Technoscopes -

Meet the Challenge of
Software Engineering Complexity

| 0 aster complex plans and problems - o IﬁyN
power om Gilb, Norway
ECHNOSCOPES tom@Gilb.com
T www.Gilb.com
@ImTomGilb
D
Q Copyright tom@Gilb.com, 2020
3
:
% Permission to share with friends, granted freely, with this copyright notice.
oML April 1 2020, 18:30-20:00 approximately - presentation
gggmom@e""‘ BCS, London . 90 minutes presentation time.
http://concepts.gilb.com/dI1968 (slides)
Technoscopes:
Tools for U”dsrgtj;g'ng Lolliol <—- Technoscopes.(free digital book about 100 tools to fight complexity)
TECHNOSCOPES. https://
www.gilb.com/offers/YYAMFQBH/ Epub and pdf
checkout (free). .
For citation and purchase Only offered to BCS SPA Talk participants
Outside of this talk see : ;
Sales LINK TO ALL BOOKLETS and < -(otherwise sold at gilb.com)
Books
https://www.qilb.com/store?tag=books

Slide version 010420.17:00

mailto:tom@Gilb.com
http://www.Gilb.com
mailto:tom@Gilb.com
http://gilb.com
http://concepts.gilb.com/dl968
https://www.gilb.com/offers/YYAMFQBH/
https://www.gilb.com/offers/YYAMFQBH/
https://www.gilb.com/store?tag=books

Wicked Problems Characteristics
(Some false assertions)

think: ‘Virus Plannina’. Not ‘Chess’

1. There is no definitive formulation of a wicked problem.

2. Wicked problems have no stopping rule.

3. Solutions to wicked problems are not true-or-false, but good-or-bad.

4. There is no immediate and no ultimate test of a solution to a wicked problem.

5. Every solution to a wicked problem is a "one-shot operation"”; because there is no opportunity to
learn by trial-and-error, every attempt counts significantly.

6. Wicked problems do not have an enumerable (or an exhaustively describable) set of potential
solutions, nor is there a well-described set of permissible operations that may be incorporated into
the plan.

7. Every wicked problem is essentially unique.

8. Every wicked problem can be considered to be a symptom of another problem.

9. The existence of a discrepancy in representing a wicked problem can be explained in numerous
ways. The choice of explanation determines the nature of the problem's resolution.

10. The planner (designer) has no right to be wrong.

“As We May Think”, In July 1945 formulated a vision
that inspired J.C.R. Licklider, Doug Engelbart and Ted Nelson
(Werner Kuntz and Horst Rittel, the designers of IBIS)
Dino Karabeg, OMS Group, Department of Informatics, University of Oslo

refuting each point here

(think, ‘stopping people smoking’)

. Has a well-defined and stable
problem statement;

. Has a definite stopping point, i.e.,
when the solution is reached;

. Has a solution that can be objectively
evaluated as right or wrong;

. Belongs to a similar class of
problems that are all solved in the
same similar way;

. Has solutions that can be easily tried

and abandoned;

. Comes with a limited set of
alternative solutions.” Jeff Conklin

http://cognexusgroup.com/wp-content/uploads/2013/07/Using-Dialogue-Mapping-to-Address-Wicked-Problems-05-23-2013. pdf
3

Some characteristics of Complex Systems
Like Covid-19 Pandemics

tumblr_mdhmccqzjG1r309cy.jpg 500x352 pixels

Social Messes
Representing Wicked, llI-Structured Problems

No unique "correct” Ideological Many possible
vuew e problem constraints intervention

\~\

%ﬁ

PO';"W't % Often a-logical
constraints or illogical or

multi-valued Great
Resistance

to change

Some characteristics of Complex Systems
Like Covid-19 Pandemics

tumblr_mdhmcyu3im1r3o9cy.jpg 500x 354 pixels

Social Messes-2
Representing Wicked, llI-Structured Problems

Different views of problem and Most problems are Multiple value
solutions are contradictory interconnected to conflicts
— other problems

n :
the
problems : i

Tr O i .f
Data are often

uncertain or
missin

21?7217 |?

Consequences difficult
to imagine

71?7 |?
212] |?
21?

Some characteristics of Complex Systems
Like Covid-19 Pandemics

1b28732.jpg 502x 356 pixels

", Strong ethical,
moral, political
and
professional
dimensions

How ‘Planguage™™ Helps deal with "Wicked
Software engineering Problems: Complexity

1. by viewing the problem from a high ‘stakeholder values’ level

(avoiding all complex innards, be 'outside the black box’—>)
2. by dealing with design and costs incrementally .

(so you do not get all complexity at once)

3. by contracting for results, not ‘work’

(so complexity is transferred to expert contractors)

4. by being lean: early, and preventive (like reduce late bugs) ¢

(so complexity is reduced in total, /ater)

5. by using scale-free methods: scale does not matter
(so scaling up size, does not drive complexity up) Digital
CE link

L ater
slide

Technoscopes: book with 100 Complexity Tools
Example 31 of 100:
Keeping track of potential risks in complex systems

o g =M

65 of 223 Technoscopes

TECHNOSCOPES 9Jan2019 good edit

Confidentiality:
Type: Marketing Product-Line Objective.
Ambition: Safest place for personal data on the internet.

Scale: % Integrity of defined [Data] for defined [Purposes] for defined [People] by defined [Attacker]s.

Integrity: defined as: data not being ever used in unintended, unauthorized or negative ways. Not stolen, shared,
exposed, destroyed, corrupted, correlated or anything else regarded as negative by the data supplier.

Goal: > 99.998%.
[Product = Friend-Book 2.0, Integrity = All Types, Data = Personal Data Submitted or Observed Behaviour, Pur-
poses = Marketing, People = Paying Users, Attacker = Our Corp. & Any External Instance].

Constraints:
C1: Euro Privacy Laws.
C2: National Country Privacy Laws.

Issues:
I1: Marketing Partners as weak Links?

Assumptions:
A1l: we (Product Development) are willing to invest in extreme data protection technology. No holds barred.

Risks:
R1: Legal pressure from National Security Agencies to share data.
Mitigation [R1]: the data or access keys are not under our control, only user control, and local storage ??

31. A SIMPLE EXPLICIT METHOD OF KEEPING TRACK OF DANGERS IN YOUR PLANS: INTEGRATE THEM !
DO NOT SEPARATE THEM. KEEP THEM IN FRONT OF EVERYBODY, UNTIL THEY ARE RESOLVED.
NOTE THAT THE FULL UNIQUE HIERARCHICAL TAG IDENTITY OF 'I1’ IS *CONFIDENTIALITY.ISSUES.I1’

Source 'Value Planning’ book, Planguage Example 3.10. Artificial teaching example.

Sept 19 2018 Text Edit Fully

Technoscopes:

Tools for understanding complex
projects
TECHNOSCOPES. https://
www.qgilb.com/offers/YYAMEQBH/
checkout (free).

For citation and purchase
Outside of this talk see
Sales LINK TO ALL BOOKLETS and
Books
https://www.gilb.com/store?tag=books

66 of 223 Technoscopes

31. Issues, Assumptions, Explicit Risks: Raising a flag, so that poten-
tial problems are not forgotten

* An ‘Issue’ is defined in Planguage, as a ‘question we have asked, but for which we have not got a good answer yet’.
The answer can turn out to have many possible different consequences, including serious and critical risks.

* | have a personal practice, that when such questions are asked orally, for example at a meeting, | make sure they are
written down immediately, under the Parameter Tag ‘Issue’, and all Issues get a separate identity tag (usually, a ‘local
Tag’ like I1, 12, I3)

+ In our automated tool (ValPlan.net) we keep track of, and can report on ALL Issues, in the plan, no matter how large
and complex it is. This combination of a defined concept ‘Issue’ parameter, and a practice of putting Issues in writing

INTEGRATED into the plan, at the appropriate locality (NOT on a separate Risk list!), and a little digital help to keep
track of all of them; is a Technoscope Tool

« Sometimes, | sit a ‘domain expert' down, alone, and ask them to simply ‘write down a list of all the Issues, Risks, and

Assumptions (all of these are just different angles of ‘stimulating people to think of problems’) that they can think of’,
for ‘one planning object’ (an Objective, a Design).

« If they are really ‘the’ expert, then they quickly produce a dozen items, that few others on the team would know

about, or even think of. But this initial list stimulates the team to add to, or to correct the list, once it is made.
Teamwork!

« Any Domain Expert makes a great contribution to the team'’s knowledge. Domain Expert time may be allocated to
other teams concurrently, so it is important they can ‘do a brain dump’, and leave the rest, to the team.

» ‘Risk Knowledge’ is no longer locked in the expert’s head; with them thinking ‘surely everybody knows this obvious
stuff’.

» Project Management can then decide when, and how, to deal with these documented problems.

« The Technoscope, of explicit Issues, Risks, and Assumptions is helping us manage our complexity, and threats.

Sept 19 2018 Text Edit Fully

Power Tools to master complex plans and problems

TECHNOSCOPES

By TOM GILB

© 2018 Tom@Gib.com

QR

https://www.gilb.com/offers/YYAMFQBH/
https://www.gilb.com/offers/YYAMFQBH/
https://www.gilb.com/store?tag=books

Technoscopes: book with 100 Complexity Tools
Example 30 of 100: Keeping track of ‘risks complexity’

63 of 223 Technoscopes

Strategy A. [Country, City, Target, Product Line, Service Level]
A1l [Country = UK, City = London, Product Line = Magic, Service Level = None] 50% of Planned revenue.

A2 [Country = USA, City = Los Angeles, Product Line = Magic Version 2, Service Level = 24 Hour Help]
30% of Planned revenue.

A3 [Country = Norway, City = Oslo, Product Line = Magic Version 2, Service Level = {24 Hour Help, Nor-
wegian Language}] 15%=*5% ?? of Planned revenue. <- German Sales Planner

Bad

synergy
with Failure to

Recognize
critical
constraints

other
strategies

Bad
implementation
of a good idea

Too little detail
to estimate
proper!

Unexpected
Costs

Strat-
egy B

30. A SIMPLE PLANGUAGE DESIGN STATEMENT CONTAINING MANY ‘RISK MANAGEMENT’ TECHNOSCOPES.
SEE COMMENTS.
THREATS AND RISKS TO OUR PLANS COME FROM MANY SOURCES

Technoscopes:

Tools for understanding complex
projects
TECHNOSCOPES. https://
www.qgilb.com/offers/YYAMEQBH/
checkout (free).

