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Talk Plan: 
45 + 45 minutes

1. Data Engineering as a subset of 'systems engineering' (i.e. with hardware, netware, logicware, dataware, and 
peopleware), 

2. Defining ‘engineering’ - properly. The Prof. Billy Koen approach. 

3. The components of a systems engineering process, and a Data Engineering process: 
a. quantified multidimensional qualities requirements, and resource-constraints, (quantify ’security’, ‘AI decision 
transparency’, 'Big Data Portability') 
b. detailed-enough data architecture, in order to understand corresponding data attributes, 
c. estimates of potential data-architecture impacts on multiple requirements. Side effects. 
d. computable, dynamic, priority of implementation, (a values-to-costs, wrt risks, decision) 
e. data architecture decomposition methods, (to prioritize critical results early) 
f. measurement of incremental data-architecture effects. (to keep the ship on course) 
g. dynamic design-to-cost, agile, architecture-process, like 'IBM Cleanroom', Quinnan 

4. A systems-engineering (= data engineering) language (Planguage) for modeling data-engineering processes and 
problems. 

5. Examples of how to always quantify all critical data architecture qualities requirements. 

6. How can you learn to qualify as a real data engineer? (Universities do not teach it!) 

7. Understanding data engineering stakeholders as a source of requirements.

!2



1. Data Engineering as a subset of 'systems engineering' (i.e. with 
hardware, netware, logicware, dataware, and peopleware),

Dataware Logicware Netware

Data Formats Algorithms Data Transfer 
Protocols

Data Structures Programming 
Languages

Network Package 
Formats

Data Concept 
Glossaries Logic Libraries Network Rules 

Laws Agreements
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what is real software engineering?

It is NOT about ‘coding’
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2. Defining ‘engineering’ - properly. The Prof. Billy Koen approach.
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Engineering is
“The engineering method is 
the use engineering heuristics 
to cause the best change 
in a poorly understood situation 
within the available resources. “

Prof. Billy Koen
http://www.me.utexas.edu/~koen/

The engineering method is   
(Gilb, Planguage Glossary) 

Concept *224 June 28, 2003 

an Evolutionary Process,  
• using practical Principles,  

• in order to determine, 
• and identify the Means to 

deliver,  
• the best achievable 

Performance and Cost levels 
balance,  

• for optimal Stakeholder 
satisfaction,  

in a complex risk-filled 
environment. 
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Software, subset: ‘Dataware’
Concept *570 March 12, 2003 

Software refers to the 
 ‘non-hardware’ aspects 
 or components 
 of a system.  

It specifically includes  
• computer programs,  
• data (computer 
readable files and 
databases),  

• and software documentation 
and  

• plans (any form of 
specification or plans made by 
people concerning software). 

•
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© Tom@Gilb.com

Software Engineering   Concept *572

the discipline of making software 
systems deliver the required 
value to all stakeholders. 
  

Software engineering includes 
 determining stakeholder requirements, 
designing new systems, adapting older 
systems, subcontracting for components 
(including services), interfacing with 
systems architecture, testing, 
measurement, and other disciplines. 
  
It needs to control computer programming 
and other software related sub-processes 
(like quality assurance, requirements 
elicitation, requirement specification), but 
it is not necessary that, these sub-
disciplines be carried out by the software 
engineering process, itself.  

  
The emphasis should be on control of the 
outcome – the value delivered to stakeholders, 
not of the performance of a craft. 
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Software Engineer: Concept *571  

• A software engineer is an engineer with specialty in software.  

• They are characterized by the ability to  
– assemble software components based on quantified attributes.  
– This ability is aimed at the need to meet multiple quantified requirement 

performance levels, within specified resource constraints, and other constraint 
limitations.  

• Consequently software engineers think in terms of  
– measurable system performance (including quality) characteristics, and costs for 

design, implementation, decommissioning, adaptation, and operation.  
– They know how to access the multiple quantified attributes of a design component 
–  and how to measure these attributes in the systems they engineer.

