
Real Data Engineering
A serious, systematic, logical and quantified, value-
driven ‘engineering’ approach to all data matters,
as part of a larger systems engineering approach.

Monday, May 6, 2019
Teknologihuset Pilestredet 56 · Oslo

17:15 - Tom Gilb - Real Data Engineering - part 1
18:00 - break
18:15 - Tom Gilb - Real Data Engineering - part 2

tom@Gilb.com
@ImTomGilb

www-Gilb.com

1976
�1

mailto:tom@Gilb.com
http://www-Gilb.com

Talk Plan:
45 + 45 minutes

1. Data Engineering as a subset of 'systems engineering' (i.e. with hardware, netware, logicware, dataware, and
peopleware),

2. Defining ‘engineering’ - properly. The Prof. Billy Koen approach.

3. The components of a systems engineering process, and a Data Engineering process:
a. quantified multidimensional qualities requirements, and resource-constraints, (quantify ’security’, ‘AI decision
transparency’, 'Big Data Portability')
b. detailed-enough data architecture, in order to understand corresponding data attributes,
c. estimates of potential data-architecture impacts on multiple requirements. Side effects.
d. computable, dynamic, priority of implementation, (a values-to-costs, wrt risks, decision)
e. data architecture decomposition methods, (to prioritize critical results early)
f. measurement of incremental data-architecture effects. (to keep the ship on course)
g. dynamic design-to-cost, agile, architecture-process, like 'IBM Cleanroom', Quinnan

4. A systems-engineering (= data engineering) language (Planguage) for modeling data-engineering processes and
problems.

5. Examples of how to always quantify all critical data architecture qualities requirements.

6. How can you learn to qualify as a real data engineer? (Universities do not teach it!)

7. Understanding data engineering stakeholders as a source of requirements.

!2

1. Data Engineering as a subset of 'systems engineering' (i.e. with
hardware, netware, logicware, dataware, and peopleware),

Dataware Logicware Netware

Data Formats Algorithms Data Transfer
Protocols

Data Structures Programming
Languages

Network Package
Formats

Data Concept
Glossaries Logic Libraries Network Rules

Laws Agreements

!3

Platform Strategy

Standards
Development

Program ManagementSystecture (Systems Architecture) *564

Other EngineeringSystems Engineering *223

Engineering *224

Data Structures Strategy

Application Portfolio Strategy

Methods
Strategy

Project

(The)
Architecture

*192
(Artifacts)

Requirement
Specification

*508

Design
Specification

*586

Impact
Estimation

Table

Standards *138
- Security Standards
-Interface Standards
-Requirement
 Specification
 Standards
- Other

Evo Step
Specification

*370

Evo
Plan
*322

Architecture
Specification

*617

Impact Estimation
*283

Design Process
*046

Design
Engineering

*501

Requirements
Process

*612

Evolutionary
Project Management

(Evo) *355

Architecture
Process *499

Engineering Hierarchy

Specification Types

Processes

Engineering

Concepts

!4

what is real software engineering?

It is NOT about ‘coding’

 5

2. Defining ‘engineering’ - properly. The Prof. Billy Koen approach.

!6

Engineering is
“The engineering method is
the use engineering heuristics
to cause the best change
in a poorly understood situation
within the available resources. “

Prof. Billy Koen
http://www.me.utexas.edu/~koen/

The engineering method is
(Gilb, Planguage Glossary)

Concept *224 June 28, 2003

an Evolutionary Process,
• using practical Principles,

• in order to determine,
• and identify the Means to

deliver,
• the best achievable

Performance and Cost levels
balance,

• for optimal Stakeholder
satisfaction,

in a complex risk-filled
environment.

 7

http://www.me.utexas.edu/~koen/

Software, subset: ‘Dataware’
Concept *570 March 12, 2003

Software refers to the
 ‘non-hardware’ aspects
 or components
 of a system.

It specifically includes
• computer programs,
• data (computer
readable files and
databases),

• and software documentation
and

• plans (any form of
specification or plans made by
people concerning software).

•

 8

© Tom@Gilb.com

Software Engineering Concept *572

the discipline of making software
systems deliver the required
value to all stakeholders.

Software engineering includes
 determining stakeholder requirements,
designing new systems, adapting older
systems, subcontracting for components
(including services), interfacing with
systems architecture, testing,
measurement, and other disciplines.

