtained at the end of the process, as well as the impact of the same on
your business and on the equipment and surplus generated during the process

8. An agile and fast methodology that you can apply to your business
Once you internalize the Design Sprint methodology you can use it and coordinate it with other processes that you already have established in your
project or business.
Typically, the first time you make a Sprint Design is tiring and difficult.
We recommend that you count with the help of a Sprint Master Certified to achieve these incredible results”

http://www.letshackity.com/en/design-sprint-benefits-business-innovation/

Skeptical Observations <-TSG

• These claims are made by a seller of ‘Design Sprint’ training and
certification service (letshackity.com)

• Most of the terms and concepts have poor definition, and are highly
ambiguous (examples)
• Design, Align Expectations, Investing (Product Dev), Complex

Problems, measure the results, agile methodology, validation, and
many more.

• Not one single number is offered to indicate the magnitude of
improvements

• No clear baseline (who is going to get improved) is indicated
• No references to real case studies with results, costs, problems
• No comparison with any other known methods
• No links or references to anything
• Lots of causal assertions, none proven
• “This feedback is crucial because it helps you improve your product or

service at the same time you design it”
• No indication or example of the types and magnitude of the costs for

the individual, the project, and the organization for learning and
maintaining the Design Sprint method

• No glowing references from real people or customers
• No information about how things went after the first week, to tell us how

good or bad the week was.
• Constant implication: Google is successful, therefore this method is

good

76

https://en.wikipedia.org/wiki/Google
http://www.letshackity.com/en/design-sprint-benefits-business-innovation/
http://letshackity.com

Day 1: The Top Ten (or 11) Critical Stakeholder
Values

Quantified on a Page

77

Day 2: The Top-Ten Best Designs: the architecture to deliver the values

78

See detail ‘Allergies Best Idea’ spec next slide —>

Here are sprint designs

Day 2
Sample Design idea

For reducing pollution in London
BCS Course

79

London Pollution Planning
BCS 2016

Day 2

An Architecture
Defined

As
8 sub-designs

80

Day 3

LONDON
CONGESTION

Simplified Impact
 TABLE

UNSORTED

WITH VALUES TO
COSTS

CALCULATED
(at bottom)

81

LONDON CONGESTION WRT 'AIRQUALITY' / Value Decision Tables / London Pollution Planning

! Dashboard Canvas

"

Tables More... Create $ LONDON CONGE... & ' (tomgilb

London Pollution Planning
From Level: Level? To Level: Level?

) (Help me!* Settings... + + Add , ,-

.

=:

=:

=:

=:

=:

=:

=:

=:

=:

Σ%:

=:

=:

Σ%:

Requirements

 Personal Power Ge... Allergies Best Idea Advanced Congesti... Penalties For Veh... Clear Air Route P... HGV Restrictions

Sum

 Air Quality Index
Past: 135 / Wish: 67 µg/m³

ΣΔ%: 235 %

 Air Quality
Status: 9.5k / Goal: 150 People

ΣΔ%: 353 %

 Allergies
Status: 10 / Wish: 1 number of ...

ΣΔ%: 109 %

 Approval Speed Of Policies
Status: 6 / Goal: 3 Mnths

ΣΔ%: 34 %

 NO. PRESCRIPTION [DRUG] BY ...
Status: 1k / Wish: 100 NUMBER

ΣΔ%: 144 %

 Clear Air Inhalation
Status: 20 / Wish: 70 %

ΣΔ%: 200 %

 Particle Density
Status: 1k / Wish: 300 Number of ...

ΣΔ%: 216 %

 Reduction In Respiratory Di...
Status: 1k / Wish: 100 PATIENTS

ΣΔ%: 201 %

 Toxic Inhalation
Status: 100 / Wish: 10 Max Mg Pol...

ΣΔ%: 194 %

Sum Of Values:

 LABOUR EFFORT
Status: 0 / Budget: 1k WORK MONTHS

ΣΔ%: 88 %

 £ CAPITAL COSTS
Status: 0 / Budget: 1m

ΣΔ%: 137 %

Sum Of Development Resources:

Value To Cost:

Ratio (Worst Case)
Ratio (Cred. - adjusted)
Ratio (Worst Case Cred. - adjusted)

29 % 51 % 74 % 88 % 0 % -7 %

-30 % 303 % 37 % 43 % 0 % 0 %

33 % 33 % 44 % 22 % 33 % -56 %

0 % 67 % 0 % 0 % 0 % -33 %

22 % 22 % 39 % 50 % 11 % 0 %

30 % 40 % 36 % 50 % 40 % 4 %

26 % 86 % 54 % 50 % 0 % 0 %

33 % 56 % 17 % 78 % 17 % 0 %

28 % 56 % 61 % 50 % 0 % -1 %

171 % 714 % 362 % 431 % 101 % -93 %

2 % 6 % 30 % 30 % 10 % 10 %

0 % 24 % 30 % 50 % 30 % 3 %

2 % 30 % 60 % 80 % 40 % 13 %

85.50

44.00
-3.80
-32.90

23.80

16.80
4.90
6.00

6.00

4.20
0.30
23.50

5.40

5.10
0.10
7.90

2.50

1.70
0.70
41.00

-7.20

-7.20
0.00
0.00

Comments: 0

1 Add Comment...

ValPlan | Gilb International AS | Terms Of Use | Privacy Policy | Cookie Policy
Powered by Needs & Means © RSBA Technology Ltd 2015-2020

Show VDT Sidebar

We're Online!
How may I help you today?!

Day 3

LONDON CONGESTION
BAR CHART

VALUE TO COST
HIGHEST TO LOW

LEFT TO RIGHT
QUEUE

82

LONDON CONGESTION WRT 'AIRQUALITY' / Value Decision Tables / London Pollution Planning

! Dashboard Canvas

"

Tables More... Create $ LONDON CONGE... & ' (tomgilb

London Pollution Planning
From Level: Level? To Level: Level?

