
Can we ‘measure’ (Quantify, Test) agility?
Measurement Tools for practitioners.

For the workshop session

THURSDAY 23 May 2019, 10:00 to 13:00
Location: Polna 11, Warsaw

 full agenda of the event yet
 https://sektor3-0.pl/en/festival/agenda/

Tom Gilb

at Katowice

Masterclass, 2018

https://nowy.me/gilb/

https://sektor3-0.pl/en/festival/agenda/

10:00 TO 10:50
Measuring the Agility Process:

how to manage your organizational process.

• Measuring the Agility Process

• Bad idea (Scrum)

• Focussing on ‘Velocity’

• without measuring stakeholder value
delivery and costs

• Better Idea

• Measure delivery of prioritized stakeholder
values

• Measure costs and resources

• not just velocity

• but Capital cost

• Technical Debt

• Delivery of value within deadlines

• Measuring the Agility Process:
• Some Unusual but Useful
• Examples of Measures

•Development Process Measures

•% Planned Values Delivered by Deadline

•Values to Costs Ratio (Efficiency)

•Value Payments

•Operational Process Measures

•Technical Debt

•Maintainability

•Help Requests

•Problem Reports

•Scalability

•Organizational Maturity Measures

•Organizational Learning (DPP. [Raytheon Case below].)

https://resources.collab.net/blogs/agile-metrics-measuring-what-actually-matters

https://resources.collab.net/blogs/agile-metrics-measuring-what-actually-matters

Bad idea (Scrum)

• Focussing on ‘Velocity’

• without measuring stakeholder value delivery and costs

• assuming that code = value

• Why?

• total lack of control of real value delivered

• guaranteed 19% total project failure rate and worse (J.
Sutherland)

Better Ideas

• Measure delivery of prioritized stakeholder values

• Sprints = 2% of budget, Value Delivery steps

• Attempt to maximize priority stakeholder values

• Attempt to minimize value delivery costs

• Look at the System (stakeholders, values, people, hardware,
dataware, maybe even some ‘code’.

• Look at top 10 multiple critical values, at same time

• Contract for payment, reward, keep going depending on
successful value delivery

Measure costs and resources

• not just velocity

• but Capital cost

• Technical Debt

• Delivery of value within multiple prioritized deadlines

Intel Measures of
Gilb Methods 2013

Evo - IKD - 2007 - dag 4 N R Malotaux
Consultancy

!8

Cost of Quality Model Project Cost

Cost of PerformanceCost of Quality

Cost of
NonConformance

Cost of
Conformance

Prevention CostsAppraisal Costs

• Training
• Methodologies
• Tools
• Policy & Procedures
• Planning
• Quality Improvement
 Projects
• Data Gathering &
 Analysis
• Fault Analysis
• Root Cause Analysis
• Quality Reporting

• Reviews
 • System Requirements
 • Design
 • Test Plan
 • Test Procedures
• Walkthroughs
• Inspections
• Testing (First Time)
• IV&V (First Time)
• Audits

• Re-reviews
• Re-tests
• Fixing Defects
 • Implementation
 • Documentation
• Rework
• CCB
• Engineering Changes
• Lab Equipment Costs of
 Retests
• Files Failures Repairs
• Consequences to Name,
 Reputation

• Generation of Plans,
 Documentation
• Development of:
 • Requirements
 • Design
 • Implementation
 • Integration

After Ref. Raytheon in CMU/SEI-95-TR-017

Improvement Initiative

confirm
 that  

it is
 OK

prevention
too late

this is what  

it is
 all about

learn!

Evo - IKD - 2007 - dag 4 N R Malotaux
Consultancy

!9

Cost of Quality

0%

10%

20%

30%

40%

50%

60%

1988 1989 1990 1991 1992 1993 1994 1995

%
 P

ro
je

ct
 C

o
st

Ref. Raytheon in CMU/SEI-95-TR-017

Start of Effort

Bad Process
Change

Individual
Learning

Effect

% Cost of Conformance

% Cost of NonConformance

% Cost of Quality

Cost of
Doing it Right

Cost of
Doing it Wrong

Cost of
Quality

Raytheon used the Defect Prevention Process
To Incrementally change and improve their organization

Evo - IKD - 2007 - dag 4 N R Malotaux
Consultancy

!10

Productivity gains

0%

10%

20%

30%

40%

50%

60%

1988 1989 1990 1991 1992 1993 1994 1995

%
 P

ro
je

ct
 C

os
t

Ref. Raytheon in CMU/SEI-95-TR-017

Start of Effort

Cost of
Doing it Right

Cost of
Doing it Wrong

Cost of
Quality

10%

20%

30%

40%

50%

60%

70%

80%

Factor 2.3

1

Software Engineering Productivity Study

An example of setting objectives for process improvement
 with 70% software labor development content in products

.

Non-Confidential
Main beam from a macrocell base station antenna

The problem

• Great Market Growth
Opportunities

• Too Few Software Engineers

• Solution:
– Increase productivity of

existing engineers

2

 The One Page Top Management Summary 

(after 2 weeks planning)

The Dominant Goal
Improve Software Productivity in R PROJECT by 2X by year

20XX

Dominant (META) Strategies
Continual Improvement (PDSA Cycles)
.DPP: Defect Prevention Process
.EVO: Evolutionary Project Management

Long Term Goal [Next 3 Years+]
DPP/EVO, Master them and Spread them on priority basis.

Short Term Goal [Next Weeks]
DPP [RS?]
EVO [Package C ?]

Decision: {Go, Fund, Support}

3

The Ericsson Quality Policy:

"every company shall define
performance indicators (which) ..
–reflect customer satisfaction,

– internal efficiency
–and business results.