It needs to control computer programming
and other software related sub-processes
(like quality assurance, requirements
elicitation, requirement specification), but
it is not necessary that, these sub-
disciplines be carried out by the software
engineering process, itself.

The emphasis should be on control of the
outcome – the value delivered to stakeholders,
not of the performance of a craft.

 9

© Tom@Gilb.com

Software Engineer: Concept *571

• A software engineer is an engineer with specialty in software.

• They are characterized by the ability to
– assemble software components based on quantified attributes.
– This ability is aimed at the need to meet multiple quantified requirement

performance levels, within specified resource constraints, and other constraint
limitations.

• Consequently software engineers think in terms of
– measurable system performance (including quality) characteristics, and costs for

design, implementation, decommissioning, adaptation, and operation.
– They know how to access the multiple quantified attributes of a design component
– and how to measure these attributes in the systems they engineer.

A Data Engineer, ‘Dataware Engineer’
is a software engineer

with speciality in DATA,
as opposed to other software disciplines

 10

3. The components of a systems engineering process, and a Data
Engineering process:

!11

‘System’ and thus Dataware Requirements

!12

© Tom@Gilb.com www.Gilb.com Slide 6

A Planning Language - an engineering language:
Languages and Processes in order to move from Data Requirements to Data Design,

and to validate the design attributes in real systems  

• Uses =
– Systems

Analysis
– Requirements
– Contracting

specs
– Design -

Architecture
– Presentation
– Spec Quality

Control
– Project

Management

�13

© Tom@Gilb.com www.Gilb.com

• Generic Ends-Means
process

• Well-defined standards
– Specification rules
– Requirements and design

processes
– One page - modules
– Reuse of generic standards

• Suitable for
– Top management strategy
– Marketing product plans
– Software engineering
– Systems engineering

– Dataware Engineering
– Specific engineering

• Aircraft for example

Planguage standards

Standards, Best Practices, Defined Processes
which apply to Data Engineering, as well as

all other related engineering

�14

© Tom@Gilb.com www.Gilb.com

Requirement
Specification

[Updated]

Specify Requirements
(Requirement Specification)

Process.RS
• Process.FR
• Process.PR
• Process.SD
• Process.RR

List of
Stakeholders

 and,
Statement of
Requirements

or Requirement
Specification

[Current]

Standards:
Rules.GS
Rules.RS
Rules.FR
Rules.SR
Rules.SD

and relevant
Process Descriptions

Changes to
Requirements
(Feedback)

Design
Specification

[Updated]
and

Evolutionary
Plan

 [Updated]

Determine Design (Design Process)
{Analyze Requirements,

Find & Specify Design Ideas,
Evaluate Design Ideas (Impact Estimation),
Select Design Ideas & Produce Evo Plan}

Process.DP
• Process.IE
• Others

Standards:
Rules.GS
Rules.DS
Rules.IE

and relevant
Process

Descriptions

Design
Specification

[Current]
and

Evolutionary
Plan

[Current]

Requirement
Specification

[Updated]

Changes to
Requirements
(Feedback)

Requirements and Design �15

© Tom@Gilb.com www.Gilb.com

Generic Standards Overview

Engineering
Standards

Rules

 Clarity
Rules

Entry/Exit
Conditions

Templates Glossary
Concepts

 Content
Rules

 Requirement
Specification

Rules

 Design
Specification

Rules

 Evo
Specification

Rules

 Other
Specification

Rules

 Architecture
Content
Rules

 Design
Content
Rules

 Requirement
Content
Rules

Other
Content
Rules

Engineering Policy

Procedure
Definition

�16

© Tom@Gilb.com www.Gilb.com

Standard
*138

Procedure
*115

Entry Condition
*056Process Rule

Others
(For example:

Interface)

Specification
*137

Process
*113

Policy
*111

Rule
*609

Exit Condition
*064

Template
*254

Form
*068

Specification Rule

Concept
*595

Concept Rule

Policy Rule

Other Rules

Process Structure

Generic Specification Rule

Other

�17

© Tom@Gilb.com www.Gilb.com

Concept Glossary: Applies to Systems Engineering: and thus also to Dataware Engineering 

• Glossary Purpose.
• The central purpose of this Planguage

glossary is to define ‘Concepts’ – not
words.