For citation and purchase
Outside of this talk see
Sales LINK TO ALL BOOKLETS and
Books
https://www.gilb.com/store?tag=books

64 of 223 Technoscopes
30 Risks: keepmg track of potential problems

How do you ‘see’ risks? Sometimes they are invisible. Sometime you can infer them. Planguage has a large number of Techno-
scope Tools to alert you to potential risks, connected with all elements of your plans. You could safely say that we are ‘fanatic’
about managing risks, in every detail of a plan. ‘If anything can happen, it will' (Murphy’s Law)

* We do not believe that risk management is a separate and specialized discipline, done by Risk Managers. We like the ‘Ericsson
Policy' that risk is the concern of every engineer, at all times

+ Comments on the example ‘Strategy A’ (<-left page). Why Planguage is a Technoscope for Risks

The decomposition of Strategy A into A1, A2, A3 helps define a realistic and useful definition, or ‘subsets’ of Strategy
A. We do not risk understanding that any other options are included, or planned, yet.

These could have been intentionally decomposed into high risk and lower risk sets. A3 shows signs of being a bit ‘special’.
The set of Generic Qualifiers (Country, City etc.) /imit the scope of consideration, clearly. But also permit us to ask
‘which valid combinations we have not planned at all’ . Planned yet. Omission risk.
The 15%x5%b0 (A3 statement) reduces the chance that anyone will expect, or assume, 15% exactly. We also announce
that there is a risk that the reality will be in the area 10% to 20%.
<- German Sales Planner (last phrase). Informs us that the Norway plan was estimated by a German, and a Sales
Planner. This is a warning that there may be a risk of irrelevant nationality competence.

. The ?? is a clear warning that the estimate is not to be taken seriously. There is a risk it is very wrong.

. *Norwegian Language’: the capital letters *‘N’ 'L’ are a signal that this is a ‘formally defined’ term, some-

where. If it is not in fact formally and properly defined, there is a risk that the specification will be misun-
derstood. Hint, there are at least 4 ‘official’ Norwegian languages (Bokmal, Nynorsk, Sami, Kven (never heard of it either!))

. The Statement Tags (Strategy A & A1 & A2 & A3) permit us to have one-single tagged ‘master’ planning element, inde-
pendent of updates, avoiding the confusion of multiple versions, in multiple plans and presentations. All plans must refer
to these tags, rather than, dangerously cutting and pasting the content. Updating the master plan element, updates all ref-
erences to it simultaneously.

» We find it amazing how little formal ‘tagging’ conventional planners do, in their plans; and how little co-ordination there is, of
various versions of the ‘truth’. They are doomed to be misunderstood.

Power Tools to master complex plans and problems

TECHNOSCOPES

By TOM GILB

© 2018 Tom@Gilb.com

https://www.gilb.com/offers/YYAMFQBH/
https://www.gilb.com/offers/YYAMFQBH/
https://www.gilb.com/store?tag=books

by viewing the problem from a high stakeholder values’ level
(avoiding all complex innards)

Black box analysis

.)))

w) 93% (4> Fri08:43 (
O 0

@ Safari File Edit View History Bookmarks Window Help OXOD W
How does this, high level view, help us deal 200 <> SAEees
with complexity?

Emergency Response Service&

Fastlege Your Docto r
@.

FHI Folkehelse Instituty™—=
Foo \
Health Minister— N\ =) Collect Information
Children \\ ‘4

=) Education

1. The stakeholder and their values (needs,
requirements) are the essential focus of all
projects

Hospital
2. The underlying complex details (the design, the Parentals VTSGR \ >_<)>Z::ef;:v%heremeyNeedTch
actual system, the code) do not really matter, as High Schooyiedioal Companiest / ‘ = 4t
long as the stakeholders are getting their needs ;‘;‘:‘zg:::o”jg@seam“ Institutions3 A N : <> Manpower
met. Primary Schoo(™) = ‘A\\w ‘:\\K = I\pﬂjt:ii::o:nf::nj:;cn
Privel:t:i\,s;:z:% X \\\ =) Research Informatior

)@ Resource Capacity
)= Safety Of Passengers
=) Stay Healthy

And meeting needs can be measured directly.

Cultural Events&

You do not need to go into the ‘black box’. o ZZ:% ~ = Substitute Drivers
T . = Public Transpo & ® //
The ‘inside of the black box is extremely =Y o i

difficult to analyze directly: Workplace

It is better to just measure the results, values,
qualities,

Example from OSWA Oslo,
Architecture Workshop

as delivered to the stakeholder. March 2020

Stakeholders

Black Box analysis of Complex (Al) systems

https://www.nature.com/news/can-we-open-the-black-box-of-ai-1.20731

11

https://www.nature.com/news/can-we-open-the-black-box-of-ai-1.20731

Technoscopes Tool Area 1 of 5.
Notice the beginning of complexity even here:
Any stakeholder can have many values.

Any value can have many stakeholders
Any identified stakeholder or value can have yet-unknown connection to other values or stakeholders.
IN THIS CASE WE HAVE A DIGITAL TOOL TO KEEP CONTINUOUS TRACK OF ALL KNOWN RELATIONSHIPS
So you can ask questions like which values does the University stakeholder have, which we have forgotten right now?

Emergency Response Service&

Fastlege Your Docto r

FHI Folkehelse Institutiy™3
()

Foodr——S
Child r&‘ Health Minister = =) Collect Information
ildre
= | s&‘ Hospitalsc ™ @ Education
mployee
)@ Equipment Capacity
Employers& o
P () A= T TTES =) Funding
arent =) = anc

@ Get People Where They Need To Go
—» Healthy Employees
)—‘ﬁ> Keep Busdrivers Healthy
> Manpower

)@ Monitor Epidemic
@ Public Information

)=:)> Research Information

edical Companie
High Schoo

Kindergartens&search Institution
Middle Schoo™
Primary Schoo&
Private Schools&

Universities&

=) Resource Capacity
)—) Safety Of Passengers

)—) Stay Healthy
=) Substitute Drivers

Cultural Events&

Sport Eve nts&
Work Events&

Public Transpo &
Transporting Goods&

-

> "

Z— /Covid—19
Planning

Stakeholders Exercise Values

12

Dimensions of Stakeholder Value
One single stakeholder type, has many critical values, and variable values,

And individual instances of the stakeholder type (MIT, UCLA, LSE), have different sets of values and different levels needed
THIS IS VERY COMPLEX, BUT WE CAN KEEP TRACK OF THE HIGHEST PRIORITY CASES BY USING A DIGITAL TOOL
And by using quantified definitions of each critical value of a stakeholder

Timing Productivity / Efficiency /

Environmental Resources Savings

Legal Organizational Fit

Strategic /

Competitive Advantage
T (S

Value
Innovation /

Opinion / Intuition /
Bias

Values Fit Risk Other Cost

Financial Gain

Financial Penalty

Any technical solution or strategy can be evaluated
against several of these dimensions of stakeholder value at once.

This is a systematic view of complexity, and needs to be tracked
In a digital model.

13
© Lindsey Brodie 2010

Complexity = X Objectives x Y Resources x Z Solutions =
Benefit/Cost Ratios = (more, risks, evidence, ...)

Tz

Impact on
Budget

0444

//

Courtesy Rolf Goetz

Corona Virus Planning: a 4-team class 2020,
The |IE Table shows 4 Solutlons X 6 Attributes +

@ Safari File Edit View History Bookmarks Window Help @ 3IPO O D L= o s8%mm Wed21:53 il S =
4 D
® OO0 < |° ' valplan.net [l HO)] i (4] !l)] "
AN R 2 L
Corona Virus Management Norway Total Architecture U % < .. - - i |
From Level: Stakeholder To Level: Stakeholder < -~ » - o -~ - l L
@
o songs. || @ o [ERER o rer e ' A] 8 i
Health Architecture [2 Transport Archite... Tore Architecture [Workplace Archite... |
Requirements l ..
¥ Collect Information A: 5 Show VDT Sidebar
Status: 50 = Wish: 90 % [Relevan... . 13 % ‘
¥ Education A3
Status: 42 < Wish: 95 % [Student I 6 % ‘
)= Get People Where They Need ... n: | 2772
Status: 42 < Wish: 99 [Important... 2777
¥ Healthy Employees a 2722
Status: 70 < Wish: 99 [Work Acti... 2222
¥ Stay Healthy A: 10
Status: 30 9 Wish: 90 % [Capacit... . 17 % ‘
Sum Of Values: 5% 36 % "

Status: 0 < Budget: 1k Days Neede 1% ‘ u

{@ Capital Cost In Million NOK 100
Status: 0 < Budget: 1k Million No... l 10 % ‘ "
Sum Of Development Resources: 11 % g
Value To Cost:
Ratio (Worst Case) "
atio = = (500
tic We're Online! 292.00 g

How may | help you today? u

The ‘Complex’ Table, simplified
Which solution is best ‘values for costs’?

240 -
220 -
200 -
180
160 -
140 -

120 -

Percentage Impact %

100 -

80 -

60 -

40 -

20 -

JS chart by amCharts

Solutions

We're Online! [sum Of Value (Estimated) Sum Of Cost (Estimated)
How may | help you today?

16

Complexity Technoscopes, Tool Area 2 of 5.

By dealing with design and costs incrementally

(= Agile, Evo)

Clearer cause and effect.
Easier to correct early.

This helps deal with complexity,
because we only need to consider
one small increment of the system, at a a time.
Maybe 1/50 or 1/200 of it.

CycleC .C 4C 5 C 6 C 7C 8lerable Intolerable IntoCyecle C 2C 45 €5 C6/€C7 C8 Success

Past Budget Tolerable Past Tolerable/Fail Goal Speed

Cycle 1C 22 3C 4 C & € dlerable | Intolerable

Cycle C2C: C4 €5 C6 €7 Success

Engineer
Past Budget Tolerable/Fail Past Tolerable/Fail Goal
30 sec. 15 sec. 20 sec. 30 sec. 20 sec. 15 sec.

17

‘Cleanroom’
An advanced software development process
(‘perfect’ complex project management)

Dr. Harlan Mills, -
IBM Federal Systems Areal ‘agile
Division software engineer
ploneer

https://trace.tennessee.edu/utk_harlan/?utm_source=trace.tennessee.edu/utk _harlan/
5&utm_medium=PDF&utm_campaign=PDECoverPages 18
Collected works of Harlan Mills

https://trace.tennessee.edu/utk_harlan/?utm_source=trace.tennessee.edu/utk_harlan/5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://trace.tennessee.edu/utk_harlan/?utm_source=trace.tennessee.edu/utk_harlan/5&utm_medium=PDF&utm_campaign=PDFCoverPages

Reprinted from

EEE Systems Journal

Volume Ninteen | Number Four | 1980

THOSE WHO DO
NOT REMEMBER
THE PAST ARE

CONDEMNED TO
REPEAT IT.

2 George Santayana
\ toHD. co Spanish Philoso

The management of software engineering
Part |: Principles of software engineering

by H. D. Mills

http://trace.tennessee.edu/cqgi/viewcontent.cgi?article=1004&context=utk_harlan

19

http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan

“The first guarantee of quality’:

Designing Qualities into a system
Is much simpler |
than trying to get qualities, by testing them in** fgElItEEIaRIIE

*“The first guarantee of quality in design is in well-informed, well-educated, and well-motivated designers.