) (Help me!* Settings... + + Add , ,-

.

Pers
on

al
Pow

er
Gen

era
tio

n

Alle
rgi

es
 Bes

t Id
ea

Adv
an

ce
d C

on
ge

sti
on

 C
ha

rge
s

Pen
alt

ies
 Fo

r V
eh

icle
s

Clea
r A

ir R
ou

te
Prio

riti
za

tio
n

HGV R
es

tric
tio

ns

Solutions

0

100

200

300

400

500

600

700

800

Pe
rc

en
ta

ge
 Im

pa
ct

 %
Sum of Value and Cost

JS chart by amCharts

Sum Of Value (Estimated) Sum Of Cost (Estimated)

ValPlan | Gilb International AS | Terms Of Use | Privacy Policy | Cookie Policy
Powered by Needs & Means © RSBA Technology Ltd 2015-2020

We're Online!
How may I help you today?!

London Pollution case top level diagram, with 2 level design

83

Day 3:
Value Table:

estimate how
cost-effective
your designs

are
• See next slide
• For
• Simplification
• Priority Design
• Bar Chart

84

Day 3:
Value Table:

estimate how
cost-effective
your designs

are

85

• Sorted by Priority:
• Best Values/Costs
• At right queuing up
• For delivery

86

Day 4:
 Identify next weeks value-delivery step
(Decompose into short sprint independent value

delivery steps)

London Pollution Planning BCS 2016

Day 4:
 Identify next week’s value-delivery step.

Sort the ‘sprint sized’ value delivery designs by values/costs delivery priority

FIGURE: HERE, FROM ANOTHER PLAN, IS A VALUE TABLE FOR
DECIDING WHICH ONES OF THE SUB-DESIGNS ARE TO BE
PRIORITIZED NEAR TERM (SOURCE POLISH EXPORT PLAN)
•

87

FIGURE: THIS BAR CHART IS
EXTRACTED FROM THE TABLE AT LEFT,
WE ASKED VALPLAN.NET TO SORT BY IMPACT TOTAL
 ON ALL VALUE REQUIREMENTS.
LEFT-SIDE IS HEAD OF VALUE DELIVERY QUEUE
THIS IS ‘AUTOMATIC PRIORITIZATION OF DESIGN’.
(SOURCE POLISH EXPORT PLAN)

http://www.apple.com
http://www.apple.com

Day 5:
Present Plans to Management,

ask for approval to deliver the value.

• “Sub-Design D3 gives
best overall stakeholder
value delivery

• And takes 1 sprint week
• Shall we follow this

value-delivery process?
• Weekly ?

• Would you like a weekly
report on incremental
value delivery?

• Or would you prefer to
look at costs and risks
too?”

88

Part 6.
Decomposing designs, some more ideas

The set of the top ten most-effective designs, can be viewed as ‘the architecture’ of your system.

That means that each top-level design is going to consume approximately 10% of your total spend for the project.
What if a design is a disaster?
Well, you lose 10%,
and I think that is too much to gamble away
just to ‘test out a design’.
Not to mention the disturbance, caused by the failed design

being inserted in a live system, even on a small scale.

So, your question to yourself is, “Am I feeling lucky today, punk?”

Me? I do not like large and unnecessary risks.
Risks are unavoidable with large complex system renewal.
But I prefer small, easily-reversible risks.
So small, that nobody really is aware that my design has failed.
You can hide small failures more easily than large failures.

After decades of experience I have landed on my personal standard
 for ‘how big’ a design increment insertion,
that I will live with, on average.

There are two ways of expressing this idea: ‘weekly’, and ‘2%’

Weekly is very tempting
because there is a wonderful built-in way of coping with problems,
without being too late.
Work the weekend!
Then you can hide that fact that you were late.

But another way of expressing this is as a 2% increment of the budget (money, or calendar time to big deadline).

Do 2% of spend.
 Make sure it works and delivers real value.
Then, you have ‘permission’ to proceed,
and spend the next 2%.
Otherwise, why should I trust you with that money?

I have discovered that you can always divide your design up,
 into almost arbitrarily small increments:
no matter how large,
or how seemingly indivisible, the design idea might be.
You can always find Value delivery steps +V

Assuming I am right, and assuming I can teach you how to do this in practice, when all around you say it is ‘impossible’; your largest bet is now
2%, at one time.

That is in simplistic terms, the most you can lose, if it does not work at all.
Dump it, and revert to where you were, before inserting any new design increment.

Of course, part of your design has to be to plan for the possibility that the increment fails
: to make sure it cannot do much damage when it does fail,
and that we can reverse-out the design easily.

You cannot responsibly assume all will be well, and that rapid painless reversal will not be necessary. 89 How do you eat an elephant ?

Decompose down to
2% of resources
Value increments

Not
Construction increments

10X

50X

+Value !

?V?V

?V
?V
?V

?V

?V

+V +V

+V

?Value?

+V
+V

The Distinction Between a Value Implementation Step, and a Building/Acquisition Step.

Let me emphasize a subtle point right away.

 I am not talking about construction steps: about building the system designs.

 I am talking about implementation steps:
 ‘inserting design which is available

 (already built or acquired),
into a real system’, to see if we can get value.

To handle this distinction we need these two concepts:
Frontroom (REAL VALUE): where we deliver available design to the
stakeholder and the system.
Backroom (POTENTIAL VALUE) where we construct, acquire, validate,
and make ready, a design-component for delivery and integration, to an
existing system.

A simple analogy:
it might take the Master Chef 5 hours to completely ready a dessert
(backroom)
but when the restaurant guest orders dessert, it is ready, in the
refrigerator in minutes (frontroom)

This means that I am NOT claiming that I know how to decompose the
acquisition and construction steps for a design, to a week or 2% every time.