• These concepts have many ‘names’ (or
‘tags’ in Planguage) and attributes.

• The ‘names’ function as ‘pointers’ to the
concept, but names do not change or
determine the concept itself.

• Names, numbers and icons merely
cross-reference the concept.

• The central, universal identification tag
of a concept is its unique number,
prefaced by an asterisk (*001 etc.).

• This device is designed to allow and
enable full or partial translation to
various international languages, and to
corporate dialects.

Concept

*number

english name

non-english nam e

variant nam e

synonym

 definition

graphic icon

keyboard icon

relationship to
other *numbered
terms

source of term
(ex. < -
Keeney)

where used
via index

�18

Data:
the Planguage Glossary definition

Data Concept *319 April 17, 2003,

minor edit (‘including’) 19 Aug 2010

Data is any form of signal, which humans
or machines can usefully distinguish
from other signals.

Data is interpreted by some sensing agent, a reader, or a
computer, which tries to convert it into useful information.

Data can be viewed as a necessary system resource. Data
can also be viewed as a process input and as a process
output. Data can be viewed in terms of its function (‘to warn’,
‘to give costs’), volume (bits), and in terms of both cost (cost
to acquire, cost to store, cost to keep updated) and
performance characteristics (including accuracy, updatedness,
credibility, precision, correctness).

Notes:
1. Data is a primary form of input and output to intellectual, and
computer-controlled, processes. Data includes {characters,
symbols, words, expressions, statements, diagrams}.

2. Data is not random meaningless signals. It is organized for
analysis, or for use to help make decision

!19

a. quantified multidimensional qualities requirements, and resource-constraints,

(try to quantify ’security’, ‘AI decision transparency’, 'Big Data Portability')

• Right to privacy. Who owns our personal data and what are we or “they”
entitled to do with it? What assumptions can we make about personal data we
now share online?

• The internet age. We live our lives in a public and digital square where any
person, company, or agency around the world can watch us, whether we want
them to or not.

• Security. Between data breaches and aggressive hackers, will our data ever
really be secure? As data continues to grow, so do the opportunities for data
breaches.

• Safety. Face it, we live in a dangerous world. How do we balance safety with
privacy and security at the data level?

• Trust. Trust is at the heart of the privacy issue and is the glue that is going to
keep the data ecosystem together.

• Ethics. Technology has leapfrogged ethics, bringing us to the age-old question
of what we can do versus what we should do. A good example is the tricky
relationship between GDPR and artificial intelligence.

• Context. What is contextually important to you may not be important to me. Let
me give you an example: Google Maps. We might both believe it makes our lives
easier, but when the street views of our homes show up, my kids show up in the
picture and I tell all my Facebook friends – and you become outraged because
your dog was in the shot.

• No borders. Data, in and of itself, has no country, respects no law, and travels
freely across borders. In the digital age, there are no geographical borders. And
yet, most governments have attempted to put restrictions on how their citizens’
data is used – consider, for example, the General Data Protection Regulation.

• Transparency. If important decisions are being made about us based on an
algorithm and big data, we have a right to know how the algorithm works and
what data is being used. It’s outrageous that many of the ways big data is being
used is shrouded in secrecy.

• Global differences. The internet is a big place, and treating privacy as a US
issue ignores the global reach of technology companies, and the long arm of
government agencies. When we hear about foreign issues, we treat them like
they're strange and far away, ignoring the fact that those issues can very quickly
come home to roost. https://www.sas.com/en_us/insights/articles/big-data/big-data-privacy.html

!20

https://www.sas.com/en_us/insights/articles/data-management/personal-data-getting-it-right-with-gdpr.html
https://www.sas.com/en_us/insights/articles/data-management/gdpr-and-ai--friends--foes-or-something-in-between-.html
https://www.sas.com/en_us/insights/articles/data-management/general-data-protection-regulation-from-burden-to-opportunity.html

