
Quality Engineering
to really manage quality

 we must change our culture to
 engineering.

 Tom Gilb
 at Quality Days, Vienna, January 17 2018,

45 minutes
https://2018.software-quality-days.com/en/ #qualitydays2018

tom@Gilb.com, www.Gilb.com, @ImTomGilb
1

These slides will be at www.gilb.com downloads
at

http://concepts.gilb.com/dl923

https://2018.software-quality-days.com/en/
mailto:tom@Gilb.com
http://www.Gilb.com
http://www.gilb.com

www.Gilb.com 2

Quality Engineering Books 1976, 1977 and 2005, and 2018 (VP)

1976
1977
USA

2005

Talk Outline:
Aspects of 'Quality Engineering’

How to be a ‘Quality Engineer’ in practice

1. Quantification of Values and Qualities

2. Estimation of multiple attributes of methods and
strategies

3. Evo and Advanced Agile: Multiple Measures, and Dynamic
Design to Cost Estimation

4. Measuring Development Specifications Quality:

Lean Quality Assurance

3

LOGICAL STEPS OF ‘QUALITY ENGINEERING’
1. Environment Scope helps identify stakeholders.

2. Stakeholders have values and priorities

3. Values have many dimensions

4. Stakeholders determine value levels

5. Design hypotheses should be powerful and efficient ideas, for satisfying stakeholder

needs

6. Design hypotheses can be evaluated quantitatively, with respect to all quantified

objectives and resources

7. Designs can be decomposed, to find more efficient design subsets, that can be

implemented early

8. Designs can be implemented sequentially, and their value-delivery, and resource costs,

measured

9. Designs that unexpectedly threaten achievement of objectives, or excessive use of

resources, can be removed or modified.

10. Designs that have the best set of effects on objectives, for the least consumption of

limited resources, should generally be selected for early implementation.

11. A design increment can have unacceptable results, in combination with previous

increments, and they, or it, might need removal or modification

12. When all objectives are reached, the process of design is complete: except for possible

optimization of operational resources, by even-better design.

13. When deadlined and budgeted implementation-resources are used up, it might be

reasonable to negotiate additional resources; especially if the incremental values are

worth the additional resources.

14. When deadlined and budgeted implementation-resources are used up, it might be

reasonable to negotiate additional resources; especially if the incremental values are

worth the additional resources.

The Logic of Design: Design Process
Principles.

 Tom Gilb, 2016, Paper.
http://www.gilb.com/dl857

Requirements

Design

Deploy

Re-design

1. Quantification of Values and Qualities

5

Tool Credit:
www.NeedsandMeans.com

Richard Smith, London

http://www.NeedsandMeans.com

© Gilb.com

The Principle Of 'Quality Quantification’  
 The Words of a ‘Lord’

“All qualities can be expressed quantitatively,
 'qualitative' does not mean unmeasurable”. (Gilb)  

http://tinyurl.com/GilbTedx

"In physical science the first essential step in the direction of learning
any subject is to find principles of numerical reckoning and practicable
methods for measuring some quality connected with it.

I often say that when you can measure what you are
speaking about, and express it in numbers, you know
something about it;

but when you cannot measure it, when you cannot express
it in numbers, your knowledge is of a meagre and
unsatisfactory kind;
it may be the beginning of knowledge, but you have scarcely in your
thoughts advanced to the state of Science, whatever the matter may
be.”
Lord Kelvin, 1893, Lecture to the Institution of Civil Engineers, 3 May 1883 From
http://zapatopi.net/kelvin/quotes.html

Born: 26 June 1824; Belfast, Ireland
Died 1907..

6

Stakeholder’s
Needs &

Means diagram;
a ‘Quality

Engineering’
framework

7

Main idea with this example
 is to notice

the rich stakeholder structure
Next idea

 is to notice
that stakeholders

are the ‘requirement generators’

Direct
Quantification of all

benefits,
so they are

unambiguous clear;
 and trackable
in agile delivery

steps.
is a ‘Quality

Engineering’ pre-
requisite

8

Every one of these values can
be expressed as

numeric improvements

Security Value Quantification
with Stakeholders

This structure
of requirements is in ‘Planguage’.

