
Technoscopes -
Meet the Challenge of

Software Engineering Complexity
By

Tom Gilb, Norway
tom@Gilb.com
www.Gilb.com
@ImTomGilb

Copyright tom@Gilb.com, 2020

Permission to share with friends, granted freely, with this copyright notice.

1

<—- Technoscopes.(free digital book about 100 tools to fight complexity)

Epub and pdf
Only offered to BCS SPA Talk participants

<———-(otherwise sold at gilb.com)

April 1 2020, 18:30-20:00 approximately - presentation
BCS, London . 90 minutes presentation time.

http://concepts.gilb.com/dl968 (slides)
Technoscopes:

Tools for understanding complex
projects

TECHNOSCOPES. https://
www.gilb.com/offers/YYAMFQBH/

checkout (free).
For citation and purchase

Outside of this talk see
Sales LINK TO ALL BOOKLETS and

Books
https://www.gilb.com/store?tag=books Slide version 010420.17:00

mailto:tom@Gilb.com
http://www.Gilb.com
mailto:tom@Gilb.com
http://gilb.com
http://concepts.gilb.com/dl968
https://www.gilb.com/offers/YYAMFQBH/
https://www.gilb.com/offers/YYAMFQBH/
https://www.gilb.com/store?tag=books

1. There is no definitive formulation of a wicked problem.
2. Wicked problems have no stopping rule.
3. Solutions to wicked problems are not true-or-false, but good-or-bad.
4. There is no immediate and no ultimate test of a solution to a wicked problem.
5. Every solution to a wicked problem is a "one-shot operation"; because there is no opportunity to
learn by trial-and-error, every attempt counts significantly.
6. Wicked problems do not have an enumerable (or an exhaustively describable) set of potential
solutions, nor is there a well-described set of permissible operations that may be incorporated into
the plan.
7. Every wicked problem is essentially unique.
8. Every wicked problem can be considered to be a symptom of another problem.
9. The existence of a discrepancy in representing a wicked problem can be explained in numerous
ways. The choice of explanation determines the nature of the problem's resolution.
10. The planner (designer) has no right to be wrong.

“As We May Think”, In July 1945 formulated a vision
that inspired J.C.R. Licklider, Doug Engelbart and Ted Nelson

 (Werner Kuntz and Horst Rittel, the designers of IBIS)
Dino Karabeg, OMS Group, Department of Informatics, University of Oslo

Wicked Problems Characteristics
(Some false assertions)

think: ‘Virus Planning’, Not ‘Chess’

2

See slides after end of this talk here, after slide 67, with more detail ,
refuting each point here

“A tame problem: is not so complex
(think, ‘stopping people smoking’)

1. Has a well-defined and stable

problem statement;

2. Has a definite stopping point, i.e.,

when the solution is reached;

3. Has a solution that can be objectively

evaluated as right or wrong;

4. Belongs to a similar class of

problems that are all solved in the

same similar way;

5. Has solutions that can be easily tried

and abandoned;

6. Comes with a limited set of

alternative solutions.” Jeff Conklin

http://cognexusgroup.com/wp-content/uploads/2013/07/Using-Dialogue-Mapping-to-Address-Wicked-Problems-05-23-2013.pdf
3

4

Some characteristics of Complex Systems
Like Covid-19 Pandemics

5

Some characteristics of Complex Systems
Like Covid-19 Pandemics

6

Some characteristics of Complex Systems
Like Covid-19 Pandemics

How ‘Planguage**’ Helps deal with ‘Wicked’
Software engineering Problems: Complexity

1. by viewing the problem from a high ‘stakeholder values’ level
 (avoiding all complex innards, be 'outside the black box’—>)
2. by dealing with design and costs incrementally
 (so you do not get all complexity at once)
3. by contracting for results, not ‘work’
 (so complexity is transferred to expert contractors)
4. by being lean: early, and preventive (like reduce late bugs)
 (so complexity is reduced in total, later)
5. by using scale-free methods: scale does not matter
 (so scaling up size, does not drive complexity up)

7
My talk is divided into these 5 main ideas

**Free
Digital
 CE link
Later
 slide

Technoscopes: book with 100 Complexity Tools
Example 31 of 100:

Keeping track of potential risks in complex systems

8

Technoscopes:
Tools for understanding complex

projects
TECHNOSCOPES. https://

www.gilb.com/offers/YYAMFQBH/
checkout (free).

For citation and purchase
Outside of this talk see

Sales LINK TO ALL BOOKLETS and
Books

https://www.gilb.com/store?tag=books

https://www.gilb.com/offers/YYAMFQBH/
https://www.gilb.com/offers/YYAMFQBH/
https://www.gilb.com/store?tag=books

Technoscopes: book with 100 Complexity Tools
Example 30 of 100: Keeping track of ‘risks complexity’

9

Technoscopes:
Tools for understanding complex

projects
TECHNOSCOPES. https://

www.gilb.com/offers/YYAMFQBH/
checkout (free).

For citation and purchase
Outside of this talk see

Sales LINK TO ALL BOOKLETS and
Books

https://www.gilb.com/store?tag=books

https://www.gilb.com/offers/YYAMFQBH/
https://www.gilb.com/offers/YYAMFQBH/
https://www.gilb.com/store?tag=books

Technoscopes Tool Area 1 of 5.
by viewing the problem from a high ‘stakeholder values’ level

(avoiding all complex innards)
Black box analysis

• How does this, high level view, help us deal
with complexity?

1. The stakeholder and their values (needs,
requirements) are the essential focus of all
projects

2. The underlying complex details (the design, the
actual system, the code) do not really matter, as
long as the stakeholders are getting their needs
met.

And meeting needs can be measured directly.

You do not need to go into the ‘black box’.

The ‘inside of the black box is extremely
difficult to analyze directly:

 It is better to just measure the results, values,
qualities,

as delivered to the stakeholder.

10

ValuesStakeholders

Example from OSWA Oslo,
Architecture Workshop

March 2020

Black Box analysis of Complex (AI) systems

11

https://www.nature.com/news/can-we-open-the-black-box-of-ai-1.20731

https://www.nature.com/news/can-we-open-the-black-box-of-ai-1.20731

Technoscopes Tool Area 1 of 5.
Notice the beginning of complexity even here:

Any stakeholder can have many values.
Any value can have many stakeholders

Any identified stakeholder or value can have yet-unknown connection to other values or stakeholders.
IN THIS CASE WE HAVE A DIGITAL TOOL TO KEEP CONTINUOUS TRACK OF ALL KNOWN RELATIONSHIPS

So you can ask questions like which values does the University stakeholder have, which we have forgotten right now?

•

12
ValuesStakeholders

Covid-19
Planning
Exercise

Dimensions of Stakeholder Value
One single stakeholder type, has many critical values, and variable values,

And individual instances of the stakeholder type (MIT, UCLA, LSE), have different sets of values and different levels needed
THIS IS VERY COMPLEX, BUT WE CAN KEEP TRACK OF THE HIGHEST PRIORITY CASES BY USING A DIGITAL TOOL

And by using quantified definitions of each critical value of a stakeholder

© Lindsey Brodie 2010

Stakeholder
Value

Financial Gain

Financial Penalty

Legal
Strategic /
Competitive Advantage

Opinion / Intuition /
Bias

CostOther

Organizational Fit

Environmental
Timing

Risk

Productivity / Efficiency /
Resources Savings

Values Fit

Any technical solution or strategy can be evaluated
against several of these dimensions of stakeholder value at once.