Some Data
Attributes

Data Quality Data
Accessibility Data Costs Data Trust-

worthiness
Data

Correlation

Correctness Security Acquisition Transparency Sensitivity

Updatedness Privacy Maintenance Safety Veracity

Error
Detection Accessibility Retirement Trustworthi-

ness Correlation

Error
correction

Quality
Control

Cultural

Acceptability

Accuracy Recover-
ability

Legal
Admissability

Intelligibiity

This is Step 1 in Data Engineering
Identification of Critical Values and Costs

You might want to do a Step 0,

The identification of your Stakeholders
(Example EU -> GDPR - Privacy

!21

All Data Attributes
can be testably

defined, and
quantified, as a

basis for real data
engineering

This simply follows the
principle that all system
qualities and costs can

be well-defined and
quantified as a basis for

systems engineering

‘Testably Defined’:
we can unambiguously determine

 that the attribute is present or absent-

Quantified Data Attribute:
A numeric level of the attribute

can be defined
and measured

!22

Data Accessibility
Quantified and Structured

!23

Data Accessibility
Scale detail and [Scale-Parameters] (‘Structure’)

!24

Data Accessibility
Detail of a ‘Wish’ level of ‘Accessibility’

The selection of Scale-Parameter Dimensions is a way of deciding priorities

!25

A re-usable Glossary of Terms
for developing standard and rich definitions of Scale Parameters

!26

b. detailed-enough data architecture, in order to understand
corresponding data attributes,

!27

A Design for ‘Data Correctness’
is it detailed enough to understand the effects and costs?

!28

g. dynamic design-to-cost, agile, architecture-process, like 'IBM
Cleanroom', Quinnan

!29

DESIGN
The first guarantee of quality

“The first guarantee of quality in design
 is in well-informed, well-educated, and well-motivated designers.

Quality must be built into designs, and cannot be inspected in or tested in.

Nevertheless, any prudent development process verifies quality through inspection and
testing.

 Inspection by peers in design, by users or surrogates, by other financial specialists concerned
with cost, reliability, or maintainability

not only increases confidence in the design at hand,
but also provides designers with valuable lessons and insights to be applied to future
designs.

The very fact that designs face inspections
 motivates even the most conscientious designers
to greater care, deeper simplicities, and more precision in their work.”

 inIBM sj 4 80 p.419
In

Mills, H. 1980. The management of software engineering: part 1: principles of software engineering. IBM Systems Journal 19, issue 4 (Dec.):414-420.
Direct Copy
http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan
Library header
http://trace.tennessee.edu/utk_harlan/5/

 30

© Gilb.com 2015

In the Cleanroom Method, developed by IBM’s Harlan Mills
(1980) they reported:  

• “Software Engineering began to emerge in FSD” (IBM Federal Systems Division,
from 1996 a part of Lockheed Martin Marietta) “some ten years ago [Ed. about
1970] in a continuing evolution that is still underway:

• Ten years ago general management expected the worst from software projects –
cost overruns, late deliveries, unreliable and incomplete software

• Today [Ed. 1980!], management has learned to expect on-time, within budget,
deliveries of high-quality software. A Navy helicopter ship system, called
LAMPS, provides a recent example. LAMPS software was a four-year project of
over 200 person-years of effort, developing over three million, and integrating
over seven million words of program and data for eight different processors
distributed between a helicopter and a ship in 45 incremental deliveries [Ed.
Note 2%!]s. Every one of those deliveries was on time and under budget

• A more extended example can be found in the NASA space program,
• - Where in the past ten years, FSD has managed some 7,000 person-years of

software development, developing and integrating over a hundred million bytes
of program and data for ground and space processors in over a dozen projects.

• - There were few late or overrun deliveries in
that decade, and none at all in the past four
years.”

 31

© Gilb.com 2015

In the Cleanroom Method, developed by IBM’s Harlan Mills
(1980) they reported:  

• “Software Engineering began to emerge in FSD” (IBM Federal Systems Division,
from 1996 a part of Lockheed Martin Marietta) “some ten years ago [Ed. about
1970] in a continuing evolution that is still underway:

• Ten years ago general management expected the worst from software projects –
cost overruns, late deliveries, unreliable and incomplete software

• Today [Ed. 1980!], management has learned to expect on-time, within budget,
deliveries of high-quality software. A Navy helicopter ship system, called
LAMPS, provides a recent example. LAMPS software was a four-year project of
over 200 person-years of effort, developing over three million, and integrating
over seven million words of program and data for eight different processors
distributed between a helicopter and a ship in 45 incremental deliveries [Ed.
Note 2%!]s. Every one of those deliveries was on time and under budget

• A more extended example can be found in the NASA space program,
• - Where in the past ten years, FSD has managed some 7,000 person-years of

software development, developing and integrating over a hundred million bytes
of program and data for ground and space processors in over a dozen projects.