 I am claiming that once the design is ready to install, I can find a limited cost-
or-time way to deliver its value to stakeholders..

Sometimes it is quite simple,
and well-known experimentation, and statistical-sampling ideas can be
used.
For example: ‘lets just do this design on 2% of the population,
and scale up gradually if it succeeds,
but stop and fix it first if it fails, before scaling up’. 90

FIGURE: IT IS QUITE USEFUL (LOW RISK) TO DECOMPOSE YOUR VALUE DELIVERY INCREMENTS
 INTO SMALL, LOW RISK, DELIVERIES. IF THEY WORK,
GREAT. IF NOT ‘FULL REVERSE! AND LEARN!’
THIS IS NOT THE SAME PROBLEM AS DECOMPOSITION OF YOUR ARCHITECTURE
FOR THE PURPOSE OF BIDDING, PURCHASING, BUILDING, VALIDATING AND QA APPROVAL
(BACKROOM)
WHICH IS A PREREQUISITE TO THE INCREMENTAL VALUE DELIVERY STEPS.

+V ?V

+V

+V
?V ?V

+V

?V
+V

?V

Multiple Levels of Backroom/Frontroom
For large systems (Philips, NL)

FIGURE:
THE LARGER AND MORE
COMPLEX YOUR SYSTEM,

THE MORE LIKELY THAT
YOU WILL WANT TO USE
MULTIPLE LEVELS OF
BACKROOM AND
FRONTROOM,

AT DIFFERENT LEVELS OF
SUPPLIER AND MAJOR
SUBSYSTEM.

91

Design Decomposition for Frontroom Value Delivery
Finding ‘Agile Value Delivery Step’ Designs

It is unfortunately widespread that well-educated, smart professionals have a big problem with
this ‘decomposition into small steps’.

For half the people I work with, they can simply ‘decompose into independent value designs’
because I have asked for the decomposition in a clear way
(components must give value, and be independently implementable).

The other half of my clients can be in strong denial.
“It cannot be decomposed! It is clearly impossible!
You don’t understand our complex environment!
Nobody in our industry has even done this!”

Think of Elon Musk’s Tesla production process mentioned above.
20 production changes to the car, half hardware, half software, every week!
The other automakers don’t do it that way!

Those ‘design decomposition deniers’ are normally wrong.
Using bad assumptions, bad logic,
and they do not know the decomposition methods, like those below.
They are usually making wrong assumptions

about what kind of decomposition I am asking for
(the ‘build it’ assumption they make, is wrong).

 This is very strong old style ‘non-incremental’ culture,
and we need to show respect for people going through this ‘incremental value’ learning
process.
They are not stupid,
but they have not been educated and worked in a ‘Value Driven Increment culture’, at
all.
They are still assuming some type of Big Bang Building culture

92

FIGURE:
HERE IS A REAL EXAMPLE OF DECOMPOSITION
OF A TOP-LEVEL DESIGN IDEA
 (‘ADVANCED CONGESTION CHARGES’),

INTO THE NEXT LEVEL OF INDEPENDENTLY
IMPLEMENTABLE
VALUE-DELIVERY DESIGNS.
(DETAIL OF EARLIER FIG. ABOVE)

If necessary each of these (D1.... D8) decomposed designs

can be decomposed into even smaller delivery steps,

for example D1 being implemented in specific London
boroughs,

one at a time.

Value stream
Is always possible!

http://www.apple.com

Gilb’s Design Decomposition Principles
Inspired by CE book -2005, p. 314, and much-improved text detail (2019)
Based on many decades of decomposition practice.

1. PERSIST: do not give up in 5 minutes, because you cannot think of useful decompositions.
1. Assume there are many possibilities
2. Think simple and small
3. Don’t eat drink or rest until you have solved the problem
4. Ask some friends for good ideas, challenge them
5. Ask what is the simplest thing we could do next week to improve that value level?

2. RULES: use these primary rules A. The decomposed design increment MUST deliver measurable
planned value. B. The decomposed design increment must be implementable independently of all
other potential increments (so that most value-effective increments can be done early, and not wait
for others)
1. These rules apply to all the top ten designs
2. This work can be done in parallel
3. First teams to get small increments can immediately put ideas into action
4. If necessary, decompose more than once, to get to small 2% increments
5. When you have several options, do the best value-to-cost options, first

3. OBSTACLES: it is OK to name and list potential obstacles and problems.
1. But NOT OK to use problems as an excuse for inaction, for not finding good solutions.
2. Use these problem lists, and challenge the creative powers amongst you, to find solutions, to get

rid of the obstacle ‘by smart design’.
3. Really good designers, can design their way past almost any obstacle

4. 111111 DECOMPOSITION: be quite satisfied with some real progress in value delivery, rather than
none (procrastination and excuses). Maybe just ‘1 function, 1 stakeholder, 1 value, 1 design, 1 week
delivery cycle, 1% is better than 0%’.

5. MOTIVATION NUDGES: Do not divert your focus to the design ideas themselves, or the technical
architecture. re-focus on the values.
1. Sometimes you only need a small nudge, like a motivation, or a reward, to move the value to a

better level.
2. Nudges are simple and cheap, and you can experiment more easily, to find what works.

6. TEMPORARY SCAFFOLDING: Don’t get stuck in the new system design-increments
1. Sometimes it is worth doing temporary scaffolding to make progress.
2. For example use old systems, temporary agreements, borrowed systems or services.

7. ELEGANCE IS NOT THE POINT: Do not worry about elegance of design, it is only the value and cost
results, that really matter.

8. THEY WANT RESULTS NOT DESIGN: Do not be afraid that stakeholders will not like your design
itself:
1. If it delivers the value to them, they will like it.
2. If no value, then even ‘elegance’ alone will not be of interest.

