SE Heuristics © Tom Gilb, 2006
Page 1 of 1

Some Powerful Systems Engineering Heuristics

By Tom@Gilb.com

Introduction

I would like to suggest some fundamental heuristics that characterize the essential spirit of systems engineering. Heuristics that can be used to teach essential engineering tactics.

The heuristics:

1. All designs are valid if they deliver the performance within the constraints.

2. System Level Architecture optimizes the specialist disciplines, and constrains them.

3. We don’t really know what works until we try it.

4. System Models cannot be relied on, and their only justification is when there is no more realistic way to economically represent the future system.

5. Systems need to be built to tolerate change and expansion beyond current stakeholder needs.

6. System Stakeholders are one more than you know about; and known stakeholders have at least one more need than you know about now.

7. You cannot economically satisfy all critical stakeholder needs, so the job is to increase value-to-cost ratios in the long term, over current systems.

8. The most critical requirements and critical designs are probably soft, not hard. And most ‘engineers’ are not social engineers.

9. Don’t ever try to build it all at once – evolve the system based on highest value early, and rapid learning about realities.

10. Manage the details through focus on high-level measurable objectives, not through bureaucracy.

11. Contractors will deliver better value for money, if paid only for value delivered, not for work completed.

12. Risks are impossible to detail completely and correctly, but can be controlled by frequent and early numeric feedback and change – as well as creating openness for necessary change in architecture, contracts, and relationships.

The heuristics with detailed remarks:

1. All designs are valid if they deliver the performance within the constraints.

It is essential that the complete set of performance (including all ‘quality’ requirements) requirement, and constraint requirements are clearly stated. This includes the idea that all quality requirements are expressed quantitatively. This is the only rational basis for evaluating necessary designs (also known at architecture, strategies, technical solutions).

A design can be judged on its ‘total’ (all performance and cost dimensions) and ‘incremental’ (when added to all other designs thus far considered) effects on our requirements. We are looking for increments that close the gap to the not-yet-satisfied requirements (the ‘gap’) at the least incremental use of budgeted resources (people, time, money, space).

This implies that for each design increment candidate, we need to estimate the degree to which is will probably satisfy our total requirement targets (performance requirements and function requirements). We also have to estimate the attendant costs of the designs. And we have to understand the uncertainty of all the estimates, especially the ‘worst case’.

A tool for doing this is the Impact Estimation table.

[image: image5..pict]Figure: An ‘Impact Estimation’ table for evaluating designs of a technical organization. (based on real case): the technical strategies for a 1,000 person telecoms product organization are evaluated with respect to their estimated impact on a set of quantitatively defined (elsewhere, not on this figure) ‘Business Objectives’. 100% means that we estimate the strategy will meet the target level of the objective on time.

2. System Level Architecture optimizes the specialist disciplines, and constrains them.

The function of the system level architecture is not necessarily to make final technical decisions. It is to make architecture decisions that ‘enable’ the various other engineering disciplines to reach to clear quantified system objectives in areas like ‘security’, ‘usability’, ‘adaptability’. The system architect should attempt to make decisions which will increase the probability that the engineering team (or the ‘project’, if you like) will reach their engineering performance objectives early and for sure.

For example: they can decide,

• We will all use Technical Platform Standard X

• All outsourced contracting will be based on payment for quantified results.

• the development process will be based on weekly evolutionary measured result feedback cycles.

• the operator interface will be based on maximizing the automatic learning and system tuning to individual operator behavior.

• all performance-constraining elements of the system will be capable of volume expansion of two orders of magnitude, at proportional costs, without loss of any numerically stated performance characteristic.