• - There were few late or overrun deliveries in that decade, and none at all in
the past four years.”

in 45 incremental deliveries

were few late or overrun
deliveries in that decade,
and none at all in the past

four years

 32

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management
farther by introducing design-to-cost guidance. Design, development, and managerial practices are applied in an
integrated way to ensure that software technical management is consistent with cost management. The method
[illustrated in this book by Figure 7.10] consists of developing a design, estimating its cost, and ensuring that the
design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by
sacrificing 'planned capability.' When a satisfactory design at cost target is achieved for a single increment, the
'development of each increment can proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking
the appropriate balance between cost and design for a single increment, but they iterate through a series of
increments, thus reducing the complexity of the task, and increasing the probability of learning from experience,
won as each increment develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp.
466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

16 August 2014 33

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure that
software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10] consists of
developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can proceed
concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the appropriate
balance between cost and design for a single increment, but they iterate through a series of increments, thus reducing the complexity of
the task, and increasing the probability of learning from experience, won as each increment develops, and as the true cost of the
increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

16 August 2014

of developing a design,
estimating its cost, and
ensuring that the design

is cost-effective

 34

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure that
software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10] consists of
developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can proceed
concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the appropriate
balance between cost and design for a single increment, but they iterate through a series of increments, thus reducing the complexity of
the task, and increasing the probability of learning from experience, won as each increment develops, and as the true cost of the
increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

16 August 2014

iteration process
trying to meet cost

targets by either
redesign or by

sacrificing 'planned
capability’

 35

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure that
software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10] consists of
developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can proceed
concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the appropriate
balance between cost and design for a single increment, but they iterate through a series of increments, thus reducing the complexity of
the task, and increasing the probability of learning from experience, won as each increment develops, and as the true cost of the
increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

16 August 2014

Design is an iterative
process

 36

4. A systems-engineering (= data engineering) language (Planguage)
for modeling data-engineering processes and problems.

!37

5. Examples of how to always quantify all critical data architecture
qualities requirements.

!38

impact estimation tables for overview of
all strategies, architecture in relation to

objectives, constraints and risks

quantify the relationship between
technology and business

(radically improve communication with
your clients and managers)

 39

Niels Malotaux

�40

From Scales to Solutions

Objective

Resources

Benefits-to-
Cost Ratio

Solution 1 Solution 2 Solution n Total Impacts

Impact on
Objective

Impact on
Objective

Impact on
Objective

Impact on
Budget

Impact on
Budget

Impact on
Budget

Ratio Ratio Ratio

Total  
Impact on
Objective

Total  
Impact on

Budget

Courtesy Rolf Goetz

 41

Impacts on Objectives

Attract Talents
271 -> 700

Win Talents
53 -> 100

Perfect Match
25% -> 75%

Facebook Profiler Umantis BM Total Impacts
on Objectives

70%
± 10%

0%  
±10%

50%  
±5%

30%
± 20%

30%
± 10%

30%
± 10%

50%
± 10%

30%
± 10%

10%
± 10%

120%  
±25%

110%  
±40%

70%  
±30%

Total Impact  
of Solutions

110%
± 25%

80%
± 30%

110%
± 40%

Courtesy Rolf Goetz

 42

UNDERSTANDING DATA ENGINEERING
Design by estimating value effects and costs

!43

Adding 1 Value and 1 Design

!44

Explaining why you
estimated an impact

!45

6. How can you learn to qualify as a real data engineer? (Universities
do not teach it!)

Google it
Domain Common Sense
Look it upon a book

!46

quantification of all critical
values and qualities

no management bullshit
no user stories

all improvements quantified/estimated/tracked
all qualities quantified/estimated/tracked

 47

Q
ua

nt
ify

in
g

Q
ua

lit
y

© Tom@Gilb.com 2019

Philolaus on Numbers

• Over four hundred years BC,
• a Greek by the name of
• Philolaus of Tarentum said :

•” Actually, everything that can be known
has a Number;
– for it is impossible to grasp anything
with the mind or to recognize it without
this (number).”