OQuality must be built into dESigns, and cannot be inspected in or tested in.

*Nevertheless, any prudent development process verifies quality through inspection and testing.

eInspection by peers in design, by users or surrogates, by other financial specialists concerned with cost,
reliability, or maintainability not only increases confidence in the design at hand, but also provides

designers with valuable lessons and insights to be applied to future designs.

*The very fact that designs face inspections motivates even the most conscientious designers to greater

care, deeper simplicities, and more precision in their work.”

http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan

20

** testing qualities into a system, Is Impossibly complex,

and takes infinite time.

http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan

In the ‘Cleanroom Method’, developed by IBM’s Harlan
Mills (IBM SJ No. 4/1980) they reported:

“Software Engineering began to emerge in FSD” (IBM Federal Systems Division, from
1996 a part of Lockheed Martin Marietta) “some ten years ago [Ed. about 1970] in a

continuing evolution that is still underway:

Ten years ago general management expected the worst from software projects - cost

overruns, late deliveries, unreliable and incomplete software

Today [Ed. 1980!], management has learned to expect on-time, within budget,
deliveries of high-quality software. A Navy helicopter ship system, called LAMPS,

provides a recent example. LAMPS software was a four-year project of over 200
person-years of effort, developing over three million, and integrating over seven
million words of program and data for eight different processors distributed between
a helicopter and a ship in 45 incremental deliveries [Ed. Note 2%!]s. Every one of
those deliveries was on time and under budget

A more extended example can be found in the NASA space program,

- Where in the past ten years, FSD has managed some 7,000 person-years of software

development, developing and integrating over a hundred million bytes of program and
data for ground and space processors in over a dozen projects.

- There were few late or overrun deliveries in that decade, and none at all in the past

four years.”

In the Cleanroom Method,
developed by IBM’s Harlan Mills (1980) they reported:

cost overruns, tate aeltiveries, unretiabte and incomptete sojtware

Today [Ed. 1980!], management has learned to expect on-time, within budgge=—"~
deliveries of high-quality software. A Navy helicopter ship system, callec® " e

over 206 personvears of effort. developing aver three million, and intograting
B \ere few late or overrun

A»’Zhw deliveries in that decade,

g and none at all in the past

the b four vears

wow! normal agile fails 19% (Scrum) to 40%: Jeff Sutherland

Vills on Design-to-

(call it “agile’, incremental, design)

» “To meet cost/schedule commitments based on
imperfect estimation techniques, a software
engineering manager must adopt a manage-
and-design-to-cost/schedule process.

* That process requires a continuous and
relentless rectification of design objectives
with the cost/schedule needed to achieve

those objectives.”
* in IBMsj480p.420

“Design to Cost” below

For process detall

IBM FSD Cleanroom

Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

‘Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost
management farther by introducing design-to-cost guidance. Design, development, and managerial practices are
applied in an integrated way to ensure that software technical management is consistent with cost management.
The method [illustrated in POSEM book by Figure 7.10] consists of developing a design, estimating its cost. and

ensuring that the design is cost-effective.' (p. 473)

He goes on to describe a design iteration process trying to meet cost targets by either redesign or by
sacrificing '‘planned capability. When a satisfactory design at cost target is achieved for a single increment, the

‘development of each increment can proceed concurrently with the program design of the others.’
‘Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in
seeking the appropriate balance between cost and design for a single increment, but they iterate through a series

of increments. thus reducing the complexity of the task. and increasing the probability of learning from
experience, won as each increment develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments
is computed.' (p. 474)

Source: Robert E. Quinnan, 'Software Engineering Management Practices’, IBM Systems Journal, Vol. 19, No. 4, 1980, pp.
466-~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

Copyright Tom®@Gilb.com 24

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'‘Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure
that software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10]
consists of developing a design, estimating its cost, and ensuring that the design is cost-effective.'

He goes on to des or by sacrificing 'planned

capability. When a satisf: Of d eve I o p i n g a d es i g n y it of each increment can

proceed concurrently wit

Design is an iterative prc eSti mati n g its COSt, a n d
otizcerrnet - @nsUring that the design ¢insesingtre

reducing the complexity aach increment

develops, and as the true is COSt-effe Ctive

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices’, IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77

This text is cut from Gilb: The Principles of Software Engineering Management, 1988

Copyright Tom®@Gilb.com 25

Figure 2 Planning and estimating C I ean rOO m P I an n i n g an d
=y Estimating

FOR
PROPOSAL

— For making fixed price
LM bid

PRODUCT - SYSTEM

REQUIREMENTS REQUIREMENTS
AND
DESCRIPTION

| — “developing a design,
s | S estimating its cost”

DESIGN DESIGN

PRODUCT
SIZING
Y
/ Y 4 y \ 4
n
DEVELOP- WORK FLOW WORK PRODUCT MANPOWER COST/ <— I | akl n g S u re
MENT (DEPENDEN- BREAKDOWN COS1 PLAN FUNCTION
SCHEDULES CIES) STRUCTURE ESTIMATE TRADEOFFS . . .
, , 1, ‘, ,, | it IS cost effective
»{ DEVELOPMENT
PLAN
\
RISK
ASSESSMENT

Y

FORMAL Source: Quinnan, IBM SJ, page 472

PRICE http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk harlan

20

http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan

Figure 1 Cost management process

PRELIMINARY SYSTEM

THER PROJECTS
REQUIREMENTS Ol UE

_—

o

DEFINITION AND
SOFTWARE DESIGN

‘ HISTORICAL DATA =

_/—‘

COST PLANNING
AND
ESTIMATION

COST PROPOSAL

T

CONTRACT

Cleanroom Cost
Management
Process

THOSE WHO DO
NOT REMEMBER
THE PAST ARE

CONDEMNED TO
REPEAT IT.

PERFORMANCE >~

PLANNING 4 PROJECT::A/

\

COST
PERFORMANCE
MONITORING

ACTUAL
PERFORMANCE
CONSISTENT
WITH PLAN

YES

COST PLANNING

AND
ESTIMATION

Source: Quinnan, IBM SJ, page 471

http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk harlan

27

http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'‘Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure
that software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10]
consists of developing a design, estimating its cost, and ensuring that the design is cost-effective.'

He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing '‘planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can
proceed concurrently with the program desian of the others.'

mmsneaexs [t@ration process

It is clear from thi:
appropriate balance betw

reducing the complexity
develops, and as the true

trying to meet cost

e in seeking the
increments, thus
aach increment

wereweemens tArgets by either o

computed.' (p. 474)
1980, pp. 466~77

T e 5 et o G redesign or by
sacrificing 'planned
capability’ below

Copyright Tom®@Gilb.com

Figure 3

ERGIEERING

MAVAGEMEN:

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

‘Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost
management farther by introducing design-to-cost guidance. Design, development, and managerial practices are
applied in an integrated way to ensure that software technical management is consistent with cost management.
The method [illustrated in this book by Figure 7.10] consists of developing a design, estimating its cost. and

ensuring that the design is cost-effective.' (p. 473)

He goes on to describe a design iteration process trying to meet cost targets by either redesign or b
sacrificing 'planned capability.' When a satisfactory design at cost target is achieved for a single increment, the
‘development of each increment can proceed concurrently with the program design of the others.’

'‘Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

i Design is an -

Sour

“ 1terative process

29

Figure 3 Design-to-cost

e This is agile as it should be. DeSign tO

DESCRIPTION
: DESIGN PROCESS C 0 St
|
Y
NO
Y
RESOLVE BY |
REDESIGN OF ves | DEVELOP AND
DESIGN FUNCTIONALLY TEST NEXT
EQUIVALENT INCREMENT
SOLUTION?
YES
CHANGE
CAPABIL-
2 YES
NO DELIVERABLE
| SYSTEM
4 J
BASELINE
DESIGN MODIFY MODIFY NO
| CAPABILITY COST
k{ DESCRIPTION TARGET ~
CALCULATE
ESTIMATE cc .
10 Design
[COMPLETE
ESTIMATE ' i i i
cosT IS an iterative
YES
Esz L
GREATER THAN
COST PLAN? .~ NO Process

“Source: Quinnan, IBM SJ, page 473

30 http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk harlan
And PoSEM page 105, Figure 7.10

Value Agile

http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan
https://www.dropbox.com/sh/o2g7ib3z2g2uzfw/AAAypXlN0yA2WS4obwlDzZR3a?dl=0
https://www.dropbox.com/sh/o2g7ib3z2g2uzfw/AAAypXlN0yA2WS4obwlDzZR3a?dl=0

RINCIPLES OF
- SOFTWARE
ENGINEERING
MANAGEMEN

==
| = |

but they iterate through a series of
iIncrements,

thus reducing the complexity of the =
task,

and increasing the probability of
learning from experience

It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in
seeking the appropriate balance between cost and design for a single increment, but they iterate through a series
of increments, thus reducing the complexity of the task, and increasing the probability of learning from
experience, won as each increment develops, and as the true cost of the increment becomes a fact.

o

‘When the development and test of an increment are complete, an estimate to complete the remaining increments
is computed.' (p. 474)

Source: Robert E. Quinnan, '‘Software Engineering Management Practices’, IBM Systems Journal, Vol. 19, No. 4, 1980, pp.
466-~77

Copyright Tom@Gilb.com 31

incrementally, based on experience

“an estimate to

complete the
remaining

Increments is
computed-

(See Figure 3 above for flowchart)

1at cost target:

1ce. Our practi
al practices ar
jement. The m

iring that the ¢

st targets by e
for a single in«

5.'
>f the previous

roach. Not onl

hey iterate thr:
1ing from expe

'When the development and test of an increment are complete, an estimate to complete |
computed.’ (p. 474)

'S DEVELDP AND
i TEST NEXT
I INCREMENT

CALCULA R
ESTIMALT
10
COMMETE

T

— C— S—

"TWAR

 ENGINEERING
MANAGEMEN |

YES DELIVERABLE
SYSTEM

S ——

S

Source: Robert E. Quinnan, 'Software Engineering Management Practices’, IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

Copyright Tom®@Gilb.com

32

by

‘contracting for results’,

not contracting for ‘work and work product’ (like code)

How does ‘contracting for results’
Help us deal with system complexity?

Because you can change the ‘inside of the black box’
Or get the contractor or Dev Team to do so

Anytl m e OUTPUT & THROUGHPUT - MODULAR DEVELOPMENT MODEL
Product Backlog
Rel 1 Rel 2 Release 3 Release 4
SOw sow sow SOW
I I || || | | I Im
l I I I I | I I | I I I
l Iterations l l
g1 0O
3 2 S o o =
3 9 2 B 2 1
g - 3 3 3 3
a ©
a

DISCOVERY DELIVERY

Detailed Result/Payment Deal
At each ‘Sprint’: No Cure-No Pay

OUTPUT & THROUGHPUT - MODULAR DEVELOPMENT MODEL

Product Backlog
Release 1 Release 2 Release 3 Release 4
SOW SOW :
sow o complexity of
\ , | . a long-term
Iterations l Iarg e-SCca I e
E g . MR sub-contract
3 9 5 s 3 3
2 & 3 3 = 3
q 3
a
DISCOVERY DELIVERY

SOW = Statement Of Work emesib.con y

Outcome-driven view of contract metrics:

If they didn’t really deliver value, try again.