This is a systematic view of complexity, and needs to be tracked
in a digital model.

Innovation

13

Basic Model of an Impact Estimation Table

Objective

Resources

Benefits-to-
Cost Ratio

Solution 1 Solution 2 Solution n Total Impacts

Impact on
Objective

Impact on
Objective

Impact on
Objective

Impact on
Budget

Impact on
Budget

Impact on
Budget

Ratio Ratio Ratio

Total
Impact on
Objective

Total
Impact on

Budget

Courtesy Rolf Goetz 14

Complexity = X Objectives x Y Resources x Z Solutions =
Benefit/Cost Ratios = (more, risks, evidence, …)

15

Corona Virus Planning: a 4-team class 2020,
The IE Table shows 4 Solutions x 6 Attributes + 4 Val/£

Worst Case
Credible Worst Case

& Credible

Optimistic

% of way to Goal

% of way to Budget

16

The ‘Complex’ Table, simplified
Which solution is best ‘values for costs’?

Sum
of
4

Values
Impact Sum

Of
2

costs

Complexity Technoscopes, Tool Area 2 of 5.

By dealing with design and costs incrementally
(= Agile, Evo)

Clearer cause and effect.
Easier to correct early.

17

This helps deal with complexity,
because we only need to consider

one small increment of the system, at a a time.
Maybe 1/50 or 1/200 of it.

‘Cleanroom’
An advanced software development process
(‘perfect’ complex project management)

18

Dr. Harlan Mills,
IBM Federal Systems

Division
A real ‘agile’

software engineer
pioneer

https://trace.tennessee.edu/utk_harlan/?utm_source=trace.tennessee.edu/utk_harlan/
5&utm_medium=PDF&utm_campaign=PDFCoverPages

Collected works of Harlan Mills

https://trace.tennessee.edu/utk_harlan/?utm_source=trace.tennessee.edu/utk_harlan/5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://trace.tennessee.edu/utk_harlan/?utm_source=trace.tennessee.edu/utk_harlan/5&utm_medium=PDF&utm_campaign=PDFCoverPages

19

http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan

http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan

“The first guarantee of quality”:

Designing Qualities into a system
Is much simpler

than trying to get qualities, by testing them in**

•“The first guarantee of quality in design is in well-informed, well-educated, and well-motivated designers.

•Quality must be built into designs, and cannot be inspected in or tested in.

•Nevertheless, any prudent development process verifies quality through inspection and testing.

•Inspection by peers in design, by users or surrogates, by other financial specialists concerned with cost,
reliability, or maintainability not only increases confidence in the design at hand, but also provides
designers with valuable lessons and insights to be applied to future designs.

•The very fact that designs face inspections motivates even the most conscientious designers to greater

care, deeper simplicities, and more precision in their work.”

20
http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan

Harlan Mills

** testing qualities into a system, is impossibly complex,
 and takes infinite time.

http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan

In the ‘Cleanroom Method’, developed by IBM’s Harlan
Mills (IBM SJ No. 4/1980) they reported:

• “Software Engineering began to emerge in FSD” (IBM Federal Systems Division, from
1996 a part of Lockheed Martin Marietta) “some ten years ago [Ed. about 1970] in a
continuing evolution that is still underway:

• Ten years ago general management expected the worst from software projects – cost
overruns, late deliveries, unreliable and incomplete software

• Today [Ed. 1980!], management has learned to expect on-time, within budget,
deliveries of high-quality software. A Navy helicopter ship system, called LAMPS,
provides a recent example. LAMPS software was a four-year project of over 200
person-years of effort, developing over three million, and integrating over seven
million words of program and data for eight different processors distributed between
a helicopter and a ship in 45 incremental deliveries [Ed. Note 2%!]s. Every one of
those deliveries was on time and under budget

• A more extended example can be found in the NASA space program,

• - Where in the past ten years, FSD has managed some 7,000 person-years of software
development, developing and integrating over a hundred million bytes of program and
data for ground and space processors in over a dozen projects.

• - There were few late or overrun deliveries in that decade, and none at all in the past
four years.”

21

© Gilb.com

In the Cleanroom Method,
developed by IBM’s Harlan Mills (1980) they reported:

• “Software Engineering began to emerge in FSD” (IBM Federal Systems Division,
from 1996 a part of Lockheed Martin Marietta) “some ten years ago [Ed. about
1970] in a continuing evolution that is still underway:

• Ten years ago general management expected the worst from software projects –
cost overruns, late deliveries, unreliable and incomplete software

• Today [Ed. 1980!], management has learned to expect on-time, within budget,
deliveries of high-quality software. A Navy helicopter ship system, called
LAMPS, provides a recent example. LAMPS software was a four-year project of
over 200 person-years of effort, developing over three million, and integrating
over seven million words of program and data for eight different processors
distributed between a helicopter and a ship in 45 incremental deliveries [Ed.
Note 2%!]s. Every one of those deliveries was on time and under budget

• A more extended example can be found in the NASA space program,
• - Where in the past ten years, FSD has managed some 7,000 person-years of

software development, developing and integrating over a hundred million bytes
of program and data for ground and space processors in over a dozen projects.

• - There were few late or overrun deliveries in that decade, and none at all in
the past four years.”

22

in 45 incremental deliveries

were few late or overrun
deliveries in that decade,
and none at all in the past

four years
wow! normal agile fails 19% (Scrum) to 40%: Jeff Sutherland

Agile!

Mills on Design-to-Cost
(call it ‘agile’, incremental, design)

• “To meet cost/schedule commitments based on
imperfect estimation techniques, a software
engineering manager must adopt a manage-
and-design-to-cost/schedule process.

• That process requires a continuous and
relentless rectification of design objectives
with the cost/schedule needed to achieve
those objectives.”

• in IBM sj 4 80 p.420
See Quinnan’s flow chart
 “Design to Cost” below

For process detail

Copyright Tom@Gilb.com

Robert E. Quinnan (Cleanroom Architect):
IBM FSD Cleanroom

Dynamic Design to Cost
Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost
management farther by introducing design-to-cost guidance. Design, development, and managerial practices are
applied in an integrated way to ensure that software technical management is consistent with cost management.
The method [illustrated in PoSEM book by Figure 7.10] consists of developing a design, estimating its cost, and
ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by
sacrificing 'planned capability.' When a satisfactory design at cost target is achieved for a single increment, the
'development of each increment can proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in
seeking the appropriate balance between cost and design for a single increment, but they iterate through a series
of increments, thus reducing the complexity of the task, and increasing the probability of learning from
experience, won as each increment develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments
is computed.' (p. 474)

Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp.
466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

24

Copyright Tom@Gilb.com

 Initial design and cost estimates are
incrementally reviewed and improved

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure
that software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10]
consists of developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can
proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the
appropriate balance between cost and design for a single increment, but they iterate through a series of increments, thus
reducing the complexity of the task, and increasing the probability of learning from experience, won as each increment
develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

25

of developing a design,
estimating its cost, and
ensuring that the design

is cost-effective

Source: Quinnan, IBM SJ, page 472
http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan

26

Cleanroom Planning and
Estimating

For making fixed price
bid

“developing a design,
estimating its cost”

<— making sure
it is cost effective

(static)

http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan

Cleanroom Cost
Management

Process

Source: Quinnan, IBM SJ, page 471
http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan

27

IBM FSD had a very advanced detailed
collection

 of historical data from previous projects.
Published in IBM SJ, Walston and Felix
About 20 pages of data per project were

collected

“ensuring that the design
 is cost effective”

Think: Fighting Covid-19 Virus by data collection

Figure 2

http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan

Copyright Tom@Gilb.com

 Design better, ‘as needed’.
See your need for tradeoffs, ‘as needed’

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure
that software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10]
consists of developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can
proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the
appropriate balance between cost and design for a single increment, but they iterate through a series of increments, thus
reducing the complexity of the task, and increasing the probability of learning from experience, won as each increment
develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

28

iteration process
trying to meet cost

targets by either
redesign or by

sacrificing 'planned
capability’

See diagram
 Figure 3

below

Copyright Tom@Gilb.com

Do design based on incremental feedback
and facts, ‘one small step for mankind’

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost
management farther by introducing design-to-cost guidance. Design, development, and managerial practices are
applied in an integrated way to ensure that software technical management is consistent with cost management.
The method [illustrated in this book by Figure 7.10] consists of developing a design, estimating its cost, and
ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by
sacrificing 'planned capability.' When a satisfactory design at cost target is achieved for a single increment, the
'development of each increment can proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in
seeking the appropriate balance between cost and design for a single increment, but they iterate through a series
of increments, thus reducing the complexity of the task, and increasing the probability of learning from
experience, won as each increment develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments
is computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp.
466~77

29

Design is an
iterative process

Design to
Cost

Source: Quinnan, IBM SJ, page 473
http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan
And PoSEM page 105, Figure 7.10 30

“Design
is an iterative

process”

This is agile as it should be.

Value Agile
https://www.dropbox.com/sh/o2g7ib3z2g2uzfw/

AAAypXlN0yA2WS4obwlDzZR3a?dl=0

http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan
https://www.dropbox.com/sh/o2g7ib3z2g2uzfw/AAAypXlN0yA2WS4obwlDzZR3a?dl=0
https://www.dropbox.com/sh/o2g7ib3z2g2uzfw/AAAypXlN0yA2WS4obwlDzZR3a?dl=0

Copyright Tom@Gilb.com

‘Small increments’ reduce complexity

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost
management farther by introducing design-to-cost guidance. Design, development, and managerial practices are
applied in an integrated way to ensure that software technical management is consistent with cost management.
The method [illustrated in this book by Figure 7.10] consists of developing a design, estimating its cost, and
ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by
sacrificing 'planned capability.' When a satisfactory design at cost target is achieved for a single increment, the
'development of each increment can proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in
seeking the appropriate balance between cost and design for a single increment, but they iterate through a series
of increments, thus reducing the complexity of the task, and increasing the probability of learning from
experience, won as each increment develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments
is computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp.
466~77

31

but they iterate through a series of
increments,

thus reducing the complexity of the
task,

and increasing the probability of
learning from experience

Copyright Tom@Gilb.com

It is less complex to estimate future costs:
incrementally, based on experience

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to
ensure that software technical management is consistent with cost management. The method [illustrated in this book by
Figure 7.10] consists of developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing
'planned capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each
increment can proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the
appropriate balance between cost and design for a single increment, but they iterate through a series of increments, thus
reducing the complexity of the task, and increasing the probability of learning from experience, won as each increment
develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)

Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

32

 “an estimate to
complete the

remaining
increments is

computed.”
(See Figure 3 above for flowchart)

Technoscopes Tool Area 3 of 5.

by

‘contracting for results’,
not contracting for ‘work and work product’ (like code)

33

How does ‘contracting for results’
Help us deal with system complexity?

Because you can change the ‘inside of the black box’
Or get the contractor or Dev Team to do so
Anytime

Tom@Gilb.com

Detailed Result/Payment Deal
At each ‘Sprint’: No Cure-No Pay

34

How to fight
the

complexity of
a long-term
large-scale

sub-contract

SOW = Statement Of Work

Tom@Gilb.com

Outcome-driven view of contract metrics:  

If they didn’t really deliver value, try again.
If they cannot deliver, stop the supplier relationship

35

Tom@Gilb.com

Complexity Technoscope

36

Why ‘Result Contracting’ and ‘Result Payment’
deals with complexity

1. You are not bound to big contracts if you cannot control
the complexity

2. You do not have to understand the total costs or duration
up front, for large complex projects
3. Neither does the sub-contractor have to
4. You can focus on quick wins and sure things, until you
reach a ‘level of incompetence’, regarding complexity.
5. You can discard a complex and failed delivery step, 2%
loss, and continue the project by finding a simpler more
risk-free designs

Tom@Gilb.com

Pros and cons of the Flexible Contract  

• Pros:
– ➢ ▪A structured approach for focusing on the customer’s

strategic plan
– ➢ ▪The creation of shared goals helps to align the interests and

motivation of the parties
– ➢ ▪The supplier is motivated to achieve the target outcomes in

the most cost-effective way
– ➢ ▪Outcomes are less susceptible to change, than output
– ➢ ▪The parties can learn rapidly what works and what doesn’t

by measuring progressively the outcome delivery
• Cons:

– ➢ ▪Lack of method and contract-process familiarity
– ➢ ▪Outcomes are not as straightforward as other contract

metrics, and require some training

37

Tom@Gilb.com

The Flexible Contract is
more tuned in to agile

38

Tom@Gilb.com

Contract Templates available for free

39http://www.flexiblecontracts.com

Tom@Gilb.com

WHAT IS A FLEXIBLE CONTRACT?

WHAT IS A FLEXIBLE CONTRACT?
A ‘flexible contract’ is an adaptive, outcome-based
contract, which is intended to maximize the delivery of
customer value. It achieves this in several ways:

The contract focuses on outcomes (that is, business
objectives), which are less susceptible to change than
output (such as features). By focusing on outcomes the
contract also creates shared goals between the customer
and supplier, which helps to align their interests and
motivation.
The supplier is given the freedom to achieve the target
outcomes in any way it deems effective as long as it
honors the terms of the contract and stays within any
constraints specified by the customer.

The fees (or at least part of the fees) should be payable on
the achievement of target outcomes. The supplier is
incentivized to achieve the target outcomes in the most
cost-effective way, which is also of benefit to the customer.

The contract is structured as a master services agreement
for the full version, or the ‘lite’ version using the Terms and
Conditions, under which short-term statements of target
outcomes (SOTOs) are called off. SOTOs work in the same
way as a Statement of Work, but instead of ‘work’ in the
form of outputs and activities, we measure outcomes
achieved. The parties can respond to acquired knowledge
and changes in the environment in subsequent SOTOs.

In respect of each SOTO the supplier addresses each
target outcome by means of short feedback cycles. So the
parties can learn rapidly what works and what doesn’t by
measuring outcomes achieved progressively.

