
Advanced
Agile

Software Engineering
(Adding capability to a basic

Agile Framework)
Tom Gilb, tom@Gilb.com

Agile Days Istanbul, in Turkey April 12th 2018, 45 minutes

#AgileDaysIstanbul

(2nd Talk at the Conference)

@ImTomGilb

These slides are at

�1

mailto:tom@Gilb.com

Advanced Agile Options
1.Quantified Value and Quality Requirements: business

results focus

2.Quantification of all strategies and architecture:

technology must serve business results

3.Dynamic Prioritization: computing best next delivery steps.
4.Dynamic Design to Cost: agile quality, value and cost

management

5.No Cure No Pay Contracting: agile contracting for value

not code & work
6. Advanced Product Owner Responsibilities and Capability:

much better requirements and design than conventional

agile offers.

7. Scale-Free Agile:
Planguage works at all scales large and small.

8. Decomposition into small high value result deliveries

 2

Agile as practiced today is perhaps
good for delivering code functions

faster.

But the main point of our projects is
to deliver critical factor

improvements.

Not code!

!3

© Gilb.com
 4Copyright: Kai@Gilb.com

Stakeholders

Values

Solutions

DecomposeDevelop

Deliver

Measure

Learn

Measure Change
Measure how much the Values

changed.

Value Delivery Cycle: Measure

26

1. Quantification of Values and Qualities

!5

Tool Credit:
www.NeedsandMeans.com

Richard Smith, London

http://www.NeedsandMeans.com

© Gilb.com

The Principle Of 'Quality Quantification’  
 The Words of a ‘Lord’

“All qualities can be expressed quantitatively,
 'qualitative' does not mean unmeasurable”. (Gilb)  

http://tinyurl.com/GilbTedx

"In physical science the first essential step in the direction of learning
any subject is to find principles of numerical reckoning and practicable
methods for measuring some quality connected with it.

I often say that when you can measure what you are
speaking about, and express it in numbers, you know
something about it;

but when you cannot measure it, when you cannot express
it in numbers, your knowledge is of a meagre and
unsatisfactory kind;
it may be the beginning of knowledge, but you have scarcely in your
thoughts advanced to the state of Science, whatever the matter may
be.”
Lord Kelvin, 1893, Lecture to the Institution of Civil Engineers, 3 May 1883 From
http://zapatopi.net/kelvin/quotes.html

Born: 26 June 1824; Belfast, Ireland
Died 1907..

 6

Stakeholders
Needs and

Means
diagram

!7

Main idea with this example
 is to notice

the rich stakeholder structure

Not limited to
‘Users and Customers’

but including
all critical requirements

from
all critical stakeholders

Direct
Quantification of

all valued
benefits,

so they are
unambiguous

clear;
 and trackable

in agile delivery
steps.

!8

Every one of these values can
be expressed as

numeric improvements

Security Value Quantification
with Stakeholders

REQUIREMENT
WITH MANY DIMENSIONS

This structure
of requirements is in ‘Planguage’.

Which is specified in books
‘Competitive Engineering’

and
‘Value Planning’

Bullshit
level

 9

All values and qualities
can be expressed quantitatively

2. Estimation of multiple attributes of methods and strategies

When we quantify our critical ‘values’ we can take the next step of
‘estimating and then tracking movement towards those value levels’

!10

© Gilb.com

― Confucius, Sayings of Confucius 

“True wisdom is
knowing what you

don't know”

― Confucius, Sayings of Confucius

 11

What intellectual tools do you have
that will help you

to be more conscious of
exactly what

you do NOT know enough about?

http://www.goodreads.com/author/show/15321.Confucius
http://www.goodreads.com/work/quotes/6514114
http://www.goodreads.com/author/show/15321.Confucius
http://www.goodreads.com/work/quotes/6514114

The numeric relation between ends
and means.

Basic Structure of an Impact Estimation Table

!12

What items here help us to
know what we do not know?

Designs ->

Overall ‘Potential Values / Costs’
of 3 options or (if you need them all)

complimentary ‘benefit drivers’ = strategies = solutions = means’
!13

Simple presentation
og overall value for costs

of each
strategy or design

3. Evo and Advanced Agile:
Multiple Measures, and Dynamic Design to Cost Estimation

An advanced, Deming, ‘Plan Do Study Act’ cycle

(Statistical Process Control)

and each step is about being ‘numeric’
(‘Engineering’ not ‘coding’)

This is ‘Evo’ (Evolutionary Value Optimization)
!14

Microproject

 15

Stakeholders

Values

Solutions

DecomposeDevelop

Deliver

Measure

Learn

Identify your
critical stakeholders

the ones that have
one or more critical needs,

that if you fail to deliver them,

your project/product

might well fail

Requirement Sources

Stakeholder Cases
Stakeholder Stories

 16

Stakeholders

Values

Solutions

DecomposeDevelop

Deliver

Measure

Learn
What critical numeric

improvements do
stakeholders need?