A Data Engineer, ‘Dataware Engineer’ 
is a software engineer 

with  speciality in DATA, 
as opposed to other software disciplines 
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3. The components of a systems engineering process, and a Data 
Engineering process:
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‘System’ and thus Dataware Requirements
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A Planning Language - an engineering language:  
Languages and Processes in order to move from Data Requirements to Data Design, 

and to validate the design attributes in real systems  

• Uses = 
– Systems 

Analysis 
– Requirements 
– Contracting 

specs 
– Design - 

Architecture 
– Presentation 
– Spec Quality 

Control 
– Project 

Management
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• Generic Ends-Means 
process 

• Well-defined standards 
– Specification rules  
– Requirements and design 

processes 
– One page - modules 
– Reuse of generic standards 

• Suitable for 
– Top management strategy 
– Marketing product plans 
– Software engineering 
– Systems engineering 

– Dataware Engineering 
– Specific engineering 

• Aircraft for example

Planguage standards

Standards, Best Practices, Defined Processes 
which apply to Data Engineering, as well as 

all other related engineering
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Requirement
Specification

[Updated]

Specify Requirements
(Requirement Specification)

Process.RS
•  Process.FR
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•  Process.SD
•  Process.RR

List of 
Stakeholders

 and,
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Changes to  
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(Feedback) 

Design 
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[Updated]
and
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Plan
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Determine Design (Design Process)
{Analyze Requirements,

Find & Specify Design Ideas, 
Evaluate Design Ideas (Impact Estimation),
Select Design Ideas & Produce Evo Plan}

Process.DP
•  Process.IE
•  Others        

Standards:
Rules.GS
Rules.DS
Rules.IE

and relevant
Process 

Descriptions

Design 
Specification

[Current] 
and 

Evolutionary 
Plan

[Current]

Requirement
Specification

[Updated]

Changes to  
Requirements
(Feedback) 

Requirements and Design �15
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Generic Standards Overview

Engineering
Standards

Rules 

 Clarity
Rules

Entry/Exit
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Templates Glossary 
Concepts 

 Content
Rules

 Requirement
Specification

Rules

 Design
Specification

Rules
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Specification

Rules
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Specification
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 Architecture
Content
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Content
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Content
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Standard
*138

Procedure
*115

Entry Condition
*056Process Rule

Others
(For example:

Interface)

Specification
*137
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*113

Policy
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*609
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*064
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*254

Form
*068

Specification Rule
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*595

Concept Rule

Policy Rule

Other Rules

Process Structure

Generic Specification Rule

Other
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Concept Glossary: Applies to Systems Engineering: and thus also to Dataware Engineering 

• Glossary Purpose. 
• The central purpose of this Planguage 

glossary is to define ‘Concepts’ – not 
words.  

• These concepts have many ‘names’ (or 
‘tags’ in Planguage) and attributes.  

• The ‘names’ function as ‘pointers’ to the 
concept, but names do not change or 
determine the concept itself.  

• Names, numbers and icons merely 
cross-reference the concept. 

• The central, universal identification tag 
of a concept is its unique number, 
prefaced by an asterisk (*001 etc.).  

• This device is designed to allow and 
enable full or partial translation to 
various international languages, and to 
corporate dialects.  

Concept

*number

english name

non-english  nam e

variant nam e

synonym

 definition

graphic icon

keyboard icon

relationship to 
other *numbered 
terms

source of term  
(ex.   < - 
Keeney)

where used 
via index
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Data:  
the Planguage Glossary definition 

Data Concept *319 April 17, 2003, 

minor edit (‘including’) 19 Aug 2010

Data is any form of signal, which humans 
or machines can usefully distinguish 
from other signals.  

Data is interpreted by some sensing agent, a reader, or a 
computer, which tries to convert it into useful information.  