The contract adopts lightweight contractual provisions.
This is made possible because the parties only commit to
one SOTO at a time, so the financial exposure of the
customer to the supplier is minimized. This in turn means
that the contract is easier to understand and requires less
administrative cost, both to create and to manage. The
contract is deliberately NOT focused on the activities of
the supplier or the technical processes by which this value
is delivered.

40

Define what you want, as you go, in small
increments.

Learn what works

Focus on business results, not ‘code’

Pay for real value delivered

Prioritize high value results early.

Very low risk

Not tied in to suppliers who cannot deliver

Tom@Gilb.com

SOTO Specification 
(from contract template) 

short-term Statements Of Target Outcomes

41

Tom@Gilb.com

Result quantification Template
(based on Gilb Planguage)

 

42

Example of thoroughly defined quantified Value for Contracting

43
Source: Value Requirements (book), T Gilb.

2019
https://www.dropbox.com/s/hxg1rx9rzesw2id/Value%20RequirementsPDF%20BEST%20%2070MBQ%20011019%202245%202.pdf?dl=0

So how does Flexible Contracting deal with Complexity?

• You can stop delivering when complexity
is not possible to deal with or not
profitable

• Unexpected complexity, can be
discovered early, and alternative design
strategies possibly found to simplify

• No need to think about total cost in
advance (which may be impossible
because of hidden complexity)

• Potentially complex increments can be
piloted early (and defeated or found OK)

• Maximum loss for discovered over-
complexity is step size (2% of budget)

• Complexity can be dealt with in a
‘backroom’ (off line to value delivery
increments (See Posem book, Evo)

44

Technoscopes Area 4 of 5.
By being ‘lean’:

= early, = preventative.

45

Defect Prevention methods (SQC, DPP)
(lean, early)

Help us deal with complexity
Because

1. They reduce the total volume of defects, in later
stages, considerably, (10X, 100x more)

2. So we are not overwhelmed by the volume of defects
later

Copyright © 2014 Intel Corporation.

What is Specification Quality Control?
(a method for quick, cheap, frequent,
continuous measurement of software

development work quality)

Specification** Quality Control (SQC) is a method for ensuring
specifications meet established quality goals according to objective,
measured standards
SQC prevents poor-quality specifications from moving downstream

Specification Quality Control emphasizes
• Cost and TTM reduction
• Defect prevention
• Resource efficiency

** Specification: A written or electronic representation of information used to design,
architect, construct, or test a system or its parts.

• Early learning
• Author confidentiality
• Quantified specification quality

46

Copyright © 2014 Intel Corporation.

What is Specification Quality
Control?

SQC is similar to traditional techniques for reviews, walkthroughs,
and inspections, but has important differences and improvements:

• SQC’s goal is to measure defect density, not to “clean up”
the specification by finding every defect in it

• SQC saves time by checking only samples of the
specification rather than the entire thing

• SQC focuses on major defects – those that will take at least
10x more to correct later than now

• SQC follows a rigorous process, with trained participants
to help guarantee consistently good results

Specification Quality Control forms the backbone of an effective,
efficient review structure

47

Copyright © 2014 Intel Corporation.

SQC At a Glance
(early QC, continuous QC, final QC)

Specification Completeness0%
(Rev 0)

100%
(Rev 1)

Initial
Review

Periodic Additional Reviews Final
Quality

Assessment

…

Specification Quality Control consists of a series of short, intense
reviews that measure the defect density of a specification

48

Copyright © 2014 Intel Corporation.

SQC is Data-Driven
(based on objective facts)

Specification Completeness0%
(Rev 0)

100%
(Rev 1)

D
ef

ec
t D

en
si

ty

SQC tracks defect density over time to ensure good quality in the
work products:

Early evidence of specification quality allows for timely
corrective action, before rework costs go unbearably high

Process failure

Acceptable quality

49

Copyright © 2014 Intel Corporation.

Example
(Intel published experience)

0.0 Rev 1.0

D
ef

ec
t D

en
si

ty

0.3 0.5 0.6 0.7 0.8

20

10

1

A team in Client BIOS used SQC to reduce requirements defect
density by 98% over six cycles:

This effort had significant benefits to downstream work, including
improved productivity (+233%), time to test, and customer quality

50

Intel Case Studies
of Gilb Methods** 2013

** Methods = Planguage Requirements and SQC

Copyright © 2014 Intel Corporation. .

SQC Review Cycles
Note: Defect Density Measurement, NOT find and fix defects.

Motivate engineers to follow best practice standards.

1. Identify checkers

2. Select rules

3. Sample specification

4. Instruct checkers
5. Check sample

6. Report results

7. Analyze results

8. Decide actions

9. Identify causes

Typical time investment for one cycle: 60-120 minutes,
depending on sample size

Each SQC review cycle follows the same simple process:

52

How does Spec QC Help with Complexity?
• Sampling allows us to reduce

time and cost of measurement
by about 50X (take a 2%
representative sample)

• Reduction of future problems
inside the black box is about 50x
(10.06 to 0.22 see table)

• It forces people to really learn
best practices, on the job and
reduces the complexity of
learning a discipline by a
handbook courses. (McDonnell
Douglas experience)

• It doubles (233% Intel) software
engineering productivity

53

Copyright Tom@Gilb.com

Prevention + Pre-test Detection
is the most effective and efficient: a set of processes for

fighting complexity

• Prevention data based on state of the art prevention experiences (IBM RTP), Others (Space
Shuttle IBM SJ 1-95) 95%+ (99.99% in Fixes)

• Cumulative Inspection detection data based on state of the art Inspection (in an environment
where prevention is also being used, IBM MN, Sema UK, IBM UK)

\

50%

70%
80%
90%

<-Mays & Jones 50% prevented(IBM) 1990

<- Mays 1993, 70% prevented

1 2 3 4 5 6

 "Prevented"

70% Detection
 by Inspection

95% cumulative detection
by Inspection (state of the art limit)

Test

 "Detected
Cheaply"

100%
Use

54
These slides are at

http://www.gilb.com/dl821

http://www.gilb.com/dl821
http://www.gilb.com/dl821

Copyright Tom@Gilb.com

IBM MN & NC DPP Experience
Attacking large organization software engineering complexity by

DELEGATION OF POWER TO GRASS ROOTS TO IMPROVE THE ORGANISATION

• 2162 DPP Actions implemented
– between Dec. 91 and May 1993 (30 months)<-Kan

• RTP about 182 per year for 200 people.<-Mays 1995
– 1822 suggested ten years (85-94)
– 175 test related

• RTP 227 person org<- Mays slides
– 130 actions (@ 0.5 work-years
– 34 causal analysis meetings @ 0.2 work-years
– 19 action team meetings @ 0.1work-years
– Kickoff meeting @ 0.1 work-years
– TOTAL costs 1% of org. resources

• ROI DPP 10:1 to 13:1, internal 2:1 to 3:1
• Defect Rates at all stages 50% lower with DPP

55
These slides are at

http://www.gilb.com/dl821

Research
Triangle

Park

http://www.gilb.com/dl821
http://www.gilb.com/dl821

How does Defect Prevention
Process deal with Complexity?
• It gives a radical reduction (50%

to 99%) reduction in problems
(like bugs) which occur at all

• The grass roots staff
themselves will quickly see
recurrent problems

• The grass roots staff will only
suggest the simplest process
change they can live with

• The staff will not suggest
changes that they think makes
their work unnecessarily
complex

56

Technoscopes Area 5 of 5

By using ‘scale free’ methods:
‘scale’ does not matter

‘Bigger’ does not threaten you with complexity

57

If we are scale-free
then we do not have to

worry about

‘rapid or large scaling up’
of a system

causing it to be

too complex to handle
easily

Erik Simmons, Intel Scaling
“ I’m deeply interested in scale-free practices.
I’m also interested in specific practices tuned to large,
small, complicated, and complex projects,

but I find particular power in scale-free practices.