We can,
and must always,

 express their values
with

well-defined numbers

Define both failure
and

success numerically

and

keep learning what
those

 critical numbers are
continuously

 17

Stakeholders

Values

Solutions

DecomposeDevelop

Deliver

Measure

Learn

Solutions
(designs, architectures,

strategies)

must be identified

and their total impacts on
critical objectives

and
constraints

must be estimated
reasonably

(order of magnitude)

Impact Estimation Tables
(Planguage)

are a tool for doing estimates
 of potential solutions

and how good they might be

 18

Stakeholders

Values

Solutions

DecomposeDevelop

Deliver

Measure

Learn
The solutions can be

decomposed
by 10x or 100x

And we can estimate the
solution sub-component

value and cost,

so as to prioritize the best
value/cost

for short term delivery

 19

Stakeholders

Values

Solutions

DecomposeDevelop

Deliver

Measure

Learn

The sub-solutions are
made ready (developed)

for delivery to real
stakeholders,

next week and every week.
Or in about 2% of budget/

deadline increments

 20

Stakeholders

Values

Solutions

DecomposeDevelop

Deliver

Measure

Learn

The sub-solutions are
delivered

 to real stakeholders,
in order to experiment,
to test, to pilot, to get

reactions,
NUMERICALLY

and to allow for potential
corrections in design, in

implementation process, and
in lower-priority requirements

 21

The sub-solutions are
measured as to effect

on
all the

top

stakeholder
critical

objectives,

and

on their critical cost
increments,

with a view to

improving prediction of

final cumulative costs

Stakeholders

Values

Solutions

DecomposeDevelop

Deliver

Measure

Learn

 22

Stakeholders

Values

Solutions

DecomposeDevelop

Deliver

Measure

Learn
From the measurements,

and
other feedback

from stakeholders

Learn what you need to do
to avoid failure
and to succeed

These 2 diagrams are © kai@Gilb.com

2017, as well as several other illustrations

 used in this talk

Microproject

mailto:kai@Gilb.com

 © 2008 Kai Gilb © Kai@Gilb.com

Stakeholders

Values
Measure

Learn

Value Management  
Learning Process

 23

Solutions

DecomposeDevelop

Deliver

Evo Development / Scrum

Architecture /
Engineering

Business Analyst
Re

ali
ty

(B
us

ine
ss/

Arc
hit

ec
tu

re
/En

gin
ee

rin
g/

Dev
elo

pm
en

t)

 © 2008 Kai Gilb © Kai@Gilb.com

Stakeholders

Values
Measure

Learn

Value Management  
Learning Process

 24

Solutions

DecomposeDevelop

Deliver
Devops

Copyright Tom@Gilb.com 2013

‘Cleanroom Method’
at IBM Federal Systems Division (1980)

16 August 2014 25

Dr. Harlan D. Mills
(May 14, 1919 – January 8, 1996)

Quality is designed in, not tested in
Our ‘Spec QC = ‘Inspection’)

“The first guarantee of quality in design is in well-informed, well-
educated, and well-motivated designers.
Quality must be built into designs, and cannot be inspected in or
tested in.
Nevertheless, any prudent development process verifies quality
through inspection and testing.
 Inspection by peers in design, by users or surrogates, by other
financial specialists concerned with cost, reliability, or maintainability
not only increases confidence in the design at hand, but also
provides designers with valuable lessons and insights to be applied
to future designs.
The very fact that designs face inspections motivates even the
most conscientious designers to greater care, deeper simplicities,
and more precision in their work.” Harlan Mills, IBM
 inIBM sj 4 80 p.419
In

Mills, H. 1980. The management of software engineering: part 1: principles of software engineering. IBM Systems Journal 19, issue 4 (Dec.):414-420.
Direct Copy
http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan
Library header
http://trace.tennessee.edu/utk_harlan/5/

 26

© Gilb.com 2017

In the ‘Cleanroom Method’ (Google it!),
developed by IBM’s Harlan Mills (1970-1980) they reported:  

• “Software Engineering began to emerge in FSD” (IBM Federal Systems Division,
from 1996 a part of Lockheed Martin Marietta) “some ten years ago [Ed. about
1970] in a continuing evolution that is still underway:

• Ten years ago general management expected the worst from software projects –
cost overruns, late deliveries, unreliable and incomplete software

• Today [Ed. 1980!], management has learned to expect on-time, within budget,
deliveries of high-quality software. A Navy helicopter ship system, called
LAMPS, provides a recent example. LAMPS software was a four-year project of
over 200 person-years of effort, developing over three million, and integrating
over seven million words of program and data for eight different processors
distributed between a helicopter and a ship in 45 incremental deliveries [Ed.
Note 2%!]s. Every one of those deliveries was on time and under budget

• A more extended example can be found in the NASA space program,
• - Where in the past ten years, FSD has managed some 7,000 person-years of

software development, developing and integrating over a hundred million bytes
of program and data for ground and space processors in over a dozen projects.

• - There were few late or overrun deliveries in that
decade, and none at all in the past four years.”