[image: image1.png]— . Impact on
Objectives Architecture or Strategy 1 Objective

S e | -

co
e [Sgeee; | ooty | Sub.sum. | Reorl | dosetor
[Pofasiny R0 ™ ™ 0
[vsanity 30 mies @ E =
[Comecivey 5 minues o o Qo
Rty s » » o
[tegrty s 10 K] s
fporomarce >127rS. H 2 H
uaratanity 121arge © @ »
Incusiabity 10years » bt 0
[Oev rosorcas Stzmiion — I

Harktog costs Stmony

&
1

TOTAL% | Devaten

75 Underseson
19558 Oveesgn
70 Ovreson
1 Ovresen
S5 48 Undorassan
T 30 Underesan
20 110 Owrcesin
W4 Owresen
1 5 Ovuget
8 35 Uncerbiget

«882828280)
288828888
885058558 E

k3 £l 1

F— s aw om s
ewagevaim st s st § o st o et
a2y 3 t

]
H

I
Impact of 1 Strategy For the detailed study,

On all objectives Aﬁ: 1 <
And costs or ‘Softfaces’

Illustration: real case, a number (50 pages of detail on the ‘Softfaces’ architecture) of architecture decisions were developed to impact 8 performance requirements. A rough analysis of the impact of this architecture was made here, in order to explain the role of the architecture to the marketing director, who was concerned with the performance requirements. In this real case several levels of impact estimation table were used to show different levels of detail of the architectures and the impacts. This is the top level. Some of the requirements (example Usability and Adaptability) were themselves actually defined as about 10 different sub-measures (they are published in Ch 5, CE, available at glib.com,).

3. We don’t really know what works until we try it.

Anybody can make an estimate of the impacts of solutions on requirements. We might even be equipped with experiential knowledge about how well the same architecture worked elsewhere. But the classical engineering problem is that every new system is ‘different’ and a given technology might work quite differently from all previous experience. The only way to know for sure is to build and measure the real system.

Engineering has long applied the methods of modelling and prototyping to try to get more reliable information about system characteristics, before committing to full-scale systems. The problems with both those methods is that they are not quite realistic enough and you risk getting false or misleading information.

One improvement on these conventional methods is Evolutionary Development (Evo).

Evo builds real systems with real users and other stakeholders on the receiving end. Evo might build a real system in a series of about 50 increments. But each new increment would test the hypothesis of that particular increment ‘for real’. Each Evo increment would measure all interesting effects, side effects and costs of the increment. The increment would be added to a working system, in the field or in a controlled field. Each Evo increment if it failed would be reversible. Each Evo increment is effectively a prototype. But each increment is embedded in a far more realistic environment than other prototypes would be. Consequently the quality of feedback from the incremental prototype is far better. The range of attributes that can be measured is far greater than conventional prototyping would undertake.

[image: image2.png]Strategic
Cycle

Development

Ll cyde

Production

g

Result Gycle

“The Body

Figure: Evolutionary System Development involves constant learning and feedback to the overall planning, at each of about 50 steps. This enables us to exploit a realistic environment, with real stakeholders, and real system loads to get early system attribute data, with the ability to revert to previous states with little damage done, if necessary. This should normally be superior to modelling and reviews, in terms of providing trustworthy information. Source Gilb, CE, Evo Chapter, page 306).

<alternative or supplementary illustration is the FIRM IE table real example Recoding estimated at 20 minutes but at end of cycle delivering 38 minutes saving).>
4. System Models cannot be relied on, and their only justification is when there is no more realistic way to economically represent the future system.

Most frequently taught and widely used system modelling methods (UML, PERT, QFD, etc.) are too sparse in detail to give us most of the answers we should be seeking about performance, costs, human reactions, and side effects. Even if the models were more detailed, we would for the most part completely lack the real factual technique-historic data necessary to correlate with our detailed requirement models, and to then draw reliable conclusions about expected system characteristics.

The most damaging common fault, in my opinion, with most-all modelling techniques, is a total lack of the ability to express quality factors quantitatively. Most methods cannot even deal with the most common well-known quality quantifications of reliability, availability and maintainability. They simply do not try. But even worse they seem to ignore, from ignorance, not choice, all other critical quality characteristics of the systems (adaptability, usability, security for example). Some methods even ignore all non-quality performance characteristics (thorough put, response time, storage capacity), and concentrate on functions (what the system does) and their relations. The software community is particularly guilty, but not alone in this.

