
Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com1 51

A General Theory of Design:
‘Planguage’
By Tom Gilb, 2019 Version: 10 June 2019

This is a claim to have, and to share freely, a ‘General Theory of Design’. A ‘Grand Theory’ [1]
possibly.

Part A. The Propositions.
Design Idea (‘A Design’): is a specification, made with the intent, to deliver some
stakeholder values, using limited resources, within specified constraints.

Fundamental Design Ideas of Planguage. [16]

Proposition 1: Design Attempt
A ‘design’ (short form, noun, for ‘design idea’ a Planguage Concept)

attempts to improve the distance

towards a required level of performance*,

from a known performance status level (benchmark),

to a required level of performance (target),

within resource constraints,

and meeting other specified constraints.

* Performance Concept *434 June 5, 2003
System performance is an attribute set that describes measurably ‘how good’ the system
is at delivering effectiveness to its stakeholders.

 Benchmark Target

O———-<———————->—————-> Stakeholder Value X, Scale

 -The Design Gap-

Figure 1a. The ‘design gap’ is an area of potential improvement, in the 'level of a stakeholder
value’, for example reliability on an MTBF Scale. It is the core mission of a ‘design’ to try to fill this
gap. A design is as good as the degree to which it promises, and then in reality, fills the gap, and
thus reaches (or exceeds) the target level, the ‘success level’.

mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com2 51

The above illustration makes use of Planguage keyed icons described below, Part 7 and reference
[7]

O———-< [Design A]———->—————-> Stakeholder Value X, Scale

 -The Design Gap-
 Remaining

 Figure 1b. Design A is useful. It makes interesting, non-trivial progress towards our Target level.
But, it is not sufficient. It can be (a.) re-specified to have greater impact, or (b.) replaced with
another design, with sufficient impact, or (c.) we can add other designs - which increment the
impact to the target, at least.

Categories of Design Success.

Proposition 2. Usefulness.

A design is useful when it

in fact does improve the distance,

towards a required level of performance,

without unacceptable side-effects,

	

	 on other levels of performance,

	 and on budgeted resources.

O———-<[Design A], ∆ [Design B]>_————-> Stakeholder Value X, Scale

Figure 2. Design A, reached about 50% of the way to our Target level. It is useful, but not
sufficient. The incremental addition (∆) of Design B, allows us the reach the Target level, and
beyond “_______>_” (satisficing). The underline (___) symbol expresses the visual degree of
impact

'Design A, ∆ Design B’ is both useful, and sufficient.
 (∆ is a Planguage Icon for ‘Increment’ Concept *307)

Sufficient means ‘reaching or exceeding the Target level, on time’.

 More tersely, A∆B = >100%

 (Design A, with Increment Design B, gives more than 100% of the Target requirement level, so
A∆B is sufficient design. A∆B satisfices.

We can also express these ideas numerically:
X <- A 50% Design A impacts Scale X by 50% (from Benchmark, which is implied 0%)

mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com3 51

(X + ∆A) <- ∆ B 60% Design B increments a further 60% (10% past the implied 100% level of
the Target) on top of the increment we got from Design A (X ∆A).

mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com4 51

Proposition 3. Single Dimensional Success.

A design is ‘narrowly successful’ when it reasonably attains its expected (estimated) level of
performance improvement, without us considering design side-effects (on other performance
requirements, or budgeted resources)

O———-<[Design A], ∆ [Design B]>_————-> Stakeholder Value X, Scale

Figure 3. The set of designs, A +∆B, is ‘narrowly successful’ in single dimension.
In this case we are not making a distinction between ‘the estimated impact’ indicates it might be
successful; and ‘the actual current impact exceeds our targets’ This can be specified.

Proposition 4. Multi-dimensional Success.

A design is ‘reasonably successful’ when it meets or exceeds its expected performance
improvement, while having some useful side effects on other required performance requirement
levels, and having expected-or-lower impact on budgeted resources.

—<——[A] [B] O——-<[Design A] +∆[Design B]>_———-> Stakeholder Value X

 	 O——-<[A] [B]———————->—————-> Value Y

	 	 	

	 	 	 O——-<[A _____]———————->—————-> Value Z

	 	 	 O——-<———————->—————-> Value R

Figure 4: Multi-dimensional success.

1. Design A & B only eat up about ⅔ of the only resource budget, at left

—<——[A] [B] O

2. Design A&B have a nice (≈30%), which is a nice positive side effect.

O——-<[A] [B]———————->—————-> Value Y

3. A alone has a nice positive side effect on value Z

	 O——-<[A _____]———————->—————-> Value Z

4. And neither design A or B has any effect on Value R

	 O——-<———————->—————-> Value R

5. There are no negative side effects, at all, on specified Values.

The ‘O’ is the oval Planguage Keyed Icon for the ‘functionality’ (what system does) which has
attached to it, the value and cost attributes.

Function Concept *069 April 19, 2003 B
A function is ‘what’ a system does.

mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com5 51

A function is a binary concept, and is always expressed in action (‘to do’) terms (for
example, ‘to span a gap’ and ‘to manage a process’).

Proposition 5. Comprehensive Success.
	 A design is ‘very successful’ when it exceeds its expected performance improvement
substantially,

and thus contributes even more (than expected), to meeting specified performance levels on time,

while also having some very useful side-effects, on other required performance requirement
levels,

and also having lower-than-expected impacts on budgeted resources.

This is similar to the situation in Figure 4 above. With the exception of substantially exceeding the
primary target level.

O——-<- [Design A] __->___+∆ [Design B]_____________———-> Stakeholder Value X

Figure 5: Substantially (_Substantially_——->) exceeding primary design target (__->__ attribute.

Proposition 6. Design to Attribute.
A design specification can be creatively, and intentionally, modified,

by a designer,

so that its resulting attributes (performance, resources, constraint satisfaction) are modified to be
more successful

 in satisfying the overall system requirements.

—<——-—[A’] [B'] O——-<[Design A’] +∆ [Design B’]>_———-> Value X

 	 O——-<[A’ ____] [B’ ________]———->—————-> Value Y

	 	 	

	 	 	 O——-<[A’ _________]———————->—————-> Value Z

	 	 	 O——-<———————->—————-> Value R

mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com6 51

Figure 6. In this visualization A’ and B’ are upgraded design specifications of Design A & B. The
result has been estimated/measured to be:

	 a. Less-consuming of budgeted resources (about 50% versus ⅔ for A&B.,

	 b. Having greater impact on Value Y and Value Z, than A&B did

The main idea here is that, underperforming design specifications do not necessarily have to be
replaced by different ones entirely, nor do they have to be ‘suffered’, as ‘all we can design’.
Almost any initial design specification can be re-designed, yet seeing the initial basic concept in
place, but tweaked with additions and changes so that it is both using less resources (‘design to
cost), and delivering greater value (design to value). Or, more generally (values & resources)
‘design to attributes’.

The improved design specifications can be done, in early project stages, after initial estimations
([2] Impact Estimation method) have shown that the values and resource consumption are
unacceptable; and before any serious costing and implementation of the initial design ideas. But,
when we assume an agile incremental implementation of maybe 50 evolutionary value delivery
steps (2% of budget step sizes), then the possibility of re-design at each and every step becomes
an interesting option].

 A well-documented and measured, 10 year industrial experience report of this, is found in the
IBM Federal Systems Division ‘Cleanroom’ experiences [11].

Proposition 7. Design Satisfaction.
Design satisfaction occurs when,

first in theory,

later in practice,

a set of designs meets or exceeds performance design-targets,

within all constraints (resource budgets, and other specified constraints).

—<—[C] [A’] [B'] O——-<[Design A’] +∆[Design B’]>_———-> Value X

 	 O——-<[A’ ____] [B’ ________] [∆ C_______]>—————-> Value Y

	 	 	

	 	 	 O——-<[A’ _________] [+∆ C–––]>—————-> Value Z

	 	 	 O——-<[+∆ C]>—————-> Value R

Figure 7: By adding ‘Design C’, we managed to meet the required levels of Value Y, Z and R.