93

A.DON’T WORRY GIVE VALUE: Do not procrastinate by worrying about ‘what might happen after we release this increment’.
A.You are not in full control of all potential future problems, anyway.
B.Just focus on delivering value.
C.Problems can be fixed, by design, as they occur.
D.There may be a thousand things that might go wrong, but only a few will really happen, so it pays off to wait, to

sense them early, and deal with them quickly.
B.DON’T GET ANALYSIS PARALYSIS; You cannot foresee everything that will happen when you release a design increment: don’t

try.
A.But make sure you can sense negative feedback quickly (design it)
B.And make sure you can reverse the change as quickly, to limit damage (design it)
C.Declare the negative feedback to be a scientific success in learning what NOT to do on a larger scale.
D.Thank the participants profusely for their contribution, and ASK THEM what would be better!
E.Tell them it is called ‘Participatory Design Feedback Experiments’. And they are a vital part of the scientific

process of making their own systems better. Be humble. They have really useful insights.
C.REAL VALUE BREEDS COOPERATION: If you really constantly focus on delivering value to your stakeholders, then they will be

quite forgiving of an occasional slip up.
A.They are not used to getting so much, real improvement, so fast.
B.Make sure you seriously ask them, when you slip up, what you should have done to improve their value
C.Make a big point of doing something quite soon, to show you listened, and can deliver
D.That will teach the stakeholders that you are worth giving advice about value to.

D.ACTION GIVES FACTS: If you just dive in, and do real stuff, you will more quickly learn what gives value, than if you discuss and
plan in an office.

A.No ‘modelling’ beats the real thing, for trustworthy and useful insights in several dimensions
B.Arguments based on observed real facts and experiences are more convincing

E.HARNESS THE POSITIVE: Do early steps of a new design, before scaling up, with positive, mature and supportive stakeholders.
A.That will help make things work better, after you scale up.
B.Keep local if you can, with insiders and friends.
C.Let early adopters know that you really need their help and advice, to make early increments better, before you

scale up.
D.Credit their ideas in writing. In plans, and in ‘the real thing’

F.THE TROOPS KNOW WHERE THE BOOT PINCHES: If you have problems thinking of some valuable early small delivery steps,
then maybe it is time to observe directly, and talk directly to your stakeholders.

A.Ask them for ideas. Their design ideas.
B.Allocate time and energy to make some of those ideas come true; build your credibility
C.Build in (design in) simple feedback devices where stakeholders can at least display discomfort, and maybe

suggest improvements in ‘our’ design
D.This applies to get started early, but is also a continuous long-term design process

G.DON’T REINVENT YOUR WHEEL: Do not be afraid to make use of the ‘awful old system’ initially, to get some real
improvements: you can move the proven successful design ideas to the ‘new system’ when new components are incrementally
in place.

H.OPEN-ENDED ARCHITECTURE: your basic architecture skeleton needs to be ‘open ended’.
A.That means you need to plan specific architecture ideas which make it easy to change designs, when early

design don’t work well, into design which work better.
1.There are many devices such as plug-and-play modularization, centralized architecture control , self-

programming AI, and flexible contracts (not locked in, not over-specified in advance, pay-as-you-
deliver?Value)

Some practical organizational tactics to find good increments
If some of your stakeholder’s colleagues

have found good incremental solutions, and we can show these
solutions, that might help the decomposition-resisters to get on
board.

Sometimes I (as a coach) manage to think of a simple example of
incremental delivery for exactly their design.

It usually takes less than 5 minutes.
And I can then can ask the resisters, ‘is that valid?’

People can be trained
with a variety of specific practical principles,
to help them solve the problem,
of smaller incremental delivery.
See the above principles slide.

I have observed that
viable solutions require a combination of technical expertise and
domain expertise.
 If these are not combined in one person,

you might need to make teams with this mix of skills.
Sometimes the technical expert cannot imagine the practical
‘banking’ or ‘military’ domain
and they do not dare guess at solutions which might be very simple
for the domain expert to find.
And visa versa: the domain expert cannot alone imagine what the
technical specialist in say ‘Security’ or Artificial intelligence’ might
be well aware of.

Something my experience tells me, is
there are always good increment-options, which can be found same
day.

There do not seem to be known exceptions.

But some people are so confident that they are an exception,
 that you can have fun, and make a bet they are wrong,
and can even be proven wrong today.

Easy money 94

 The possibility of getting control of
the value-to-cost ratio by

decomposition; and then by
prioritization of high-efficiency designs.

By decomposing values, functions,
and design components into a
more-detailed set-of-things,

we can select a small fraction
of the total product or system,
to implement incrementally.

This will give us real ‘value delivery’
to some stakeholders, for some
value improvements.

But, at least as important, it
will give us measurable
feedback about a large
number of factors,

so we can better see what we
need to improve,

 before we scale up, when
implementing the rest of our
agenda.

95

Various decomposition methods,

so that we can learn reality early, and credibly,

before scaling-up size or volume.

https://tinyurl.com/VPDecomposition
(for Value Planning detailed chapter)

https://tinyurl.com/VPDecomposition

Real Example of Decomposition of Technical Solutions to Control Cost-Efectivenss

Figure 1.83 :
real planning
example of
decompositio
n and values/
costs
estimation, of
the
decomposed
design ideas.

96 Figure 1.83 : real planning example of decomposition and values/costs estimation, of the decomposed design ideas.

These are the DECOMPOSITION conditions for
sub-strategies that can actually can deliver value:

 Your expected primary value improvement for this current cycle is
estimated.

Maybe with ± uncertainty, evidence, sources.
Side effects on other objectives, and on resources, are estimated
We have plans for suitable Meters,

ways of measuring what is happening in at least the primary value
improvement objective.

There are no clear, unexpected, drastic negative side effects:
 such as people very disturbed, confused, getting bad results of some kind;
which disqualify the value delivery attempt,
even if ‘our’ value is delivered satisfactorily.

The value delivered is reasonably useful,
even if not quite as good as initially estimated.
It should at least be clearly worth the cost.