• The performance indicators are used in
controlling the operation."

• Quality Policy [4.1.3]

4

Levels of Objectives.

– Fundamental Objectives
– Strategic Objectives
– Means Objectives:
–
– Organizational Activity Areas.

• Pre-study.
• Feasibility Study.
• Execution.
• Conclusion.

– Generic Constraints
• Political Practical
• Design Strategy Formulation

Constraints
• Quality of Organization Constraints
• Cost/Time/Resource Constraints

4

Keeney’s: Levels of objectives.
– 1. Fundamental Objectives

• (above us)
– 2. Generic Constraints

• (our given framework)
• Political Practical
• Design Strategy Formulation

Constraints
• Quality of Organization

Constraints
• Cost/Time/Resource Constraints

– 3. Strategic Objectives
• (objectives at our level)

– 4. Means Objectives:
• (supporting our objectives)

Constraints

5

The Strategic Objectives (CTO level)

– Support
• the Fundamental Objectives

(Profit, survival)
• Software Productivity:

– Lines of Code Generation Ability
• Lead-Time:
• Predictability.
• TTMP: Predictability of

Time To Market:
• Product Attributes:
• Customer Satisfaction:
• Profitability:

6

‘Means’ Objectives:

– Support the Strategic Objectives
• Complaints:
• Feature Production:
• Rework Costs:
• Installation Ability:
• Service Costs:
• Training Costs:
• Specification Defectiveness:
• Specification Quality:
• Improvement ROI:

"Let no man turn aside,
ever so slightly,

from the broad path of honour,
on the plausible pretence

 that he is justified by the goodness
 of his end.

All good ends can be worked out
 by good means." 
Charles Dickens

http://en.wikipedia.org/wiki/Charles_Dickens

7

Strategies: (total brainstormed list)  
 ‘Ends for delivering Strategic Objectives’

–Evo [Product development]:
–DPP [Product Development Process]:
Defect Prevention Process.
–Inspection?
–Motivation.Stress-Management-AOL
–Motivation.Carrot
–DBS
–Automated Code Generation
–Requirement -Tracability
–Competence Management
–Delete-Unnecessary -Documents
–Manager Reward:?
–Team Ownership:?
–Manager Ownership:?

•Training:?
•Clear Common Objectives:?
•Application Engineering area:
•Brainstormed List (not
evaluated or prioritized yet)?
•Requirements Engineering:
•Brainstormed Suggestions?
•Engineering Planning:
•Process Best Practices:
•Brainstormed Suggestions?
•Push Button Deployment:
•Architecture Best Practices:
•Stabilization:
•World-wide Co-operation?

Principles for Prioritizing Strategies

• They are well-defined
– Not vague

• The have some relevant
predictable numeric experience
– On main effects
– Side effects
– Costs
– Risks - Uncertainty

• Not huge spread of experience

9

“Software Productivity” =  

Lines of Code Generation Ability
–“Software Engineering net production in relation to corresponding costs.”
–Ambition: Net lines of code successfully produced per total working hours needed to produce them. A measure of the
– efficiency ('effective production/cost of production') of the organization in using its software staff.

•Scale: [Defined Volume, kNCSS or kPlex] per Software Development Work-Hour.
•Software Development: Defined:

•Productivity calculations include Work-Hours for software engineering used in the The Company Execution Phase
• Meter : <PQT Database and EPOS, CPAC>

–Comment: we know that real software productivity is not measured by lines of code, but we have consciously chosen this
measure as it is available in our current culture. AB, PK, TG.
–P1: Past [1997, ERA/AR] < to be calculated when data available Volume/Work Hours>

• Past-R PROJECT: Past [1997, R PROJECT] < to be calculated when data available, available Volume/Work Hours >
• Past-EEI: Past [1997, Ireland, Plex] ___??__ kPLEX / Work-Hour.
•<add more like LuleÂ>
•Fail [end 1998, R PROJECT, Same Reliability] 1.5 x Past-R PROJECT  
 <- R PROJECT AS 3 c " by 50%".

–"50% better useful code productivity in 1.5 years overall"
•Same Reliability: State: The Software Fault Density is not worse than with comparable productivity. Use official The
Company Software Fault Density measures <- 1997 R PROJECT Balanced Scorecard (PA3).
•Goal [Year=2000, R PROJECT, Same Reliability] 2 x Past-R PROJECT,

– [Year=2005, RPL, Same Reliability] 10?? x Past-R PROJECT
•Wish [Long term, vs. D pack.] 10 x Past-R PROJECT "times higher productivity" <- R PROJECT 96 1.1 c
•Wish [undefined time frame] 1.5 x Past-R PROJECT <- R PROJECT AS 3 c " by 50%"

–Comment: May 13 1997 1600, We have worked a lot on the Software Productivity objectives (all day) and are happy that it is
in pretty good shape. But we recognize that it needs more exposure to other people.

Scale: [Defined Volume,
kNCSS or kPlex] per
Software Development
Work-Hour.

10

Lead-Time:
• Lead-Time:

– "Months for major Packages"
• Ambition: decrease months duration

between major Base Station package
release.

• Scale: Months from TG0, to
successful first use for
– major work station package.
– Note: let us make a better

definition. TG
• Past [C Package, 1996?] 20?

Months?? <-guess tg
• Goal [D-package] 18 months <- guess

tg
• Goal [E-package and later] 10.8

Months <- R PROJECT 96 1.1 a "40%
> D"

• Goal [Generally] ??? <- R PROJECT
AS 3a
– "10% Lead-Time reduction

compared to any benchmark".