C was not necessary for meeting Value X, and the total resources of design A’, B’, and C did not
exceed the budget level (left top, —<—[C] [A’] [B'] O). In fact some of the budgeted resource
remains (<—).

mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com7 51

Proposition 8. Design Survival.
Design ‘Survival’ occurs when:

first in-theory, later in-practice,

a set of specified designs, meets all worst-acceptable-case ‘specified performance levels’,

without exceeding any worst-acceptable-case resource budget limitations.

There is a critical difference between ‘design survival’, and ‘design success’. ‘Worst-acceptable-
case’ is an informal reference to what we formally define as a ‘Performance Constraint’: the worst
level of delivering a value that we have decided we will ‘live with’.

‘Design Survival’ means that our ‘design set’ meets all minimum conditions, that are ‘needed to
avoid failure’ of the design set. This ‘minimum’ initially means the system is ‘just barely alive’, ‘not
declared dead’: but by no means thriving and successful.

Value levels can get better, in this ‘survival range’, until we reach a well-defined ‘Target level’,
defined as some kind of ‘success’.

To enable us to determine if we have reached a ‘survival’ condition, of a design set, we need first
to clearly define all ‘constraints’, and these need to be clear, unambiguous, testable, and, for
variables (all values and resources), must be ‘numeric’ [2, 3, 5]. Words like ‘sufficient’, ‘good
enough’, ‘satisfactory’ have no useful precision, or agreed meaning.

This simple logical condition (well-defined constraints), for determining viability of designs, is too
rarely met in my experience. This is, I believe, due to a lack of engineering discipline, taught
academically - and enforced industrially.

mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com8 51

Figure 8A. (Source Planguage Glossary, ‘Requirement *026’ in Competitive Engineering book [2].

There are a large number of constraint concepts in 8A, all defined in the Planguage Glossary [2].

Leaving aside, for the moment, many of the Planguage-defined constraint categories above
(Figure 8A), I would like to initially introduce, a Scalar Constraint, for Performance Requirements.

This is the ‘Performance Constraint’ (diagram above, definition below).

Performance Constraint Concept *438 February 27, 2003, 2019
A performance constraint specifies some upper and lower limits for an elementary scalar
performance attribute.

These limits are either levels at which failure of some kind will be experienced, or levels at
which the survival of the entire system is threatened.

Related Concepts [Fail *098]:
• Survival *440
• Catastrophe *602 ‘.’
• Range *552: See ‘Failure Range’
• Must Do *539: Historical usage only
• Limit *606
• Level *337
• OK *669
• Tolerable *539

Figure 8B: a Planguage Concept Glossary list, of related Performance Constraint types. These exceed the 2
types in the diagram (8A) , ‘Fail’, and ‘Survival’. There are in fact even more, and some clients create their
own levels, to suit local culture (example Intel ‘Landing Zone’ for a Target area).

Keyed Icon [Fail *098]: !

“In context on scalar arrows: ---!--->O---!--->

A Failure Range would use multiple Fail icons: ----!!!!!!--->->

A failure range, just above a catastrophe range, is icon-ed like this:

O…………..…!!!!!!!!!!!!!!!!![——————]>—————>
 .Catastrophe. !Failure! [Tolerable] >Success <- Ranges

Figure 8C. Extract from Planguage Concepts Glossary, regarding the Keyed Icons for the Scalar
Constraint ‘Fail’. ‘…….’ is the Catastrophe Keyed Icon (‘.’), expressed as a range. The Success
range beginning is denoted here with a single ‘>’, but we can also express the ranges using a
series of keyed icons

O…………..…!!!!!!!!!!!!!!!!![-------------]>>>>>>>>>
 .Catastrophe. !Failure! [Tolerable] >Success

mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com9 51

To the right of (!!!!!!!!!!!!!!!!!) the ‘Failure' level area is a ‘survival’ condition, (or area, or range)
known as ‘Tolerable’. This area continues until we reach the minimum Target (we are aiming for a
Target level, but we must avoid ‘non-survival’ levels, and we ‘just survive’ in this unpleasant area
known as ‘Tolerable’ [————-].

 The ‘>’ icon, just above the Tolerable level [——————], is the keyed Icon for the ‘target’ level
called ‘Goal’, which is popularly defined [12] as;

	 ‘we, the project,

can commit to delivering, this level of performance (or ‘value’),

because all necessary conditions are fulfilled”

(Basically the conditions are design technical feasibility, economics, and compatibility with other
commitments. See Planguage Concept Glossary ‘Goal’ for 8 types of structured conditions for
being a Goal)

If is probably worth noting, that in Planguage, the exact specification of a Constraint is not merely
dependent on the above ideas of a numeric level.

But, the more precise modelling of complex systems, requires additional specification detail, such
as the following example:

Security.Hack Identification:
Scale % of hackers caught same day.

Tolerable 99%, [Stakeholder = EU Law, Server Site = Inside EU, Data Type = {Sensitive,
Private}] by 8 June 2025

Goal 99.90%, [Stakeholder = EU Law, Server Site = Inside EU, Data Type = {Sensitive, Private}]
by 8 June 2030

Figure 8D. In this constructed example, the minimum tolerable level (a scalar constraint that the
designs must satisfy) of 99.00%, must be achieved by a deadline (June 8 2025), and must deal
with, and only with, the specified set of conditions [Stakeholder = EU Law, Server Site = Inside
EU, Data Type = {Sensitive, Private}].

mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com10 51

Figure 8 E: Drawn Plicons with a selection of constraint levels and target levels. Source CE [2]

Scale Parameters Allow Deeper Design Analysis
The reader might like to notice the detailed modelling power these scale parameters give, not only
to the precision of a requirement, but as a consequence to any statement about a design which
matches, and supports these parameters. We use this Planguage construction extensively in
quantified evaluation of designs, using the Impact Estimation Table, which itself uses exactly such
parameterized requirements to understand the efficiency of a corresponding design [2, 3, 5, 9].

Figure 8F A clip from an exercise in planning (Masterclass, Warsaw, May 2019). The designs (D4,
D6) are estimated for potential effectiveness, against required values (the 4 ‘Requirements’ on the
left side, Good Health, etc.), which have Scale Parameters. Like ‘[Population]’. In the D6 design
evaluation, of 25% effectiveness, this applies not to all Population elements, but specifically only
to ‘Population = Polish Citizens’ (in Good Health).

mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com11 51

The major design theory point, is that ‘evaluation of design effectiveness’ can be made very
selectively, with respect to a selected set of dimensions, from all dimensions in the total system
model.

This ‘Selective Dimension Design Evaluation’ has several interesting characteristics: Agile
Design and Lean Dynamic Design.
1. We can evaluate 'very critical sets’ of parameters first (before all other valid combinations)

2. We can evaluate which designs, and sub-designs are most effective, for our most-critical

requirements. Selective Designs for Critical Requirements.

3. We can then deploy the most cost-effective designs early, in an incremental sequence

4. This will give best value for ‘resources used to date’.

5. It will build confidence in successful designs, in preparation for scaling up, or for spreading to

other Scale Parameter dimensions (like other cities, other types of people)

6. It will maximize the profitability of the project (best and cheapest designs deployed early, and

resource cutoff is possible, when we reach ‘diminishing returns on investment'.

Big Bang design-thinking goodbye. Welcome ‘Dynamic Design’. Or, as I also like to put it ‘Agile’
as it should be’ (with clear requirements and design) and as Agile was always meant to be by me
[9, the cited (by several Manifesto signers) foundation for the Agile Manifesto [14]: but they forgot
some stuff, like ‘design’].

Three-Dimensional Design Space
Here is a visualization of the design space, into which we can attempt to find suitable designs for
various requirement dimensions. Let me call this ‘3D-Design Thinking’.

1. The Value or resource attribute dimension (usually about 15 of these at top level)

2. The [Scale Parameter] Level dimension. Usually 3 to 7 of there per Scale.

3. The Scale Parameter Attribute level dimension. About 5 to 20 of these usually.

Figure 8G. An illustration of the [Scale Parameter] dimensions. There are 144 theoretical
combinations of single parameters, and we can do 2 or more at a time. Illustration designed by
anna@karlowska.pl 2019-05-28.

mailto:tom@Gilb.com
mailto:anna@karlowska.pl

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com12 51

Proposition 9. ‘Design sensitivity’ to requirement
modification.
The moment any requirement specification is changed***,

in level, timing, or constraint

there is a risk**** that any and all design specifications made successfully*, before that,

are, wholly or partially, invalidated**.