 27

© Gilb.com 2017

In the Cleanroom Method,
developed by IBM’s Harlan Mills (1970-1980)

they reported:
(this is ‘Agile’ as it should be!)

• “Software Engineering began to emerge in FSD” (IBM Federal Systems Division,
from 1996 a part of Lockheed Martin Marietta) “some ten years ago [Ed. about
1970] in a continuing evolution that is still underway:

• Ten years ago general management expected the worst from software projects –
cost overruns, late deliveries, unreliable and incomplete software

• Today [Ed. 1980!], management has learned to expect on-time, within budget,
deliveries of high-quality software. A Navy helicopter ship system, called
LAMPS, provides a recent example. LAMPS software was a four-year project of
over 200 person-years of effort, developing over three million, and integrating
over seven million words of program and data for eight different processors
distributed between a helicopter and a ship in 45 incremental deliveries [Ed.
Note 2%!]s. Every one of those deliveries was on time and under budget

• A more extended example can be found in the NASA space program,
• - Where in the past ten years, FSD has managed some 7,000 person-years of

software development, developing and integrating over a hundred million bytes
of program and data for ground and space processors in over a dozen projects.

• - There were few late or overrun deliveries in that decade, and none at all in
the past four years.”

 28

in 45 incremental deliveries

were few late or overrun
deliveries in that decade,
and none at all in the past

four years

Mills on ‘Design to Cost’
• “To meet cost/schedule commitments

• based on imperfect estimation techniques,
• a software engineering manager must adopt
• a manage-and-design-to-cost/schedule process.

• That process requires
• a continuous and relentless
• rectification of design objectives
• with the cost/schedule needed to achieve those

objectives.”
• in IBM System Journal, No. 4 1980 p.420, see Links below

 29

Mills, H. 1980. The management of software engineering: part 1: principles of software engineering. IBM Systems Journal 19, issue 4 (Dec.):414-420.
Direct Copy
http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan
Library header
http://trace.tennessee.edu/utk_harlan/5/

Copyright Tom@Gilb.com 2017

Robert E. Quinnan (-2015):
IBM FSD Cleanroom  

Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management
farther by introducing design-to-cost guidance. Design, development, and managerial practices are applied in an
integrated way to ensure that software technical management is consistent with cost management. The method
[illustrated in this book by Figure 7.10] consists of developing a design, estimating its cost, and ensuring that the
design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by
sacrificing 'planned capability.' When a satisfactory design at cost target is achieved for a single increment, the
'development of each increment can proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking
the appropriate balance between cost and design for a single increment, but they iterate through a series of
increments, thus reducing the complexity of the task, and increasing the probability of learning from experience,
won as each increment develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp.
466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

 30

Copyright Tom@Gilb.com 2017

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure that
software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10] consists of
developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can proceed
concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the appropriate
balance between cost and design for a single increment, but they iterate through a series of increments, thus reducing the complexity of
the task, and increasing the probability of learning from experience, won as each increment develops, and as the true cost of the
increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

 31

of developing a design,
estimating its cost, and
ensuring that the design

is cost-effective

Copyright Tom@Gilb.com 2017

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure that
software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10] consists of
developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can proceed
concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the appropriate
balance between cost and design for a single increment, but they iterate through a series of increments, thus reducing the complexity of
the task, and increasing the probability of learning from experience, won as each increment develops, and as the true cost of the
increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

 32

iteration process
trying to meet cost

targets by either
redesign or by

sacrificing 'planned
capability’

Copyright Tom@Gilb.com 2017

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure that
software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10] consists of
developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can proceed
concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the appropriate
balance between cost and design for a single increment, but they iterate through a series of increments, thus reducing the complexity of
the task, and increasing the probability of learning from experience, won as each increment develops, and as the true cost of the
increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

 33

Design is an iterative
process

Copyright Tom@Gilb.com 2017

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure that
software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10] consists of
developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can proceed
concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the appropriate
balance between cost and design for a single increment, but they iterate through a series of increments, thus reducing the complexity of
the task, and increasing the probability of learning from experience, won as each increment develops, and as the true cost of the
increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

 34

but they iterate through a series of
increments,

thus reducing the complexity of the
task,

and increasing the probability of
learning from experience

Copyright Tom@Gilb.com 2017

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure that
software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10] consists of
developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can proceed
concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the appropriate
balance between cost and design for a single increment, but they iterate through a series of increments, thus reducing the complexity of
the task, and increasing the probability of learning from experience, won as each increment develops, and as the true cost of the
increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

 35

 an estimate to complete
the remaining
increments is

computed.