We are prepared to learn, analyse, and change in the short term
(during or immediately after this delivery cycle)
and the long term (in weeks ahead).
We plan the time to do this.
Even if it just a half-hour Defect Prevention Process [URL14] per week.

Critical plans are formally reviewed
against our standards, and policies,
 using a reasonably rigorous item by item review process

(not a meeting and a management sign-off in haste).
Plans do not Exit until they are close to defect free.

Plans do not have to be perfect, but they have to largely work as planned.
A review, for a weeks implementation, should take 2 to 4 people no more than
one hour if organized well [URL23]. If you fail to do this quality control, it will
normally cost you a lot more loss than that hour.

Source Value Planning, https://tinyurl.com/VPDecomposition, VP 5.2

97

"Nothing is particularly hard if you divide it into small jobs."

“There are no big problems, just a lot of little problems”

“Obstacles are those frightful things you see when you take your eyes off your goal”
--Henry Ford, 1863-1947

Deliver Value
No dependencies

https://tinyurl.com/VPDecomposition

For

This graphic is designed by
anna.maria.karlowska@gmail.com, 2019

For use in my book Sustainability Planning
(about UN Sustainable Development Goals)

https://www.dropbox.com/sh/
gc65fds9h0gv3cm/

AABJvW4fwAnqVn25bPtY9bmia?dl=o
98

[Scale Parameters] give 3 levels of
decomposition

1. Scale

2. [Scale
Parameter]

3. A
Condition

mailto:anna.maria.karlowska@gmail.com

For

This graphic is designed by
anna.maria.karlowska@gmail.com, 2019

For use in my book Sustainability Planning
(about UN Sustainable Development Goals)

https://www.dropbox.com/sh/
gc65fds9h0gv3cm/

AABJvW4fwAnqVn25bPtY9bmia?dl=o

99

[Scale Parameters]
 give 3 levels of
decomposition

1. Scale

2. [Scale
Parameter]

3. A
Condition

Goal 42%
Building = Recovery Speed
Resilience = Escaping
Vulnerable = Weak Health
Situation = Epidemic Hit
Shocks = Environmental.Fire

mailto:anna.maria.karlowska@gmail.com

© Gilb.com 100Impact Estimation: Value-for-Money Delivery Table

29.5 : 1

Value
Decomp-
osition

<——Design Decomposition——>

© Gilb.com

• Here are
• some decomposition concepts

• 1 1 1 1 1 1 Unity
– 1% increase at least
– 1 stakeholder
– 1 quality/value
– 1 week delivery cycle
– 1 function focus
– 1 design used

101

Part 7.
Risk management for value design

Risk in my opinion, means risk of things ‘going wrong’.

I have concluded that everything in a design process, every detail, is
somehow related to risk. That means everything thus far, is some form of
risk management.

For example:
1. Quantifying Value: reduces risk of misunderstanding of design

requirements

2. Estimating design impacts on a value table, reduces the risk of putting

too much effort too early into low value, high cost, dubious design ideas

3. Decomposition of design ideas into smaller incrementally

implementable-in-real existing systems reduces risks of designs not

working, and of value delivery being delayed

4.Open-ended architecture reduces risks of surprising new design-

changes costing too much to implement.

102

Some Risk Postulates, and Truisms, for Design and Designers

1. Risk is inherent in all processes, all designs, and all planning

elements.

2. Risk is present whether we acknowledge it explicitly or not.

3. Risk can be analyzed and understood, as a function of the design and

its history.

4. Risk mitigation can be planned, but it might cost more than it is worth.

5. You can design risk mitigation to be worth more than it costs.

6. Your designs can consciously reduce specific risks.

7. Your design requirements can motivate designers to design, to reduce

specific risks.

8. Total elimination of all risk is not feasible or economic: but systematic

risk reduction and control is possible by design.

9. A designer can be trained to specialise in dealing with risk.

10. Standards for design specification, and for designs themselves, can

be enforced, to help manage risks

103

Risk Design Principles,
in a Value-Focussed, Incremental, Design Delivery, Environment.

1. RISK DIMENSIONS: Values, including qualities; and resources, are the Risk Dimensions because we can specify

some negative areas on their ‘scales of measure’.

2. RISK REQUIREMENTS: The designer must be made aware of these risk areas in the Design Requirements.

3. DESIGN FOR RISK: new method or process for design, which does not consciously deal with quantified values and

resources, is useless for risk management, and doomed to ‘fail to avoid’ risks.

4. MITIGATION DESIGNER: A competent designer can consciously specify a design, so as to reduce risks, in any and

all Risk Dimensions.

5. INCOMPETENT DESIGNERS: Incompetent designers do not consciously design to avoid defined requirements risks.

6. REQUIREMENTS SPECIFY RISKS: Value and Resource requirement specifications, can explicitly, and numerically,

inform a designer, about areas considered to be negative (example ‘Intolerable’ level), and not only by means of the

requirement level, but of course the specific Scalar attribute conditions the level applies to

7. DYNAMIC DESIGN TO COST: The designers responsibility is not complete when initial or approved design

specifications are done, but they have a responsibility to follow implementation progress, and to take action to

improve the design if value or cost measurements are not at targets, and especially if they are in Intolerable-level

territory.

8. ETERNAL DESIGN RESPONSIBILITY: The responsibility of the Life-Cycle Designer is not finished when the design

initially works well, in practice: it must continue to work well when additional designs are incremented, during major

development, and later - any time in the system life-cycle.

9. FOOLPROOF DESIGN: The designer is responsible for ‘foolproof detail’ in design specification. When the design

spec is followed correctly, and the designers intent, for Values and Resources, is largely achieved, there are no

excuses that the design implementor has ‘misunderstood’ the specification.