* successfully: the design spec gives a ‘useful’ impact and cost.

** invalidated: might be useless design, and would need improved design-specification, to be
useful again.

***For example, a change of ‘[Scale-parameter] attribute choice’, see below Fig 9 A&B.

**** (a risk) not a certainty of invalidation. The result might even be ‘better’.

Design Specification Impacts are a function of…

Both the estimate of design-attribute impacts, and the actual delivered impacts are a function of:

1. The exact and detailed requirement specification, (values, and resource budgets).

2. The exact design specification interpretation*

1. first ‘in theory’, for estimation of design attributes,

2. then ‘in practice’, the interpretation of the design specification itself, for the process of

implementation.

Design Spec Supply Chain Corruption: The ‘Telephone Game’ Effect (Chinese Whispers, UK)
On Design.
* Different people, might interpret an ambiguous design specification, in different ways. This of
course leads to a different set of impacts of the design they implement. This effect is not
predictable, since even the most perfectly unambiguous design specification, can be
misinterpreted by accident, or wilfully, by one-or-more human intermediaries, between the design
spec and real implementation.

Think of the ‘Butterfly Effect’ analogy.

“In chaos theory, the butterfly effect is the sensitive dependence, on initial conditions, in which a
small change, in one state of a deterministic nonlinear system, can result in large differences, in a
later state.” Wikipedia.

Consequently any change, in the requirements & design specification, risks changing the
estimates, and later, can change the real outcome of values and costs. 

mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com13 51

Figure 9A: With the Requirement (1. Individuals and Interaction) ‘Need’ scale parameter set to
‘New Requirement’ we estimated the impact of the design ’01. Satisfy the Customer’ [14], to
satisfy the Value (moving from Status 100 down to 10 scale units) as ’56%' of the way to the
Wish level. And we estimated the cost on the ‘Budget’ resource specification, as ’35%' of the
Budget.

mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com14 51

Figure 9b: With the Requirement (1. Individuals and Interaction) ‘Need’ scale parameter set to
‘Critical Requirement’ we estimated the impact of the design ’01. Satisfy the Customer’ [14], to
satisfy the Value (moving from Status 100 down to 10 scale units) as ’98%’ of the way to the
Wish level. And we estimated the cost on the ‘Budget’ resource specification, as ’25%’ of the
Budget.

The point with this simple, and ‘constructed’, example, is that even the smallest change in the
set of requirements and design (in this case in requirement scale-parameter attribute
(‘Need =___’) can dramatically affect the estimation (and similarly also the real measured
effects) of the design impacts.

This ‘design sensitivity to spec changes’ is one of many good reasons to plan digitally [8], at least
with a spreadsheet, so that the designer can ‘see’ the overall effects, of a few subtle design
changes, of estimation changes, and of value-delivery-cycle (‘sprint’) measured feedback.

From this point of view, the ‘yellow stickies’ are not serious planning tools for complex systems.
Not even when they ares digitized in an app :) !

mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com15 51

Proposition 10. Scientific Experimental Evaluation of
Multiple Designs
Designs are best evaluated (estimations); sequentially, and incrementally

and then also validated (measurements), sequentially, and incrementally,

so that we can better understand the ‘design cause’ of the system attribute effects.

 Most systems will be made, and kept alive, with a set of discrete and independent designs.

The number of individually implementable designs can be large (100, or many more).

In practice, designers know very little, about most of the many value & cost attributes, of even one
single design.

In general, the 'design attribute knowledge' is simply not collected, recorded, available, and
useful.

In addition, there is the ‘problem of understanding the process of design cumulation’. Well
understood to the engineering culture in general.

Some Principles Design Additivity.
1. We do not know exactly the attribute states of the system, which we are going to add our

single design into.

2. We do not know exactly (or even approximately, even order-of-magnitude) what will be the

additive effect of incrementing a next design to an unknown set of previously-implemented
designs. It can be useful, to try to estimate, anyway, but there is no certainty; only hope.

3. We can measure the state-of-the-attributes of the incremented system, before we implement
our ‘next design’ increment. Measurement is never certain, but it beats estimation.

4. But there is no guarantee that this set of cumulated system attributes, will be a stable set of
attributes, since they can be impacted greatly by external factors, over which we have no
control, and even less predictive knowledge.

5. We can simply add a design increment, and see what happens. Then we can measure the
resulting attributes, and possibly observe if they are stable. And observe (measure) if they
change, when selected external and internal variables are changed.

6. But we have no guarantees, that a subsequent design addition will not do unpredictable and
negative damage to any ‘hard won’ attribute status, observed beforehand.

These principles occur to me as general, obvious, observable, and irrefutable, with few,
uninteresting exceptions. I just brainstormed them 2019-6-9. TsG

Scientific Design Experiment
Now this the same situation both all engineers and all scientists find. And that is why they know
they must make use the scientific experimentation principle:

1. Do ‘design implementation’ one step at a time.

2. Keep all other factors constant.

3.Then, hope that the effects you observe, from the design increment, were really caused by that
design.

mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com16 51

A great practical engineering example of this, is the Cleanroom method [11].

Quinnan describes the process-control-loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries
cost management farther by introducing design-to-cost guidance.

Design, development, and managerial practices are applied in an integrated way to ensure that
software technical management is consistent with cost management. The method consists of
developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either
redesign or by sacrificing 'planned capability.'
When a satisfactory design at cost target is achieved for a single increment, the 'development of
each increment can proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p.

474) [11] IBM SJ 4/80

From the Cleanroom Method Father, Harlan Mills [11], we know that this above design
process was key to achieving years, of large complex military and space software
projects, being on-time and under-budget. So this is a design process well worth noting. It
is also ‘agile, the way it should be’, as I put it.

Robert Quinnan, IBM FSD

mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com17 51

Proposition 11. There is a logical sequence, often
iterative, of analytical design-related processes, which
help us find good enough designs.

Figure 11A. The basic design iteration. Each step is a learning step.It can learn some things about
the design environment, and use that learning to improve the design.

Here is a more-detailed sequence of design related processes. [15C]

1. Environment Scope helps identify stakeholders.

2. Stakeholders have values and priorities

3. Values have many dimensions

4. Stakeholders determine value levels

5. Design hypotheses should be powerful and efficient ideas, for satisfying stakeholder needs

6. Design hypotheses can be evaluated quantitatively, with respect to all quantified objectives

and resources

7. Designs can be decomposed, to find more efficient design subsets, that can be implemented

early

8. Designs can be implemented sequentially, and their value-delivery, and resource costs,

measured

9. Designs that unexpectedly threaten achievement of objectives, or excessive use of resources,

can be removed or modified.

10. Designs that have the best set of effects on objectives, for the least consumption of limited

resources, should generally be selected for early implementation.

11. A design increment can have unacceptable results, in combination with previous increments,

and they, or it, might need removal or modification

12. When all objectives are reached, the process of design is complete: except for possible

optimization of operational resources, by even-better design.

13. When deadlined and budgeted implementation-resources are used up, it might be reasonable

to negotiate additional resources; especially if the incremental values are worth the additional
resources.

14. When deadlined and budgeted implementation-resources are used up, it might be reasonable
to negotiate additional resources; especially if the incremental values are worth the additional
resources.

The paper [15C] gives more detail for each of the 14 design-related processes.

A take-away from this set of design-related processes, is that there is nothing simple, like

 Requirements —> Design

mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com18 51

Proposition 12. The priority of alternative designs can
be determined by a variety of prioritization policies;
most of which are based on objective ‘values for
resources’, with regard to risk. [16]
This subject is complex. But I will summarize it here. The detail, in 60 pages, is in [16C], Value
Planning book chapter on Prioritization.

Principles of Design Prioritization.

1. Design Priority, ‘the selection of the next design to be incremented into the system’, depends
on

 a. The subjective chosen viewpoint (Prioritization Policy) of the stakeholders empowered
to prioritize, and

b. The richness and quality of information about the design, and the corresponding
requirements.