If they cannot deliver, stop the supplier relationship

7 N\

TARGET
OUTCOMES

ACTIVITIES

—

> | THROUGHPUT

Tom@Gilb.com

OUTPUT

OUTCOMES
ACHIEVED

35

Why ‘Result Contracting” and ‘Result Payment’
deals with complexity
1. You are not bound to big contracts if you cannot control
the complexity
2. You do not have to understand the total costs or duration
up front, for large complex projects
3. Neither does the sub-contractor have to
4. You can focus on quick wins and sure things, until you
reach a ‘level of incompetence’, regarding complexity.
5. You can discard a complex and failed delivery step, 2%
loss, and continue the project by finding a simpler more

risk-free designs / \

TARGET OUTCOMES
OUTCOMES I:> ACTIVITIES |:> OUTPUT ACHIEVED

> | THROUGHPUT | I > 36

e Pros:

— > wAsstructured approach for focusing on the customer’s
strategic plan

— > =sThe creation of shared goals helps to align the interests and
motivation of the parties

— > aThe supplier is motivated to achieve the target outcomes in
the most cost-effective way

— > =sQutcomes are less susceptible to change, than output

— > aThe parties can learn rapidly what works and what doesn’t
by measuring progressively the outcome delivery

e Cons:

— > =lack of method and contract-process familiarity

— > =Qutcomes are not as straightforward as other contract
metrics, and require some training

Tom@Gilb.com 37

The Flexible Contract is
more tuned in to agile

methodology’

=
@
£
g
)
L]
o
°

(7, Q.

Agile

Evolutionary and emergent solution

Experimental approach

Fast feedback loops / learning cycles ®

Rapid response to embrace changes ®) ® %

Collaborative relationship

Tom@Gilb.com

[7

38

Contract Templates available for free

FLEXIBLE CONTRACT
Flexlite 0.1 (UK)

An open-source, outcome-based contract

This contract is licensed under the Creative Commons Attribution 3.0 Unported License

Please attribute it to:
Copyright @ 2013 by Susan Atkinson and Gabrielle Benefield

To view a copy of this license please visit:

hitp:fcreativecommons.orgllicenses by/3.0/

http://www.flexiblecontracts.com

39

WHAT IS A FLEXIBLE CONTRACT?

Define what you want, as you go, in small
WHAT IS A FLEXIBLE CONTRACT? i n C re m e ntS .

A ‘flexible contract’ is an adaptive, outcome-based
contract, which is intended to maximize the delivery of
customer value. It achieves this in several ways:

The contract focuses on outcomes (that is, business

objectives), which are less susceptible to change than

output (such as features). By focusing on outcomes the L h t k
contract also creates shared goals between the customer e a r n W a WO r S
and supplier, which helps to align their interests and

motivation.

The supplier is given the freedom to achieve the target
outcomes in any way it deems effective as long as it
honors the terms of the contract and stays within any
constraints specified by the customer.

Focus on business results, not ‘code’

The fees (or at least part of the fees) should be payable on
the achievement of target outcomes. The supplier is
incentivized to achieve the target outcomes in the most
cost-effective way, which is also of benefit to the customer.

The contract is structured as a master services agreement .

for the full version, or the ‘lite’ version using the Terms and Pay fo r re a | Va | u e d e | Ive re d
Conditions, under which short-term statements of target

outcomes (SOTOs) are called off. SOTOs work in the same

way as a Statement of Work, but instead of ‘work’ in the

form of outputs and activities, we measure outcomes

achieved. The parties can respond to acquired knowledge

and changes in the environment in subsequent SOTOs.

In respect of each SOTO the supplier addresses each P ri O rit i Ze h ig h Va I u e re S u Its e a r I yo

target outcome by means of short feedback cycles. So the
parties can learn rapidly what works and what doesn’t by
measuring outcomes achieved progressively.

The contract adopts lightweight contractual provisions.

This is made possible because the parties only commit to .

one SOTO at a time, so the financial exposure of the Ve ry | OW rl S k
customer to the supplier is minimized. This in turn means

that the contract is easier to understand and requires less

administrative cost, both to create and to manage. The

contract is deliberately NOT focused on the activities of

the supplier or the technical processes by which this value

is delivered.

Not tied in to suppliers who cannot deliver

SOTO Specification

(from contract template)
short-term Statements Of Target Outcomes

SOTO Completion Date

NOTE: Please state not applicable if this is not being
used.

The problem or opportunity to be
addressed

The Business Objectives

The Target Outcomes NOTE: These should be in line with the Business
Objectives. They should be bullet points only and listed in
order of pnonty.

The Constraints NOTE: Examples include design constraints, minimum

quality constraints, budget constraints, schedule
constraints, resource constraints.

Customer responsibilities

NOTE: This should include any support, facilities and
information, including any requirements for execution of
the Options, which are to be provided by the Customer.

Time frame for provision of feedback by
the Customer

Early termination payment

Tom@Gilb.com

41

Result quantification Template

(based on Gilb Planguage)

Target Outcomes

. [COMPLETE THE FOLLOWING TABLE FOR EACH TARGET OUTCOME]

Name of Target Outcome: In the form Action Verb + Noun Phrase
QOutcome Value: Time or money over a defined pericd
QOutcome Measure:

* Unit of measure:

* party responsible for conducting
measurement:

* Method for measurement:

* Frequency of measurement:

* Baseline (starting point):

i.e. the metric used to measure e.g. time,
percentage or number

i.e. a named person or group responsible for
conducting the measurement e.g. the Customer

i.e. the systems used to collect data or the tests
that will be run e.g. data analytics report or

usability tests for target users

i.e. The period of time when measurements will be
taken e.g. every [2 weeks] with their end-users

i.e. the baseline that will be used as the starting
point against which to compare results

Tom@Gilb.com

42

Example of thoroughly defined quantified Value for Contracting

Air Quality

Level: Stakeholder, Type: Value, Labels: [Biiel Edit

Is Part Of: »9 Top Values

Sho'
Status Status Tolerable Tolerable Goal Goal Stretch
9.5k 1.5k 200 100 950 150 0 b

O O O o o ° g o
Goal [Persons = <All>, Pollution = <All>, Area = <All>] @ 2028 : 950 People <- Sadig Khan, Mayor of London
Website, Press Release Toxic Air

AQ.Ambition Level: Drastically improve air quality in London to acceptable legal levels as stated in the Paris Accord (Paris Agreement)
Scale: Number of [Persons] who reside in London Boroughs dying from exposure over [Time] to [Pollution] per year in [Area)

Meter: Recent Hospital records from London hospitals for deaths by Pollution Exposure related illness

Status: 9.5k People [Persons = <All>, Pollution = <All>, Area = <All>] When 2019

Status: 1.5k People [Persons = Senior, Pollution = NO2, Area = <All>] When 2019

Tolerable: 200 People [Persons = Senior, Time = 5 years, Pollution = NO2, Area = Greater London] When 2022

Tolerable: 100 People [Persons = Child, Time = 1 Year, Pollution = {NO2, Carcinogens}, Area = Greater London] When 2020

Goal: 950 People [Persons = <All>, Pollution = <All>, Area = <All>] When 2028

Goal: 150 People [Persons = Senior, Pollution = NO2, Area = Greater London] When 2029

Stretch: 0 People [Persons = Senior, Time = 5 years, Pollution = NO2, Area = Greater London] When 2030

Source: Value Requirements (book), T Gilb.
2019

https://www.dropbox.com/s/hxg1rx9rzesw2id/Value%20RequirementsPDF%20BEST %20%2070MBQ%20011019%202245%202.pdf?dI=0

So how does Flexible Contracting deal with Complexity?

- You can stop delivering when complexity

is not possible to deal with or not

profitable OUTPUT & THROUGHPUT - MODULAR DEVELOPMENT MODEL
Product Backlog

- Unexpected complexity, can be

discovered early, and alternative design

strategies possibly found to simplify sow

Release 1 Release 2 Release 3 Release 4

SOw SOwW SO

- No need to think about total cost in B — — l _— | l | ll
advance (which may be impossible T g v v vy
because of hidden complexity) 3 3 3 s 5 3

- Potentially complex increments can be 2 g s s ~ 3
piloted early (and defeated or found OK) DISCOVERY DELIVERY

- Maximum loss for discovered over-

complexity is step size (2% of budget)
- Complexity can be dealt with in a
‘backroom’ (off line to value delivery
increments (See Posem book, Evo)

44

echnoscopes Area4 o
By being ‘lean’:

= early, = preventative.

Defect Prevention methods (SQC, DPP)
(lean, early)
Help us deal with complexity
Because
1. They reduce the total volume of defects, in later
stages, considerably, (10X, 100x more)
2. So we are not overwhelmed by the volume of defects
later

45

9. Identify causes 1. Identify checkers

8. Decide actions 2. Select rules
continuous measurement of software 7. Analyze results 3. Sample specification
develo Ppme Nt work qu al Ity) 6. Report results 4. Instruct checkers

5. Check sample

Specification™ Quality Control (SQC) is a method for ensuring
specifications meet established quality goals according to objective,
measured standards

SQC prevents poor-quality specifications from moving downstream

Specification Quality Control emphasizes

» Cost and TTM reduction - Early learning
- Defect prevention - Author confidentiality
* Resource efficiency - Quantified specification quality

** Specification: A written or electronic representation of information used to design,
architect, construct, or test a system or its parts.