Your work for decades has been focused on a very
good set of these.

SQC, for example, works on any size specification. It
does not (need to) scale.
SQC: (Specification Quality Control).see immediately
previous slides in Technoscopes area 4 of 5.

BTW, I think the agile principles are also quite scale-
free. But most Scrum practices are definitely not.

So, perhaps you can chart a better course by
advocating for use of scale-free core practices,

augmented with a set of specific, tailored practices
that are effective for the size of the project in
question.” <- ES, Intel

58

My Scale Free Methods:
most are in this talk

1.Quantification of Values [10***, VP 1.1**].
2.Quantification of short term and long term costs [VP 3.4, VP 4.5, VP

6.7].
3.Design to Cost: Top Level Architecture [VP 7.9, 10].
4.Dynamic Design to Cost: Each Delivery Cycle [12 C, VP 4.5, VP 2.5, VP

2.3, 5, 10, 12].
5.Quality Control of Plans, Contracts, Code and all written artifacts [VP

Part 2, VP Part 4, VP 7.7].
6.Flexible Contracting [12, VP 4.5].
7.Value delivery Cycle Measurable Feedback, Learning and Change [4,
 VP 7.3, VP 9.8, VP 6.7, VP 8.6, 2, 9, 10, 11, 14].

8.Value Decision Tables (Impact Estimation Tables) [9, VP 2.3, VP 4.4, VP
5.3, 13].

9.Risk Management in all aspects of planning and Management [VP Ch.
7], 12.

10.Intelligent Prioritization Policies: for short term and long term [VP Ch.
6, 12, 13, 14].

https://tinyurl.com/OSWAVP
** ’VP’ = Value Planning book by chapter

59

*** = “Beyond Scaling: Scale-free Principles for Agile Value Delivery - Agile Engineering.

40 practical Engineering ideas for scaling agile development successfully all the time.”

A very short pdf paper, supported by references to necessary detail.

http://www.gilb.com/dl865

https://tinyurl.com/OSWAVP

Value Planning Cycle = ‘Evo’
Cycle of Value delivery of any size project

Method 7. Value delivery Cycle Measurable Feedback, Learning and
Change [4***, VP 7.3 **, VP 9.8, VP 6.7, VP 8.6, 2, 9, 10, 11, 14].

https://tinyurl.com/
OSWAVP

** = Value Planning
book by chapter 60

A detail of Method 7

 ***= “Beyond Scaling: Scale-free Principles
for Agile Value Delivery - Agile Engineering.

40 practical Engineering ideas for scaling agile
development successfully all the time.”

A very short pdf paper, supported by references to
necessary detail.

http://www.gilb.com/dl865

https://tinyurl.com/OSWAVP
https://tinyurl.com/OSWAVP

© Tom@Gilb.com

Emerson’s Principle that
 Principles beat methods

• “As to methods, there
may be a million and
then some, but
principles are few.

• The man who grasps
principles can
successfully select his
own methods”.

• - Emerson, Harrington
• (Not as thought, R W E)

–

61

My Scale-free Principles
(most are treated in this talk)

1.Keep focus on measurable delivery of critical values and their costs. [3***, 4, 5, 6, 9, 10, 12,
VP (20) Part 1, VP 10.6 **]

2.Deliver value early, quickly and regularly: in roughly 2% increments. [14, 11, VP Ch.4, 2, 5]
3.Do NOT focus on code delivery; focus on overall system value and costs. [VP Ch.4, 10D,

10F, 13, VP 3.4, VP 2.10, VP 9.8, 4, 12]
4.Focus on quantified critical stakeholder values. [19, VP 3.4, VP 3.7, VP 3.9, VP 3.10 VP 4.2,

10]
5.Synchronize all teams in terms of measurable value delivery. [VP 3.3, VP 3.4, VP Part 1, VP

3.6, VP 3.8, VP 8.4 , 11, 12, 13]
6.Solve big problems through ingenious architecture; not through coding faster. [VP 4.5, VP

5.1, VP 5.3, VP 7.2, 15]
7.Decompose the large problems by incremental value deliveries: not code deliveries. [7, VP

Ch. 5, VP 5.1, VP 5.6 , 10, 11, 13, 15]
8.The software component needs to be integrated into the total system of hardware, data,

people, culture. [VP 5.2, 10]
9.If your team cannot deliver small increments of real value early, frequently, and predictably;

they are incompetent and need to be abandoned for those who can deliver. [7, VP 2.8, 10]
10.Never commit to contacts for work done or code delivered alone: there must always be a

sufficiently large contractual protection, of paying for measurable value delivered. [12, 15].

62

https://tinyurl.com/OSWAVP
** ’VP’ = Value Planning book by chapter

 ***= “Beyond Scaling: Scale-free Principles for Agile Value Delivery - Agile Engineering.

40 practical Engineering ideas for scaling agile development successfully all the time.”

A very short pdf paper, supported by references to necessary detail.

http://www.gilb.com/dl865

https://tinyurl.com/OSWAVP

Copyright Tom@Gilb.com

My Own scale-free ‘Project Development Process’:
Uses ‘delegation of design to implementors and programmers’

• Make developers responsible
– for delivery of the ‘quantified’ critical requirements levels

• (Performance, Qualities, cost, deadline)

• Give them the freedom to decide the ‘right’ designs
– With immediate responsibility to measure that they are delivering the results

• Get the ‘unprofessional’ users and customers ‘off their backs’
– Avoid receiving features and stories; avoid ‘architecture from managers’.

• which are usually amateur design, by people who have no overview or responsibility or design ability (users and
customers, and managers)

• Elevate your talent by becoming a real ‘software ENGINEER’
– With coding-expert craftsmanship, as your basic talent

63

Cases and real examples
‘Value Driven Project Management’ slides

Includes ‘Confirmit’ Case, slide 70 on.
http://www.gilb.com/dl152

Competitive Engineering: Book 2005
http://tinyurl.com/CEset2015

(link tested 31 03 2020)

http://www.gilb.com/dl152
http://tinyurl.com/CEset2015

How does ‘scale free’ deal
with complexity?

• Rapid and unexpected
scaling up (think Covid-19,
NHS) will not break the
system.

• No need to learn and apply
quite different development
process methods, for large
complex projects (think
Scrum, Safe)

• Reduction of failed projects,
which would fail due to
unexpected complexity

64

‘Scale Free’ end note

We need to take these scale-free engineering ideas
seriously

 if we are to get better control over large-
scale software and systems engineering projects.

The ideas have serious practical international experience,
and can be tried out one-by-one.
They can be added to any other practices, that are, or will
be successful for you,
They are free ideas.