2. The sequential ‘next design’ choice can be computed, at each step, based on the following
digital information:

	 a. The remaining gap in values, to scalar constraints (like ‘Tolerable Levels),

	 b. Then when all Scalar constraints are met, the gap to Targets can be applied.

	 c. The remaining resources, of various types, to Budgeted level

These considerations will alert us to the needs un-met, and resources available. Opportunities
and necessities.

3. Then we can look for available design candidates and consider the following factors:

	 d. The estimated value delivery, to each residual value requirement gap

	 e. The set of resource costs necessary to deliver that design, compared to remaining
resources.

	 f. The set of values-to-resources ratio: relative ‘efficiency’ or ‘profitability’ of the choice.

	 g. The worst-case uncertainty: the lowest value levels, the highest cost levels.

	 h. The credibility level (0.0 to 1.0) based on estimation evidence and source quality.

3. An important idea, different from conventional thinking about priorities [16A], is that design
priorities are not at all fixed or static. They are highly dynamic, subject to re-determination in real
time, based on the many factors above. And the changing nature of the many factors.

A useful analogy is both chess, and our body.

The Chess player must constantly re-prioritize based on the clock, the last move of the opponent,
and the rules of the particular type of chess. They can rarely control things several moves ahead.

Our body is constantly computing dynamic priority for survival, then for success factors, and
decides when and how much to apply designs of food, sleep, liquid, air, sex, temperature; to help
us survive and to thrive.

Design prioritization is essentially the same nature, if it is advanced.

mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com19 51

All this is already automated in the planning tool ValPlan.net (since about 2015).

Figure 12A. The various design options are estimated (about 10 values, and 5 resource
constraints) on an Impact Estimation Table. Together with information on uncertainty and
credibility. They are then sorted left to right by values/resources with respect to risks (uncertainty,
credibility). Leading to a strong suggestion that the design tagged ‘Viability-Solution’ should be
implemented next. It looks like ‘it won by a hair’, based on the worst case value level being a little
bit higher (the I bar lower part).

mailto:tom@Gilb.com
http://ValPlan.net

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com20 51

Figure 12B. The lower half of an Impact Estimation Table, showing all the prioritization data-
source elements. The Uncertainty and credibility (±26%) numbers (x 0.9). The ???? Unknowns.
And at the very bottom, the 4 types of values/costs ratios. Hidden from this view are most of the
about 10 value estimations, but they are summarized in the ‘Sum of Values’ line. Detail on this
Impact Estimation table method, is found in the Competitive engineering book [2].

mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com21 51

Part B. The Planguage Concept Glossary [12]

 Figure B1. The many pointers to a concept.

The Planguage Concept Glossary is the conceptual foundation for my design theory. It pins down
about 800 related concepts, in an integrated way. That is, every concept is completely aware of all
the others. In fact defined concepts are used to define other concepts, more accurately.

I have always consulted dictionaries, and professional standards before defining my concepts.
But they are not of much help in the precision needed, and the completeness needed, for this
task. The standards reek of committee compromise, and the dictionary is of ancient culture.

I do have a few decades of experience, telling me that Planguage is defined by a stable set of
concepts, and useful ones. And most of them I feel are better than what most people re applying.

One major innovation has been my design of the 'Concept definition’, rather than a word or term
definition. Arguing about the ‘meaning of a word’ is a wasteful pursuit. It is the core concepts that
are important to a design theory. So a wide variety of useful pointers can be used to access the
concepts, even numbers, icons, and non-english words, even British ones :) And synonyms too.

The word ‘design’ itself posed challenges, since it is used both as an adjective, 'to design’ and a
noun (‘a design’). So I settled on ‘design idea’ for the noun, as my textbook pointer to the
concept.. But I acknowledge that we use many synonyms for ‘design idea’, such as architecture,
solution, strategy, tactic, idea, and ‘means objective’.

So I find it very helpful to be clear that, whatever we call a ‘design idea’ it is a perceived ‘means to
an end’. Sometimes it is a great ‘teaching relief’ to simply express it graphically: like….

 [THE MEANS TOWARD THE END]
O——<——————————————>—————————> Value X

 End

Figure B2. The ‘ [THE MEANS TOWARD THE END]’ is the Keyed rectangle symbol for a ‘Design Idea’

Which graphically delivers enough effect to Value X Requirement, to reach the Goal (->-) level.

I was quite surprised when, awakened by Ralph Keeney (Value Focused Thinking), I realised that
one person’s design, becomes another person’s requirement.

And that this ‘dual personality’ of a design can persist a number of levels in the
design process chain.

No wonder, Einstein observed: “Perfection of means, and confusion of ends,
seems to characterize our age”

mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com22 51

Part C. The Planning Language, ‘Planguage’ [2, 17]
‘Planguage: an 'engineering' language and process for real software and systems engineering -
not ‘programming' [17A]

Figure C: An overview of artifacts in Planguage. sSource Competitive Engineering [2]

‘Planguage’ is a general-purpose, systems engineering, planning language; for any system,
including software systems. Planguage scope is requirements, design, project management, and
quality control.

It has been developed and practiced for decades (since 1960s). It is open source; anybody can
use it for anything, in whole or part, freely. It is a large integrated ‘toolbox’, containing hundreds of
distinct tools. Any set of these tools can be added to any other set of tools, or any framework. In
particular, it is suitable as a set of ‘practices’ to evolve one’s own method.

Planguage was designed to be interpreted by computers. The earliest automation was done by
Prof. Lech Krzanik in 1978-9, on an Apple II in Forth, and published in his PhD Thesis, as well as
in ‘Principles of Software Engineering’ (1988, ‘Aspect Engine’). Many automated tools have been
made since, by Kai Gilb, and our clients, to support its use. The latest is www.ValPlan.net

 Planguage was also designed to be ‘translated’ easily into any nation’s language. It includes a
graphical representation language, as part of this [17B].

The central distinguishing characteristic of Planguage is it’s ability to directly integrate any
quality (any ‘-ility’, not just reliability) statement quantitatively into the requirements, the
designs, the project management, and the quality-control methods it contains.

 The second distinguishing characteristic of Planguage is that it allows and encourages very
‘rich’ planning specification of the background information for each individual requirement
and design.

http://www.ValPlan.net
mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com23 51

This supports risk management, change management and dynamic prioritization.

 A third distinguishing characteristic is a systematic devotion to clarity and intelligibility of
specification.

Ambiguity, and lack of testable clarity is unacceptable. Even for ‘soft’ characteristics. Metrics,
measurability and frequent numeric feedback about performance and costs is a primary notion.

Planguage, with its project management component. ‘Evo’ (Evolutionary Value Delivery) is
recognized as the ‘grandfather’ of Agile methods. Both in terms of earliest publication (1970s,
1980s [14, see references there], and by Agile method developers (Sutherland, Beck, Cohn and
many others]. The Agile method developers mainly refer to Principles of Software Engineering
Management, 1988 [9B in particular]

The two largest-scale adoptions of Planguage were at HP (Corporate Wide from 1988) [19], and is
at Intel (over 21,000 engineers, over 10 years) [20]. A body of literature exists for this, including
academic studies.

 Other noteworthy adoptions documentable, but often less than Corporate-wide, sometime
lasting only a few years include IBM (Corporate Quality Policy, CMM 4), ICL (1982, top
management, sw product development), Boeing (1990, aircraft engineering QC, Process Error
Prevention method), McDonnell Douglas (aircraft engineering, 1998-90), Citigroup (2003-2006),
Credit Suisse, JP Morgan, Union Bank of Switzerland, Philips Medical Systems, Ericsson (ERA,
1990s), Nokia & Symbian, Microsoft (Test). There are many smaller and lesser known
organizations and single projects for which we have published case studies.

Good sources of detailed Planguage examples, case studies and references to original material is
in the ‘Value Planning’ book [5]

mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com24 51

Part D. The Principles [2], [18]

Principles are short statements, which summarize wisdom. Principles can give strong guidance
towards success and for avoiding failure. Good principles will be useful for a broad range of
problems. Principles are sometimes called Engineering Heuristics [21, Koen]

My own criteria for a principle is that, in addition to being ‘powerful’, they are eternally true. They
have a very long ‘half life’. They are independent of current technology. I ask myself, would this
principle have been valid in Egyptian Pyramid times, and Roman Aqueduct times ? Has this
principle worked for me since 1958- to date? Do I see any reason why the principle would
become invalid in 1,000 years time? If OK, then I would use them.