46 Copyright © 2014 Intel Corporation. in tel)

9. Identify causes 1. Identify checkers

8. Decide actions 2. Select rules
C on t ro |) 7. Analyze results 3. Sample specification
6. Report results 4. Instruct checkers

5. Check sample

SQC is similar to traditional techniques for reviews, walkthroughs,
and inspections, but has important differences and improvements:

* SQC'’s goal is to measure defect density, not to “clean up”
the specification by finding every defect in it

* SQC saves time by checking only samples of the
specification rather than the entire thing

* SQC focuses on major defects — those that will take at least
10x more to correct later than now

« SQC follows a rigorous process, with trained participants
to help guarantee consistently good results

Specification Quality Control forms the backbone of an effective,
efficient review structure

47 Copyright © 2014 Intel Corporation. < in tel

SQC At a Glance
(early QC, continuous QC, final QC)

Initial Periodic Additional Reviews Final
SEVE Quality
_ . _ Assessment
9. Identify causes 1. Identify checkers
8. Decide actions 2. Select rules

7. Analyze results 3. Sample specification

6. Report results 4. Instruct checkers

5. Check sample

(R(:COO) Specification Completeness (;(;(\);/;a)

Specification Quality Control consists of a series of short, intense
reviews that measure the defect density of a specification

48 Copyright © 2014 Intel Corporation.

SQC is Data-Driven
(based on objective facts)

SQC tracks defect density over time to ensure good quality in the
work products:

A
= IiProcess failure
g |
D
e
S
()
Hq_) :
0 | Acceptable quality -
o, < _/ _/ oo:/
(o) e . o)
P
. Specification Completeness
(Rev 0) (Rev 1)

Early evidence of specification quality allows for timely
corrective action, before rework costs go unbearably high

49 Copyright © 2014 Intel Corporation.

Example
(Intel published experience)

A team in Client BIOS used SQC to reduce requirements defect
density by 98% over six cycles:

A

20

10

Defect Density

0.0 0.3 05 06 0.7 0.8 Rev 1.0

This effort had significant benefits to downstream work, including
improved productivity (+233%), time to test, and customer quality

50 Copyright © 2014 Intel Corporation.

Intel Case Studies
of Gilb Methods™ 2013

TABLE I: GEN 2 REQUIREMENTS DEFECT DENSITY

Inte

The Impact of Requirements on Software Quality
across Three Product Generations

John Terzakis

Intel Corporation, USA
john.terzakis@intel.com

Abstract—In a previous case study, we presented data
demonstrating the impact that a well-written and well-reviewed
set of requirements had on software defects and other quality
indicators between two generations of an Intel product. The first
generation was coded from an unorganized collection of
requirements that were reviewed infrequently and informally. In
contrast, the second was developed based on a set of
requirements stored in a Requirements Management database
and formally reviewed at each revision. Quality indicators for the
second software product all improved dramatically even with the
increased complexity of the newer product. This paper will
recap that study and then present data from a subsequent Intel
case study revealing that quality enhancements continued on the
third generation of the product. The third generation software
was designed and coded using the final set of requirements from
the second version as a starting point. Key product
differentiators included changes to operate with a new Intel
processor, the introduction of new hardware platforms and the

e - o “ “ures. Software

cal, with only the
rce code check-in
complexity in the
,, software defects,
(feature variance),
days from project
the second to the

n, requirements

PRD
Revision

of
Defects

of
Pages

Defects/
Page (DPP)

% Change

: quality, multi-

.
m DPP 101t paper [1] that

an otuder Af teon

0.3

312

31

10.06

0.5

209

44

4.75

-53%

0.6

247

60

4.12

-13%

0.7

114

33

3.45

-16%

0.8

45

38

1.18

-66%

1.0

10

45

0.22

-81%

Overall % change in DPP revision 0.3 to 1.0: -98%

** Methods = Planguage Requirements and SQC

II. PRODUCT BACKGROUNDS

The requirements for Gen 1 that existed were scattered
across a variety of documents, spreadsheets, emails and web
sites and lacked a consistent syntax. They were under lax
revision and change control, which made determining the most
current set of requirements challenging. There was no overall
requirements specification; hence reviews were sporadic and
unstructured. Many of the legacy features were not
documented. As a result, testing had many gaps due to missing
and incorrect information.

The Gen 1 product was targeted to run on both desktop and
laptop platforms running on an Intel processor (CPU). Code
was developed across multiple sites in the United States and
other countries. Integration of the code bases and testing
occurred in the U.S. The Software Development Lifecycle
(SDLC) was approximately two years.

After analyzing the software defect data from the Gen 1
release, the Gen 2 team identified requirements as a key
improvement area. A requirements Subject Matter Expert
(SME) was assigned to assist the team in the elicitation,
analysis, writing, review and management of the requirements
for the second generation product. The SME developed a plan
to address three critical requirements areas: a central
repository, training, and reviews. A commercial Requirements
Management Tool (RMT) was used to store all product
requirements in a database. The data model for the
requirements was based on the Planguage keywords created by
Tom Gilb [2]. The RMT was configured to generate a
formatted Product Requirements Document (PRD) under
revision control. Architecture specifications, design documents
and test cases were developed from this PRD. The SME
provided training on best practices for writing requirements,
including a standardized syntax, attributes of well written
requirements and Planguage to the primary authors (who were

SQC Review Cycles
Note: Defect Density Measurement, NOT find and fix defects.
Motivate engineers to follow best practice standards.

Each SQC review cycle follows the same simple process:

9. Identify causes 1. ldentify checkers
8. Decide actions 2. Select rules

7. Analyze results 3. Sample specification

6. Report results 4. Instruct checkers

5. Check sample

Typical time investment for one cycle: 60-120 minutes,
depending on sample size

52 Copyright © 2014 Intel Corporation. .

How does Spec QC Help with Complexity?

Sampling allows us to reduce

. TABLE I: GEN 2 REQUIREMENTS DEFECT DENSITY
time and cost of measurement

by about 50X (take a 2% PRD # of # of Defects/ % Change
representative S ampl e) Revision | Defects | Pages | Page (DPP) in DPP
0.3 312 31 10.06 -

- 0.5 209 +4 4.75 -53%
Beqluctlon of future p_roblems 0 e - NG SET7
inside the black box is about 50x 0.7 114 33 3.45 -16%
(10.06 to 0.22 see table) 0.8 45 38 118 -66%

1.0 10 45 0.22 -81%

Overall % change in DPP revision 0.3 to 1.0: -98%

It forces people to really learn
best practices, on the job and
reduces the complexity of
learning a discipline by a
handbook courses. (McDonnell
Douglas experience)

9. Identify causes 1. Identify checkers
8. Decide actions 2. Select rules

7. Analyze results

3. Sample specification

6. Report results 4. Instruct checkers

5. Check sample

It doubles (233% Intel) software
engineering productivity

53

Prevention + Pre-test Detection
is the most effective and efficient: a set of processes for
fighting complexity

1 o)
OSo7%-cumd ”edetegc(l)o/ﬁ

90% - / by Inspect|on e of the art limit)

0% — lest 70% Detection
by Inspectio
70% - De’cec;ecl/é <- Mays 1993, 70% prevented

50 % = Mays & Jones 50% prevented(IBM) 1990

Prevented

g

1 2 3 4 5

i i i i i
« Prevention data based on state of the art prevention experiences (IBM RTP), Others (Space
Shuttle IBM SJ 1-95) 95%+ (99.99% in Fixes)

« Cumulative Inspection detection data based on state of the art Inspection (in an environment
where prevention is also being used, IBM MN, Sema UK, IBM UK)

_ _ These slides are at
Copyright Tom@Gilb.com 54

http:/www.gilb.com/di821

http://www.gilb.com/dl821
http://www.gilb.com/dl821

IBM MN & NC DPP Experience
Attacking large organization software engineering complexity by
DELEGATION OF POWER TO GRASS ROOTS TO IMPROVE THE ORGANISATION

2162 DPP Actions implemented ecous o
— between Dec. 91 and May 1993 (30 months)<-Kan

<|||

RTP about 182 per year for 200 people.<-Mays 1995

— 1822 suggested ten years (85-94)
— 175 test related

RTP 227 person org<- Mays slides
— 130 actions (@ 0.5 work-years

— 34 causal analysis meetings @ 0.2 work-years

— 19 action team meetings @ 0.1work-years
— Kickoff meeting @ 0.1 work-years

TOTAL costs 1% of org. resources

ROI DPP 10:1 to 13:1, internal 2:1 to 3:1
Defect Rates at all stages 50% lower with DPP

These slides are at

Copyright Tom@Gilb.com http:/www.gilb.com/dI821

http://www.gilb.com/dl821
http://www.gilb.com/dl821

How does Defect Prevention
Process deal with Comp\exny’?

- It gives a radical reduction (50%
to 99%) reduction in problems 90%

(like bugs) which occur at all 80%
70%

. The grass roots staff - 50%
themselves will quickly see
recurrent problems

- The grass roots staff will only
suggest the simplest process
change they can live with

- The staff will not suggest
changes that they think makes
their work unnecessarily
complex

56

By using ‘scale free’ methods:

‘scale’ does not matter

‘Bigger’ does not threaten you with complexity

If we are scale-free
then we do not have to
worry about

‘rapid or large scaling up’
of a system

causing it to be

too complex to handle
easily 57

Erik Simmons, Intel Scaling

< “Pm deeply interested in scale-free practices.
~ I’m also interested in specific practices tuned to large,
small, complicated, and complex projects,

< but I find particular power in scale-free practices.

~ Your work for decades has been focused on a very
good set of these.
- SQC, for example, works on any size specification. It
does not (nheed to) scale.
~ SQC: (Specification Quality Control).see immediately
previous slides in Technoscopes area 4 of 5.
- BTW, I think the agile principles are also quite scale-
free. But most Scrum practices are definitely not.
~ So, perhaps you can chart a better course by
advocating for use of scale-free core practices,
- augmented with a set of specific, tailored practices
© that are effective for the size of the project in
question.” <- ES, Intel

58

VIy Scale Free Methods:

most are in this talk

1.Quantification of Values [10***, VP 1.1**].

2.Quantification of short term and long term costs [VP 3.4, VP 4.5, VP
6.7].

3.Design to Cost: Top Level Architecture [VP 7.9, 10].

4.Dynamic Design to Cost: Each Delivery Cycle [12 C, VP 4.5, VP 2.5,
2.3,5,10,12].

5.Quality Control of Plans, Contracts, Code and all written artifacts [VP
Part 2, VP Part 4, VP 7.7].

6.Flexible Contracting [12, VP 4.5].

7.Value delivery Cycle Measurable Feedback, Learning and Change [4,
VP73,VP98,VP6.7,VP 8.6, 2,9, 10, 11, 14].

8.Value Decision Tables (Impact Estimation Tables) [9, VP 2.3, VP 4.4, VP
5.3, 13].

9.Risk Management in all aspects of planning and Management [VP Ch.
7], 12.

10.Intelligent Prioritization Policies: for short term and long term [VP Ch.
6, 12, 13, 14].

40 practical Engineering ideas for scaling agile development successfully all the time.”

** WP’ = Value Planning book by chapter

A very short pdf paper, supported by references to necessary detail.

http://www.gilb.com/dI865

https://tinyurl.com/OSWAVP

Method 7. Value delivery Cycle Measurable Feedback, Learning and
Change [4***, VP 7.3 **, VP 9.8, VP 6.7, VP 8.6, 2,9, 10, 11, 14].

A detall of Method 7 Lo -

Measure

Values
Value Planning
l The Value Delivery Cycle
Deliver Solutions

Develop ecompose
= “Beyond Scaling: Scale-free Principles

for Agile Value Delivery - Agile Engineering.

40 practical Engineering ideas for scaling agile Val u e P | an n i n g CyC | e — (EVO’

development successfully all the time.”

A very short pdf paper, supported by references to CyC|e Of Value delivery Of any Size prOjeCt

necessary detail.

** = Value Planning

book by chapter

http://www.gilb.com/dI865 60

https://tinyurl.com/OSWAVP
https://tinyurl.com/OSWAVP

Emerson’s Principle that
Principles beat methods

« “As to methods, there
may be a million and
then some, but
principles are few.