Data can be viewed as a necessary system resource. Data 
can also be viewed as a process input and as a process 
output. Data can be viewed in terms of its function (‘to warn’, 
‘to give costs’),  volume (bits), and in terms of both cost (cost 
to acquire, cost to store, cost to keep updated) and 
performance characteristics (including accuracy, updatedness, 
credibility, precision, correctness). 

Notes:  
1. Data is a primary form of input and output to intellectual, and 
computer-controlled, processes. Data includes {characters, 
symbols, words, expressions, statements, diagrams}. 

2. Data is not random meaningless signals. It is organized for 
analysis, or for use to help make decision 
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a. quantified multidimensional qualities requirements, and resource-constraints, 

(try to quantify ’security’, ‘AI decision transparency’, 'Big Data Portability')

•  Right to privacy. Who owns our personal data and what are we or “they” 
entitled to do with it? What assumptions can we make about personal data we 
now share online? 

•  The internet age. We live our lives in a public and digital square where any 
person, company, or agency around the world can watch us, whether we want 
them to or not. 

•  Security. Between data breaches and aggressive hackers, will our data ever 
really be secure? As data continues to grow, so do the opportunities for data 
breaches. 

•  Safety. Face it, we live in a dangerous world. How do we balance safety with 
privacy and security at the data level? 

•  Trust. Trust is at the heart of the privacy issue and is the glue that is going to 
keep the data ecosystem together. 

•  Ethics. Technology has leapfrogged ethics, bringing us to the age-old question 
of what we can do versus what we should do. A good example is the tricky 
relationship between GDPR and artificial intelligence. 

•  Context. What is contextually important to you may not be important to me. Let 
me give you an example: Google Maps. We might both believe it makes our lives 
easier, but when the street views of our homes show up, my kids show up in the 
picture and I tell all my Facebook friends – and you become outraged because 
your dog was in the shot. 

•  No borders. Data, in and of itself, has no country, respects no law, and travels 
freely across borders. In the digital age, there are no geographical borders. And 
yet, most governments have attempted to put restrictions on how their citizens’ 
data is used – consider, for example, the General Data Protection Regulation. 

•  Transparency. If important decisions are being made about us based on an 
algorithm and big data, we have a right to know how the algorithm works and 
what data is being used. It’s outrageous that many of the ways big data is being 
used is shrouded in secrecy. 

•  Global differences. The internet is a big place, and treating privacy as a US 
issue ignores the global reach of technology companies, and the long arm of 
government agencies. When we hear about foreign issues, we treat them like 
they're strange and far away, ignoring the fact that those issues can very quickly 
come home to roost. https://www.sas.com/en_us/insights/articles/big-data/big-data-privacy.html
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Some Data  
Attributes

Data Quality Data 
Accessibility Data Costs Data Trust-

worthiness
Data 

Correlation

Correctness Security Acquisition Transparency Sensitivity

Updatedness Privacy Maintenance Safety Veracity

Error 
Detection Accessibility Retirement Trustworthi-

ness Correlation

Error 
correction 

Quality 
Control

Cultural

Acceptability

Accuracy Recover-
ability

Legal 
Admissability

Intelligibiity

This is Step 1 in Data Engineering 
Identification of Critical Values and Costs 

You might want to do a Step 0, 

The identification of your Stakeholders 
(Example EU -> GDPR - Privacy
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All Data Attributes 
can be testably 

defined, and 
quantified, as a 

basis for real data 
engineering

This simply follows the 
principle that all system 
qualities and costs can 

be well-defined and 
quantified as a basis for 

systems engineering

‘Testably Defined’: 
we can unambiguously determine 

 that the attribute is present or absent-

Quantified Data Attribute: 
A numeric level of the attribute  

can be defined 
and measured
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Data Accessibility  
Quantified and Structured
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Data Accessibility  
Scale detail and [Scale-Parameters] (‘Structure’) 
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Data Accessibility 
Detail of a ‘Wish’ level of ‘Accessibility’  