When I generate a principle, they are just a way of summarizing my own insights, experience and
common sense. Of summarizing what I need to teach others.

But the rate at which I can do this ‘generation of principles’, usually surprises me. Who cares, as
long as they work, and survive.

In this case my principles help to define, and support, my design theory.

• “As to methods, there may be a million and then some, but principles are few.

• The man who grasps principles can successfully select his own methods”.

• -Harrington Emerson

August 2, 1853 September 2, 1931) was an American efficiency engineer and business theorist,[1]
who founded the management consultancy firm Emerson Institute in New York City in 1900.

Reference [15A] ‘Ten Design Principles’, 2006, is perhaps a good summary of design principles for
the purposes of this paper.

• 	 2. The ‘Valid Design’ Principle
• 	 A valid design must contribute to performance goals, within all constraints.

•
• This has the following implications:
• 	 you must be able to prove that a design does not violate any defined constraints;
• 	 you must be able to prove that a design contributes, to at least one yet unfulfilled  

performance requirement;
• 	 the design cannot be justified, if its only contribution has been made by another  

accepted design already;
• a change in the numeric performance level, required for a performance requirement,

can invalidate a previously acceptable design, or make a previously discarded design
valid.

Here is a random selection of the Ten Design Principles.  

mailto:tom@Gilb.com
https://en.wikipedia.org/wiki/Management_consulting
https://en.wikipedia.org/wiki/Business_theorist

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com25 51

Part E. Quantification and Measurement
1.The entire Planguage method [2] is pervasively based on quantification, estimation and
measurement of all variable system factors: i.e. Values, Resources.

2. In particular there is a well-developed tool ‘IET’ for understanding the causal relationship
between any level of design, and any subsequent level of requirements. The Impact Estimation
Table (IET) is the basic method for both estimation, and followup measurement.

3. The IET contains a number of devices to help us document and understand the qualities of
estimates and measures (eg ± uncertainty, evidence, sources, credibility level, Meter)

4. The structure of defined Scales of measure, with any useful number of Scale Parameters (eg
[Task], which each can have any useful number of attributes (eg Task = Start, Work On, Complete,
Retract, Correct) permits extremely-detailed modelling, of complex systems, and consequent
very-detailed levels of resolution ,of measurement of any value. or any resource.

Figure E: The basic structure of an Impact Estimation Table (Source Niels Malotaux, Ryan Shriver)

The basic ‘numerics’ for design of Planguage are:
1. Quantification of all values and resources requirements, using a formally defined Scale of

Measure. This is the foundation for all the other ‘numerics’.

2. Estimation of the impacts expected from any design hypothesis, on any and all quantified
requirements (re-using their define Scale)

mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com26 51

	 a. An estimate of impact along the scale measure, from a Status Level point.

	 b. A calculation of the % of way to a defined Target or Constraint level, on time.

	 c. A ± uncertainty, or spread of experience is estimated.

	 d. A Credibility Level (0.0 None, to 1.0 Perfect) based on evidence for estimate, and the
source.

	 e. Several other derived numbers as in Figure E. above, and more.

3. The notion of a Meter, a defined process of measurement, to be specified in conjunction with
the specified Scale of measure. Any number of Meters, designed with various qualities and costs,
may be pinned as necessary.

4. The notion of numeric feedback, via the Meter measurements, at any Evo value delivery step: a
measurement of reality, which can be compared with estimated impacts. The difference is
analyzed the see if action, such as re-design, is needed [11].

The Gilb Evo Cycle of managing design through numeric data. [17C].

These are the numeric basics, from which we can perform a large number of analytical and
presentation tasks: such as,

1. Detect inconsistencies (like too much budget used already for the designs)

2. Sort best designs into priority sequences, to manage the flow of value deliveries optimally.

3. Present bar diagrams showing cumulated values and costs, with risks and uncertainties

4. Compute the best priority designs, based on a chosen priority policy.

5. Update complex models of estimates based on small changes, to see overall effects.

6. Track cumulative value delivery and cumulative resource uses, to help manage projects.

mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com27 51

7. Understand design risks in depth, for each individual design, and for sets of designs

 Part F. Case studies: Experiential Validation.
In addition to these above measurement (Past E) devices, built into Planguage, we have several
decades of published research, in Industry Publications, MSc, and PhD [22] level dissertations [19
HP, 20 Intel], regarding the observed industrial attributes of Planguage and related processes
(Evo, SQC, CE [2]).

	

One example of method measurement is Terzakis [4, 2013], Intel studying requirements written in
Planguage, and quality controlled using Spec QC, with a reported 233% Engineering productivity
increase. Over 21,000 Intel engineers have been trained in these methods at Intel over 16+ Years.

Figure F. Terzakis, Intel, 2013 [20C] Industrial experience with ‘Planguage for requirements’ (chip
design) and ‘Spec QC’ to measure specification quality before releasing it downstream. Initial
submissions are at least 10X less defective than without using Planguage (same experience
measure at Citigroup), 10 DDP with Planguage vs. over 100 DPP without). But the measurement
process (Spec QC) motivates the requirements team to get 50X better, upstream. One way of
looking at this is that Planguage + SQC is measurably 50x10 = 500x better quality.

Erik Simmons, who led the Intel implementation effort for almost 2 decades has written about his
experiences, the short summary he says [2] ‘This stuff works’. [20B, detailed sides report]

The IEEE (Sarah Gregory, Intel and IEEE) has selected (Best Known Practice) Planguage for its
coming requirements Training Courses. 2019 in process, not released yet.

mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com28 51

The Planguage/Evo/SQC case studies, exceed 100, and are spread out over books [2, 3, 5 and
many more], free papers and slides [http://concepts.gilb.com/file24], and generally available from
www.Gilb.com, or from the Internet. The case studies begin in the late 1960s as conference
papers.

* The following sections: Part G and on are organized by
the topics in the table, so as to argue th case for a
Design Theory in that manner. 

http://concepts.gilb.com/file24
http://www.Gilb.com
mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com29 51

Part G. ‘Means of Representation’ <- Table 3

Planguage Designed for Computer Intelligibility
Planguage has always been developed with computer intelligibility in mind, and many tools to
support it have been made [8].

Concept Glossary
The key to this is the well-developed Planguage Concept Glossary [2] where not only are design
and planning concepts well-defined, and stable; but concepts are ‘well aware’ of all of the other
concepts, both in the Planguage Concept Glossary, and in any project-related, or organizational-
related extensions of the concepts. Absolutely all concepts, and user definitions (design objects
for example) have unique hierarchical ‘Tags’. We mandate (Planguage Rules) reuse of concepts
from a ‘master version’.

Planguage Standards
Planguage has a large number of ‘Standards’ defining it [2], among them ‘Rules’ (for best
practice specification) and Design Processes. In addition there are well-‘defined Entry and Exit
Conditions to all processes. These enable both human understanding consistently, and computer
application automation.

mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com30 51

Plicons: Symbolic Notation
Many Planguage Concepts can be accessed from a defined set of symbolic notation [7].

These are designed in 2 formats: Drawn Icons, and Keyed Icons. Which are reasonably consistent
with each other.

This idea was originally inspired by Blisssymbolics/Semantography (a universal language) but
Plicons are a restricted set, to the domain of planning and designing systems.

These Plicons are used in teaching concepts (very useful for teaching theory of design!), in books
[2] and in the tools [8]. There are numerous examples of keyed plicons used in this paper above.

I have attempted to define Planguage concepts (ideally the whole Planguage) by using the Plicons
as a language. But this needs more work, and has more ‘scientific and theory’ interest, than my
daily practical ‘design project’ use. So it awaits ‘academic development’. But it is potentially a
form of systems mathematical notation. A great subject for a PhD in my opinion.

Digital Planguage Standards
The Planguage tools, particularly ValPlan.net, essentially build a ‘digital project database’
containing a large number of design and requirements specifications, and ‘background
information (like who are the stakeholders, and spec owners for a design).