4. Measuring Development Specifications
Quality: Lean Quality Assurance

!36

The Agile Specification Quality Control process
 for lean (early, prevents defect injection) measurement of quality of requirements,

architecture specs, and contracts

• Our IT planning documents
are heavily polluted

• with dozens of ‘major
defects’ per page

• we need to measure
defects by sampling

• and we need to refuse to
‘exit’ garbage out

• this lean approach can
improve productivity 2x
and 3x (Intel)

 37

 38

A Practical Industry Example

Rev. # of
Defects

of Pages Defects/ Page
(DPP)

% Change in
DPP

0.3 312 31 10.06
0.5 209 44 4.75 -53%
0.6 247 60 4.12 -13%
0.7 114 33 3.45 -16%
0.8 45 38 1.18 -66%
1.0 10 45 0.22 -81%
Overall % change in DPP revision 0.3 to 1.0: -98%

Application of ‘Specification Quality Control’ (Gilb method) by an Intel software
team, resulted in the following defect-density reduction,
 in requirements over several months:

Downstream benefits:
•Scope delivered at the Alpha milestone increased 300%, released scope up 233%
•SW defects reduced by ~50%
•Defects that did occur were resolved in far less time on average

Source Eric Simmons, erik.simmons@construx.com
25 Oct 2011. See Terzakis research reports.

50:1 !

mailto:erik.simmons@construx.com

Industrial Studies of Planguage and SQC to
measure quality of requirements

2013 Rio Paper
https://www.thinkmind.org/download.php?articleid=iccgi_2013_3_10_10012

�39

February 2014

issue 17
Security Testing in an Agile Environment

6. Advanced Product
Owner Responsibilities
and Capability: much
better requirements and
design than conventional
agile offers.

!40
Page 63 Agile Record – www.agilerecord.com

Advanced Product Owners
by Tom & Kai Gilb

Gilb’s Mythodology Column

:H�DUH�JRLQJ�WR�DUJXH�WKDW�WKH�QRUPDOO\�GHÀQHG�UROH�RI�3URGXFW�
2ZQHU��32��LV�LQDGHTXDWH�IRU�SURMHFWV�WKDW�KDYH�VHULRXV�PXOWLSOH�
TXDOLW\�UHTXLUHPHQWV��DQG�FRQVHTXHQW�DUFKLWHFWXUH�SURFHVVHV��WR�
GHOLYHU�WKH�QHFHVVDU\�OHYHOV�RI�SHUIRUPDQFH�DQG�TXDOLW\��

7KLV� LQFOXGHV� DOO� ODUJH� VHULRXV� SURMHFWV�� VXFK� DV� JRYHUQPHQW�
RU� FRUSRUDWH� SURMHFWV�� :H� GR� not want to argue that the
3URGXFW� 2ZQHU� UROH� DV� FRQYHQWLRQDOO\� GHÀQHG� LV� LQDGHTXDWH�
IRU� small� SURMHFWV�� QRU� IRU� SURMHFWV� WKDW� DUH� not� GHSHQGHQW�
RQ� PXOWLSOH� VWDWH� RI� WKH� DUW� TXDOLW\�� SHUIRUPDQFH�� DQG� FRVW�
OHYHOV� ²� DQG� WKH� FRQVHTXHQW� DUFKLWHFWXUH� WR� PHHW� WKHP��
+RZHYHU��D�SRLQW�LV�UHDFKHG�ZKHUH�D�SURMHFW�LV�VR�GHPDQGLQJ�WKDW�
PHWKRGV�DGHTXDWH�IRU�VPDOOHU�SURMHFWV�ZLOO�IDLO��7KH�PHWKRGV�RI�D�
KRPHRZQHU�EXLOW�KRXVH�ZLOO�QRW�ZRUN�IRU�D�����VWRU\�VN\VFUDSHU����
7KH�6FUXP�SURMHFW� IDLOXUH�UDWH� �DERXW������PD\�EH�EHWWHU� WKDQ�
ZDWHUIDOO��PRUH�OLNH������>�@�GXH�WR�EHWWHU�IHHGEDFN��%XW�NLOOLQJ�RQO\�
RQH�RXW�RI�ÀYH�SHGHVWULDQV�DW�D�FURVVLQJ��DV�RSSRVHG�WR�WZR�RXW�RI�
ÀYH��LV�VWLOO�QRW�JRRG�HQRXJK��:H�QHHG�WR�JHW�FORVHU�WR�]HUR�SURMHFW�
IDLOXUHV�LQ�,7�GHYHORSPHQW��7KH�P\WK�LV�WKDW�WKH�FRQYHQWLRQDO�32�
SURFHVV�LV�universal��DQG�WKDW�LW�VFDOHV�XS�WR�DQ\�W\SH�RI�SURMHFW��
,�EHOLHYH�ZH�QHHG�WR�EHFRPH�PRUH�DZDUH�RI�WKH�OLPLWV�RI�WRGD\·V�

GRJPD��DQG�WR�LGHQWLI\�SUDFWLFHV�DSSURSULDWH�IRU�$JLOH�PHWKRGV�LQ�
WKH�PRUH�GHPDQGLQJ�SURMHFWV��

7KH�P\WKV�RI�WKH�SURFHVV�RZQHU�DUH�LQ�LWDOLFV�EHORZ��KWWS���ZZZ�
PRXQWDLQJRDWVRIWZDUH�FRP�DJLOH�VFUXP�SURGXFW�RZQHU). Our
FRPPHQWV�ZLOO�EULHÁ\�LQGLFDWH�DQRWKHU�SRLQW�RI�YLHZ�IRU�WKH�PRUH�
GHPDQGLQJ�SURMHFWV��7KLV�FROXPQ�ZLOO�QRW�DOORZ�XV� WR�DUJXH� LQ�
GHWDLO��EXW�WKH�UHIHUHQFHV�ZLOO�KHOS�WKRVH�ZKR�QHHG�PRUH�GHSWK��
7KH�SXUSRVH�RI�WKLV�FROXPQ�LV�WR�RSHQ�XS�WKH�GHEDWH�IRU�D�OHVV�
GRJPDWLF�DQG�OHVV�RYHUVLPSOLÀHG�SUHVHQWDWLRQ���

1. The Scrum product owner is typically a project’s key stakeholder.
>�@�7KH�32�LQ�UHDOLW\�QHHGV�WR�SHUIRUP�DW�OHDVW�WKUHH�YHU\�GLVWLQFW�
IXQFWLRQV��ZKLFK�DUH�ZHOO�XQGHUVWRRG� LQ� ODUJHU�VFDOH�VRIWZDUH�
HQJLQHHULQJ��DQG�HQWHUSULVH�,7��

Requirements Engineering (RE): WKLV� LV�127�D�PDWWHU�RI�8VHU�
6WRULHV��7KLV� LV�SULPDULO\�D�PDWWHU�RI�TXDQWLÀHG�VSHFLÀFDWLRQ�RI�
WKH� WRS�OHYHO�SULPDU\�GULYHUV�RI�D�SURMHFW� >�@��TXDOLWLHV�VXFK�DV�
VHFXULW\��XVDELOLW\��DQG�DGDSWDELOLW\�>�@���SURMHFW�FRQVWUDLQWV��DQG�
SHUIRUPDQFH�UHTXLUHPHQWV��7KHUH�LV�QR�VXFK�FRQFHSW�DV�WKLV�LQ�
6FUXP�RU�RWKHU�VLPLODU�$JLOH�YDULDWLRQV�DW�SUHVHQW�

Stakeholder A’s
financial budget

Usability

Reliability

Security

Environment

Innovation

Cost Reduction

Client Accounts

Stakeholder B’s
financial budget

Elapse Time

Effort

Function

0%

100%

http://www.gilb.com/dl799

http://www.gilb.com/dl799

Advanced: = ‘Evo’
= Agile Method *

Advanced Product Owner
• Value Focussed
• Real Engineering
• Requirements = Value
• Stakeholder

Focussed (all 50+ !)
• Qualities Focussed (all

30)
• Measurable Value Stream
• Architecture Engineering

Conventional ‘Product
Owner’

• Code Focussed
• Craft (‘Softcraft’)
• Reqts = Function, Story
• User Customer Focussed

(all 2)
• Bug Focussed (not even MTBF)

• Code Stream
• No clear design concept

* CE book, Chapter 10: Evolutionary Project Management: Chapter 10: Evolutionary Project Management:
http://www.gilb.com/DL77

 Copyright Tom@Gilb.com

mailto:Tom@Gilb.com
mailto:Tom@Gilb.com

Copyright Tom@Gilb.com 42

The Policy
• Advanced Product Owner’ Policy:

System ‘Requirements Engineer’ (RE).
– Background: this policy defines the expectations

for a ‘Product Owner’ (PO) for serious, critical,
large, and complex systems.
• This implies that it is not enough to manage a simple

stream (Backlog) of ‘user stories’ fed to a programming
team.

• It is necessary to communicate with a systems
engineering team, developing or maintaining the
‘Product’.

– System implies management of all technological components,
people, data, hardware, organization, training, motivation, and
programs.

– Engineering: means systematic and quantified, ‘real’ engineering
processes, where proactive design is used to manage system
performance (incl. all qualities) attributes and costs.

mailto:Tom@Gilb.com
mailto:Tom@Gilb.com

Copyright Tom@Gilb.com 43

1. COMPLETE REQUIREMENTS:

– The RE (Requirements Engineer) is
responsible for absolutely all requirements
specification that the system must be
aware of, and be responsible for to all
critical or relevant stakeholders.
• In particular, the RE is

– not narrowly responsible for requirements from
users and customers alone.

– They are responsible for all other stakeholders,
» such as operations, maintenance, laws,

regulations, resource providers, and more.

mailto:Tom@Gilb.com
mailto:Tom@Gilb.com

Copyright Tom@Gilb.com 2014 44

2. QUALITY REQUIREMENTS:

– The RE is responsible for the quality level,
in relation to official standards, of all
requirements they transmit to others.

• They are consequently responsible for making

sure the quality of incoming raw requirements,
needs, values, constraints etc. is good enough to
process. No GIGO.