The selection of Scale-Parameter Dimensions is a way of deciding priorities 
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A re-usable Glossary of Terms 
for developing standard and rich definitions of Scale Parameters 
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b. detailed-enough data architecture, in order to understand 
corresponding data attributes,
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A Design for ‘Data Correctness’ 
is it detailed enough to understand the effects and costs? 
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g. dynamic design-to-cost, agile, architecture-process, like 'IBM 
Cleanroom', Quinnan
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DESIGN 
The first guarantee of quality 

“The first guarantee of quality in design 
 is in well-informed, well-educated, and well-motivated designers.  

Quality must be built into designs, and cannot be inspected in or tested in.  

Nevertheless, any prudent development process verifies quality through inspection and 
testing. 

 Inspection by peers in design, by users or surrogates, by other financial specialists concerned 
with cost, reliability, or maintainability  

not only increases confidence in the design at hand,  
but also provides designers with valuable lessons and insights to be applied to future 
designs.  

The very fact that designs face inspections 
 motivates even the most conscientious designers  
to greater care, deeper simplicities, and more precision in their work.” 

 inIBM sj 4 80 p.419 
In 

Mills, H. 1980. The management of software engineering: part 1: principles of software engineering. IBM Systems Journal 19, issue 4 (Dec.):414-420. 
Direct Copy 
http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan 
Library header  
http://trace.tennessee.edu/utk_harlan/5/
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In the Cleanroom Method, developed by IBM’s Harlan Mills 
(1980) they reported:  

• “Software Engineering began to emerge in FSD” (IBM Federal Systems Division, 
from 1996 a part of Lockheed Martin Marietta) “some ten years ago [Ed. about 
1970] in a continuing evolution that is still underway: 

• Ten years ago general management expected the worst from software projects – 
cost overruns, late deliveries, unreliable and incomplete software 

• Today [Ed. 1980!], management has learned to expect on-time, within budget, 
deliveries of high-quality software. A Navy helicopter ship system, called 
LAMPS, provides a recent example. LAMPS software was a four-year project of 
over 200 person-years of effort, developing over three million, and integrating 
over seven million words of program and data for eight different processors 
distributed between a helicopter and a ship in 45 incremental deliveries [Ed. 
Note 2%!]s. Every one of those deliveries was on time and under budget 

• A more extended example can be found in the NASA space program, 
• - Where in the past ten years, FSD has managed some 7,000 person-years of 

software development, developing and integrating over a hundred million bytes 
of program and data for ground and space processors in over a dozen projects.  

• - There were few late or overrun deliveries in 
that decade, and none at all in the past four 
years.”
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In the Cleanroom Method, developed by IBM’s Harlan Mills 
(1980) they reported:  

• “Software Engineering began to emerge in FSD” (IBM Federal Systems Division, 
from 1996 a part of Lockheed Martin Marietta) “some ten years ago [Ed. about 
1970] in a continuing evolution that is still underway: 

• Ten years ago general management expected the worst from software projects – 
cost overruns, late deliveries, unreliable and incomplete software 

• Today [Ed. 1980!], management has learned to expect on-time, within budget, 
deliveries of high-quality software. A Navy helicopter ship system, called 
LAMPS, provides a recent example. LAMPS software was a four-year project of 
over 200 person-years of effort, developing over three million, and integrating 
over seven million words of program and data for eight different processors 
distributed between a helicopter and a ship in 45 incremental deliveries [Ed. 
Note 2%!]s. Every one of those deliveries was on time and under budget 

• A more extended example can be found in the NASA space program, 
• - Where in the past ten years, FSD has managed some 7,000 person-years of 

software development, developing and integrating over a hundred million bytes 
of program and data for ground and space processors in over a dozen projects.  

• - There were few late or overrun deliveries in that decade, and none at all in 
the past four years.”

in 45 incremental deliveries 

were few late or overrun 
deliveries in that decade, 
and none at all in the past 

four years
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Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met. 
  