11

Predictability of Time To Market:
• TTMP: Predictability of Time To Market:

– Ambition: From Ideas created to customers can use
it. Our ability to meet agreed specified customer
and self-determined targets.

– Scale: % overrun of actual
Project Time compared to
planned Project Time

– Project Time: Defined: time from the date of Toll-Gate
0 passed, or other Defined Start Event, 
to, the Planned- or Actually- delivered Date of All
[Specified Requirements], and any set of agreed
requirements.

– Specified Requirements: Defined: written approved
Quality requirements for products with respect to
Planned levels and qualifiers [when, where, conditions]. 
And, other requirements such as function, constraints and
costs.

– Meter: Productivity Project or Process Owner will collect data
from all projects, or make estimates and put them in the
Productivity Database for reporting this number.

– Past [1994, A-package] < 50% to 100%> <- Palli K. guess.  
[1994, B-package] 80% ?? <- Urban Fagerstedt and Palli K.
guess

– Record [IBM Federal Systems Division, 1976-80] 0%  
<- RDM 9.0 quoting Harlan Mills in IBM SJ 4-80

– “all projects on time and under budget”
– [Raytheon Defense Electronics, 1992-5] 0% <- RDE SEI

Report 1995 Predictability.
– Fail [All future projects, from 1999] 5% or less <- discussion

level TG
– Goal [All future projects, from 1999] 0% or less <- discussion

level TG

12

Product Attributes:

• Product Attributes:
– “Keeping Product Promises.”
– Ambition: Ability to meet or beat

agreed targets, both cost, time
and quality. (except TTMP itself,
see above)

• Scale: % +/- deviation from
[defined agreed attributes with
projects].

• Past [1990 to 1997, OUR DIVISION]
at least 100% ???
– <- Guess. Not all clearly defined

and differences not
• tracked. TSG

• Goal [Year=2000, R PROJECT] near
0% negative deviation <- TsG for
discussion.

13

Customer Satisfaction

Customer Satisfaction:
 “Customer Opinion of

Us”
Scale: average survey

result on scale
 of 1 to 6 (best)

Meter: The Company
Customer
Satisfaction Survey

Past [1997] 4
Goal [1998-9?] 5 <- R

PROJECT 96 1.1 b

14

Profitability

• Profitability:
– “Return on Investment.”

– Ambition: Degree of
saleable product ready for
installation.

– Scale: Money Value of
Gross Income derived by
• [All R PROJECT Production

OR
• defined products] for
• [Product Lifetime OR
• a defined time period]

– Goal: <we did not complete
this>

15

‘Means Objectives’ Samples 
Same definition process as

higher level objectives

16

Means Objectives

• “support Strategic Objectives”

• Summary:
– 'Means Objectives' are

• not our major Strategic Objectives (above),
• but each one represents areas which if improved

– will normally help us achieve our Strategic Objectives.

– Means Objectives have a lower priority than
Strategic Objectives.

– They must never be ‘worked towards’
• to the point where they reduce our ability to meet

Strategic Objectives.

17

Complaints

Complaints:
 "Customer complaint rate to us"

Ambition:
Means Goal: for Customer Satisfaction

(Strategic).
Scale: number of complaints per customer

in [defined time into <operation>]

Past [Syracuse Project , 1997] ?? <bad> <-
ML

Goal [Long term, software component, in
first 6 months in Operation] zero
complaints <- R PROJECT 96 1.1 b

 "zero complaints on software features”
Impacts: <one or more strategic

objectives>

18

Feature Production:

• Feature Production:
• "ability to deliver new features to

customers"
– Ambition: reverse our decreasing

ability to deliver new features <- R
PROJECT AS 1.1

– Scale: Number of new prioritized
<Features> delivered successfully to
customer per year per software
development engineer.

– Too Little: Past [1997] ?? "estimate
needed, maybe even definition of
feature"

– Goal [1998-onwards] Too Little + 30%
annually?? <-For discussion purposes
TsG.

– "we need to drastically change our ability
to effectively develop SW" <- R
PROJECT AS 1.1

19

Improvement ROI:

Improvement ROI:
 "Engineering Process Improvement Profitability"
Ambition: Order of magnitude return on investment in process

improvement.
Scale:
 The average [annual OR defined time term] Return

on Investment in Continuous Improvement as a
ratio of [Engineering Hours OR Money]

Note: The point of having this objective is to remind us to think in
terms of real results for our process improvement effort, and to
remind us to prioritize efforts which give high ROI. Finally, to
compare our results to others. <-TsG

Record
 [Shell NL, Texas Instruments , Inspections] 30:1 <-

Independently published papers TsG

Past
 [IBM RTP, 1995, DPP Process] 13:1 <- Robert Mays, Wash DC

test conference slides TsG  
 [Raytheon, 1993-5, Inspection & DPP] $7.70:1 <- RDE Report

page 51 ($4.48 M$0.58M) Includes detail on how calculated. PK
has copy. 

[IBM STL, early 1990's] Average 1100% ROI (11:1) <- IBM Secrets
pp32. PK has copy. NB Conservative estimate. See Note IBM ROI
below.

11:00 TO 11:50
Measuring the Results of Agility in your Product:

How to deal with stakeholder values and qualities.