• If input is not good quality,

– they are responsible for making sure it is better quality,
– or at least clearly annotated where there is

» doubt, incompleteness, ambiguity and any other
potential problems, they cannot resolve yet.

mailto:Tom@Gilb.com
mailto:Tom@Gilb.com

Copyright Tom@Gilb.com 45

3. ARCHITECTURE:

–The Requirements Engineer is NOT responsible for
any architecture or design process itself.
• This will be done by professional engineers and architects.

–They are however very much responsible for a
complete and intelligible quality set of requirements,

• transmitted to the designers and architects.

–The are also responsible for transmitting quality-
controlled architecture or design specifications to
any relevant system builders.

• These are the designs which are input requirements to
builders. Effectively they are ‘design constraints
requirements’.

mailto:Tom@Gilb.com
mailto:Tom@Gilb.com

Copyright Tom@Gilb.com 46

4. Priority Information:

–The Requirements Engineer is NOT responsible for
prioritization of requirements.

– Prioritization is done dynamically
• at the project management (PM) level,
• based on prioritization signals in the requirements,
• and on current feedback and experience in the value

delivery cycles (Sprints).

– The primary responsibility of the Requirements
Engineer,
• is to systematically and thoroughly collect and disseminate all

relevant priority signals, into the requirement specification;
• so that intelligent prioritization can be done at any relevant

level, and at any time.

mailto:Tom@Gilb.com
mailto:Tom@Gilb.com

7. Scale-Free
Agile:

Planguage works
at all scales large
and small.

!47

Erik Simmons, Intel Scaling
On 08 Jan 2016, at 19:30, Simmons, Erik
erik.simmons@construx wrote:

Just a couple of things come to mind
after reading this:

(Gilb:

Beyond Scaling: Scale-free
Principles for Agile Value
Delivery - Agile Engineering.
© tom@Gilb.com 2016, Posted at gilb.com resources/downloads/papers
http://www.gilb.com//dl865
Version March 14 2016, Modified April 11 2016 (XP)

Cheers,

e

mailto:erik.simmons@construx.com
mailto:tom@gilb.com
http://gilb.com
http://www.gilb.com//dl865

Erik Simmons, Intel Scaling
 I’ve not been a fan of the scaling movement since it started.

There are very few things that scale well, and economies of scale
are often pursued without adequate understanding of the
accompanying diseconomies of scale.

SW development does not scale well
• because of the diseconomies of complexity,
• such as the number of communication pathways,

• cognitive load on programmer brains, etc.

• That is among the core reasons for Brooks’ Law.

What makes us think that scaling Scrum, which is successful in
small teams and projects, is a good idea?

A grown-up is not a scaled baby.

Scaling as a concept is selling a lot of books, consulting, and
certifications right now. But I don’t think it is a valuable concept.

erik.simmons@construx.com

mailto:erik.simmons@construx.com

Erik Simmons, Intel Scaling
• Instead, I believe that the majority of what you have included for ideas, principles, etc. from CE and VP are in fact

scale-free.

• They are not dependent on project or organization size.

• They are good heuristics for almost any project,

• and nearly universally applicable
• (nearly universal because I hear Koen in my head, and all is heuristic).

• So, CE and VP are not about scaling

• so much as they should be taught and understood as scale-free.

• Size is not a reason to choose (or not choose) to use Competitive Engineering, Evo, Planguage, etc.

• As you quoted me in the paper – this stuff works.

• It works on small projects. It works on large projects.

• Evo on a 5-person team is not really much different than Evo on a 100-person team, except there are more people.

• The principles apply without alteration (or “scaling”).

• Anyone who sees a random page of your new paper would probably not guess the topic is scaling (unless you
happen to mention that in the text on that particular page).

• ‘Competitive Engineering’ does not scale. It doesn’t need to.

erik.simmons@construx.com

mailto:erik.simmons@construx.com

Erik Simmons, Intel Scaling

There’s no doubt that large projects are different.

There’s no doubt that we should approach them
differently.

We still don’t have a recipe for large projects, and
probably never will.

But all that does not lead me to think that the answer to
large projects can be found in scaling successful
practices for small projects.

Instead, it must be found in use of principles and
practices that are scale-free,

coupled with use of particular practices that are
effecting on large projects.

If something that works on small projects also works on
large projects, then I’d propose we call it a scale-free
practice, not a scaled practice.

erik.simmons@construx.com

mailto:erik.simmons@construx.com

Erik Simmons, Intel Scaling
 I’m deeply interested in scale-free practices.

I’m also interested in specific practices tuned to large,
small, complicated, and complex projects,

but I find particular power in scale-free practices.

Your work for decades has been focused on a very
good set of these.

SQC, for example, works on any size
specification. It does not (need to) scale.
SQC: (Specification Quality Control).see next slide

BTW, I think the agile principles are also quite scale-
free. But most Scrum practices are definitely not.