'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management 
farther by introducing design-to-cost guidance. Design, development, and managerial practices are applied in an 
integrated way to ensure that software technical management is consistent with cost management. The method 
[illustrated in this book by Figure 7.10] consists of developing a design, estimating its cost, and ensuring that the 
design is cost-effective.' (p. 473) 
  
 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by 
sacrificing 'planned capability.' When a satisfactory design at cost target is achieved for a single increment, the 
'development of each increment can proceed concurrently with the program design of the others.' 
  
'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474) 
  
 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking 
the appropriate balance between cost and design for a single increment, but they iterate through a series of 
increments, thus reducing the complexity of the task, and increasing the probability of learning from experience, 
won as each increment develops, and as the true cost of the increment becomes a fact. 
  
'When the development and test of an increment are complete, an estimate to complete the remaining increments is 
computed.' (p. 474) 
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 
466~77 
This text is cut from Gilb: The Principles of Software Engineering Management, 1988
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Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met. 
  
'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by 
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure that 
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of developing a design, 
estimating its cost, and 
ensuring that the design 

is cost-effective
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iteration process 
trying to meet cost 

targets by either 
redesign or by 

sacrificing 'planned 
capability’
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Design is an iterative 
process 
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4. A systems-engineering (= data engineering) language (Planguage) 
for modeling data-engineering processes and problems.
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5. Examples of how to always quantify all critical data architecture 
qualities requirements.
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impact estimation tables for overview of 
all strategies, architecture in relation to 

objectives, constraints and risks

quantify the relationship between 
technology and business  

(radically improve communication with 
your clients and managers)
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From Scales to Solutions

Objective

Resources

Benefits-to-
Cost Ratio

Solution 1 Solution 2 Solution n Total Impacts

Impact on 
Objective

Impact on 
Objective

Impact on 
Objective

Impact on 
Budget

Impact on 
Budget

Impact on 
Budget

Ratio Ratio Ratio

Total  
Impact on 
Objective

Total  
Impact on 

Budget

Courtesy Rolf Goetz
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Impacts on Objectives

Attract Talents 
271 -> 700

Win Talents 
53 -> 100

Perfect Match 
25% -> 75%

Facebook Profiler Umantis BM Total Impacts 
on Objectives

70% 
± 10%

0%  
±10%

50%  
±5%

30% 
± 20%

30% 
± 10%

30% 
± 10%

50% 
± 10%

30% 
± 10%

10% 
± 10%

120%  
±25%

110%  
±40%

70%  
±30%

Total Impact  
of Solutions

110% 
± 25%

80% 
± 30%

110% 
± 40%

Courtesy Rolf Goetz
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UNDERSTANDING DATA ENGINEERING 
Design by estimating value effects and costs
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Adding 1 Value and 1 Design
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Explaining why you 
estimated an impact 
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6. How can you learn to qualify as a real data engineer? (Universities 
do not teach it!)

Google it 
Domain Common Sense 
Look it upon a book

!46



quantification of all critical 
values and qualities

no management bullshit 
no user stories 

all improvements quantified/estimated/tracked 
all qualities quantified/estimated/tracked
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Philolaus on Numbers

• Over four hundred years BC,  
• a Greek by the name of  
• Philolaus of Tarentum said : 

•” Actually, everything that can be known 
has a Number;  
– for it is impossible to grasp anything 
with the mind or to recognize it without 
this (number).” 