It is impossible to understand any systems architecture attributes, and system costs, without a thorough understanding of the system-critical quality requirements, including security, adaptability, usability, robustness etc. The corollary is that if we do not include careful consideration of all critical quality aspects, then we risk losing control of the real economics of the system. We are not likely to get the estimates and budgets needed to deliver the state of the art quality levels, required by space, military, aerospace and many civilian systems. When the arbitrarily (from a low bidder for example) allocated resources run out, but the quality levels are not delivered – we are in a quandary as to whether we should choose to have an economic or a quality fiasco.

The solution to this is to include numeric quality levels in the requirements modelling and design modelling work, for all critical qualities. System modelling techniques (used in requirements and design processes) must always include this numeric quality discipline, or we are structurally doomed to fail; either with inadequate systems or economic losses, to get the systems we really needed.

[image: image3.png]Maintainability:

Type: Complex Quality Requirement.

Includes: {Problem Recognition, Administrative Delay, Tool Collection, Problem Analysis,
Change Specification, Quality Control, Modification Implementation, Modification Testing {Unit
Testing, Integration Testing, Beta Testing, System Testing}, Recovery}.

Problem Recognition:
Scale: Clock hours from defined [Fault Occurrence: Default: Bug occurs in any use or test of
system] until fault officially recognized by defined [Recognition Act: Default: Fautt is logged
electronically).
Administrative Delay:
Scale: Glock hours from defined [Recognition Act] unti defined [Correction Action] initiated and
assigned to a defined [Maintenance Instance].
Tool Collection:
Scale: Clock hours for defined [Maintenance Instance: Default: Whoever is assigned] to
acquire all defined [Tools: Default: all systems and information necessary to analyze, correct
and quality control the correction).
Problem Analysis:
Scale: Clock time for the assigned defined [Maintenance Instance] to analyze the fault symp-
toms and be able to begin to formulate a correction hypothesis.
Change Specification:
Scale: Clock hours needed by defined [Maintenance Instance] to fully and correctly describe
the necessary correction actions, according to current applicable standards for this.
Note: This includes any additional time for corrections after quality control and tests.
Quality Control:
Scale: Clock hours for quality control of the correction hypothesis (against relevant standards).
Modification Implementation:
Scale: Glock hours to carry out the correction activity as planned. “Includes any necessary
corrections as a result of quality control or testing.”
Modification Testing:
Unit Testing:
Scale: Clock hours to carry out defined [Unit Test] for the fault correction.
Integration Testing:
Scale: Clock hours to carry out defined [Integration Test] for the fault correction.
Beta Testing:
Scale: Glock hours to carry out defined [Beta Test] for the fault correction before official
release of the correction is permitted.
System Testing:
Scale: Clock hours to carry out defined [System Test] for the fault correction.
Recovery:
Scale: Clock hours for defined [User Type] to return system to the state it was in prior to the
fault and, to a state ready to continue with work.

 Template: Here is a model of one single quality attribute, quantified using proposed scales of measure, so that numeric requirements, and design attribute measurements can control the quality level of the system. This is ‘conventional’ engineering. But we seem to have forgotten it along the way. Source: Gilb CE, page 156.

5. Systems need to be built to tolerate change and expansion beyond current stakeholder needs.

We are well aware at some level that our large and expensive systems should have a relatively long operational life, a decade or several decades (example Space Shuttle). We are certainly prepared to acknowledge this with lip service (‘highly adaptable, ‘open architecture’, ‘a decade or more of service’). But we almost never set measurable technical quality requirements for the adaptability characteristics. We do not put them in requirements. We do not put them in contracts. They are not inputs to the architecture. They are not the subject of quality testing before system handover. They do not compete for scarce project and system resources, with the more well-articulated requirements. We pay in the long term for this short-sightedness. But we are perhaps so used to paying, we don’t notice the costs. We are so use to turning around and building yet another new system to replace that old system which is ‘difficult to extend and maintain’ that we do not want to notice.