So, perhaps you can chart a better course by
advocating for use of scale-free core practices,

augmented with a set of specific, tailored practices

that are effective for the size of the project in
question.

erik.simmons@construx.com

mailto:erik.simmons@construx.com

Scale-free Principles
1.Keep focus on measurable delivery of critical values and their costs. [3, 4, 5, 6, 9, 10, 12, VP

(20) Part 1, VP 10.6]
2.Deliver value early, quickly and regularly: in roughly 2% increments. [14, 11, VP Ch.4, 2, 5]
3.Do NOT focus on code delivery; focus on overall system value and costs. [VP Ch.4, 10D,

10F, 13, VP 3.4, VP 2.10, VP 9.8, 4, 12]
4.Focus on quantified critical stakeholder values. [19, VP 3.4, VP 3.7, VP 3.9, VP 3.10 VP 4.2,

10]
5.Synchronize all teams in terms of measurable value delivery. [VP 3.3, VP 3.4, VP Part 1, VP

3.6, VP 3.8, VP 8.4 , 11, 12, 13]
6.Solve big problems through ingenious architecture; not through coding faster. [VP 4.5, VP

5.1, VP 5.3, VP 7.2, 15]
7.Decompose the large problems by incremental value deliveries: not code deliveries. [7, VP

Ch. 5, VP 5.1, VP 5.6 , 10, 11, 13, 15]
8.The software component needs to be integrated into the total system of hardware, data,

people, culture. [VP 5.2, 10]
9.If your team cannot deliver small increments of real value early, frequently, and predictably;

they are incompetent and need to be abandoned for those who can deliver. [7, VP 2.8, 10]
10.Never commit to contacts for work done or code delivered alone: there must always be a

sufficiently large contractual protection, of paying for measurable value delivered. [12, 15].

Methods
1.Quantification of Values [10, VP 1.1].
2.Quantification of short term and long term costs [VP 3.4, VP 4.5, VP 6.7].
3.Design to Cost: Top Level Architecture [VP 7.9, 10].
4.Dynamic Design to Cost: Each Delivery Cycle [12 C, VP 4.5, VP 2.5, VP

2.3, 5, 10, 12].
5.Quality Control of Plans, Contracts, Code and all written artifacts [VP Part

2, VP Part 4, VP 7.7].
6.Flexible Contracting [12, VP 4.5].
7.Value delivery Cycle Measurable Feedback, Learning and Change [4,
 VP 7.3, VP 9.8, VP 6.7, VP 8.6, 2, 9, 10, 11, 14].

8.Value Decision Tables (Impact Estimation Tables) [9, VP 2.3, VP 4.4,
VP 5.3, 13].

9.Risk Management in all aspects of planning and Management [VP Ch. 7],
12.

10.Intelligent Prioritization Policies: for short term and long term [VP Ch. 6,
12, 13, 14].

Engineering Tools
1.The Planning language: ‘Planguage’ [22, VP, 8, 9].
2.The 111111 Decomposition Method [7B, 7C, 3].
3.Flexible Contracts [12].
4.The ‘Needs and means Planning’ tool [16, 9].
5.Quantification of Values processes: Scales, Meters,

Past, Tolerable, Wish, Goal. [VP 10.7].
6.The Agile Spec QC measurement process, Exit

Processes, Rules [VP 10.4, VP Part 4].
7.Multiple Relationship Management technology [9,

VP Ch.3, VP Ch. 6, 13].
8.Continuous Architecture adjustment based on

delivery cycle feedback (Cleanroom) [5, 14, 8].
9.Graphic Visibility of Values, Costs, and Risks [16].
10.Design to Cost Practices: initially and continuously

[14, 12 C, VP 4.5, VP 2.5, VP 2.3, 5].

Why do these scaling ideas work?
1.Value quantification allows us to focus on the stakeholder results, the main objectives of any project. All other

activity, below this level should be contributing to delivery of the planned values. This means we can delegate the
activity to any combination of specialist teams of any size and complexity: yet we can judge whether things are
‘working’. We keep our eyes on measured value delivery. We can judge whether both our organization and our
architecture are delivering as expected and needed. If not we can adjust (dynamic design to cost) and go with
things that are actually delivering necessary value.

2.Contracting for value relates to the above explanation, with the added benefit that outside contractors are now
motivated to focus on value delivery, not just ‘doing work’, or ‘programming’. It does not matter so much about the
underlying complexity. That underlying complexity either works (delivers contracted value measurably) or not. If
not, we change it until it does, or give up if we cannot change to satisfy value delivery needs.

3.Decomposition by small 2% deliverable value architecture components: this is a very basic attack on large
size and consequent complexity. We can see the incremental impact of each step on the whole system, regarding
both value delivery and costs. If it is not good enough we try new ideas. If we run out of ideas that work, we need
to stop.

4.Risk Management: our methods, including 1-3 above, are really all about managing the risk of failing to deliver
value for money, on time. In addition we have suggested a number of additional risk management ideas. For
example estimating the ± uncertainty of a design impact on values and costs [9]. For example asking for specific
evidence [9] that any given design, or strategy will deliver the values and costs we need. The more engineering
effort we put in to planning for risk up front, the less likely we are to get nasty surprises later (and then blame them
on ‘project size and complexity’; rather than our own lack of decent engineering planning).