Best regards (Aug 2005),
N.V.Krishnawww.microsensesoftware.com

!48

http://www.microsensesoftware.com/

Q
ua

nt
ify

in
g

Q
ua

lit
y

© Tom@Gilb.com 2019

How to Quantify any
Qualitative Requirement

Specification

Estimation

Quantification
Measurement

Diagram from ‘Competitive Engineering.’
book. !49

Q
ua

nt
ify

in
g

Q
ua

lit
y

© Tom@Gilb.com 2019

Quality Quantification Methods #1

• Common Sense, Domain Knowledge
–Decompose “until quantification becomes

obvious”.
–Then use Planguage specification:

• Scale: define a measurement scale

• Meter: define a test or process for measuring on the
scale

• Past: define benchmarks, old system, competitors
on the scale

• Goal: define a committed level of future stakeholder
quality, on your scale.

!50

Q
ua

nt
ify

in
g

Q
ua

lit
y

© Tom@Gilb.com 20141 July 2014

Quality Quantification Methods #2,  
Look it up in a book 

!51

Q
ua

nt
ify

in
g

Q
ua

lit
y

© Tom@Gilb.com 2014

Tool Collection:  
Scale: Clock hours for defined
[Maintenance Instance: Default:
Whoever is assigned] to acquire all
defined [Tools: Default: all systems and
information necessary to analyze,
correct and quality control the
correction].

1 July 2014

Quality Quantification Methods #2,  
Look it up in a book 

!52

Q
ua

nt
ify

in
g

Q
ua

lit
y

© Tom@Gilb.com 2019

Quality Quantification Methods #3,  
 Google It

!53

7. Understanding data engineering stakeholders as a source of
requirements.

Definition 
A stakeholder is any person, group or object,
which has some direct or indirect interest in a
defined system.
Stakeholders can exercise control over both the
immediate system operational characteristics, as
well as over long-term system lifecycle
considerations (such as portability, lifecycle costs,
environmental considerations, and
decommissioning of the system). [4]
Notice:
‘or object’.
This includes laws, regulations, plans, policies,
customs, culture, standards. Inanimate. you cannot
ask them or discuss with them. But you can analyze
them, their priority, the degree of relevance. They
can determine if your system is illegal, or
acceptable. Determine success or failure.

!54

The Basic Design Steps Logic: a summary
1. Environment Scope helps identify stakeholders.

2. Stakeholders have values and priorities

3. Values have many dimensions

4. Stakeholders determine value levels

5. Design hypotheses should be powerful and efficient ideas, for satisfying stakeholder

needs

6. Design hypotheses can be evaluated quantitatively, with respect to all quantified

objectives and resources

7. Designs can be decomposed, to find more efficient design subsets, that can be

implemented early

8. Designs can be implemented sequentially, and their value-delivery, and resource costs,

measured

9. Designs that unexpectedly threaten achievement of objectives, or excessive use of

resources, can be removed or modified.

10. Designs that have the best set of effects on objectives, for the least consumption of

limited resources, should generally be selected for early implementation.

11. A design increment can have unacceptable results, in combination with previous

increments, and they, or it, might need removal or modification

12. When all objectives are reached, the process of design is complete: except for possible

optimization of operational resources, by even-better design.

13. When deadlined and budgeted implementation-resources are used up, it might be

reasonable to negotiate additional resources; especially if the incremental values are

worth the additional resources.

14. When deadlined and budgeted implementation-resources are used up, it might be

reasonable to negotiate additional resources; especially if the incremental values are

worth the additional resources.

The Logic of Design: Design Process Principles.
 Tom Gilb, 2016, Paper.

http://www.gilb.com/dl857

Requirements

Design

Deploy

Re-design

 55

Gilb’s Stakeholder Principles.
1. Some stakeholders are more critical to your system than others.

2. Some stakeholder needs are more critical to your system than others.

3. Stakeholders are undisciplined: they may not know all their needs, or know them precisely,
or know their value. But they can be analyzed, coached, and helped to get the best possible
deal.

4. Stakeholders may be inaccessible, unwilling, inanimate, oppositional, and worse: but we
need to deal with them intelligently.

5. Stakeholders might well ask for the wrong thing, a ‘means’ rather than their real ‘ends’. But
they can be guided to understand that. Or their requests can be interpreted in their own real
best interests.