* The man who grasps
principles can - 3 -
SucceSSfuuy SeleCt h]s R. W. Emerson Book Cover Harrington Emerson

- Emerson, Harrington
* (Not as thought, RW E)

THE

TWELVE PRINCIPLES
OF EFFICIENCY

© Tom®@Gilb.com 61

VI oCcale-Tree Principies

(most are treated in this talk)

1.Keep focus on measurable delivery of critical values and their costs. [3***, 4,5, 6,9, 10, 12,
VP (20) Part 1, VP 10.6 **]

2.Deliver value early, quickly and regularly: in roughly 2% increments. [14, 11, VP Ch.4,2,5]

3.Do NOT focus on code delivery; focus on overall system value and costs. [VP Ch.4, 10D,
10F, 13, VP 3.4, VP 2.10, VP 9.8, 4, 12]

4.Focus on quantified critical stakeholder values. [19, VP 3.4, VP 3.7, VP 3.9, VP 3.10 VP 4.2,
10]

5.Synchronize all teams in terms of measurable value delivery. [VP 3.3, VP 3.4, VP Part 1, VP
3.6, VP 3.8,VP8.4,11,12,13]

6.Solve big problems through ingenious architecture; not through coding faster. [VP 4.5, VP
5.1,VP53,VP7.2,15]

7.Decompose the large problems by incremental value deliveries: not code deliveries. [7, VP
Ch.5,VP5.1,VP 5.6, 10, 11, 13, 15]

8.The software component needs to be integrated into the total system of hardware, data,
people, culture. [VP 5.2, 10]

9.If your team cannot deliver small increments of real value early, frequently, and predicta
they are incompetent and need to be abandoned for those who can deliver. [7, VP 2.8, 1

10.Never commit to contacts for work done or code delivered alone: there must always be a
sufficiently large contractual protection, of paying for measurable value delivered. [12, 15].

= “Beyond Scaling: Scale-free Principles for Agile Value Delivery - Agile Engineering.

40 practical Engineering ideas for scaling agile development successfully all the time.” *% ’ V P ’ — Val u e P I a nn i n g bOOk by c h apter

A very short pdf paper, supported by references to necessary detail.

http://www.gilb.com/dI865

https://tinyurl.com/OSWAVP

My Own scale-free ‘Project Development Process’:
Uses ‘delegation of design to implementors and programmers’

Competitive Engineering: Book 2005

(link tested 31 03 2020)

Make developers responsible
— for delivery of the ‘quantified’ critical requirements levels
o (Performance, Qualities, cost, deadline)
Give them the freedom to decide the ‘right’ designs
— With immediate responsibility to measure that they are delivering the results

Get the ‘unprofessional’ users and customers ‘off their backs’

— Avoid receiving features and stories; avoid ‘architecture from managers’.

« which are usually amateur design, by people who have no overview or responsibility or design ability (users and
customers, and managers)

Elevate your talent by becoming a real ‘software ENGINEER’
— With coding-expert craftsmanship, as your basic talent

Cases and real examples
‘Value Driven Project Management’ slides

Includes ‘Confirmit’ Case, slide 70 on.

Copyright Tom@Gilb.com

63

http://www.gilb.com/dl152
http://tinyurl.com/CEset2015

How does ‘scale free’ deal
with complexity”?

- Rapid and unexpected
scaling up (think Covid-19,
NHS) will not break the
system.

- No need to learn and apply
quite different development
process methods, for large
complex projects (think
Scrum, Safe)

- Reduction of failed projects,
which would fail due to
unexpected complexity

64

‘Scale Free’ end note

We need to take these scale-free engineering ideas
seriously

if we are to get better control over large-
scale software and systems engineering projects.

© The ideas have serious practical international experience,
- and can be tried out one-by-one.

- They can be added to any other practices, that are, or will
be successful for you,

- They are free ideas.
‘This stuff works!”
(Erik Simmons, Intel

Experience 1999 to 2016 for 20,000 engineers)

Just do it!

"4

s

JGINEE e

(1= f:n‘l llllllll
E

Get a free e-copy of ‘Competitive Engineering’ book.
https://www.qgilb.com/p/competitive-engineering

65

https://www.gilb.com/p/competitive-engineering

End of 1 hour and 30 minutes minute talk

Blog (Based on Value Planning book):

Principles Videos (free first 4)

See my TEDx Talk

http://www.gilb.com/blog
https://www.gilb.com/p/principles
https://gilb.mykajabi.com/blog/quantify-the-un-quantifiable-tom-gilb-at-tedxtrondheim

below is a set of slides which go deeper Into
handling complexity than we can deal with In
the talk timing. but | include them for
advanced study.

They are based on my paper
CONFRONTING WICKED PROBLEMS:
and some Planguage Tools to deal with them.

67

http://www.gilb.com/dl866

WICKED PROBLEMS
ARE POSSIBLY SIMPLE;
IF YOU KNOW HOW

Tom’s Personal View of Evil
23 June 2016, GilbFest

BASED ON T GILB PAPER

“CONFRONTING WICKED
PROBLEMS:

and some Planguage Tools to deal with them”

10 January 2016,
gilb.com/dI866

69

oo How Planguage Tools

Help Whack Wickedness.

Technoscopes.(free digital book about 100 tools to fight complexity) ONLY FOR TALK
https://www.dropbox.com/sh/p439ms65ifyid72/AAAbL 261y 1ss2mH5KERB2F_1a?dI=0

The following slides
Are discussion, or rebuttal
of the
Wicked Problems Characteristics
(slide 4) list
They are not intended
for presentation in this short talk,
But | hope some individuals can use the
Information and arguments to understand
complexity better.
And to be skeptical of
delivered truths from academics

70

Get a free e-copy of
‘Competitive Engineering’
book.
https://www.gilb.com/p/
competitive-engineering

https://tinyurl.com/

OSWAVP
Value Planning book
by chapter

https://tinyurl.com/OSWAVP
https://tinyurl.com/OSWAVP
https://www.gilb.com/p/competitive-engineering
https://www.gilb.com/p/competitive-engineering
https://www.dropbox.com/sh/p439ms65ifyid72/AAAbL26ly1ss2mH5K6RB2F_Ia?dl=0

W1. There is no definitive formulation

of a wicked problem.

Planguage (The Planning Language) does not need or expect a

‘definitive formulation’ of a problem.

Planguage allows you to specify any set of problem statements
(value objectives, constraints, assumptions, constrained

strategies, budgets, deadlines, stakeholders) that might be useful.

They can all be modified at any time. They can be versioned. They can be officially sanctioned or
approved, until further notice. They can be quality controlled. The quality , relevance, correctness

and usefulness of any class of problem statement can be gradually enhanced.

Problem statements can easily be integrated with each other, and their relationship to solutions

(strategies, designs, architectures) can easily and automatically be mapped and tracked.

Problem statements can be directly and measurably related to emerging value delivery, and costs:

giving real time feedback to the planning model.
Owner

A rich set of background specifications is expected and encouraged for all problem statements.
These include such items as issues, assumptions, constraints, sources, evidence, risks,

stakeholders, and very much more [VP 2.2, 3.1, 4.2 for detail].

The background specification for a problem statement (like an ‘objective’) does not change the core
problem specification. But it enables us to sense the larger and more complex relationships

involved (for example multiple risks and stakeholders for every single problem statement).

Background specification triggers and motivates us to analyze deeper and

improve our view or model of the problem space.

71

An

Objective
ora
Strategy
-
Core
e Other Background
Specification
Relationship
Background
Exact U bi Scal i
xacDegsirgo:fsuous g:; | Version 7 QcC Status v Other
|
Expert hsgfdkeer_s Imple- Testers Contract Suppliers Impacts

mentors

Impacted
By

others

W2. Wicked problems have no stopp

Planguage makes no assumptions about stopping a development, or the existence of a ‘final

state’.
Planguage assumes that the systems it is planning for, already have a life in the real world, and
will continue to have a life for the foreseeable future.

Planguage is all about high-priority incremental improvement, towards the current long-term objectives, using resources

actually available.
The Planguage planning process is merely a tool for keeping track of concerns, and solution ideas.

The tool is used to keep track of the current state of the system, from any interesting, and all useful emerging, multiple

viewpoints.
Planguage assumes conflict and change are normal, and natural: and tries to make the best decisions in that light.

The nearest thing we have to ‘stopping rules’ (knowing when to quit planning, or investing in change) are locally

formulated policies, such as:

Stop when the next cycle of change is not profitable enough (VP 4.7, 5.9). Stop when no credible solutions are on the table.
(VP 4.9, 4.8, 5.8)

Stop when planned results have repeatedly not been delivered (VP 4.5).

W E Deming taught me that the Plan Do Study Act cycle (PDSA) was expected to continue, ‘as long as there is competition’.

We do not think in terms of any ‘big stop’: just focus on smart prioritization.

Planguage is unusually quantified regarding problem statements (VP Part 1, Chapter 1). All values and qualities are

normally quantified. No management BS allowed [10].

So the quantified worst-case levels,and target levels of a desired value, give us a very specific device to know when to
stop: when to stop planning, when to stop inventing, when to stop delivering improvements, when to stop and NOT deliver

changes at all.

Planguage has a rich variety of tools and specifications for stopping, when that is appropriate. For a rich variety of reasons
and conditions. But it has a ‘lust for life’ to try to keep delivering value to stakeholders. And it makes that possible by

quickly stopping low-priority activity. (VP Chapter 6).
Your own culture needs to decide on your own values and priorities regarding when to stop and go.

Planguage has rich built-in specifications that even automatically point out red lights and green lights. Planguage

specifications can compute what to prioritize (Green) and what to stop (Red Light). (VP 6.7)

72

ing rule.

Current

Improvements Survey Engine NET
Status
Units Units % Past |Tolerable [Goal
Backwards.Compatibility (%)
83.0 43,0 80.0| po 85 95
0.0 67.0 100.0| b7 0 0
benerate. WL Time (small/medium/large seconds)
4.0 59.0 100.0| p= 8 4
10.0 397.0 100.0f po7 100 10
94 .0 2290,04 103.9| p284 S00 180
lestability (%)
10.0 100} 13.3 [100 [100
Usability. Speed (seconds/user rating 1-10)
7740 507.0 51.7) 1881 600 300
50 3.0 60.0) p S 7
Runtime.ResourcelUsage.Memory
0.0 0.0 0.0 B B
Runtime.ResourceUsage.CPU
3.0 35.0) 97.2ks E [z
Runtime.ResourcelUsage . MemorylLeak
0.0/ 800.0f| 100.0f ko0 [o [o
L Runtime.Concurrency (number of users)
1350.0(1100 146.7 50 500 1000
evelopment resources
64 .0 0)

W3. Solutions to wicked problems are not true-or-false,
but good-or-bad.