5.Delegation of decision-making [23]. Delegating the power to make decisions to a grass roots level, and in
addition to do so incrementally while keeping any eye of their level of concern (in terms of value and
costs), should obviously help us make better decisions, in an evidence-based situation.

I have personally used these methods, with remarkable success, on projects involving for example 1,000
programmers and 1,000 hardware engineers (example HICOM (which was in total failure mode after 2 years, at
Siemens. Boeing Aircraft projects [thousands of employees involved. To mention just a couple of many). There is no
doubt for me that they work, and why they work.

8. Decomposition
into small high
value result
deliveries

!57

1. See the Chapter 5 Decomposition chapter in Value Planning book (leanpub.com/Valueplanning)
2. or https://www.dropbox.com/sh/dc7v636m7w7vvgx/AABfMAW_FnJny23XZKQZQkF4a?dl=0

http://leanpub.com/Valueplanning
https://www.dropbox.com/sh/dc7v636m7w7vvgx/AABfMAW_FnJny23XZKQZQkF4a?dl=0

 58

Stakeholders

Values

Solutions

DecomposeDevelop

Deliver

Measure

Learn
The solutions can be

decomposed
by 10x or 100x

And we can estimate the
solution sub-component

value and cost,

so as to prioritize the best
value/cost

for short term delivery

Here are some other
complimentary forms

of decomposition

1. stakeholders
2. Values
3. Costs

4. designs

!59

Main idea with this example
 is to notice

the rich stakeholder structure

Security Value Quantification
with Stakeholders

REQUIREMENT
WITH MANY DIMENSIONS

This structure
of requirements is in ‘Planguage’.

Which is specified in books
‘Competitive Engineering’

and
‘Value Planning’

Bullshit
level

 60

All values and qualities
can be expressed quantitatively

Decomposition by Stakeholder
Values

All of which are quantified
and

used as basis for
Method suitability

!61

Example: Quantifying ‘Portability’

!62

Stakeholders —>

Requirement Sources

Example: Quantifying ‘Portability’

Management BS Level

Slogan or Headline

Many specs stop at this level.

We use this as a platform to develop much more
precise requirements

Quantified, and
Decomposed to varied-value components

<- The ‘Portability’ is the name or ‘tag of the specification’

This documents where in a hierarchy the spec belongs
and what type of spec (Value) it is

!63

Example: Quantifying ‘Portability’ THE SCALE DEFINITION
with [Scale Parameters] decomposition: 2 levels

Second-Level
Decomposition

<—————
very detailed
‘modelling’ of

the system

 [Scale Parameters] decomposition: 1st level

!64

Example: Quantifying ‘Portability’

<- Wish level (90) expresses a need or desire of a stakeholder

The ‘Wish level’ here, refers only to the defined Scale parameters below:
Requirements, Design… Method Tools…. PC Mac iPads Tablets ,,, In house Support

!65

Devops?
Devops ‘heart’ is in the right place.

• Plenty of realtime multiple metrics to control
operations and change

•BUT
•Devops does not even try to seriously cover the
problems outside and ‘above’ healthy operations and
change

•For example Devops lacks
•Serious deep stakeholder analysis
•Serious quantification of business and
organizational objectives for system development
(the Business success factors in the diagram are not
good enough)

•Serious Understanding of technical qualities, like
usability, security, maintainability (quality is far more
than ‘bug absence’)

•Serious architecture or strategy planning to meet
the business objectives and constraints (IET etc.)
•Systems Engineering (people, motivation, culture,
data, hardware: Not just code!!)
•Quality control (SQC/Inspection) of requirements,
code, changes, test plans

•so Devops is missing the stuff I described in my
talk as things missing from ‘popular’ agile !

https://newrelic.com/how-to-measure-the-success-of-devops?content=eBook!66

The laudable,
 but limited, metrics categories

of Devops.
The illusion of ‘business’ metrics.

End Game

!67

Tool Credit:
www.NeedsandMeans.com

Richard Smith, London

http://www.NeedsandMeans.com

So, what are my main
messages to you?

• You can expand your agile processes to include
QUALITY, and VALUE metrics

• Quantification of values is useful, even without
measurement. Quantification itself is useful for
clearer communication about critical objectives

• Estimation of ‘multiple critical impacts' of any
design/architecture/strategy, is useful for intelligent
prioritization of value delivery, and for considering
risks

• You can manage costs and deadlines by agile
feedback and correction; the ‘dynamic design to
cost’ process

• We can and should measure the quality of
upstream planning, and code, specs, in order to
motivate people, to follow high standards of
specification, and to avoid downstream bugs and
delays

Get a free e-copy
 of ‘Competitive Engineering’ book.

 https://www.gilb.com/p/competitive-engineering

Geta copy: leanpub.com/ValuePlanning, or at gilb.com 68

http://leanpub.com/Value
http://gilb.com