6. Stakeholders do not want to wait years, get delays, invest shitloads of money, and then little
or no value. They want as much ‘value improvement’ of their current situation, as they can get,
as fast as they can get it. For as little cost as possible,

7. Stakeholders cannot have any realistic idea of what their needs and demands will cost to
satisfy. So their adopted requirements need to be based on value for costs, not on value
alone. Delivering small increments, based on high value-to-cost, is one smart way to deal with this.

8. If you think you have found ‘all critical stakeholders’, I think you should assume there is at
least one more, and when you find that one, …. They will emerge, and they are not all there at
the beginning.

9. If you think you have found all critical needs of a stakeholder, there will always be at least
one more need ‘hiding’.

10. If you do not understand, and act on the principles above; you might blame your failure on
‘system complexity’, and the unexpected and wicked problems. But in reality, it is your own
fault and responsibility; deal with it - up front and constantly.

•SOURCE, 2016 Paper
“Stakeholder Power:The Key to Project Failure or Success”
including 10 Stakeholder Principles
http://concepts.gilb.com/dl880 (COPY FEB 2017)
http://concepts.gilb.com/dl872 (FEB 2016) 56

Stakeholder Attributes

• Some attributes of
stakeholders

• which can be defined
in more detail,

• and can be quantified

• status estimated

• and potentially
improved

 57

Stakeholder Costs

!58

Adding Strategies for Improving Stakeholder Attributes

!59

Stakeholder Ends and Means
the ???? signifies that we did not yet estimate the

effectiveness of the ideas for getting better
!60

The leftmost strategy -
‘Analysis’
detailed

 61

‘Accessibility’ defined quantitatively

 62

‘Adaptability’ Value defined

http://www.alisonmaitland.com/wp-content/uploads/2016/12/The-importance-of-career-adaptability.pdf

2020

 63

Known Unknowns

 64

Critical ={Stakeholders,
Requirements}

• prioritization tactic

• Critical Factor Concept *036
•A critical factor is an attribute level or

condition in a system,
•which can on its own,
• determine the success or failure of

the system
• under specified conditions.

•We prioritize critical factors like
critical stakeholders and their
critical requirements
•until all are satisfied
• then we should probably stop

 65

Stakeholder Rights
•Stakeholders should have the

•Right to have a voice

•Right to be consulted

•Right to be warned

•Right to suggest

•Right to review

•Right to measure

•Right to complain

•Right to be informed

•Right to change their mind

•Right to understand costs

•Right to understand value/resources

•Right to understand risks

•Right to set their priorities https://humanrightsmeasurement.org/methodology/measuring-civil-political-rights/

 66

Stakeholder Power in 3D

• Stakeholder power is
rarely absolute

• Stakeholder power
needs to be balanced
with all other
stakeholders

• Stakeholder power will
vary through time

• Stakeholder power is
less relevant when their
needs are satisfied

https://www.brighthubpm.com/project-planning/23481-stakeholder-analysis-spheres-of-influence/

 67

Stakeholder Ethics
•Stakeholders will

have highly varied
ethics, and
motivations

•We can influence
stakeholder ethics
by a variety of
actions

https://www.chuckgallagher.com/2013/04/16/business-ethics-theories-which-theory-of-ethics-do-you-follow-stockholder-stakeholder-and-social-contract-theories-part-one/

 68

Stakeholder Feedback Types
• Stakeholders have a

variety of ways to
feedback, react, and
influence the process

• gradual measurement of
value delivered versus
value expected

• complaints

• ‘Sensemaker’ ™
feedback

https://www.nngroup.com/articles/ux-research-cheat-sheet/ 69

Defining a list of stakeholders
which are related to an Objective

 70

The Scale definition, scale ‘parameters’ - give additional information regarding
stakeholders: such as where, when, which type, under what circumstances

!71

Stakeholder-Driven
Value Delivery

• all projects

• are about

• delivering values

• to stakeholders

 72

End of Talk.
Get a free e-copy of

‘Competitive
Engineering’ book.

 https://www.gilb.com/p/
competitive-engineering

these slides are at

 http://concepts.gilb.com/file24

https://www.gilb.com/store?tag=books

!73

http://concepts.gilb.com/file24