Planguage has no preconceived notion that solutions are ‘correct or good’ or not.
It explicitly recognizes that:
* Problems (objectives, constraints) are the best currently available subjective stakeholder compromise.

+ Problem specification is subject to constant change pressure.
« Solutions (strategies, architecture) are the best available ‘hypothesis’ as to how to solve a set of problems (‘solve’ = delivery sufficient [Target level] overall value delivery, within constraints,

at lowest budgeted resource costs; with regard to risk-of-deviation from expectations (estimates). The degree of solution ‘goodness’ is directly related to the current problem specification.

+ The degree of goodness is numerically computed in the Planguage tool ‘Impact Estimation table” (sample IET in above VP [8] Figure 6.7). This can be supported by automation as in the example below.

| conclude that Planguage is well suited to this ‘good or bad’ aspect of Wicked Problems.

e
)

[) ® < il (0) S app.needsandmeans.com/iet/IET-6 TLBFMM?subpage=graph&graph=ratios ¢

06 0 D Untitled

80,000

60,000

40,000

Performance To Resource Ratio

20,000

JS chartby am S

Q
& 5> &> N4 § '«\‘9
N O > N
) N 0 () & S
o S o N Q
00 00 23 ¢§> - Q)\
S N s & &
'S) \s > &
K o > &> N
& S @ & QQ’
AN Q & <) A
& N S : &
& > @ © &
¢ § N = i
Oé\) ™ N
Designs
Performance to Resource Ratio (Planned) Performance to Resource Ratio Worst Case (Planned)
Performance to Resource Ratio Credibility-adjusted (Planned) - Performance to Resource Ratio (Actual)
Performance to Resource Ratio Worst Case (Actual) - Performance to Resource Ratio Credibility-adjusted (Actual) 5
3 re: selecting... K
Needs & Means © RSBA Technology Ltd 2015 - 2016

W4. There is no immediate and no ultimate
test of a solution to a wicked problem.

This problem is not particular for Wicked Problems. It applies to all problems, all efforts, all
changes. Butterfly Effect: the sensitive dependence on initial conditions in which a small change in
one state of a deterministic nonlinear system can result in large differences in a later state. It is

tough to make predictions, especially about the future (Yogi Berra et al).

In Planguage, using the Project management subset ‘Evo’ Value Delivery [7], we do in fact
measure, in the short term (typically weekly, as in Confirmit example above [Figure W2], the

impacts on all the critical factors that interest us.

In this Confirmit case, we estimate and later measure on a set of critical top level Performance
Values, and we estimate and later measure time and effort needed to do the change.[See VP [8]

Section 8.6 Getting early short-term feedback.]

Later, for example at quarterly release, addition measurements are made. This takes into account
the changes made after the earlier changes. It accounts for the parallel changes made by other

teams. it typically is more sophisticated testing and measurement (pre release to world market).

After a release of changes we can continue to measure the factors of interest, as they affect real

world users of a system. We can certainly expect feedback if they are unhappy!

Finally, in the next round of changes, the critical performance values will again be measured, as

demonstration that they have held up, or not, over time.

We do not need ‘ultimate tests in infinite time’. We need to keep reasonable track of reality in a

cost effective manner, and Planguage [Evo] gives us rich humeric opportunity to do so.

All critical problems (of improvement) are always quantified in Planguage, or at least ‘testable’ for

presence: that is the basic idea of Planguage.

Reasonable and sufficient measurement and testing is invariably possible.

Productivity:
Scale: Average Time for Average Salesperson to Make Sales Activity Report,
Daily

Past: 60 minutes.

D1: Goal [End this Year, New Salespersons] 30 minutes.
Meter: Stopwatch by Trainer.

D2: Goal [Within 3 Years, Top Salespersons] 15 minutes.
Meter: Self Timing reports.

D3: Goal [Within 5 Years, All Salesforce] < 5 minutes.
Meter [After App is used by everybody] Automated measurement in the
reporting app.

Figure W4. Source VP Planguage 6.7: here is a simple example of planning a set of Meters.
Meters are a process for measuring in practice, along a single defined Scale of measure. The
Meter statement is usually a rough outline only. The detailed 'test’ planning to be done by
others, such as system testers. Notice we are dealing with short term and long term
measurements here at the same planning specification.

W4 (continued) | believe one central reason that ‘Wicked Problems’ appear to be so
wicked, is because we have such a poor culture of quantification of critical factors.

Words and ‘poetry’ (‘state of the art competitiveness’, ‘end world hunger’) substitute for

clear thinking and clear problem specification.

This quantification, and background clarification, does not itself, and alone solve the
problem central to Wicked problems (the very complex and voluminous nature of real

systems).

But lack of quantification of critical system performance problems makes even short-term
and real- time understanding of the problem impossible. But that is NOT a Wicked Problem;

it is simply our professional incompetence.

We then falsely blame our lack-of-understanding on the ‘system complexity’: when we in
fact have not even taken very basic steps to clear the fog in front of our faces (to quantify

critical variables).

In conclusion:

1. we can normally get immediate and continuous, tests and measurements, of
solutions, in

relation to clear problem statements, if we want them.

2. we do not need to worry about unrealistic ideas like ‘ultimate test’ of a solution.

‘Ultimate tests’ would be nice, of course, but they are not necessary, and they are never

possible in the real world.

75

Productivity:
Scale: Average Time for Average Salesperson to Make Sales Activity Report,
Daily

Past: 60 minutes.

D1: Goal [End this Year, New Salespersons] 30 minutes.
Meter: Stopwatch by Trainer.

D2: Goal [Within 3 Years, Top Salespersons] 15 minutes.

Meter: Self Timing reports.

D3: Goal [Within 5 Years, All Salesforce] < 5 minutes.
Meter [After App is used by everybody] Automated measurement in the
reporting app.

Figure W4. Source VP Planguage 6.7: here is a simple example of planning a set of Meters.
Meters are a process for measuring in practice, along a single defined Scale of measure. The
Meter statement is usually a rough outline only. The detailed 'test’ planning to be done by
others, such as system testers. Notice we are dealing with short term and long term
measurements here at the same planning specification.

W5. Every solution to a wicked problem is a "one-shot operation”; because there
IS no opportunity to learn by trial-and-error, every attempt counts significantly.

This is another example of a possibly ‘artificial’ problem which is

not inevitably inherent in complex systems.

It might be, but another possibility is that the planner has simply not learned to

decompose ‘big strategies’ into smaller, deliverable and possibly retractable ‘experiments.

| view this widespread inability do decompose big strategies as ‘professional

incompetence’. The incompetence is caused by lack of knowledge, and training, in

decomposition. I

Backroom Frontroom

Notice that decomposing solutions into simple experimental components is fundamental _ Evo Delivery Cycles

to both scientific experiment and to engineering. And there are some very big hairy

| 1
Backroom Frontroom
problems they tackle. Think ‘Space’ and ‘Universe’. _\\ Evo Delivery Cycles
Planguage tries to deal with this problem of decomposition, at length, with constructive _|_s< f@j ™~
/
and teachable methods. [8, Evo. and VP Chapter 5. Decomposition (by value, by E— —
[Org-ware 1=
[Process Improvement |
responsibility) page 363 to p. 415].
Concurrent Engineering, Value Delivery
invisible for internal stakeholder to internal stakeholder's

Imagination, intelligence, experience, motivation will allow professionals to figure out how

to decompose. | had to learn it by practical experience over decades. But most Value Delivery

to External stakeholders

professionals have not learned such methods explicitly. Half of them are in illogical denial
(it ‘cannot’ be composed). So it is time to teach the methods, rather than hope people will

figure it out in a few decades, personally.

| conclude that some problems appear more ‘Wicked’ than they really
are, because people are not trained in decomposition methods, which

would allow us to avoid the ‘every attempt counts significantly’ problem.

W6. Wicked problems do not have an enumerable

(or an exhaustively describable) set of potential solutions,
nor is there a well-described set of permissible operations
that may be incorporated into the plan.

Well, with this point of view, absolutely all real life problems, about people, culture and technology are
‘Wicked’. Again this is an unnecessary and unrealistic expectation (‘exhaustively describable’) to real

world problem solving.
Unrealistic and Unnecessary:

Even in chess, where the solution space is theoretically exhaustively describable using a computer, there is a time limitation, and even a constraint
n real players not using computers in real play. There is too often far too many combinations of play. And this is irrelevant, as long as you either
win, or sometimes ‘draw’. You do not need all possible solutions, you need a ‘pretty good’ or ‘good enough’, on time, to meet your deadline (chess

clock).

Planguage as a planning tool has a large number of tools to support this concept of ‘good enough, on time’. We will explain a few, as a sample of

the toolset.

The first concept is what we call a ‘scalar constraint’. It is used in problem formulation. For example “The room temperature must be at least 15

degrees C”. One Planguage term we use is to call this a Tolerable Level of theValue.

So if at least one potential solution, to the temperature problem are estimated to give us ‘at least 15 degrees C’, then the solution is theoretically
sufficient. There is not need to look for 1,000+ other possible solutions. This logic is built into the Impact Estimation table in Planguage. And you
se it in Figure W4 above. If the level delivered is at or above the Tolerable level, we get a ‘yellow’ light signal. The solution is ‘sufficient’, to meet

minimum requirements.

In the next stage of deciding we have enough solutions, we ask in Planguage is the solutions will potentially (later when applied, ‘really reach the
target levels) reach our Target levels (a formal numeric definition of success and sufficient problem solving). If any set of solutions will reach our
success, sufficiency, levels that there is hotpoint is considering the entire solution space exhaustively. That would cost far more than any benefit.
it would delay delivery of benefits to the real world in good time. it is silly to even hint that this is ‘necessary’, to exhaust the solution space at all.

Can we use common sense here , please?

Deliver

of course the above explanation is a simplification, to show the principles involved. Even fairly simple (not especially Wicked) problems require us
to think about many other factors, when considering if we have explored the solution space sufficiently. For example costs, interaction between
solutions, changes in the stakeholder space, poor implementation of otherwise theoretically good solutions, and much more. | can assure you that

these factors are all systematically considered, and we have tools for them built into basic Planguage.

See for yourself. VP Part 1 to 5 (50 pages, free book sample [8,]) and really most detailed in the larger books [8, 7]

Wicked Problems

I conclude that this ‘Enumerable Solutions’ Wicked Problem characteristic [W6] is artificial,
academic theory, of no practical use in the real world. A waste of time to worry about at all.

The real problem is finding sufficient for defined purpose solutions.

77

-

Learn

Measure <gmmmess

(¥

takeholders

Values

C . o ;
Solutions

W7.1 Every wicked problem

Is essentially unique.

‘Wickedness’: needs an improved

definition.

Again, | am getting a bit tired of the fact that these Wickedness
characteristics are not especially for ‘Wicked’ problems. Maybe |

need to define ‘Wicked’ to my own satisfaction?