‘This stuff works!”
(Erik Simmons, Intel
Experience 1999 to 2016 for 20,000 engineers)

Just do it!

Get a free e-copy of ‘Competitive Engineering’ book.
 https://www.gilb.com/p/competitive-engineering

65

https://www.gilb.com/p/competitive-engineering

End of 1 hour and 30 minutes minute talk

Blog (Based on Value Planning book):
 www.Gilb.com/blog

Principles Videos (free first 4)
https://www.gilb.com/p/principles

See my TEDx Talk Quantify the un-quantifiable

66

http://www.gilb.com/blog
https://www.gilb.com/p/principles
https://gilb.mykajabi.com/blog/quantify-the-un-quantifiable-tom-gilb-at-tedxtrondheim

below is a set of slides which go deeper into
handling complexity than we can deal with in

the talk timing. but I include them for
advanced study.

They are based on my paper
CONFRONTING WICKED PROBLEMS:

and some Planguage Tools to deal with them.
http://www.gilb.com/dl866

67

http://www.gilb.com/dl866

WICKED PROBLEMS
ARE POSSIBLY SIMPLE;

IF YOU KNOW HOW
Tom’s Personal View of Evil

23 June 2016, GilbFest

68

“CONFRONTING WICKED

PROBLEMS:

and some Planguage Tools to deal with them”

BASED ON T GILB PAPER

10 January 2016,
gilb.com/dl866

69

How Planguage Tools
Help Whack Wickedness.

70

The following slides
Are discussion, or rebuttal

of the
Wicked Problems Characteristics

(slide 4) list
They are not intended

 for presentation in this short talk,
But I hope some individuals can use the

Information and arguments to understand
complexity better.

And to be skeptical of
delivered truths from academics

 https://tinyurl.com/
OSWAVP

Value Planning book
by chapter

Get a free e-copy of
‘Competitive Engineering’

book.
 https://www.gilb.com/p/
competitive-engineering

Technoscopes.(free digital book about 100 tools to fight complexity) ONLY FOR TALK!
 https://www.dropbox.com/sh/p439ms65ifyid72/AAAbL26ly1ss2mH5K6RB2F_Ia?dl=0

https://tinyurl.com/OSWAVP
https://tinyurl.com/OSWAVP
https://www.gilb.com/p/competitive-engineering
https://www.gilb.com/p/competitive-engineering
https://www.dropbox.com/sh/p439ms65ifyid72/AAAbL26ly1ss2mH5K6RB2F_Ia?dl=0

W1. There is no definitive formulation

of a wicked problem.

Planguage (The Planning Language) does not need or expect a

‘definitive formulation’ of a problem.

Planguage allows you to specify any set of problem statements

(value objectives, constraints, assumptions, constrained

strategies, budgets, deadlines, stakeholders) that might be useful.

They can all be modified at any time. They can be versioned. They can be officially sanctioned or

approved, until further notice. They can be quality controlled. The quality , relevance, correctness

and usefulness of any class of problem statement can be gradually enhanced.

Problem statements can easily be integrated with each other, and their relationship to solutions

(strategies, designs, architectures) can easily and automatically be mapped and tracked.

Problem statements can be directly and measurably related to emerging value delivery, and costs:

giving real time feedback to the planning model.

A rich set of background specifications is expected and encouraged for all problem statements.

These include such items as issues, assumptions, constraints, sources, evidence, risks,

stakeholders, and very much more [VP 2.2, 3.1, 4.2 for detail].

The background specification for a problem statement (like an ‘objective’) does not change the core

problem specification. But it enables us to sense the larger and more complex relationships

involved (for example multiple risks and stakeholders for every single problem statement).

Background specification triggers and motivates us to analyze deeper and

improve our view or model of the problem space.

71

W2. Wicked problems have no stopping rule.
Planguage makes no assumptions about stopping a development, or the existence of a ‘final

state’.

Planguage assumes that the systems it is planning for, already have a life in the real world, and

will continue to have a life for the foreseeable future.

Planguage is all about high-priority incremental improvement, towards the current long-term objectives, using resources

actually available.

The Planguage planning process is merely a tool for keeping track of concerns, and solution ideas.

The tool is used to keep track of the current state of the system, from any interesting, and all useful emerging, multiple

viewpoints.

Planguage assumes conflict and change are normal, and natural: and tries to make the best decisions in that light.

The nearest thing we have to ‘stopping rules’ (knowing when to quit planning, or investing in change) are locally

formulated policies, such as:

Stop when the next cycle of change is not profitable enough (VP 4.7, 5.9). Stop when no credible solutions are on the table.

(VP 4.9, 4.8, 5.8)

Stop when planned results have repeatedly not been delivered (VP 4.5).

W E Deming taught me that the Plan Do Study Act cycle (PDSA) was expected to continue, ‘as long as there is competition’.

We do not think in terms of any ‘big stop’: just focus on smart prioritization.

Planguage is unusually quantified regarding problem statements (VP Part 1, Chapter 1). All values and qualities are

normally quantified. No management BS allowed [10].

So the quantified worst-case levels,and target levels of a desired value, give us a very specific device to know when to

stop: when to stop planning, when to stop inventing, when to stop delivering improvements, when to stop and NOT deliver

changes at all.

Planguage has a rich variety of tools and specifications for stopping, when that is appropriate. For a rich variety of reasons

and conditions. But it has a ‘lust for life’ to try to keep delivering value to stakeholders. And it makes that possible by

quickly stopping low-priority activity. (VP Chapter 6).

Your own culture needs to decide on your own values and priorities regarding when to stop and go.

Planguage has rich built-in specifications that even automatically point out red lights and green lights. Planguage

specifications can compute what to prioritize (Green) and what to stop (Red Light). (VP 6.7)

72

W3. Solutions to wicked problems are not true-or-false,
but good-or-bad.

Planguage has no preconceived notion that solutions are ‘correct or good’ or not. 

It explicitly recognizes that: 

• Problems (objectives, constraints) are the best currently available subjective stakeholder compromise. 

• Problem specification is subject to constant change pressure.

• Solutions (strategies, architecture) are the best available ‘hypothesis’ as to how to solve a set of problems (‘solve’ = delivery sufficient [Target level] overall value delivery, within constraints,

at lowest budgeted resource costs; with regard to risk-of-deviation from expectations (estimates). The degree of solution ‘goodness’ is directly related to the current problem specification. 

• The degree of goodness is numerically computed in the Planguage tool ‘Impact Estimation table” (sample IET in above VP [8] Figure 6.7). This can be supported by automation as in the example below.

I conclude that Planguage is well suited to this ‘good or bad’ aspect of Wicked Problems.

73

W4. There is no immediate and no ultimate
test of a solution to a wicked problem.

This problem is not particular for Wicked Problems. It applies to all problems, all efforts, all

changes. Butterfly Effect: the sensitive dependence on initial conditions in which a small change in

one state of a deterministic nonlinear system can result in large differences in a later state. It is

tough to make predictions, especially about the future (Yogi Berra et al).

In Planguage, using the Project management subset ‘Evo’ Value Delivery [7], we do in fact

measure, in the short term (typically weekly, as in Confirmit example above [Figure W2], the

impacts on all the critical factors that interest us.