Best regards  (Aug 2005), 
N.V.Krishnawww.microsensesoftware.com

!48
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How to Quantify any 
Qualitative Requirement

Specification

Estimation

Quantification
Measurement

Diagram from ‘Competitive Engineering.’ 
book. !49
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Quality Quantification Methods #1

• Common Sense, Domain Knowledge 
–Decompose “until quantification becomes 

obvious”. 
–Then use Planguage specification: 

• Scale: define a measurement scale 

• Meter: define a test or process for measuring on the 
scale 

• Past: define benchmarks, old system, competitors 
on the scale 

• Goal: define a committed level of future stakeholder 
quality, on your scale. 
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Quality Quantification Methods #2,  
Look it up in a book 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Tool Collection:  
Scale: Clock hours for defined 
[Maintenance Instance: Default: 
Whoever is assigned] to acquire all 
defined [Tools: Default: all systems and 
information necessary to analyze, 
correct and quality control the 
correction].

1 July 2014

Quality Quantification Methods #2,  
Look it up in a book 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Quality Quantification Methods #3,  
 Google It
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7. Understanding data engineering stakeholders as a source of 
requirements.

Definition 
A stakeholder is any person, group or object, 
which has some direct or indirect interest in a 
defined system. 
Stakeholders can exercise control over both the 
immediate system operational characteristics, as 
well as over long-term system lifecycle 
considerations (such as portability, lifecycle costs, 
environmental considerations, and 
decommissioning of the system). [4] 
Notice: 
‘or object’. 
This includes laws, regulations, plans, policies, 
customs, culture, standards. Inanimate. you cannot 
ask them or discuss with them. But you can analyze 
them, their priority, the degree of relevance. They 
can determine if your system is illegal, or 
acceptable. Determine success or failure. 
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The Basic Design Steps Logic: a summary
1.  Environment Scope helps identify stakeholders.  

2.  Stakeholders have values and priorities 

3.  Values have many dimensions 

4.  Stakeholders determine value levels 

5.  Design hypotheses should be powerful and efficient ideas, for satisfying stakeholder 

needs 

6.  Design hypotheses can be evaluated quantitatively, with respect to all quantified 

objectives and resources 

7.  Designs can be decomposed, to find more efficient design subsets, that can be 

implemented early 

8.  Designs can be implemented sequentially, and their value-delivery, and resource costs, 

measured 

9.  Designs that unexpectedly threaten achievement of objectives, or excessive use of 

resources, can be removed or modified. 

10. Designs that have the best set of effects on objectives, for the least consumption of 

limited resources, should generally be selected for early implementation. 

11. A design increment can have unacceptable results, in combination with previous 

increments, and they, or it, might need removal or modification 

12. When all objectives are reached, the process of design is complete: except for possible 

optimization of operational resources, by even-better design. 

13. When deadlined and budgeted implementation-resources are used up, it might be 

reasonable to negotiate additional resources; especially if the incremental values are 

worth the additional resources. 

14. When deadlined and budgeted implementation-resources are used up, it might be 

reasonable to negotiate additional resources; especially if the incremental values are 

worth the additional resources.

The Logic of Design: Design Process Principles. 
 Tom Gilb, 2016, Paper. 

http://www.gilb.com/dl857

Requirements

Design

Deploy

Re-design
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Gilb’s Stakeholder Principles.
1. Some stakeholders are more critical to your system than others.

2. Some stakeholder needs are more critical to your system  than others.

3.  Stakeholders are undisciplined: they may not know all their needs, or know them precisely, 
or know their value. But they can be analyzed, coached, and helped to get the best possible 
deal.

4. Stakeholders may be inaccessible, unwilling, inanimate, oppositional, and worse: but we 
need to deal with them intelligently.

5. Stakeholders might well ask for the wrong thing, a ‘means’ rather than their real ‘ends’. But 
they can be guided to understand that. Or their requests can be interpreted in their own real 
best interests.

6. Stakeholders do not want to wait years, get delays, invest shitloads of money, and then little 
or no value. They want as much ‘value improvement’ of their current situation, as they can get, 
as fast as they can get it. For as little cost as possible,

7. Stakeholders cannot have any realistic idea of what their needs and demands will cost to 
satisfy. So their adopted requirements need to be based on value for costs, not on value 
alone. Delivering small increments, based on high value-to-cost, is one smart way to deal with this.