[image: image6..pict]Case study example: A client of the author (FIRM, Norway, 2005) devotes one week every month to preventive maintenance of their software product. They have quantified their 12 system quality attributes for their ‘internal stakeholders’, and work towards their target levels on a regular basis.

6. System Stakeholders are one more than you know about; and known stakeholders have at least one more need than you know about now.

Systems engineering has long recognized that they must explicitly recognize and deal with a large number of different stakeholders. In spite of this we still run into, in our international consulting, real engineering environments, for example in telecommunications and software, that are only dimly aware that they belong to a systems engineering culture. They in fact have little or no formal teaching, standards or culture of explicitly dealing with stakeholders or their needs, and converting the stakeholder needs into formal requirements.

They are likely to identify two major stakeholders, the ‘customer’ and the ‘user’, and forget the other (typically) 40 stakeholders they need to be dealing with, in order to get a complete picture of the requirements they must deal with.

The penalty is paid downstream, when problems are identified, often after product release. But there seems to be little consciousness that they are paying a high penalty for lack of stakeholder-need analysis up front.

[image: image7..pict]Process Diagram: we need to improve our requirements identification process by being more formal about stakeholder, and consequent stakeholder-needs identification, at early stages of a project. We need to carefully distinguish – this diagram does not make that point – between stakeholder needs (like ‘people costs savings’) and consequent supporting product requirements (like improved ‘usability’). We need better mechanisms (quantified ones!) for doing trade studies and determining the degree to which we intend to support stakeholder needs by consciously engineering performance requirements into a system.

7. You cannot economically satisfy all critical stakeholder needs, so the job is to increase value-to-cost ratios in the long term, over current systems.

The set of all stakeholders that systems engineers might consider, and the set of needs that we might potentially satisfy, is impossibly large. Our job is not to satisfy all needs, but to select a profitable and practical subset of those needs and attempt to deliver them on an agreed priority basis (like highest value to cost requirements first).

The systems engineering task can therefore be viewed as trying to increase the value delivered to stakeholders, in relation to the costs of doing so.

[image: image4.png]Strategy Im a:tt Fs.t| atio,! -
g T — aT',S;tg@m%

Viing
Derc e
hatate Rerave Teehnoogy s GUIE Derce.

Busress Oyt sty oy dogrs Fae Moy % s Euwte Gty Seewly 00D Freois
Tretrad 3 SM‘ E) t W & ® & O 6§ N
it s St $§ B % % 6 W
Petmein Ty h mv.r% ?93/ [.
e wl W n o tm LS
e e " ¥ O S
Gl " Hwama@ % oW o M
tomfisdn Wow W W W 6 K W
Daioin woN OM% B K ® K % m
Compeieress B Y S Y
s enpriene. Ma Db M B K N M B B
Sstencad iy @bge;ctmvae WO oo
Peftrsalin Face. WAy W o0h @b St % W o

i S S S
Cotbiinicoea sl m o oh 8 8w
o) TR) i R T)
R0 e 0z % 0w m 0o®m ow W

Case study example (courtesy of a client of the author, with permission). All technical strategies (designs, architectures) can be evaluated with respect to their estimated impact on quantified business objectives using an impact estimation table. The overall multidimensional contribution to the business objectives – in relation to the estimated cost – is one basis – for prioritizing the implementation of a given strategy before less ‘profitable’ strategies.

8. The most critical requirements and critical designs are probably soft, not hard. And most ‘engineers’ are not social engineers.

“Motivation is everything”, I like to remind my techie friends. When people like systems, they will co-operate and help overcome some deficiencies. When people dislike, or fear, or distrust, systems, they will happily stand by idly – or even worse – while they system fails. They will not co-operate with advice, cautions, needs or that extra patience and time needed to make things work. This is one reason for our emphasis on stakeholder analysis.