• Stakeholders

• Values

• Resources

• Constraints

• Priorities (Dynamic)

• Decomposition

• Risks

Stakeholders
Definition 

A stakeholder is any
person, group or object,
which has some direct or
indirect interest in a
defined system.
Stakeholders can exercise control over both the
immediate system operational characteristics, as well as
over long-term system lifecycle considerations (such as
portability, lifecycle costs, environmental considerations,
and decommissioning of the system). [4]
Notice:
‘or object’.
This includes laws, regulations, plans, policies, customs,
culture, standards. Inanimate. you cannot ask them or
discuss with them. But you can analyze them, their
priority, the degree of relevance. They can determine if
your system is illegal, or acceptable. Determine success
or failure.

Gilb’s Stakeholder Principles.

1. Some stakeholders are more critical to your system than others.

2. Some stakeholder needs are more critical to your system than others.

3. Stakeholders are undisciplined: they may not know all their needs, or know them precisely, or know their
value. But they can be analyzed, coached, and helped to get the best possible deal.

4. Stakeholders may be inaccessible, unwilling, inanimate, oppositional, and worse: but we need to deal with
them intelligently.

5. Stakeholders might well ask for the wrong thing, a ‘means’ rather than their real ‘ends’. But they can be
guided to understand that. Or their requests can be interpreted in their own real best interests.

6. Stakeholders do not want to wait years, get delays, invest shitloads of money, and then little or no value.
They want as much ‘value improvement’ of their current situation, as they can get, as fast as they can get it.
For as little cost as possible,

7. Stakeholders cannot have any realistic idea of what their needs and demands will cost to satisfy. So their
adopted requirements need to be based on value for costs, not on value alone. Delivering small increments,
based on high value-to-cost, is one smart way to deal with this.

8. If you think you have found ‘all critical stakeholders’, I think you should assume there is at least one more,
and when you find that one, …. They will emerge, and they are not all there at the beginning.

9. If you think you have found all critical needs of a stakeholder, there will always be at least one more need
‘hiding’.

10. If you do not understand, and act on the principles above; you might blame your failure on ‘system
complexity’, and the unexpected and wicked problems. But in reality, it is your own fault and responsibility;
deal with it - up front and constantly.

•SOURCE, 2016 Paper
“Stakeholder Power:The Key to Project Failure or Success”
including 10 Stakeholder Principles
http://concepts.gilb.com/dl880 (COPY FEB 2017)
http://concepts.gilb.com/dl872 (FEB 2016)

 34

Stakeholder Attributes

• Some attributes of
stakeholders

• which can be defined in
more detail,

• and can be quantified

• status estimated

• and potentially improved

 35

Stakeholder Costs

!36

!37

Adding Strategies for Improving Stakeholder Attributes

Stakeholder Feedback Types
• Stakeholders have a

variety of ways to
feedback, react, and
influence the process

• gradual measurement of
value delivered versus
value expected

• complaints

• ‘Sensemaker’ ™
feedback

https://www.nngroup.com/articles/ux-research-cheat-sheet/ 38

Values
What Stakeholders Desire

• The Artificial Intelligence
Stakeholders, above

• Have these values for AI
Sytems

• among many other values

Startup Week: Process

 40

An Agile Project Startup Week
Gilb’s Mythodology Column

www.gilb.com/dl568

http://www.gilb.com/dl568

Startup Week Purposes

 41

Evo Startup Standard, Jan 12 2013 http://www.gilb.com/dl562

http://www.gilb.com/dl562

An advanced ‘Design Sprint’ for grownups.
• The Startup Week*. Agile Value Delivery **
• Monday

– Quantify critical stakeholder values
• Tuesday

– Identify top 10 strategies or designs to each the values
• Wednesday

– Rate strategies versus values and costs, and risks on an
Impact Table

• Thursday
– Decompose best strategy, and rate value/costs of details to

choose next week’s value delivery
• Friday

– meet with managers to get OK
• Next week (and every week later)

– deliver some measurable stakeholder value
– measure results, costs
– learn about problems early
– adjust designs for future

• * source is ‘Polish Export’ examples in ‘Innovative Creativity’
book (gilb.com) chapter 9. Done over 2 days with 60 people in
20 teams. Warsaw, at Startberry (startup Incubator)

• ** http://www.gilb.com/dl812, gilb.com/dl568
• DL812: extensive slides, DL568: short paper, see ‘Presenter

Notes ‘in this slide.

 42

http://gilb.com
http://www.gilb.com/dl812
http://gilb.com/dl568

Project Startup versus Design Sprint

• Engineering Based
• Systems Applicable (UX)
• All Values Quantified
• Risk Mgt (±.Cred, Prty)
• Scale-Free
• Decades of Experience
• Research Published: HP
• Many publ.Case Studies
• AI Prioritization Val/€
• Design estimates V&€
• Actual incr. measures
• Digital Planning Long Term 43

• Programming Craft
• Software and UI Limited
• Values Not Quantified
• No Explicit Risk Mgt.
• Not proven large scale
• Hot new idea
• No known research
• Can’t find cases, yet
• Role player decides pri.
• No estimates
• Dodgy Prototype
• Yellow Sticky Culture

Planguage
Evo

gilb.com/dl568 See Presenter Notes for references

Design Sprint ‘Claimed Benefits’ <-Jake
(of course YOU are skeptical, and know this.)