All Planguage tools, many unofficial and client private tools, necessarily embed the standards of
Planguage. valplan.net to built in detail on the Competitive Engineering [2] framework, and
contains many of the standards, such as Glossary, Rules, Processes, Templates, and Policies
(such as design prioritization) very directly embedded.

The consequence of the ‘digital project database’ is:

1. Any interesting visual and text displays can be generated for project presentation and analysis,
very selectively and quite visually. [3, 5, 8]

2. A great deal of automated quality control of the project design plans is possible.

Some of this is implemented, but we have formally designed (in the ValPlan tool
of course) a great deal more, awaiting our capacity to implement.

EDIT NOTE: it would be possible to illustrate these things using outputs from ValPlan.net but they
are richly illustrated in my books and writings already (and a few examples above).You can of
course got to ValPlan.net and see an overview of some of this right now.

Gibson, Bechtel, ‘graphMetrix’ [10]
In 2015, Fredrik Gibson, a formally trained architect, working at Bechtel in San Francisco,
contacted me. He said he had read my Competitive Engineering [2] book 3 times, and found that
Planguage was a good framework for his building advanced AI tools for the construction industry.

In fact he had already built tools using Planguage ideas, at Bechtel. And he demonstrated them
for me over the internet. But these were for Bechtel internal use.

‘You could have blown me over with a feather’, as they say. This came ‘out of the blue’, quite
unexpected. But it did demonstrate the universal design application of Planguage ideas.

Today, (June 2019) Gibson has built his own startup, graphMetrix, and is far advanced with this
Construction Industry tool building. Kai Gilb is very active in furthering the relationship. Go to the
site [10] and be amazed.

mailto:tom@Gilb.com
http://ValPlan.net
http://valplan.net
http://ValPlan.net

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com31 51

Part H. Constructs*
I suspect this section, Constructs, is covered above in several places: Primarily by referring to the
Planguage Concept Glossary (point 2 Above)

mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com32 51

Part I. Statements of Relationship*
There are a large quantity of relationships defined in Planguage.

Some of these are generic and static: they belong to the Planguage Concept Glossary definitions.
For example ‘Stakeholders have Values’.

Others are specific relationships defined in a projects: for example: The Stakeholder for Value X,
are S1, S2, and S3.

�
Figure I A. Planguage is a combination of defined languages (words, icons, numbers), and
defined engineering processes.  

mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com33 51

Planguage has a rich set of graphical symbols and about 685 formally defined concepts.

It is based on well over 100 basic principles [2, 9, 18].

!
Figure I B. Standards: Planguage is based on well-defined processes, and on well-defined ‘Rules’
for specification.

 These Planguage processes and rules all strongly support the management of quantified qualities
and other values, in relation to budgeted resources. That is what we describe as an engineering
process.

mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com34 51

�

Figure I C. : Planguage has a wide variety of engineering standards.

One interesting detail is that we have clearly distinguished between clarity of engineering
specification and content. For example we have rules that values and qualities must be
expressed quantitatively (clarity). But it also has rules that say these same quantified qualities
should carefully distinguish between a target (value level to achieve), and a constraint (a minimum
level for survival or partial payment) - content.

Planguage also suggests a number of engineering management policies; such as estimation of
the ‘value and cost’ impacts, of all design hypothesis suggestions.

mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com35 51

�

Figure I D: Planguage is tuned to the real-world complexity of many-to-many relationships.

Planguage handles many levels of concern, multiple improvement objectives, for multiple
stakeholders, multiple resource constraints, multiple functions, multiple designs, and multiple
functions all in one integrated planning language.

mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com36 51

�

Figure I E. Planguage operates at different levels of abstraction, a generic Planguage level, a
project level; and both of these have their special components.

mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com37 51

�

Figure I F. Planguage supports a very large number of specific relationships between planning
elements (design, performance, resources, function, and constraints) .

This very pervasive use of pointers to related system components helps in change management,
and risk management. You could go as far as saying that almost all Planguage statements
express some kind of relationship to other components of the system planning.

Som of my friends dislike this diagram, but I love it!

mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com38 51

Here are some examples of relationship parameters in Planguage:

Authority

Source

Owner

Author

Implementer

Impacts

Supports

Supported By

Version

Derived From

Sub-component of

Sub-components {list}

Dependencies

Contract

Test Case

Scenario

Model

And more!
Figure IG. A sample of Planguage relationship parameters.

mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com39 51

Part J. Scope*

The Scope of Planguage is

Any planning of any future.

For any ‘system’.

Real world measured feedback versus plans, in order to control processes or projects towards
objectives, within constraint.

I am unsure as to how to handle thisScope subject. Maybe it is covered in all the above
descriptions.

But, There are very many scope-defining tools in Planguage, as detailed above, and in the
references below, like Value Planning [5]

However I would like to refer to one detail, among many, already described several times: the
[Scale Parameter] definition. It is a powerful tool for defining the exact multidimensional scope of
a requirement, and thus also a design’s impact on the defined scope of that requirement.

A good second place is our extensive analysis, and integration in all requirements, of the vast
stakeholder colony, showing relations to stakeholders explicitly.

mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com40 51

* Theory Components (Gregor, 2006, [1])

mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com41 51

Part K. Causal Explanations*

mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com42 51

Part L. Testable Propositions (Hypothesis)*

mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com43 51

Part M. Prescriptive Statements*

mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com44 51

References
1. WRITING MY NEXT DESIGN SCIENCE RESEARCH MASTERPIECE: BUT HOW DO I MAKE
A THEORETICAL CONTRIBUTION TO DSR?
Samir Chatterjee, PhD  

2. Gilb, T, Competitive Engineering, 2005
This is the primary ‘standard’ for Planguage and related methods (SQC, Evo)
It contains an edited subset (a third of whole book) of the Planguage Concept Glossary [12].

3. GILB, T. “TECHNOSCOPES”, https://www.gilb.com/offers/YYAMFQBH/checkout
Digital book, 2018. 100 Tools for understanding Wicked and Complex Systems.

4. John Terzakis, "The impact of requirements on software quality across three product
generations," [Intel, Industrial Study], Based on Gilb methods (Planguage and SQC)
2013 21st IEEE International Requirements Engineering Conference (RE), Rio de Janeiro,
2013, pp. 284-289.
https://www.thinkmind.org/download.php?articleid=iccgi_2013_3_10_10012

5. Tom Gilb,
“Value Planning. Practical Tools for Clearer Management Communication”
Digital Only Book. 2016-2019, 893 pages, €10
https://www.gilb.com/store/2W2zCX6z

This book is aimed at management planning. It is based on the Planguage standards in
‘Competitive Engineering’ (2005). It contains detailed practical case studies and examples, as
well as over 100 basic planning principles. It also contains more than 200 references to freely
downloadable case studies, papers and slides.

6. Gilb. “SCALE-FREE:
Practical Scaling Methods for Industrial Systems Engineering”
lecture slides, http://concepts.gilb.com/dl892
2016, Considerable citation of Intel experience with Planguage method, by Erik Simmons.

Gilb “Beyond Scaling: Scale-free Principles for Agile Value Delivery - Agile Engineering”
http://www.gilb.com/dl865 (Paper)
(Jan 8 2016). This paper contains considerable detailed systemic explanation, theory, as to
why the Planguage methods are ‘Scale Free’. The scale free theory is backed up by among
others the detailed E Simmons reports in the slides above. As well as the extensive range of
project scales in the case studies.

7. T. Gilb, ‘Plicons: A Graphic Planning Language for Systems Engineering’
(Plicons Paper)
http://www.gilb.com/DL37
This symbolic language is ‘human language’ independent, like musical notes or electrical
symbols. I have actually attempted to define Planguage using these symbols, but this area
needs further rigorous work for elegant development.

8. www.Valplan.net : An advanced planning tool (app) based on Planguage.

https://www.gilb.com/offers/YYAMFQBH/checkout
https://www.thinkmind.org/download.php?articleid=iccgi_2013_3_10_10012
http://www.gilb.com/DL37
http://www.Valplan.net
mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com45 51

This is a publicly available (many tools were made for in house use only by our clients,
example 2 levels of tools by Confirmit AS, 2003-2005), rich, tool based on Planguage as
defined in Competitive Engineering [2] built by Richard Smith (UK).