8. If you think you have found ‘all critical stakeholders’, I think you should assume there is at 
least one more, and when you find that one, ….  They will emerge, and they are not all there at 
the beginning.

9. If you think you have found all critical needs of a stakeholder, there will always be at least 
one more need  ‘hiding’. 

10. If you do not understand, and act on the principles above; you might blame your failure on 
‘system complexity’, and the unexpected and wicked problems. But in reality, it is your own 
fault and responsibility; deal with it - up front and constantly.

•SOURCE, 2016 Paper
“Stakeholder Power:The Key to Project Failure or Success”
including 10 Stakeholder Principles
http://concepts.gilb.com/dl880 (COPY FEB 2017)
http://concepts.gilb.com/dl872  (FEB 2016)  56



Stakeholder Attributes

• Some attributes of 
stakeholders


• which can be defined 
in more detail,


• and can be quantified 


• status estimated


• and potentially 
improved 
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Stakeholder Costs
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Adding Strategies for Improving Stakeholder Attributes
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Stakeholder Ends and Means
the ???? signifies that we did not yet estimate the 

effectiveness of the ideas for getting better
!60



The leftmost strategy -
‘Analysis’ 
detailed
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‘Accessibility’ defined quantitatively
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‘Adaptability’ Value defined

http://www.alisonmaitland.com/wp-content/uploads/2016/12/The-importance-of-career-adaptability.pdf

2020
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Known Unknowns 
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Critical ={Stakeholders, 
Requirements}

• prioritization tactic


• Critical Factor Concept *036
•A critical factor is an attribute level or 

condition in a system,  
•which can on its own,  
• determine the success or failure of 

the system  
• under specified conditions. 

•We prioritize critical factors like 
critical stakeholders and their 
critical requirements 
•until all are satisfied 
• then we should probably stop
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Stakeholder Rights
•Stakeholders should have the


•Right to have a voice 

•Right to be consulted 

•Right to be warned 

•Right to suggest 

•Right to review 

•Right to measure 

•Right to complain 

•Right to be informed 

•Right to change their mind 

•Right to understand costs 

•Right to understand value/resources 

•Right to understand risks 

•Right to set their priorities https://humanrightsmeasurement.org/methodology/measuring-civil-political-rights/
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Stakeholder Power in 3D

• Stakeholder power is 
rarely absolute 

• Stakeholder power 
needs to be balanced 
with all other 
stakeholders 

• Stakeholder power will 
vary through time 

• Stakeholder power is 
less relevant when their 
needs are satisfied

https://www.brighthubpm.com/project-planning/23481-stakeholder-analysis-spheres-of-influence/
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Stakeholder Ethics
•Stakeholders will 

have highly varied 
ethics, and 
motivations 

•We can influence 
stakeholder ethics 
by a variety of 
actions

https://www.chuckgallagher.com/2013/04/16/business-ethics-theories-which-theory-of-ethics-do-you-follow-stockholder-stakeholder-and-social-contract-theories-part-one/
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Stakeholder Feedback Types
• Stakeholders have a 

variety of ways to 
feedback, react, and 
influence the process 

• gradual measurement of 
value delivered versus 
value expected  

• complaints 

• ‘Sensemaker’ ™ 
feedback

https://www.nngroup.com/articles/ux-research-cheat-sheet/ 69



Defining a list of stakeholders 
which are related to an Objective
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The Scale definition, scale ‘parameters’ - give additional information regarding 
stakeholders: such as where, when, which type, under what circumstances 
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Stakeholder-Driven  
Value Delivery

• all projects 


• are about 


• delivering values 


• to stakeholders
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End of Talk. 
Get a free e-copy of 

‘Competitive 
Engineering’ book. 

 https://www.gilb.com/p/
competitive-engineering

these slides are at

 http://concepts.gilb.com/file24


https://www.gilb.com/store?tag=books
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