8 incredible Design Sprint benefits for your business
Here are the 8 amazing Design Sprint benefits you get in your business by employing this methodology of Google:
1. Design Sprint helps you save time and money
Design Sprint is designed to work quickly and intensely to get a solution to a business problem through design.
By using Design Sprint you reduce the time you spend on the design process and the
process of defining your product, going from months to days
This is a great benefit because you save a lot of time and money and allows you to define a validation plan based on the
feedback from your users.
2. Design Sprint Quickly Reduces Product Development Cycles
Derived from the above, development times are dramatically reduced, as Design Sprint work on a connecting problem with the
solution. This helps you to test whether an idea works or not, without developing products with very long production cycles
(Idea, Design, Approve, Develop, Launch and Validate).
With the Design Sprint you become a more agile organization
Before investing in the development of your product or a new functionality that requires an expensive process you can
dedicate 5 days so that the team understands the problem that your company is facing, designing the solutions, creating a
functional prototype and validating your ideas in a matter of hours. Becoming a more agile organization.
3. Real feedback with Design Sprint
Knowing the feedback of your product is fundamental to developing successful products. Many times when we get this
information is when we have finished the project.
With the Design Sprint, you know firsthand and quickly the real feedback from your
customers. This feedback is crucial because it helps you improve your product or service at
the same time you design it
On the other hand, your team is actively working on the process, as the production cycle involves different sources of
information within your organization.
4. Validate your business ideas with Design Sprint
Without validation, it is difficult for ideas and products to work. That is precisely what you will do on the last day of the Sprint in
a very concrete way.
Through Design Sprint you can design the validation plan of the business idea or
functionality of your product
Being clear how the process will be, the time you are going to invest and the type of results with which we can continue the
process of transferring your product to the market.
5. Generates business and innovation.
Design Sprint gives your team a way of working to solve complex problems in a week.
So you can achieve a new approach to the project that would have taken months, even
years
6. Align expectations with your team
Making all departments share knowledge, needs, and strategy so that the result is a solution that satisfies and meets needs.
Being able to make your step to deploy is a cycle of continuous product integration
7. Help you measure
The sprint design uses measurement processes in the different phases that the methodology uses.
What allows you to measure the results obtained at the end of the process, as well as the
impact of the same on your business and on the equipment and surplus generated during
the process

8. An agile and fast methodology that you can apply to your business
Once you internalize the Design Sprint methodology you can use it and coordinate it with other processes that you already
have established in your project or business.
Typically, the first time you make a Sprint Design is tiring and difficult.
We recommend that you count with the help of a Sprint Master Certified to achieve these
incredible results

http://www.letshackity.com/en/design-sprint-benefits-business-innovation/

Skeptical Observations <-TSG

• These claims are made by a seller of ‘Design Sprint’ training and
certification service (letshackity.com)

• Most of the terms and concepts have poor definition, and are highly
ambiguous (examples)
• Design, Align Expectations, Investing (Product Dev), Complex

Problems, measure the results, agile methodology, validation, and
many more.

• Not one single number is offered to indicate the magnitude of
improvements

• No clear baseline (who is going to get improved) is indicated
• No references to real case studies with results, costs, problems
• No comparison with any other known methods
• No links or references to anything
• Lots of causal assertions, none proven
• “This feedback is crucial because it helps you improve your product

or service at the same time you design it”
• No indication or example of the types and magnitude of the costs for

the individual, the project, and the organization for learning and
maintaining the Design Sprint method

• No glowing references from real people or customers
• No information about how things went after the first week, to tell us

how good or bad the week was.
• Constant implication: Google is successful, therefore this method is

good

https://en.wikipedia.org/wiki/Google
http://letshackity.com

1.2 pictures

Example of Top Ten Critical Objectives
(Real Set, Confirmit)

Some Data
Attributes

Data Quality Data
Accessibility Data Costs Data Trust-

worthiness
Data

Correlation

Correctness Security Acquisition Transparency Sensitivity

Updatedness Privacy Maintenance Safety Veracity

Error
Detection Accessibility Retirement Trustworthi-

ness Correlation

Error
correction

Quality
Control

Cultural

Acceptability

Accuracy Recover-
ability

Legal
Admissability

Intelligibiity

This is Step 1 in Data Engineering
Identification of Critical Values and Costs

You might want to do a Step 0,

The identification of your Stakeholders
(Example EU -> GDPR - Privacy

!46

THE QUANTIFICATION PRINCIPLE
Performance objectives,

ranging from core objectives to ‘any’ detailed performance objective
– where ‘getting better-and-better in time’ is implied –

can always be defined using ‘scales of measure’.

 47

© Tom@Gilb.com

Top 10 Large Bank Project Requirements 
Quantifying the most-critical project objectives on day 1, on 1 page

P&L-Consistency&T P&L: Scale: total adjustments btw Flash/Predict and
Actual (T+1) signed off P&L. per day. Past 60 Goal: 15

Speed-To-Deliver: Scale: average Calendar days needed from New Idea
Approved until Idea Operational, for given Tasks, on given Markets.  
Past [2009, Market = EURex, Task =Bond Execution] 2-3 months ?  
Goal [Deadline =End 20xz, Market = EURex, Task =Bond Execution] 5 days

Operational-Control: Scale: % of trades per day, where the calculated
economic difference between OUR CO and Marketplace/Clients, is less than “1
Yen”(or equivalent).  
Past [April 20xx] 10% change this to 90% NH Goal [Dec. 20xy] 100%

Operational-Control.Consistent: Scale: % of defined [Trades] failing full STP
across the transaction cycle. Past [April 20xx, Trades=Voice Trades] 95%  
Past [April 20xx, Trades=eTrades] 93%  
Goal [April 20xz, Trades=Voice Trades] <95 ± 2%>  
Goal [April 20xz, Trades=eTrades] 98.5 ± 0.5 %

Operational-Control.Timely.End&OvernightP&L Scale: number of times, per
quarter, the P&L information is not delivered timely to the defined [Bach-Run].  
Past [April 20xx, Batch-Run=Overnight] 1 Goal [Dec. 20xy, Batch-
Run=Overnight] <0.5> Past [April 20xx, Batch-Run= T+1] 1 Goal [Dec. 20xy,
Batch-Run=End-Of-Day, Delay<1hour] 1
Operational-Control.Timely.IntradayP&L Scale: number of times per day the
intraday P&L process is delayed more than 0.5 sec.
Operational-Control.Timely.Trade-Bookings Scale: number of trades per day
that are not booked on trade date. Past [April 20xx] 20 ?