Planguage was designed by Gilbs, with automation in mind. There have been a series of
automated tools built for decades, starting about 1979 with the ‘Aspect Engine’ (reported in
Gilb, Principles of Software Engineering Management, 1988), constructed by Prof. Lech
Krzanik (Finland), for his PhD Thesis (Krakow, Poland). Kai Gilb built a predecessor tool
from Spreadsheets, used in consulting and training practice, for decades (1993-2016), until
superseded by ‘Needsandmeanscoms’ (now rebranded ValPlan.net) and marked by Kai Gilb.
The tool has undergone about 4 years of field Beta-testing (about 2014-2019) before being
released for commercial application (May 20 2019).

9. Gilb, Principles of Software Engineering Management, 1988
Internet Chapters (text only, no illustrations):
A. pdf ‘Ch 14 POSEM Productivity’ gilb.com/dl560
B. pdf ‘Ch 15 POSEM Deeper Perspectives on Evolutionary delivery gilb.com/
dl561
 This includes a page extra of quotations from Agile Gurus crediting it as
inspiration for them, and it being first.
C. Chapter 13.4 (page 237-241) Open Ended Architecture
D. Chapter 21 ICL Inspection Experiences

It contains about 144 stated principles. The hardcover book is still for sale,
new and used.

10. Frederick Gibson, Graphmetrix. Building Industry Software based on Gilbs Competitive
Engineering/Planguage Concepts, 2019

https://graphmetrix.com/web/
“Our technology links the Owner's Goals to Product Manufacturing, Engineering, Procurement,
Construction and Operations”
Tom Gilb and Kai Gilb are on the Board of Advisors of Graphmetrix.
F. Gibson: Construction innovator for the last 8 years on multi-billion dollar projects at Bechtel,
creator of Bechtel’s iHub knowledge graph platform, principal architect at FGA+A for 14 years and
former startup founder.

11. Cleanroom Case Study
Mills and Quinnan Slides
http://concepts.gilb.com/dl896

Mills, H. 1980. The management of software engineering: part 1: principles of software
engineering. IBM Systems Journal 19, issue 4 (Dec.):414-420.
Direct Copy
http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan

Includes Mills, O’Niell, Linger, Dyer, Quinnan p- 466 on

http://ValPlan.net
https://graphmetrix.com/web/
http://concepts.gilb.com/dl896
http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan
mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com46 51

The major insight and example of this reference is the clear experience that when the architect
(Quinnan) reviews cost and value numbers at every (agile) delivery step, and makes new
architecture decisions to improve costs and values, then this has the overall effect of guaranteeing
on time, under budget high quality (military and space) software deliveries, year after year, without
exception.

This is industrial verification of the theory of incremental design (agile design, if you will). I
reported this experience in [9], and had numerous first hand meetings with Mills and his Cleanroom
team. The method is essentially identical to my Competitive Engineering [2] ‘Evo method. But in
the IBM case, the incremental architecture practice is much better documented.

12. Planguage Concept Glossary:

12a: The private master glossary, updated by Tom Gilb, and periodically shared at gilb.com.
I will share on email request the latest version to serious researchers.
http://www.gilb.com/DL386

12b Paper on the principles of the Concept Glossary.
“A Conceptual Glossary for Systems Engineering:
Define the Concept, don’t quibble about the terms.” Gilb. 2006
http://www.gilb.com/dl565

12c. Planguage Concept Glossary as edited in ‘Competitive Engineering’ [2] book 2005
http://www.gilb.com/DL387
This is about 10% of the detail of the full glossary (12a)

12d. Glossary at gilb.com website
http://concepts.gilb.com/A?structure=Glossary&page_ref_id=126
This was and is an open source collective effort by students and friends. If you want to help
build it up, please volunteer (kai@Gilb.com has organized this)
It is mainly based in the CE book Glossary [2]

12e. Glossary built into the app www.ValPlan.net

The app glossary is at 2 levels, at least
1. A short definition is displayed when the cursor is moved over a defined Planguage

parameter (like ‘Scale’).
2. A full, Competitive Engineering Glossary Concept is displayed on request in a side bar, for

the additional parameters which can be added to a specification window.
3. Many pragmatic concepts are defined or explained, as they come up, for example ‘Roles of

Stakeholders’. But not all of these are official Planguage. Some are defined on the fly as
we expand the app by others than Tom Gilb. But at least they are consistently defined in
the app.

12f. Glossary Build in www.ValPlan.net
ValPlan app can build user-tailored Glossaries in several ways:

mailto:tom@Gilb.com
http://gilb.com
http://www.gilb.com/DL386
http://www.gilb.com/dl565
http://www.gilb.com/DL387
http://gilb.com
http://concepts.gilb.com/A?structure=Glossary&page_ref_id=126
mailto:kai@Gilb.com
http://www.ValPlan.net
http://www.ValPlan.net

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com47 51

a. User additions can be made to additional parameter libraries, such as defined Scales of
Measure.

b. Local Definitions of Terms are automatically recognized and reused in a variety of ways:
for eagle a ‘[Scale Parameter]’ not by a user in Scale definition automatically gives rise to
a field just below the Scale where we can define it. Then in all possible Scale points
(Benchmarks, Targets, Constraints) it is automatically made available for reuse as a list of
Scale Parameters (Like [Cities]) with their defined dimensions (like LA, NY, Oslo) ready
for selection in a phase like ‘Wish 60% [City = Oslo….]’ .

c. Project Glossary: any term defined in project an be put into a project wide glossary.
d. Corporate Glossary: any project glossary term can be collected in a corporate wide

glossary.

13. Source of Free Papers and Downloads on Planguage.
Continuously updated. Usually with a Twitter and Linkedin announcement.
http://concepts.gilb.com/file24

14. 'How Well Does the Agile Manifesto Align with Principles that Lead to Success in Product
Development?’ by Tom Gilb
and
• 'Why Agile Product Development Systematically Fails, and What to Do About It!' by Kai
Gilb

and quite a few links to our other books and papers.
26 Feb 2018 in SyEN

https://www.ppi-int.com/wp-content/uploads/2018/02/SyEN_62.pdf

15. Design Logic Papers. (Gilb)

15A. “Ten Design Principles: Some implications for multidimensional quantification of
design impacts on requirements”, 2006

http://www.gilb.com/dl42

15B. Design Evaluation, Paper
“Design Evaluation: Estimating Multiple Critical Performance and Cost Impacts of Designs”
http://www.gilb.com/dl58

15C. The Logic of Design: Design Process Principles.
 Tom Gilb, 2015, Paper.
http://www.gilb.com/dl857

16. Prioritization Writings
16A. Managing Priorities (paper)
http://www.gilb.com/DL60

http://concepts.gilb.com/file24
https://www.ppi-int.com/wp-content/uploads/2018/02/SyEN_62.pdf
http://www.gilb.com/dl42
http://www.gilb.com/dl58
http://www.gilb.com/dl857
http://www.gilb.com/DL60
mailto:tom@Gilb.com

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com48 51

16B. Choice and Using Planguage:
A wide variety of specification devices and analytical tools. (paper)
http://www.gilb.com/DL48

16C. Prioritization (about 60 pages of the VP book[5])

VP book, Chapter 6 Prioritization
https://www.dropbox.com/sh/34llx1a7ckyagxl/AAA0pDzSxN5WmoP9lOKR0Mpca?dl=0

17. PLanguage (PL)
‘17A. Planguage: an 'engineering' language and process for real software and Systems
engineering - not 'programming'
http://www.gilb.com/dl831

Oct 18 2014 for

Book Chapter: originally intended for or “Software Engineering in the Systems Context” Lawson/
Jacobson eds., but replaced by another paper. Not published yet

17B. Plicons: A Graphic Planning Language for Systems Engineering
Copyright © 2006 by Tom Gilb. .

http://www.gilb.com/DL37

17C. Planguage A Software and Systems Engineering Language, for Evaluating Methods,
and Managing Projects for Zero Failure, and Maximum ‘Value Efficiency’

Keynote , Slides.