In this Confirmit case, we estimate and later measure on a set of critical top level Performance

Values, and we estimate and later measure time and effort needed to do the change.[See VP [8]

Section 8.6 Getting early short-term feedback.]

Later, for example at quarterly release, addition measurements are made. This takes into account

the changes made after the earlier changes. It accounts for the parallel changes made by other

teams. it typically is more sophisticated testing and measurement (pre release to world market).

After a release of changes we can continue to measure the factors of interest, as they affect real

world users of a system. We can certainly expect feedback if they are unhappy!

Finally, in the next round of changes, the critical performance values will again be measured, as

demonstration that they have held up, or not, over time.

We do not need ‘ultimate tests in infinite time’. We need to keep reasonable track of reality in a

cost effective manner, and Planguage [Evo] gives us rich numeric opportunity to do so.

All critical problems (of improvement) are always quantified in Planguage, or at least ‘testable’ for

presence: that is the basic idea of Planguage.

Reasonable and sufficient measurement and testing is invariably possible.

74

 W4 (continued) I believe one central reason that ‘Wicked Problems’ appear to be so
wicked, is because we have such a poor culture of quantification of critical factors.

Words and ‘poetry’ (‘state of the art competitiveness’, ‘end world hunger’) substitute for

clear thinking and clear problem specification.

This quantification, and background clarification, does not itself, and alone solve the

problem central to Wicked problems (the very complex and voluminous nature of real

systems).

But lack of quantification of critical system performance problems makes even short-term

and real- time understanding of the problem impossible. But that is NOT a Wicked Problem;

it is simply our professional incompetence.

We then falsely blame our lack-of-understanding on the ‘system complexity’: when we in

fact have not even taken very basic steps to clear the fog in front of our faces (to quantify

critical variables).

In conclusion:

1. we can normally get immediate and continuous, tests and measurements, of

solutions, in  

relation to clear problem statements, if we want them.  

2. we do not need to worry about unrealistic ideas like ‘ultimate test’ of a solution.  

‘Ultimate tests’ would be nice, of course, but they are not necessary, and they are never

possible in the real world.

75

W5. Every solution to a wicked problem is a "one-shot operation"; because there
is no opportunity to learn by trial-and-error, every attempt counts significantly.

This is another example of a possibly ‘artificial’ problem which is

not inevitably inherent in complex systems.

 It might be, but another possibility is that the planner has simply not learned to

decompose ‘big strategies’ into smaller, deliverable and possibly retractable ‘experiments.

I view this widespread inability do decompose big strategies as ‘professional

incompetence’. The incompetence is caused by lack of knowledge, and training, in

decomposition.

Notice that decomposing solutions into simple experimental components is fundamental

to both scientific experiment and to engineering. And there are some very big hairy

problems they tackle. Think ‘Space’ and ‘Universe’.

Planguage tries to deal with this problem of decomposition, at length, with constructive

and teachable methods. [8, Evo. and VP Chapter 5. Decomposition (by value, by

responsibility) page 363 to p. 415].

Imagination, intelligence, experience, motivation will allow professionals to figure out how

to decompose. I had to learn it by practical experience over decades. But most

professionals have not learned such methods explicitly. Half of them are in illogical denial

(it ‘cannot’ be composed). So it is time to teach the methods, rather than hope people will

figure it out in a few decades, personally.

I conclude that some problems appear more ‘Wicked’ than they really

are, because people are not trained in decomposition methods, which

would allow us to avoid the ‘every attempt counts significantly’ problem.

76

W6. Wicked problems do not have an enumerable
(or an exhaustively describable) set of potential solutions,
nor is there a well-described set of permissible operations

that may be incorporated into the plan.

Well, with this point of view, absolutely all real life problems, about people, culture and technology are

‘Wicked’. Again this is an unnecessary and unrealistic expectation (‘exhaustively describable’) to real

world problem solving.

Unrealistic and Unnecessary:

Even in chess, where the solution space is theoretically exhaustively describable using a computer, there is a time limitation, and even a constraint

n real players not using computers in real play. There is too often far too many combinations of play. And this is irrelevant, as long as you either

win, or sometimes ‘draw’. You do not need all possible solutions, you need a ‘pretty good’ or ‘good enough’, on time, to meet your deadline (chess

clock).

Planguage as a planning tool has a large number of tools to support this concept of ‘good enough, on time’. We will explain a few, as a sample of

the toolset.

The first concept is what we call a ‘scalar constraint’. It is used in problem formulation. For example “The room temperature must be at least 15

degrees C”. One Planguage term we use is to call this a Tolerable Level of theValue.

So if at least one potential solution, to the temperature problem are estimated to give us ‘at least 15 degrees C’, then the solution is theoretically

sufficient. There is not need to look for 1,000+ other possible solutions. This logic is built into the Impact Estimation table in Planguage. And you

se it in Figure W4 above. If the level delivered is at or above the Tolerable level, we get a ‘yellow’ light signal. The solution is ‘sufficient’, to meet

minimum requirements.

In the next stage of deciding we have enough solutions, we ask in Planguage is the solutions will potentially (later when applied, ‘really reach the

target levels) reach our Target levels (a formal numeric definition of success and sufficient problem solving). If any set of solutions will reach our

success, sufficiency, levels that there is hotpoint is considering the entire solution space exhaustively. That would cost far more than any benefit.

it would delay delivery of benefits to the real world in good time. it is silly to even hint that this is ‘necessary’, to exhaust the solution space at all.

Can we use common sense here , please?

of course the above explanation is a simplification, to show the principles involved. Even fairly simple (not especially Wicked) problems require us

to think about many other factors, when considering if we have explored the solution space sufficiently. For example costs, interaction between

solutions, changes in the stakeholder space, poor implementation of otherwise theoretically good solutions, and much more. I can assure you that

these factors are all systematically considered, and we have tools for them built into basic Planguage.

See for yourself. VP Part 1 to 5 (50 pages, free book sample [8,]) and really most detailed in the larger books [8, 7]

Wicked Problems

I conclude that this ‘Enumerable Solutions’ Wicked Problem characteristic [W6] is artificial,

academic theory, of no practical use in the real world. A waste of time to worry about at all.

The real problem is finding sufficient for defined purpose solutions.

77

W7.1 Every wicked problem
is essentially unique.

‘Wickedness’: needs an improved

definition.

Again, I am getting a bit tired of the fact that these Wickedness

characteristics are not especially for ‘Wicked’ problems. Maybe I

need to define ‘Wicked’ to my own satisfaction?

One immediate thought is that ‘Wickedness’ is not about the

problem itself. It is the combination of ‘the problem’ and ‘the

methods-we-know-about; and are willing to use to deal with the

problem set’.

And maybe, we need to include, some other factors like

resources, constraints and motivations.

The essential ideas are that it is about our real-life current ability

to solve the problem; not about the problem itself. Maybe Wicked

projects’, or ‘Wicked processes’ (eternal cycles) better capture

what we are dealing with here.

78

W7.2 Every wicked problem
is essentially unique.

‘ Uniqueness is the norm. ‘Identity’ is an impractical

ideal.

Let us bring in ‘obvious common sense’ again.

Surely absolutely every problem we humans deal with is in some senses unique.

So what. Absolutely identical problems are not really very interesting. The implication of W7 is

that if the problem were identical, we might know the solution. So what?