Front-Office-Trade-Management-Efficiency Scale: Time from Ticket Launch to
trade updating real-time risk view  
Past [20xx, Function = Risk Mgt, Region = Global] ~ 80s +/- 45s ??  
Goal [End 20xz, Function = Risk Mgt, Region = Global] ~ 50% better?
Managing Risk – Accurate – Consolidated – Real Time

Risk.Cross-Product Scale: % of financial products that risk metrics can be
displayed in a single position blotter in a way appropriate for the trader (i.e. –
around a benchmark vs. across the curve).  
Past [April 20xx] 0% 95%. Goal [Dec. 20xy] 100%
Risk.Low-latency Scale: number of times per day the intraday risk metrics is
delayed by more than 0.5 sec. Past [April 20xx, NA] 1% Past [April 20xx,
EMEA] ??% Past [April 20xx, AP] 100% Goal [Dec. 20xy] 0%
Risk.Accuracy
Risk. user-configurable Scale: ??? pretty binary – feature is there or not – how
do we represent?  
Past [April 20xx] 1% Goal [Dec. 20xy] 0%
Operational Cost Efficiency Scale: <Increased efficiency (Straight through
processing STP Rates)>
Cost-Per-Trade Scale: % reduction in Cost-Per-Trade  
Goal (EOY 20xy, cost type = I 1 – REGION = ALL) Reduce cost by 60% (BW)  
Goal (EOY 20xy, cost type = I 2 – REGION = ALL) Reduce cost by x %  
Goal (EOY 20xy, cost type = E1 – REGION = ALL) Reduce cost by x %  
Goal (EOY 20xy, cost type = E 2 – REGION = ALL) Reduce cost by 100%  
Goal (EOY 20xy, cost type = E 3 – REGION = ALL) Reduce cost by x %

June 8, 2015
 48

Quantifying Critical Values

 49

© Tom@Gilb.com

Real Example  
 “Platform Rationalisation Initiative”  

“Main Objectives.” 
London Multinational Bank

 • Rationalize into a smaller number of core processing platforms. This cuts
technology spend on duplicate platforms, and creates the opportunity for
operational saves. Expected 60%-80% reduction in processing cost to Fixed
Income Business levies.

• International Securities on one platform, Fixed Income and Equities
(Institutional and PB).

• Global Processing consistency with single Operations In-Tray and associated
workflow.

• Consistent financial processing on one Accounting engine, feeding a single
sub-ledger across products.

• First step towards evolution of “Big Ideas” for Securities.
• Improved development environment, leading to increased capacity to

enhance functionality in future.
• Removes duplicative spend on two back office platforms in support of

mandatory message changes, etc.

 50

© Tom@Gilb.com

LINK WORDS: OBJECTIVE:ARCHITECTURE 
RULE 4. No Design/Architecture

 • Rationalize into a smaller number of core processing
platforms. This cuts technology spend on duplicate
platforms, and creates the opportunity for operational saves.
Expected 60%-80% reduction in processing cost to Fixed
Income Business lines.

• International Securities on one platform, Fixed Income and
Equities (Institutional and PB).

• Global Processing consistency with single Operations In-Tray
and associated workflow.

• Consistent financial processing on one Accounting engine,
feeding a single sub-ledger across products.

• First step towards evolution of “Big Ideas” for Securities.
• Improved development environment, leading to increased

capacity to enhance functionality in future.
• Removes duplicative spend on two back office platforms in

support of mandatory message changes, etc.

 51

© Tom@Gilb.com

How can we improve such bad specification?
(‘Planguage’)

Development Capacity:
Version: 3 Sept 2009 16:26
Type: Main <Complex/Elementary> Objective for a project.
Ambition Level: radically increase the capacity for developers to do defined tasks. <- Tsg
Scale: the Calendar Time for defined [Developers] to Successfully carry out defined [Tasks].
Owner: Tim Fxxx
Calendar Time: defined as: full working days within the start to delivery time frame.

Past [2009, {Bxx, Lxx, Gxx}, If QA Approved Processes used, Developer = Architect, Task =
Draft Architecture] 15 days ±4 ?? <- Rob

 Goal[2011, { Bxx, Lxx, Gxx }, If QA Approved Processes used, Developer = Architect, Task =
Draft Architecture] 1.5 days ± 0.4 ?? <- Rob

Justification: Really good architects are very scarce so we need to optimize their use.

Risks: we use effort that should be directed to really high volume or even more critical areas

(like Main Objective).
 52

quantification of all critical
values and qualities

no management bullshit
no user stories

all improvements quantified/estimated/tracked
all qualities quantified/estimated/tracked

 53

Q
ua

nt
ify

in
g

Q
ua

lit
y

© Tom@Gilb.com 2019

Philolaus on Numbers

• Over four hundred years BC,
• a Greek by the name of
• Philolaus of Tarentum said :

•” Actually, everything that can be known
has a Number;
– for it is impossible to grasp anything
with the mind or to recognize it without
this (number).”