10. DESIGN QC EXIT: A design specification can be quality-controlled, using Specification Quality Control, and

suitable Rules (design quality standards); and not released (Exited) unless the defect level is low enough (0.1 to 1.0

defects per 300 words) 104

Part 8.

Design Prioritisation.
There are some general principles of value prioritization that can sum up the discipline of Value-Driven Design

1.VALUE BASED: Priority is based on Stakeholder Values.

2. VARIED PRIORITY: Stakeholder values vary from time to time, and thus so does priority.

3. NUMERIC PRIORITY SIGNALS: A Value priority can be stated numerically, as a constraint or target requirement-level.

4. CONDITIONS PRIORITY: A requirement level should include scale-parameter conditions: when, where, who, why attributes: this
implies that a priority statement can be very specific

5. GENERAL PRIORITY: We can state quite general priority policies, which also apply to the quite-specific levels and conditions for a
requirement:

 for example ‘Prioritize Maximum Critical-Value-Set Impact, in relation to Minimum Critical Resources Set, with regard to
Uncertainty, Credibility, and Conditions’.

6. VALUE FOR MONEY: In general, some variation of ‘value for money’ will be the dominant priority

7. EXCEPTIONAL PRIORITY: In special circumstances, a single delivery step, might prioritize a narrow value such as,
‘Do not use any money for your next design. We have used up the budget!’ Notice this has dramatic ‘design’ consequences. You

will have to prioritize designs that cost nothing

.8. SURVIVAL THEN SUCCESS:The defined constraint-and-target requirement-levels imply strong priority ideas. In simple terms
survival first (above Tolerable level, for all critical values), then ‘Success’ (reach all Goal levels before using resources to go beyond
any Goal level).

9. RESOURCE PRIORITY: The resource budgets also imply strong prioritization: ‘do not design or implement, so that budgets are
violated, or threatened, too early’.

As a simple example, the designer cannot use most of the Capital budget on a single design component, among many other
design components to come. The designer has to both minimize unnecessary use of resources, and a set of designers (usability
designer, security designer, style designer, performance designer, for example) have to co-operate, in using a limited budgeted set of
resources (mainly time and money). That means that all designers need to always have some resources estimates, of their suggested
design specifications, as opposed to ‘no idea’.

10. COMPLEX LOGICAL PRIORITY: In summary you can see that determining priority is potentially non-simplistic. It can be both
objective, subjective, numeric, and computed for us, for a given policy.

105

3rd Priority1st Priority 2nd Priority

 Value Planning (VP) book, Chapter 6 Prioritization.
https://www.dropbox.com/sh/34llx1a7ckyagxl/AAA0pDzSxN5WmoP9lOKR0Mpca?dl=0

https://www.dropbox.com/sh/34llx1a7ckyagxl/AAA0pDzSxN5WmoP9lOKR0Mpca?dl=0

Part 9.
Dynamic Design to Requirements

(which includes some priority stuff)
Here are some basic definitions:

Design To Cost (D->C): a well-established engineering concept. You
can find designs to meet a given cost requirement.

Design To Value (D->V): the same concept as Design to Cost, except
the design process is directed towards meeting a Value (including any
quality) Requirement Level of Performance.

Design To Requirements (D->R): the combination, perhaps
simultaneously in a single delivery cycle, of attempting to design to
any set of both ‘Value Requirement Levels’, and ‘Cost Requirement
Levels’.

Dynamic Design to Requirements (DD->R): A cyclical Design
process, to meet any set of Value and/or Cost requirements, by using
measurement, after incremental design-implementation, comparing
with requirements, predicting future cost and value levels, and re-
designing if necessary, to better reach the requirements.

106

 Principles of ‘Dynamic Design to Requirements’
1. It is easier to measure accurately than to predict accurately.
2. It is faster to adjust a bad design, than to figure out the right design to

begin with.
3. Even small systems can be complex, so frequent incremental

measurement of progress is smart.
4. Everything can interact with everything else, now and in future, so

incremental measurement of critical factors is the only safe way to
keep score.

5. It is better to ‘design to a cost’ you require, than to ’estimate a design
cost’ you can’t afford.

6. It is easier to ‘design to a stakeholder value level’ than to just hope
your design will meet that level.

7. Estimation of design impacts, helps sort out ‘probably good design’
early.

8. Only measurement of design value-delivery and design-costs will
confirm you got it right.

9. Designs interact with all other system designs, past and future,
compounded by changing stakeholder needs - and consequent re-
design.

10.Small incremental steps of design, greatly simplify understanding of
complex design.

Copyright gilb.com 2019. 107

http://gilb.com

‘Cleanroom’
An advanced software development process
(‘perfect’ complex project management)

108

Dr. Harlan Mills,
 IBM Federal

Systems
Division

A real ‘agile’
software engineer

pioneer

https://trace.tennessee.edu/utk_harlan/?utm_source=trace.tennessee.edu/utk_harlan/5&utm_medium=PDF&utm_campaign=PDFCoverPages
500 Collected works of Harlan Mills

https://trace.tennessee.edu/utk_harlan/?utm_source=trace.tennessee.edu/utk_harlan/5&utm_medium=PDF&utm_campaign=PDFCoverPages

109

http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan

http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan

“The first guarantee of quality”:

Designing Qualities into a system
Is much simpler

than trying to get qualities, by testing them in**

•“The first guarantee of quality in design is in well-informed, well-educated, and well-motivated designers.

•Quality must be built into designs, and cannot be inspected in or tested in.

•Nevertheless, any prudent development process verifies quality through inspection and testing.

•Inspection by peers in design, by users or surrogates, by other financial specialists concerned with cost,
reliability, or maintainability not only increases confidence in the design at hand, but also provides
designers with valuable lessons and insights to be applied to future designs.

•The very fact that designs face inspections motivates even the most conscientious designers to greater

care, deeper simplicities, and more precision in their work.”