One immediate thought is that ‘Wickedness’ is not about the
problem itself. It is the combination of ‘the problem’ and ‘the
methods-we-know-about; and are willing to use to deal with the

problem set’.

And maybe, we need to include, some other factors like

resources, constraints and motivations.

The essential ideas are that it is about our real-life current ability
to solve the problem; not about the problem itself. Maybe Wicked
projects’, or ‘Wicked processes’ (eternal cycles) better capture

what we are dealing with here.

/8

* Range
Cumulative Source of Evidence
Measurement
Mz’:itﬁ;n znt Evidence &
~ cheaply Managing the Lredibility

Uncertainty of

Rough Priority
Decisions

Estimates

Impact Estimation Tables:
% Sums

W7.2 Every wicked problem

Is essentially unique.

“ Uniqueness is the norm. ‘ldentity’ is an impractical

ideal.

Let us bring in ‘obvious common sense’ again.
Surely absolutely every problem we humans deal with is in some senses unique.

So what. Absolutely identical problems are not really very interesting. The implication of W7 is

that if the problem were identical, we might know the solution. So what?

* Range

Cumulative Source of Evidence
Identical problems, that have already been successfully solved, do not guarantee that the Measurement
solution used is known, or knowable to us - in time. An earlier solution may be secret, hidden,
undocumented, or even misunderstood (what the real solution was, as opposed to a publicly M‘aa:i:;‘:ym:‘"t Evidence &
documented solution). m Manag'pg the Credibhity
Uncertainty of

Anyway, nothing is really identical. And we need to find workable solutions if possible anyway.
And it does not really matter if there was another known solution that worked once. it may be
easier for us to just ‘get something to work’, and move on, than to research, at unknown costs

and success of finding it, the ‘real solution used in the past by someone’.

Planguage has no such notion as identical problems, and corresponding solutions. Why waste

time asking if there is an ‘identical problem’, anyway. Focus on solving the problem.

Planguage does have well-articulated concepts of asking for evidence of past values and costs
for any proposed solution [VP Part 2, 4.4]. The solutions and problems are never identical. We

know that. But they do not have to be identical. Just good enough.

We are not trying to be identical, but we are trying to improve the probability that

we will discover, prioritize, use, and measure - pretty good solutions quickly.

79

Rough Priority
Decisions

Estimates

Impact Estimation Tables:
% Sums

W7.3 Every wicked problem is essentially unique.

In conclusion:

‘Unigue problems’ is not a useful
concept.

It is not a clear and useful
distinguishing characteristic of a — & Range N
problem. |

Measurement

Measurement

‘Unigueness of identical problems’is Quickly & .
 cheaply Managing the

) rtainty of
not a helpful concept. il A

Evidence &
Credibility

We need to

fOCUS on fi nd i ng a SOI ution Ro;g:i:ig:;ity Impact Es;r:::;n Tables:
stream,

cumulating to a useful potential set,
of solutions:

80

W8.1 Every wicked problem can be considered to
be a symptom of another problem.

Again, we do not need to bring in ‘Wicked’ at all.

Every problem is a symptom of another problem.

That is just the way things are at any level of

] Business Goals Training Costs User Productivity
complexity. Profit -10% 40%
Market Share 50% 10%
y . Resources 20% 10%
My boss’ solution becomes my problem, and my
i Stakeholder Val. Intuitiveness Find.Fast
solution becomes my teams problem. e T T
User Productivity 10 % 0%
Planguage explicitly acknowledges many related Resources 2% 5%
levels of concern. Product Values | GUI Style Rex Service Guide

Find.Fast -10% 40%
Performance : ___50% 80 %
Resources -~ | 1% 2%

Stakeholder levels.

Planguage ties these related stakeholder levels

Prioritized List Scrum Develop
- : | Service Guid :
together, in a variety of ways. e We measure improvements
B Solution 7 Learn and Repeat

The most interesting method in Planguage is using
Impact Estimation tables to model, quantitatively,
the relationships between any set of problems:
any above, any below, or any sideways stakeholder

levels. 81

W8.2 Every wicked problem can be considered to be a symptom of another problem.
practical application of this was by Kai Gilb at the Transport Company ‘Bring’ [11].

Figure W8. [11] in order to save a large IT Scrum project that failed initially, (the new system
drastically killed sales!). Kai modelled the (obviously, ‘it failed’) ‘wicked system’. He built one Impact
Estimation Table (aka Value Decision Table) for the top level of the Bring (Norwegian Post Office
essentially) organization. This succeeded to resurrect the system, because it mapped the
connection between technology and the higher levels of organizational objectives. The IT

Development team was then instructed to focus on developing things that led to business (sales!)

success. An extremely simplified example is above [For more detail see 11]. Business Goals Training Costs User Productivity
Profit -10% 40%
Business Goals: The top management stakeholder level has problems, like Increase Profit and Market Share 50% 10%
() O,
Market Share. Solutions have been identified (reduce Training Costs, and improve User Resources 20% 10%
Productivity). The expected, estimated, impact of these solutions on the (elsewhere, see Figure W4 — -
takeholder Val. Intuitiveness Find.Fast
for ‘how it looks’) quantified Problems, is given by the numbers estimated (later ‘measured as a Training Costs -10% 50 %
o e 0, O,
result) at their intersection. For example Training Costs reduction, if the solution works as expected, User Productivity 10 % 10%
Resources 2% 5%
promised to move us 50% of the way towards our Market Share objective (the Problem,
Stakeholder Value: These solutions become the the Problem at the next level. The Stakeholder level. .’VOdUCt Values GUI Style Rex Service Guide
Find.Fast -10% 40%
Think of th the 30 or so individual t ort co ies that had b bought and d to
in ese as the r so individual transport companies that had been bought and merge Performanc?; - _ 50% _ 80 %
form Bring. It looks like the Solution named ‘Intuitiveness’ is estimated to contribute 10% of the Reso - : - 2%
progress we need towards the User Productivity problem objective. All objectives are, of course,
quantified, elsewhere. Prioritized List Scrum Develop
|. Service Guide .
D S clution 9 We measure improvements
Product Val.: At the third level (Product Values), ‘Find.Fast’ (one of the Stakeholder solutions, is olution
5 Solution 7 Learn and Repeat

considered an IT System objective (a problem statement).

It looks like ‘Service Guide’ is a solution that is expected to contribute 40% towards the ‘Find.Fast’
Problem solution. And ‘Service Guide’ also is expected to contribute 80% towards a Performance

problem.

Scrum Level: The Service Guide solution will be developed and implemented by the Scrum Team.
Hopefully its impact will be approximately as expected, and will impact several levels up towards the

Business Goals. 82

W9.1

In representing a wicked problem

The existence of a discrepancy

can be explained in numerous ways.
The choice of explanation

determines the nature of the problem's resolution.

This is confusingly written up in the literature [1]. Let me try to

suggest what it means.

If there is more than one way any people can

identify, to solve a problem,

that alone allows you to classify the problem

as ‘wicked’. (W9 says)

The actual choice of solution, to a Wicked

Problem is arbitrary,
and based on the point of view of the planner.

Normal scientific methods of evaluating

33

Concrete strategies look
like this. Solid, ‘do it’ stuff

One single
Performance
Objective
Represented
by the arrow

oal
[April 2021]
15 sec.

Past Tolerable
[Dec. 2014] [April 2021]
50 sec. 40 sec.

Abstract Strategies, look like this
point on the Scale. A notion of how
well, the performance objective

needs to be, to support the higher
level objective. An ‘idea’ missing the
final reality to make it happen.

W9.2

The existence of a discrepancy

In representing a wicked problem

can be explained in numerous ways.

The choice of explanation

determines the nature of the problem's resolution.

In Planguage:

1.any solution that works, delivers value for money, and does
not violate any constraints, is ‘acceptable’. It does not matter
that it is one of many possibilities, or that it is a subjective,

comfortable, choice by an arbitrary planner.

2.we are happy to document the points of view (stakeholders,

sources), and to analyze their ‘credibility’. But, if it is legal

and it works, we will use it.

3.there are many notions of ‘priority’. This in clouds value for
money, cultural power, riskiness, credibility, and pleasing
other people. We can make these priority explicit, or
documented and accepted. The important thing is to aware
of acceptable and official priorities. And to be able to
question and change priorities, because of other priorities

[12].
Conclusion:
This characteristic does not give me any useful insight.

But that could be because | do not understand it yet.

Concrete strategies look
/ like this. Solid, ‘do it’ stuff

One single
Performance
Objective
Represented

Business
Function

Past Tolerable oal by the arrow
[Dec. 2014] [April 2021] [April 2021]
50 sec. 40 sec. 15 sec.

Abstract Strategies, look like this
point on the Scale. A notion of how

well, the performance objective
needs to be, to support the higher
level objective. An ‘idea’ missing the
final reality to make it happen.

W10. The ‘planner’ (designer)

has no ‘right to be wrong'.

My interpretation, based on [1].

A scientist can live with a wrong hypothesis, if the
refutation process leads to greater
knowledge and truth.

A Planner cannot afford the luxury of this scientific
process.

e Planning is not about ‘finding the truth’
Planning is about making thing better for people.
. The planning consequences of a ‘bad’ hypothesis has
real, and possibly very negative, impacts

on real people.

: So, planners cannot ethically have ‘philosophical fun’
with possibly bad hypothesis.

. They have to get their solution (and problem) right
enough to do no damage, and hopefully
right enough, to do good, for people.

85

Not decomposition for this

-bm i

More like this

nnnnnnnn

nnnnnnnnn

W10. The ‘planner’ (designer)

has no ‘right to be wrong’.

Planguage very much supports this process, do-

gooding, rather than truth-finding.

It does so in a large number of large-and-small tools,

principles, methods, and processes.

One of many examples of this is

e the primary Evo process

of trying to deliver the largest possible stream of
value improvement as early and continuously as

possible,

while learning through feedback how to improve on
this process itself.

86

Not decomposition for this

Deploy
Strategy,
increment
value

More like this

Deploy
Strategy,
increment
value

Deploy
Strategy,
increment

Deploy value

Strategy,
increment
value

JISCUSSION

ummary

I think the ‘Wicked Problem” ideas are more misleading

than useful.

There are a wide variety of methods for handling large and
complicated systems in reasonable ways, in addition to the
ones | have presented [5 is constructive], here and in my
books.

Most intelligent professionals that | encounter, do not seem
trained in these methods, and are not aware of the many
tools they can use to tackle complicated (‘Wicked’)
systems.

| think we need to focus our attention on mastering a variety
of methods for delivering stakeholder value. We are
nowhere near good enough, with extremely high failure
rates. Failure rates which should shame any professionals
with responsibility and pride.

The conditions telling us that we are good enough, or much
better are:

- more than 95% of our projects result in the value
improvements we have promised, on time and within
budget. We already have the knowledge to do that. Do you
? [F1]

* no excuses about ‘Wicked Problems’

87

Measure \

Deliver

Learn Stakeholders
=
4
Develop Breakup

Values

Solutions