Best regards (Aug 2005),
N.V.Krishnawww.microsensesoftware.com

!54

http://www.microsensesoftware.com/

Q
ua

nt
ify

in
g

Q
ua

lit
y

© Tom@Gilb.com 2019

How to Quantify any
Qualitative Requirement

Specification

Estimation

Quantification
Measurement

Diagram from ‘Competitive Engineering.’
book. !55

Q
ua

nt
ify

in
g

Q
ua

lit
y

© Tom@Gilb.com 2019

Quality Quantification Methods #1

• Common Sense, Domain Knowledge
–Decompose “until quantification becomes

obvious”.
–Then use Planguage specification:

• Scale: define a measurement scale

• Meter: define a test or process for measuring on the
scale

• Past: define benchmarks, old system, competitors
on the scale

• Goal: define a committed level of future stakeholder
quality, on your scale.

!56

Q
ua

nt
ify

in
g

Q
ua

lit
y

© Tom@Gilb.com 20141 July 2014

Quality Quantification Methods #2,  
Look it up in a book 

!57

Q
ua

nt
ify

in
g

Q
ua

lit
y

© Tom@Gilb.com 2014

Tool Collection:  
Scale: Clock hours for defined
[Maintenance Instance: Default:
Whoever is assigned] to acquire all
defined [Tools: Default: all systems and
information necessary to analyze,
correct and quality control the
correction].

1 July 2014

Quality Quantification Methods #2,  
Look it up in a book 

!58

Q
ua

nt
ify

in
g

Q
ua

lit
y

© Tom@Gilb.com 2019

Quality Quantification Methods #3,  
 Google It

!59

Resources
• If you do not manage ‘resources’ explicitly

and continuously

• Your resource use will kill your project and
product.

• You have to ‘design’ low costs

• Costs are not inevitable, they are often
avoidable: if you are smart and continually
focussed on cost management

• Agile (step by step delivery) gives many
special opportunities to manage costs

• Early warning during development

• Early opportunity to discover operational
costs

• Opportunity to change design in order to
lower costs

• Opportunity to see quantified Value/Cost
ratio in practice, and improve ‘efficiency’

Keeping Track of 4 Types of Resources

Constraints
• All requirements ‘constrain’ us

but

• some types of requirements
INTEND to constrain us

• Scalar Constraint levels of
values and resources

• Function Constraints

• Condition Constraints

• Resource Constraints

• Value Constraints

• Tolerable, Fail, OK,
Survival ‘levels’

Planguage Scalar
Constraints and Targets

Priorities (Dynamic)

• See IBM Cleanroom at end

• Put Confirmit here

http://www.triwaytechnologies.com/telecom-suite/

Priority Determination: ‘as you
go’, just like in a restaurant

Confirmit, Oslo
Computing residual priorities

Decomposition
"Nothing is particularly
hard if you divide it
into small jobs.”
 “There are no big
problems, just a lot of
little problems”
“Obstacles are those
frightful things you see
when you take your
eyes off your goal”
--Henry Ford, 1863-1947
•

Musk the De-composer: Agile Car Manufacturing

Risks

Various Risks to Plans

 70

Design Strategy Risks

 71

Cost Risks

 72

 73

Risk Tools in Impact Estimation

12:00 TO 13:00
Measuring the Effects of your Designs

on the Product Values and Costs:
How to understand your

design impacts, and design options.

• VALUE DECISION TABLES
(VDT) = Impact Estimation

• Estimation, ± uncertainty,
evidence, source,

• Value Budget: Value Result

• Differential Analysis Each Step

• Architecture Change if
Necessary

• Dynamic Prioritization

VALUE DECISION TABLES
(VDT) = Impact Estimation

• if you believe in a design,

• then you should put your
mind where your heart is,

• and estimate how good it is

• for a well-defined purpose

• TSG 140519

Early Experience of the ‘Needs and Means’ Tool

• Email January 11 2016

• Double thumbs up for ‘needs and means’ (tool).

• I think every business, project, planning activity should
use it!

• Time saver,

• and for me its amazing how you get the bigger picture
instantly because it offers a real practical measure, unlike
the usual hypothetical based tools that offer no measuring
tool in addition.

• I mentioned to you the other day that it has ``unexpectedly``
automatically shaped job descriptions for incoming staff
with realistic deadlines.

• So I’m working hard to finish the finance projections bit and
we can see what the effects are.

• I am honoured to have my project be the first real case
study on N&M

• gottfriedosei.ofei@gmail.com,
• STARTUP ENTREPRENEUR, OSLO
• Incognito

 76

mailto:gottfriedosei.ofei@gmail.com

Visual Comparison of Strategies

 77

impact estimation tables for overview of
all strategies, architecture in relation to

objectives, constraints and risks

quantify the relationship between
technology and business

(radically improve communication with
your clients and managers)

 78

Niels Malotaux

�79

From Scales to Solutions

Objective

Resources

Benefits-to-
Cost Ratio

Solution 1 Solution 2 Solution n Total Impacts

Impact on
Objective

Impact on
Objective

Impact on
Objective

Impact on
Budget

Impact on
Budget

Impact on
Budget

Ratio Ratio Ratio

Total  
Impact on
Objective

Total  
Impact on

Budget

Courtesy Rolf Goetz

 80

Impacts on Objectives

Attract Talents
271 -> 700

Win Talents
53 -> 100

Perfect Match
25% -> 75%

Facebook Profiler Umantis BM Total Impacts
on Objectives

70%
± 10%

0%  
±10%

50%  
±5%

30%
± 20%

30%
± 10%

30%
± 10%

50%
± 10%

30%
± 10%

10%
± 10%

120%  
±25%

110%  
±40%

70%  
±30%

Total Impact  
of Solutions

110%
± 25%

80%
± 30%

110%
± 40%

Courtesy Rolf Goetz

 81

UNDERSTANDING DATA ENGINEERING
Design by estimating value effects and costs

!82

Adding 1 Value and 1 Design

!83

Estimation, ± uncertainty,
evidence, source,

• Some estimates are better than
others

• we need to systematically
capture data about why some
estimates are better

• to motivate people to give
good estimates

• to make quality control and
auditing of decisions possible

• so that management can
know the level of risk they are
taking if they say ‘GO FOR IT’

“I believe in evidence.