Soft factors, like whether potential users like or dislike a proposed interface, need to be considered as a quantified requirement. We need to design systems that people like. We need to design systems that are not annoying. We need to design systems that are helpful, are tolerant of human forgetfulness and imperfection. We need to do so for ‘hard’ reasons like to consequent security, reliability, robustness and economic viability.

Systems not designed to serve people well, will not be allowed to serve people in the long term – even though they can be imposed by surprise or force in the short term.

Usability:

Type: Complex Quality Requirement.

Includes: Type: Elementary Quality Requirement {Entry Conditions, Training

Requirement, Computer Familiarity, Web Experience Level, Productivity, Error

Rate, Likeability, Intuitiveness, Intelligibility}.

Entry Conditions:

Scale: <Grade Level of User>.

Training Requirement:

Scale: Time needed to read <any instructions> or get <any help> in order to

perform defined [Tasks] successfully.

Computer Familiarity:

Scale: Years of <experience with computers>.

Web Experience Level:

Scale: Years of <experience with using the web>.

Productivity:

Scale: Ability to correctly produce defined [Work Units: Default: Completed Trans-

actions].

Error Rate:

Scale: Number of Erroneous Transactions requiring correction each <session>.

Likeability:

Scale: Option of <pleasure> on using the system on scale of

Intuitiveness:

Scale: Probability that a defined [User] can intuitively figure out how to do a defined

[Task] correctly (without any errors needing correction).

Intelligibility:

Scale: Probability in % that a defined [User] will correctly interpret defined [Mes-

sages or Displays].

Example: This is a usability requirement template. It initially decomposes usability into a set of diverse usability sub-attributes. Then it suggests a scale of measure that can be used to define and quantify each one of the usability attributes. The template can be exploited by stating a quantified requirement level such as “Goal [User = Expert] 95%.” Source: Gilb CE. Page 160). This particular template was used to state the requirements for our client’s intelligence airplane (Erieye, 1995).

9. Don’t ever try to build it all at once – evolve the system based on highest value early, and rapid learning about realities.

Systems need to be evolved in small steps of proving complex technology. There is still far too much Waterfall Model culture embedded in systems engineering cultures. There is still too little understanding of how and why we need to make Evolutionary Project Management our primary paradigm [Morris 1997]. On the other hand some of the earliest systems engineers – rocket scientists – have successfully used the evolutionary paradigm to develop their systems [Larman 2003]. Some bureaucratic misunderstandings have plugged in Waterfall Thinking (like DOD Std 2167A). The US DoD did wake up (Mil Std 498 over 10 years ago, Evolutionary Acquisition). But large parts of our culture still remain untouched by the evolutionary paradigm.

Systems Engineering implies big, complex, and state of the art. Precisely because of that we need a general project management process that allows us to probe the unknown in small controlled and realistic steps.

But it looks like decades will pass before the culture really changes. Part of the problem is that the teachers do not understand it.

[image: image8..pict]Illustration: Evolutionary projects use frequent and early steps of result delivery to stakeholders. The feedback is used to tune requirements, design, budgets, schedules and development processes. Source Helmut Hummel, NATO Evo Conference Proceedings, Bonn 2003.

10. Manage the details through focus on high-level measurable objectives, not through bureaucracy.

My experience with all projects, small and extremely large, is that it is possible to summarize the main critical objectives with the project quantitatively on a single page.

These are the requirements that the primary funding stakeholders expect for their money. These are the measurable results that we need to focus our energy on – and not get distracted from by lower priority objectives.

Yet, time and again I see these objectives listed in the requirements documentation, for example as ‘Critical Business Objectives’. But they are named only (‘Cutting Edge Adaptability’) and not defined so that they are intelligible and can be measured and tested in practice. Instead there can be 80 pages of more-detailed ‘requirements’ that in fact, on further analysis, are really ‘designs’ needed to meet the ‘undefined’ higher level objectives. These are clearly projects out of control and they are unfortunately far too many, to put it conservatively.