110
http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan

Harlan Mills

** testing qualities into a system, is impossibly complex,
 and takes infinite time.

http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan

In the ‘Cleanroom Method’, developed by IBM’s Harlan
Mills (IBM SJ No. 4/1980) they reported:

• “Software Engineering began to emerge in FSD” (IBM Federal Systems Division,
from 1996 a part of Lockheed Martin Marietta) “some ten years ago [Ed. about
1970] in a continuing evolution that is still underway:

• Ten years ago general management expected the worst from software projects –
cost overruns, late deliveries, unreliable and incomplete software

• Today [Ed. 1980!], management has learned to expect on-time, within budget,
deliveries of high-quality software. A Navy helicopter ship system, called LAMPS,
provides a recent example. LAMPS software was a four-year project of over 200
person-years of effort, developing over three million, and integrating over seven
million words of program and data for eight different processors distributed
between a helicopter and a ship in 45 incremental deliveries [Ed. Note 2%!]s.
Every one of those deliveries was on time and under budget

• A more extended example can be found in the NASA space program,

• - Where in the past ten years, FSD has managed some 7,000 person-years of
software development, developing and integrating over a hundred million bytes of
program and data for ground and space processors in over a dozen projects.

• - There were few late or overrun deliveries in that decade, and none at all in the
past four years.”

111

© Gilb.com

In the Cleanroom Method,
developed by IBM’s Harlan Mills (1980) they reported:

• “Software Engineering began to emerge in FSD” (IBM Federal Systems Division, from
1996 a part of Lockheed Martin Marietta) “some ten years ago [Ed. about 1970] in a
continuing evolution that is still underway:

• Ten years ago general management expected the worst from software projects –
cost overruns, late deliveries, unreliable and incomplete software

• Today [Ed. 1980!], management has learned to expect on-time, within budget,
deliveries of high-quality software. A Navy helicopter ship system, called LAMPS,
provides a recent example. LAMPS software was a four-year project of over 200
person-years of effort, developing over three million, and integrating over seven
million words of program and data for eight different processors distributed
between a helicopter and a ship in 45 incremental deliveries [Ed. Note 2%!]s. Every
one of those deliveries was on time and under budget

• A more extended example can be found in the NASA space program,
• - Where in the past ten years, FSD has managed some 7,000 person-years of

software development, developing and integrating over a hundred million bytes of
program and data for ground and space processors in over a dozen projects.

• - There were few late or overrun deliveries in that decade, and none at all in the
past four years.”

112

in 45 incremental deliveries

were few late or overrun
deliveries in that decade,
and none at all in the past

four years
wow! normal agile fails 19% (Scrum) to 40%: Jeff Sutherland

Agile!

Mills on Design-to-Cost
(call it ‘agile’, incremental, design)

• “To meet cost/schedule commitments based
on imperfect estimation techniques, a
software engineering manager must adopt a
manage-and-design-to-cost/schedule process.

• That process requires a continuous and
relentless rectification of design objectives
with the cost/schedule needed to achieve
those objectives.”

• in IBM sj 4 80 p.420

113

See Quinnan’s flow chart
 “Design to Cost” below

For process detail

Copyright Tom@Gilb.com

Robert E. Quinnan (Cleanroom Architect):
IBM FSD Cleanroom

Dynamic Design to Cost
Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost
management farther by introducing design-to-cost guidance. Design, development, and managerial
practices are applied in an integrated way to ensure that software technical management is consistent with
cost management. The method [illustrated in this book by Figure 7.10] consists of developing a design,
estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by
sacrificing 'planned capability.' When a satisfactory design at cost target is achieved for a single increment,
the 'development of each increment can proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in
seeking the appropriate balance between cost and design for a single increment, but they iterate through a
series of increments, thus reducing the complexity of the task, and increasing the probability of learning
from experience, won as each increment develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining
increments is computed.' (p. 474)

Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4,
1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

114

Copyright Tom@Gilb.com

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure that
software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10] consists of
developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can
proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the appropriate
balance between cost and design for a single increment, but they iterate through a series of increments, thus reducing the
complexity of the task, and increasing the probability of learning from experience, won as each increment develops, and as the true
cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is computed.' (p.
474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

115

of developing a design,
estimating its cost, and

ensuring that the design is
cost-effective

 Initial design and cost estimates are
incrementally reviewed and improved

Source: Quinnan, IBM SJ, page 472
http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan

116

Cleanroom Planning and
Estimating.

For making a fixed price
bid

“developing a design,
estimating its cost”

<— making sure
it is cost effective

(static)

http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan

Cleanroom Cost
Management

Process

Source: Quinnan, IBM SJ, page 471
http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan

117

IBM FSD had a very advanced detailed
collection

 of historical data from previous projects.
Published in IBM SJ, Walston and Felix
About 20 pages of data per project were

collected

“ensuring that the design
 is cost effective”

Think: Fighting Covid-19 Virus by data collection

Figure 2

http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan

Copyright Tom@Gilb.com

 Design better, ‘as needed’.
See your need for tradeoffs, ‘as needed’

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure that
software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10] consists of
developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can
proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the appropriate
balance between cost and design for a single increment, but they iterate through a series of increments, thus reducing the
complexity of the task, and increasing the probability of learning from experience, won as each increment develops, and as the true
cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is computed.' (p.
474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

118

iteration process
trying to meet cost

targets by either
redesign or by

sacrificing 'planned
capability’

See diagram
 Figure 3

below

Copyright Tom@Gilb.com

Do design based on incremental feedback
and facts, ‘one small step for mankind’

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost
management farther by introducing design-to-cost guidance. Design, development, and managerial practices are
applied in an integrated way to ensure that software technical management is consistent with cost management.
The method [illustrated in this book by Figure 7.10] consists of developing a design, estimating its cost, and
ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by
sacrificing 'planned capability.' When a satisfactory design at cost target is achieved for a single increment, the
'development of each increment can proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking
the appropriate balance between cost and design for a single increment, but they iterate through a series of
increments, thus reducing the complexity of the task, and increasing the probability of learning from experience,
won as each increment develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp.
466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

119

Design is an
iterative process

Design to
Cost

Source: Quinnan, IBM SJ, page 473
http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan
And PoSEM page 105, Figure 7.10

120

“Design is an
iterative
process”

This is agile as it should be.