Identical problems, that have already been successfully solved, do not guarantee that the

solution used is known, or knowable to us - in time. An earlier solution may be secret, hidden,

undocumented, or even misunderstood (what the real solution was, as opposed to a publicly

documented solution).

Anyway, nothing is really identical. And we need to find workable solutions if possible anyway.

And it does not really matter if there was another known solution that worked once. it may be

easier for us to just ‘get something to work’, and move on, than to research, at unknown costs

and success of finding it, the ‘real solution used in the past by someone’.

Planguage has no such notion as identical problems, and corresponding solutions. Why waste

time asking if there is an ‘identical problem’, anyway. Focus on solving the problem.

Planguage does have well-articulated concepts of asking for evidence of past values and costs

for any proposed solution [VP Part 2, 4.4]. The solutions and problems are never identical. We

know that. But they do not have to be identical. Just good enough.

We are not trying to be identical, but we are trying to improve the probability that

we will discover, prioritize, use, and measure - pretty good solutions quickly.

79

W7.3 Every wicked problem is essentially unique.

In conclusion:
‘Unique problems’ is not a useful
concept.
It is not a clear and useful
distinguishing characteristic of a
problem.
‘Uniqueness of identical problems’ is
not a helpful concept.
We need to
focus on finding a solution

stream,
cumulating to a useful potential set,

of solutions:

80

W8.1 Every wicked problem can be considered to
be a symptom of another problem.

Again, we do not need to bring in ‘Wicked’ at all.

Every problem is a symptom of another problem.

 That is just the way things are at any level of
complexity.

My boss’ solution becomes my problem, and my
solution becomes my teams problem.

Planguage explicitly acknowledges many related

levels of concern.

Stakeholder levels.

Planguage ties these related stakeholder levels
together, in a variety of ways.

The most interesting method in Planguage is using

Impact Estimation tables to model, quantitatively,

the relationships between any set of problems:

any above, any below, or any sideways stakeholder

levels. 81

W8.2 Every wicked problem can be considered to be a symptom of another problem.
practical application of this was by Kai Gilb at the Transport Company ‘Bring’ [11].

Figure W8. [11] in order to save a large IT Scrum project that failed initially, (the new system

drastically killed sales!). Kai modelled the (obviously, ‘it failed’) ‘wicked system’. He built one Impact

Estimation Table (aka Value Decision Table) for the top level of the Bring (Norwegian Post Office

essentially) organization. This succeeded to resurrect the system, because it mapped the

connection between technology and the higher levels of organizational objectives. The IT

Development team was then instructed to focus on developing things that led to business (sales!)

success. An extremely simplified example is above [For more detail see 11].

Business Goals: The top management stakeholder level has problems, like Increase Profit and

Market Share. Solutions have been identified (reduce Training Costs, and improve User

Productivity). The expected, estimated, impact of these solutions on the (elsewhere, see Figure W4

for ‘how it looks’) quantified Problems, is given by the numbers estimated (later ‘measured as a

result) at their intersection. For example Training Costs reduction, if the solution works as expected,

promised to move us 50% of the way towards our Market Share objective (the Problem,

Stakeholder Value: These solutions become the the Problem at the next level. The Stakeholder level.

Think of these as the 30 or so individual transport companies that had been bought and merged to

form Bring. It looks like the Solution named ‘Intuitiveness’ is estimated to contribute 10% of the

progress we need towards the User Productivity problem objective. All objectives are, of course,

quantified, elsewhere.

Product Val.: At the third level (Product Values), ‘Find.Fast’ (one of the Stakeholder solutions, is

considered an IT System objective (a problem statement).

It looks like ‘Service Guide’ is a solution that is expected to contribute 40% towards the ‘Find.Fast’

Problem solution. And ‘Service Guide’ also is expected to contribute 80% towards a Performance

problem.

Scrum Level: The Service Guide solution will be developed and implemented by the Scrum Team.

Hopefully its impact will be approximately as expected, and will impact several levels up towards the

Business Goals. 82

W9.1 The existence of a discrepancy
 in representing a wicked problem

 can be explained in numerous ways.
The choice of explanation

determines the nature of the problem's resolution.

This is confusingly written up in the literature [1]. Let me try to

suggest what it means.

If there is more than one way any people can

identify, to solve a problem, 

that alone allows you to classify the problem

as ‘wicked’. (W9 says)

The actual choice of solution, to a Wicked

Problem is arbitrary,

 and based on the point of view of the planner.

Normal scientific methods of evaluating

83

W9.2 The existence of a discrepancy
 in representing a wicked problem

 can be explained in numerous ways.
The choice of explanation

determines the nature of the problem's resolution.
In Planguage:

 1. any solution that works, delivers value for money, and does

not violate any constraints, is ‘acceptable’. It does not matter

that it is one of many possibilities, or that it is a subjective,

comfortable, choice by an arbitrary planner.

 2. we are happy to document the points of view (stakeholders,

sources), and to analyze their ‘credibility’. But, if it is legal

and it works, we will use it.

 3. there are many notions of ‘priority’. This in clouds value for

money, cultural power, riskiness, credibility, and pleasing

other people. We can make these priority explicit, or

documented and accepted. The important thing is to aware

of acceptable and official priorities. And to be able to

question and change priorities, because of other priorities

[12].

Conclusion:

This characteristic does not give me any useful insight.

But that could be because I do not understand it yet. 84

85

W10. The ‘planner’ (designer)
has no ‘right to be wrong’.

My interpretation, based on [1].
• A scientist can live with a wrong hypothesis, if the

refutation process leads to greater  
knowledge and truth.  

• A Planner cannot afford the luxury of this scientific
process.  

• Planning is not about ‘finding the truth’  

• Planning is about making thing better for people.  

• The planning consequences of a ‘bad’ hypothesis has
real, and possibly very negative, impacts  
on real people.  

• So, planners cannot ethically have ‘philosophical fun’
with possibly bad hypothesis.  

• They have to get their solution (and problem) right
enough to do no damage, and hopefully  
right enough, to do good, for people.  

86

W10. The ‘planner’ (designer)

has no ‘right to be wrong’.
. Planguage very much supports this process, do-

gooding, rather than truth-finding.

It does so in a large number of large-and-small tools,

principles, methods, and processes.

One of many examples of this is

• the primary Evo process

of trying to deliver the largest possible stream of

value improvement as early and continuously as

possible,

while learning through feedback how to improve on

this process itself.

 I think the ‘Wicked Problem” ideas are more misleading

than useful.

There are a wide variety of methods for handling large and
complicated systems in reasonable ways, in addition to the
ones I have presented [5 is constructive], here and in my
books.

Most intelligent professionals that I encounter, do not seem
trained in these methods, and are not aware of the many
tools they can use to tackle complicated (‘Wicked’)
systems.

I think we need to focus our attention on mastering a variety
of methods for delivering stakeholder value. We are
nowhere near good enough, with extremely high failure
rates. Failure rates which should shame any professionals
with responsibility and pride.

The conditions telling us that we are good enough, or much
better are:

• more than 95% of our projects result in the value
improvements we have promised, on time and within
budget. We already have the knowledge to do that. Do you
? [F1]

• no excuses about ‘Wicked Problems’

87

 Wicked Ideas Detailed Discussion Summary