[image: image9..pict]Case Study Example. This is a new set of top level requirements for a product with 150 customers in 50 countries, after about 6 years of development, and being on the market. The objectives represent the future objectives to support a stakeholder need to spread the product to all engineers, and consequently get over 100 times more business. One key requirement was to improve Usability so that a one-week course for users was no longer required. A second area was to improve the operational capacity of existing hardware, in order to easily take on the new business increase. These requirements were established in a one week process, and are actually defined in more detail (scale of measure, test process) than shown in this overview report of progress towards the objectives in the 9th week of an evolutionary implementation of the requirements. We can see in the ‘Improvements %’ column the measured progress, as a % of the Goal level, in 9 of 12 weeks before release to customers. . (Courtesy FIRM, Norway, 2004, Product: Confirmit)

11. Contractors will deliver better value for money, if paid only for value delivered, not for work completed.

I wondered why 50% of all software projects fail (US DoD, Standish Reports, UK Royal Academy of Engineering). I was naïve enough to think initially it was because we did not use the ‘right methods’. The Royal Academy White Paper [www.raeng.org.uk, http://www.raeng.org.uk/news/publications/list/reports/complex_it_projects.pdf] .

The RAE report concluded that the methods for avoiding failure were known, just not used. That got me thinking at a higher level. Why were they not used? I had observed very large government and private projects, particularly those outsourced to external software suppliers. They failed but the suppliers seemed to get paid. That made me realize that this might be the problem. We pay contractors for work, but not for the results we expect for our money. There seem to be 2 deeper technical reasons for this, and at least one political reason. The technical reasons are that

a. we don’t seem to be able (lack of training and culture) to articulate the end results we really want in a quantified objective way, so it can be the basis for contracting.

b. We do not seem to be able to subdivide our projects into small (2% of budget0 evolutionary result delivery steps to permit progress payments for partial delivery of the defined results.

The political reason? Suppliers are getting fat on getting paid for the failed projects: why stop? (after all it is only shareholder or taxpayer money being wasted).

How to decompose systems into small evolutionary steps: (a list of practical tips)

1. Believe there is a way to do it, you just have not found it yet!4

2. Identify obstacles, but don’t use them as excuses: use your imagination to get rid of them!

3. Focus on some usefulness for the stakeholders: users, salesperson, installer, testers or

customer. However small the positive contribution, something is better than nothing.

4. Do not focus on the design ideas themselves, they are distracting, especially for small

initial cycles. Sometimes you have to ignore them entirely in the short term!

5. Think one stakeholder. Think ‘tomorrow’ or ‘next week.’ Think of one interesting improvement.

6. Focus on the results. (You should have them defined in your targets. Focus on moving

towards the goal and budget levels.)

7. Don’t be afraid to use temporary-scaffolding designs. Their cost must be seen in the light of

the value of making some progress, and getting practical experience.

8. Don’t be worried that your design is inelegant; it is results that count, not style.

9. Don’t be afraid that the stakeholders won’t like it. If you are focusing on the results they

want, then by definition, they should like it. If you are not, then do!

10. Don’t get so worried about ‘‘what might happen afterwards’’ that you can make no practical

progress.

11. You cannot foresee everything. Don’t even think about it!

12. If you focus on helping your stakeholder in practice, now, where they really need it, you will

be forgiven a lot of ‘sins’!

13. You can understand things much better, by getting some practical experience (and remov-

ing some of your fears).

14. Do early cycles, on willing local mature parts of your user/stakeholder community.

15. When some cycles, like a purchase-order cycle, take a long time, initiate them early (in the

‘Backroom’), and do other useful cycles while you wait.

16. If something seems to need to wait for ‘the big new system’, ask if you cannot usefully do it

with the ‘awful old system’, so as to pilot it realistically, and perhaps alleviate some ‘pain’ in

the old system.

17. If something seems too costly to buy, for limited initial use, see if you can negotiate some

kind of ‘pay as you really use’ contract. Most suppliers would like to do this to get your

patronage, and to avoid competitors making the same deal.