Value Agile
https://www.dropbox.com/sh/o2g7ib3z2g2uzfw/AAAypXlN0yA2WS4obwlDzZR3a?

dl=0

http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan
https://www.dropbox.com/sh/o2g7ib3z2g2uzfw/AAAypXlN0yA2WS4obwlDzZR3a?dl=0
https://www.dropbox.com/sh/o2g7ib3z2g2uzfw/AAAypXlN0yA2WS4obwlDzZR3a?dl=0

Copyright Tom@Gilb.com

‘Small increments’ reduce complexity

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost
management farther by introducing design-to-cost guidance. Design, development, and managerial practices are
applied in an integrated way to ensure that software technical management is consistent with cost management.
The method [illustrated in this book by Figure 7.10] consists of developing a design, estimating its cost, and
ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by
sacrificing 'planned capability.' When a satisfactory design at cost target is achieved for a single increment, the
'development of each increment can proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking
the appropriate balance between cost and design for a single increment, but they iterate through a series of
increments, thus reducing the complexity of the task, and increasing the probability of learning from experience,
won as each increment develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp.
466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

121

but they iterate through a series of
increments,

thus reducing the complexity of the
task,

and increasing the probability of
learning from experience

Copyright Tom@Gilb.com

It is less complex to estimate future costs:
incrementally, based on experience

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure
that software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10]
consists of developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can
proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the
appropriate balance between cost and design for a single increment, but they iterate through a series of increments, thus
reducing the complexity of the task, and increasing the probability of learning from experience, won as each increment develops,
and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)

Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

122

 “an estimate to
complete the

remaining increments
is computed.”

(See Figure 3 above for flowchart)

Part 10.

Organising the value design process
 Here are some suggestions for specialist roles. These are mainly
responsibilities, rather than full time jobs. But they do require
training and knowledge.

Value Analyst: analyzes stakeholder needs, and priorities, and selects critical, or possibly
critical, needs and specified them as requirements, at least at the ‘Wish’ level (potential Goal
requirement).

Specification Owner: a person (or group) which has undertaken responsibility, by name, for
the update and maintenance of a specification object, such as a requirement, a design, or a
table.

Implementation Responsible: a person (or group) which has taken named responsibility,
as specified in the specification object, for actual practical implementation of a design
object. This can be for a requirement level (reach the requirement Goal), or for a design
(deliver the design and try to get the maximum value from it).

Value Designer: a generic (all possible design areas) designer (or team) who undertakes to
identify possible design components to reach a Value Requirement level, on time. To
research them as to all side-effects and costs, documenting such facts in the design object
and corresponding Value Tables. The Value Designer might hand over exploration of a
design idea to a Specialist.

Value Engineering Specialist: a designer with a narrow speciality (usability, security,
performance, organizational improvement, AI) who is updated on the state of the art, and
has a good international network of people and sources to find good specialist designs.

123

 Value Architect: A person or team, who sits at the Apex of
the system, and synchronizes all ongoing efforts in order to
get maximum necessary value for available resources.
Manages the top critical values, and the top level design
architecture.

Stakeholders: the dozens or more sources of requirements which the designers
need to know about, and make sure their design fi ts them.

Value Process Manager: a person or team responsible for getting a best
possible value stream flowing from the other people involved. Sort of like old
project manager, except they are focussed on the Values/Costs numbers, not
building stuff. They allocate resources (money, time), and assign people to
specialist tasks.

Value Quality Control: these people carry out Specification Quality Control of
specifications, to make sure the Defects Per Page is economically low enough
before Exit to any other process. They are also responsible for measuring value
levels and costs after incremental implementation. They will check that designs
are in fact implemented as specified by suppliers for Exiting to integration
delivery.

Value Policy: this is the written policy that gives clear guidance to the Value
process, from organizational management. Perhaps Chief Technical Officer level.

Summary: ‘Value Design’

Values are the main reason for ‘projects’ and ‘management processes’ and ‘investments’.

‘Value Design’ offers a very clear set of tools for delivering value, quickly and as needed.

• You must quantify all critical values, for your critical stakeholders.

• You need to be quantitative about resource budgets, and other constraints.

• You need to design consciously to reach value levels.

• Designs need to be decomposed into small implementable value-giving

design components.

• You need to measure value increments, and costs.

• You will need to adjust initial designs so that they work better, in practice.
124

Last Slide
tom@Gilb.com

www.Gilb.com

@ImTomGilb

www.linkedin.com/in/tomgilb

+47 920 66 705

Honorary Fellow of BCS

Slides = http://concepts.gilb.com/dl972

Video= https://www.youtube.com/playlist?
list=PLKBhokJ0qd3_wlvr0j85YhmNfNj8ZJ
8M-

125

mailto:tom@Gilb.com
http://www.Gilb.com
http://www.linkedin.com/in/tomgilb
http://concepts.gilb.com/dl972
https://www.youtube.com/playlist?list=PLKBhokJ0qd3_wlvr0j85YhmNfNj8ZJ8M-
https://www.youtube.com/playlist?list=PLKBhokJ0qd3_wlvr0j85YhmNfNj8ZJ8M-
https://www.youtube.com/playlist?list=PLKBhokJ0qd3_wlvr0j85YhmNfNj8ZJ8M-
https://www.youtube.com/playlist?list=PLKBhokJ0qd3_wlvr0j85YhmNfNj8ZJ8M-

GO BACK TO LAST SLIDE

126