International Conference on Software Process and Product Measurement (Mensura)

http://concepts.gilb.com/dl918

18. Principles
18A http://www.gilb.com/dl352

INTRODUCTION: I made this collection primarily by cutting quotations from ‘Competitive
Engineering’. Not least I hope that those who currently enjoy quoting principles on Twitter, will
have better access to these ideas. � I also hope to put a focus on the concept of useful
principles. In my 1988 book, Principles of Software Engineering Management (I suspect one of the
few books with ‘principles’ in the title, that actually has some principles in it?), http://
www.amazon.com/Principles-Software-Engineering-Management-Gilb/dp/0201192462),
someone once counted that I had about 120-140 specific principles. I hope to, one day (soon?
Encourage me), publish that collection on the web. I can tell the reader that when writing CE, I did
not ‘peek’ at the PoSEM principles, hoping to enhance my own creativity. Have fun!
TomINTRODUCTION: I made this collection primarily by cutting quotations from ‘Competitive
Engineering’. Not least I hope that those who currently enjoy quoting principles on Twitter, will
have better access to these ideas. � I also hope to put a focus on the concept of useful
principles. In my 1988 book

n, Principles of Software Engineering Management (I suspect one of the few books with
‘principles’ in the title, that actually has some principles in it?), someone once counted that I had
about 120-140 specific principles. I hope to, one day (soon? Encourage me), publish that
collection on the web. I can tell the reader that when writing CE, I did not ‘peek’ at the PoSEM
principles, hoping to enhance my own creativity. Have fun! Tom

mailto:tom@Gilb.com
http://www.gilb.com/DL48
https://www.dropbox.com/sh/34llx1a7ckyagxl/AAA0pDzSxN5WmoP9lOKR0Mpca?dl=0
http://www.gilb.com/DL37
http://concepts.gilb.com/dl918
http://www.gilb.com/dl352

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com49 51

http://www.gilb.com/DL352

18B. http://www.amazon.com/Principles-Software-Engineering-Management-Gilb/dp/
0201192462

18C http://www.gilb.com/DL352

CE Principles Gilb and Others 8MB.

Extended Collection, Undergraduate basics Principles, Laws of Unreliability, Bill of Rights,
Demarco and Gilb’s Law of Measurability, Risk Principles, Clinical Risks Slides, GILB’S
INTERPRETATION OF ERICSSONS CORPORATE QUALITY

POLICY, Decomposition Principles (from CE 10), 12 Tough Questions,

18D: The Previously cited [5] Value planning book is primarily based on a set of 100 Principles of
Planning. About 7 pages of text for each principle.

18E. The book ‘100 Practical Planning Principles’ is based on exactly the same set of
principles as the value Planning book. https://www.gilb.com/store/4vRbzX6X, but is less than ⅕
the size.

19. HP Evo experiences

A. The Evolutionary Development Model for Software
by Elaine L. May and Barbara A. Zimmer

August 1996 Hewlett-Packard Journal

WWW.Gilb.com/dl67

B. Evolutionary Fusion: A Customer- Oriented Incremental Life Cycle for
Fusion
by Todd A

www.gilb.com/dl35

August 1996 Hewlett-Packard Journal

C. RAPID AND FLEXIBLE PRODUCT DEVELOPMENT: AN ANALYSIS OF
SOFTWARE PROJECTS AT HEWLETT PACKARD AND AGILENT (2001)

by

Sharma Upadhyayula

www.gilb.com/dl65

M.S., Computer Engineering University of South Carolina, 1991

And

Massachusetts Institute of Technology

January 2001

D. Best Practices for Evolutionary Software Development
by

Darren Bronson

http://www.gilb.com/dl825

Submitted for: Master of Business Administration 
and Master of Science in Electrical Engineering and Computer Science

in conjunction with the Leaders for Manufacturing Program

mailto:tom@Gilb.com
http://www.amazon.com/Principles-Software-Engineering-Management-Gilb/dp/0201192462
http://www.amazon.com/Principles-Software-Engineering-Management-Gilb/dp/0201192462
http://www.amazon.com/Principles-Software-Engineering-Management-Gilb/dp/0201192462
http://www.gilb.com/DL352
https://www.gilb.com/store/4vRbzX6X
http://WWW.Gilb.com/dl67
http://www.gilb.com/dl35
http://www.gilb.com/dl65
http://www.gilb.com/dl825

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com50 51

At the Massachusetts Institute of Technology

June 1999

57 pages., 1999.

URI: http//hdl.handle.net/1721.1/80490

E. Note: these references focus on Evo part of Planguage. There is also a body of Literature for
the HP Adoption of our Inspection method (alias Spec QC, in Planguage).

Grady, R. B. and Van Slack, T., “Key Lessons in Achieving Widespread Inspection Use”, IEEE
Software, V. 11, N. 4, Month, 1994, pp. 46-57

http://dl.acm.org/citation.cfm?id=140207 (paid download)

20 . Intel Planguage Experiences
A. 2011 Intel Report on SQC (Gilb methods used here <- E Simmons)

‘The Impact of a Requirements Specification on Software Defects and Other Quality
Indicators’ by john.terzakis (CONFERENCE TALK SLIDES)

http://selab.fbk.eu/re11_download/industry/Terzakis.pdf

B. Intel Experience with Planguage and SQC 2011

Erik Simmons, Intel, 2011, 21st -Century Requirements Engineering: A Pragmatic Guide to Best
Practices, Erik Simmons PNSQC 2011 (Pacific Northwest Software Quality Conference)

http://www.uploads.pnsqc.org/2011/slides/Simmons_21st_Century_Requirements_slides.pdf

C. John Terzakis. 2013 Conference Paper

 "The impact of requirements on software quality across three product generations,"

2013 21st IEEE International Requirements Engineering Conference (RE), Rio de Janeiro, 2013,
pp. 284-289.

https://www.thinkmind.org/download.php?
articleid=iccgi_2013_3_10_10012

21. Billy Koen (Engineering heuristics (= Principles) as fundamental to engineering)

21A: DISCUSSION OF THE METHOD

Conducting the Engineer's Approach to Problem Solving

Dr. Billy Vaughn Koen

Published by Oxford University Press, March, 2003

21B. His faculty Website

http://faculty.engr.utexas.edu/koen

21C: Video Lecture: An Engineer's Quest for Universal Method.

http://faculty.engr.utexas.edu/koen/etc-lecture (link tested 2019-6-10)

21D: “The use of engineering heuristics to cause the best change in a poorly understood situation
within the available resources” (paper, Koen)

mailto:tom@Gilb.com
http://hdl.handle.net/1721.1/80490
http://dl.acm.org/citation.cfm?id=140207
http://selab.fbk.eu/re11_download/industry/Terzakis.pdf
http://www.uploads.pnsqc.org/2011/slides/Simmons_21st_Century_Requirements_slides.pdf
https://www.thinkmind.org/download.php?articleid=iccgi_2013_3_10_10012
https://www.thinkmind.org/download.php?articleid=iccgi_2013_3_10_10012
http://faculty.engr.utexas.edu/koen
http://faculty.engr.utexas.edu/koen/etc-lecture

Page � of � 	 Gilb’s Grand Theory of Design	 tom@Gilb.com51 51

• Proceedings of the ASEE-IEEE Frontiers in Education. 14th Annual
Conference, Philadelphia, PA. 3-5. October 1984. Pages 544–549. The
paper also appeared in Engineering Education. December 1984. Pages
150–155. Also in Spring 1985 in The Bent of Tau Beta Pi. Pages 28–
33. A full page extract is in Gilb (1988, Principles of Software
Engineering Management). An extended and very interesting
comment on the paper’s ideas is in Koen (2003)

• I requested a URL from Koen 100619. I have a paper copy if
necessary at home.

22. L Brodie PhD
Lindsey Brodie, PhD, 2015
Title: “Impact Estimation: IT Priority Decisions”
Middlesex University online publications.
http://eprints.mdx.ac.uk/18408/

23. Planguage Standards in addition to those in Competitive Engineering [2]

23A. Evo Project Initiation Syllabus 120519
‘Evo Project Startup Standards: Day by Day’
http://concepts.gilb.com/dl946

23B. Evo Standard
ww.Gilb.com/dl487
 2012 for DB, Non Confidential
See also [2] CE book for Evo Chapter standards.

http://eprints.mdx.ac.uk/18408/
http://concepts.gilb.com/dl946
mailto:tom@Gilb.com