18. If you can’t think of some useful small cycles, then talk directly with the real ‘customer’,

stakeholders, or end user. They probably have dozens of suggestions.

19. Talk with end users and other stakeholders in any case, they have insights you need.

20. Don’t be afraid to use the old system and the old ‘culture’ as a launching platform for the

radical new system. There is a lot of merit in this, and many people overlook it.

Principles of Decomposition of Projects: Course Gilb, CE, page 314.

12. Risks are impossible to detail completely and correctly, but can be controlled by frequent and early numeric feedback and change – as well as creating openness for necessary change in architecture, contracts, and relationships.

I am not at all happy with conventional thinking and texts on risk management. They seem to follow a well worn path. And they do not seem to really help us control or understand risks. One fallacy is that the beginning of a project is the appropriate place to do most all of the risk analysis. The other problem seems to be that they think you can simply identify a ‘risk’. Put a probability of it happening, and build a risk model. I have no time for any of that.

The most powerful single tool for risk mitigation – evolutionary project management – is never mentioned at all. Yet is have the clearest real track record of avoiding risks of delays, budget overruns and quality reduction of any method (Larman 2003).

For me, everything has elements of risk. All requirements, all designs, all project plans, all test plans. All specifications. It is not possible for the most part to spot the risks in advance. Except to say that some things are such poor practice (like NOT quantifying a quality requirement) that there is a high risk of something bad happening – and the risk mitigation is simply to do the known better practice, not the obviously bad one.

From my point of view I want to measure and sense, in a real system with real people under real pressure, real machines and real software, and real databases, what is happening early on. Week-by-week. I want some trustworthy deviation from plan results to tell me I should worry. I want that information so early that it is not threatening. That I have plenty of time to take appropriate evasive action (risk mitigation).

I want such detailed background information about my requirements and designs that I can review and analyze them to sense possible risks very early. We make the mistake of specifying the simple design or requirement idea (in ten words or less) when in fact we need a whole page of background information to begin to understand the risks involved. This risk information needs to be carried along with the requirement or design at all times, it cannot be a one off risk analysis effort.

Design Specification Template <with Hints>

Tag: <Tag name for the design idea>.

Type: {Design Idea, Design Constraint}.

============================ Basic Information ===========================

Version: <Date or version number>.

Status: <{Draft, SQC Exited, Approved, Rejected}>.

Quality Level: <Maximum remaining major defects/page, sample size, date>.

Owner: < Role/e-mail/name of person responsible for changes and updates>.

Expert: < Name and contact information for a technical expert, in our organization or otherwise

available to us, on this design idea>.

Authority: <Name and contact information for the leading authorities, in our organization or

elsewhere, on this technology or strategy. This can include references to papers, books and

websites>.

Source: <Source references for the information in this specification. Could include people>.

Gist: <Brief description>.

Description: <Describe the design idea in sufficient detail to support the estimated impacts

and costs given below>.

<Term Tag here>: Definition: <Use this to define specific terms used anywhere in the

specification>. ‘‘Repeat this for as many definitions as you need’’

Stakeholders: <Prime stakeholders concerned with this design>.

=========================== Design Relationships ==========================

Reuse of Other Design: <If a currently available component or design is specified, then give

its tag or reference code here to indicate that a known component is being reused>.

Reuse of This Design: <If this design is used elsewhere in another system or used several

times in this system, then capture the information here>.

Design Constraints: <If this design is a reflection of attempting to adhere to any known design

constraints, then that should be noted here with reference one or more of the constraint tags or

identities>.

Sub-Designs: <Name tags of any designs, which are subsets of this one, if any>.

========================== Impacts Relationships =========================

Impacts [Functions]: <List of functions and subsystems which this design impacts attributes

of>.

Impacts [Intended]: <Give a list of the performance requirements that this design idea will

positively impact in a major way. The positive impacts are the main justification for the

existence of the design idea!>.

Impacts [Side Effects]: <Give a list of the performance requirements that this design idea will

impact in a more minor way, good or bad>.