I believe in observation, measurement, and
reasoning, confirmed by independent
observers.

I'll believe anything, no matter how wild and
ridiculous, if there is evidence for it.

The wilder and more ridiculous something is,
however, the firmer and more solid the
evidence will have to be.”

Isaac Asimov (2 Jan 1920 - 6 Apr 1992).

•

Explaining why you
estimated an impact

!85

Explaining why you
estimated an impact

!86

Value Budget
versus

 Value Result

Differential Analysis Each
Step

Architecture
Change if
Necessary

Dynamic
Prioritization

© Gilb.com 2015

In the Cleanroom Method, developed by IBM’s Harlan Mills
(1980) they reported:  

• “Software Engineering began to emerge in FSD” (IBM Federal Systems Division,
from 1996 a part of Lockheed Martin Marietta) “some ten years ago [Ed. about
1970] in a continuing evolution that is still underway:

• Ten years ago general management expected the worst from software projects –
cost overruns, late deliveries, unreliable and incomplete software

• Today [Ed. 1980!], management has learned to expect on-time, within budget,
deliveries of high-quality software. A Navy helicopter ship system, called
LAMPS, provides a recent example. LAMPS software was a four-year project of
over 200 person-years of effort, developing over three million, and integrating
over seven million words of program and data for eight different processors
distributed between a helicopter and a ship in 45 incremental deliveries [Ed.
Note 2%!]s. Every one of those deliveries was on time and under budget

• A more extended example can be found in the NASA space program,
• - Where in the past ten years, FSD has managed some 7,000 person-years of

software development, developing and integrating over a hundred million bytes
of program and data for ground and space processors in over a dozen projects.

• - There were few late or overrun deliveries in
that decade, and none at all in the past four
years.”

 89

© Gilb.com 2015

In the Cleanroom Method, developed by IBM’s Harlan Mills
(1980) they reported:  

• “Software Engineering began to emerge in FSD” (IBM Federal Systems Division,
from 1996 a part of Lockheed Martin Marietta) “some ten years ago [Ed. about
1970] in a continuing evolution that is still underway:

• Ten years ago general management expected the worst from software projects –
cost overruns, late deliveries, unreliable and incomplete software

• Today [Ed. 1980!], management has learned to expect on-time, within budget,
deliveries of high-quality software. A Navy helicopter ship system, called
LAMPS, provides a recent example. LAMPS software was a four-year project of
over 200 person-years of effort, developing over three million, and integrating
over seven million words of program and data for eight different processors
distributed between a helicopter and a ship in 45 incremental deliveries [Ed.
Note 2%!]s. Every one of those deliveries was on time and under budget

• A more extended example can be found in the NASA space program,
• - Where in the past ten years, FSD has managed some 7,000 person-years of

software development, developing and integrating over a hundred million bytes
of program and data for ground and space processors in over a dozen projects.

• - There were few late or overrun deliveries in that decade, and none at all in
the past four years.”

in 45 incremental deliveries

were few late or overrun
deliveries in that decade,
and none at all in the past

four years

 90

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management
farther by introducing design-to-cost guidance. Design, development, and managerial practices are applied in an
integrated way to ensure that software technical management is consistent with cost management. The method
[illustrated in this book by Figure 7.10] consists of developing a design, estimating its cost, and ensuring that the
design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by
sacrificing 'planned capability.' When a satisfactory design at cost target is achieved for a single increment, the
'development of each increment can proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking
the appropriate balance between cost and design for a single increment, but they iterate through a series of
increments, thus reducing the complexity of the task, and increasing the probability of learning from experience,
won as each increment develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp.
466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

16 August 2014 91

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure that
software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10] consists of
developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can proceed
concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the appropriate
balance between cost and design for a single increment, but they iterate through a series of increments, thus reducing the complexity of
the task, and increasing the probability of learning from experience, won as each increment develops, and as the true cost of the
increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

16 August 2014

of developing a design,
estimating its cost, and
ensuring that the design

is cost-effective

 92

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure that
software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10] consists of
developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can proceed
concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the appropriate
balance between cost and design for a single increment, but they iterate through a series of increments, thus reducing the complexity of
the task, and increasing the probability of learning from experience, won as each increment develops, and as the true cost of the
increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

16 August 2014

iteration process
trying to meet cost

targets by either
redesign or by

sacrificing 'planned
capability’

 93

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure that
software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10] consists of
developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can proceed
concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the appropriate
balance between cost and design for a single increment, but they iterate through a series of increments, thus reducing the complexity of
the task, and increasing the probability of learning from experience, won as each increment develops, and as the true cost of the
increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

16 August 2014

Design is an iterative
process

 94

END SLIDE FOR “Can we measure
agility? Tools for practitioners”.

For the workshop session

23 May 2019, 10:00 to 13:00
Location: Polna 11, Warsaw

Tom Gilb

at Katowice

Masterclass, 2018

https://nowy.me/gilb/ https://www.gilb.com/store?tag=books

Link to Paid Books

Free Copy for
Workshop Participants only.

see details
in Presenter Notes of this slide

or Email Tom