Impacts [Costs]: <Give a list of the budgets that this design idea will impact in a major way>.

Impacts [Other Designs]: <Does this design have any consequences with respect to other

designs? Name them at least>.

======================== Impact Estimation/Feedback =======================

For each Scalar Requirement in Impacts [Intended] (see above):

Tag: <Tag name of a scalar requirement listed in Impacts [Intended]>.

Scale: <Scale of measure for the scalar requirement>.

Scale Impact: <Give estimated or real impact, when implemented, using the defined Scale.

That is, given current baseline numeric value, what numeric value will implementing this design

idea achieve or what numeric value has been achieved?>.

Scale Uncertainty: <Give estimated optimistic/pessimistic or real

 error margins>.

Percentage Impact: <Convert Scale Impact to Percentage Impact. That is, what percentage

of the way to the planned target, relative to the baseline and the planned target will implement-

ing this design idea achieve or, has been achieved? 100% means meeting the defined Goal/

Budget level on time>.

Percentage Uncertainty: <Convert Scale Uncertainty to Percentage Uncertainty

deviations>.

Evidence: <Give the observed numeric values, dates, places and other relevant information

where you have data about previous experience of using this design idea>.

Source: <Give the person or written source of your evidence>.

Credibility: <Credibility 0.0 low to 1.0 high. Rate the credibility of your estimates, based on the

evidence and its source>.

======================= Priority and Risk Management ======================

Rationale: <Justify why this design idea exists>.

Value: <Name [stakeholder, scalar impacts and other related conditions]: Describe or quantify

the knock-on value for stakeholders of the design impacts>.

Assumptions: <Any assumptions that have been made>.

Dependencies: <State any dependencies for this design idea>.

Risks: <Name or refer to tags of any factors, which could threaten your estimated impacts>.

Priority: <List the tag names of any design ideas that must be implemented before or after this

design idea>.

Issues: <Unresolved concerns or problems in the specification or the system>.

========================== Implementation Control =========================

Supplier: < Name actual supplier or list supplier requirements>

Responsible: <Who in your organization is responsible for managing the supplier relation?>

Contract: <Refer to the contract if any, or the contract template>

Test Plan: <Refer to specific test plan for this design>

Implementation Process: <Name any special needs during implementation>

========================= Location of Specification ========================

Location of Master Specification: <Give the intranet web location of this master specification>.
Template Example: The vast majority of the parameters here that collect information about a design are there to help us understand the risks of the design not delivering what it is supposed to. Most conventional risk methods and most conventional design specification goes nowhere near this level of knowledge about a design and its risks.

Source Gilb, CE , page 217-8 A design Template with hints.

Summary

These heuristics cover the systems engineering process fairly well, from my point of view. If we respected these heuristics in practice, we would both have a reasonable systems engineering discipline, and a better systems engineering discipline than we currently have.

I believe that students should study these and similar heuristics, and learn their practical implementation. They would be better systems engineers if they did.

References

· CE: Gilb, Tom, Competitive Engineering, A Handbook For Systems Engineering, Requirements Engineering, and Software Engineering Using Planguage, ISBN 0750665076, 2005, Publisher: Elsevier Butterworth-Heinemann. A sample chapter will be found at Gilb.com.

Gilb.com: www.gilb.com. our website has a large number of free supporting papers (with many references of course), slides, book manuscripts, case studies and other artifacts which would help the reader go into more depth

Larman 2003: Craig Larman and Victor Basili,

Iterative and Incremental Development: A Brief History

IEEE Computer, June 2003.

Morris, P. (1997) The Management of Projects, Thomas Telford, London.

The conclusion of this survey of projects is that there is no good project management process, and that if there were to be a new model it would be iterative and learning.

The Royal Academy White Paper: The Challenges of Complex IT Projects. www.raeng.org.uk, http://www.raeng.org.uk/news/publications/list/reports/complex_it_projects.pdf.

ISBN 1-903496-15-2, April 2004.
 to future editions. Cheers,
Version 8 Oct 2006.