Which is specified in books
‘Competitive Engineering’

and
‘Value Planning’

Bullshit level

9

All values and qualities
can be expressed quantitatively

‘Stakeholder Values’
All of which are quantified

is
the key to

 ‘Quality Engineering’

10

Example: Quantifying ‘Portability’

11

Stakeholders —>

Requirement Sources

Example: Quantifying ‘Portability’

Management BS Level

Slogan or Headline

Many specs stop at this level.

We use this as a platform to develop much more
precise requirements

Quantified, and
Decomposed to varied-value components

<- The ‘Portability’ is the name or ‘tag of the specification’

This documents where in a hierarchy the spec belongs
and what type of spec (Value) it is

12

Example: Quantifying ‘Portability’ THE SCALE DEFINITION
with [Scale Parameters] decomposition: 2 levels

Second-Level
Decomposition

<—————
very detailed
‘modelling’ of

the system

 [Scale Parameters] decomposition: 1st level

13

Example: Quantifying ‘Portability’

<- Wish level (90) expresses a need or desire of a stakeholder

The ‘Wish level’ here, refers only to the defined Scale parameters below:
Requirements, Design… Method Tools…. PC Mac iPads Tablets ,,, In house Support

14

2. Estimation of multiple attributes of methods and strategies:
Engineering the design archilecture for reaching the quantified

quality levels on time

Quantifying Design/Architecture/Strategic Planning

Moving towards an engineering discipline.

15

© Gilb.com

― Confucius, Sayings of Confucius 

“True wisdom is
knowing what you

don't know”

― Confucius, Sayings of Confucius

16

What intellectual tools do you have
that will help you

to be more conscious of
exactly what

you do NOT know enough about?

‘Engineering’ is researching risks and
unknowns

http://www.goodreads.com/author/show/15321.Confucius
http://www.goodreads.com/work/quotes/6514114
http://www.goodreads.com/author/show/15321.Confucius
http://www.goodreads.com/work/quotes/6514114

The numeric relation between ends
and means: Engineering Analysis.

Basic Structure of an Impact Estimation Table
17

What items here help us to
know what we do not know?

Designs ->

Overall ‘Potential Values / Costs’
of 3 options or (if you need them all)

complimentary ‘benefit drivers’ = strategies = solutions = means’
18

Simple presentation
og overall value for costs

of each
strategy or design

‘Engineering’ includes
 ‘cost’ consideration

 of the engineering design

3. Evo and Advanced Agile:
Multiple Measures, and Dynamic Design to Cost Estimation

An advanced, Deming, ‘Plan Do Study Act’ cycle

(Statistical Process Control)

and it is all about numbers

This is ‘Evo’ (Evolutionary Value Optimization)
19

20

Stakeholders

Values

Solutions

DecomposeDevelop

Deliver

Measure

Learn

Identify your
critical stakeholders

the ones that have
one or more critical needs,

that if you fail to deliver them,

your project/product

might well fail

21

Stakeholders

Values

Solutions

DecomposeDevelop

Deliver

Measure

Learn Which numeric improvements
do stakeholders need,

critically?

We can,
and must always,

 express their values
with

well-defined numbers

Define both failure
and

success numerically

and

keep learning what
those

 critical numbers are
continuously

22

Stakeholders

Values

Solutions

DecomposeDevelop

Deliver

Measure

Learn
Solutions

(designs, architectures,
strategies)

must be identified

and their total impacts on
critical objectives

and
constraints

must be estimated
reasonably

(order of magnitude)

Impact Estimation Tables
(Planguage)

are a tool for doing estimates
 of potential solutions

and how good they might be

23

Stakeholders

Values

Solutions

DecomposeDevelop

Deliver

Measure

Learn The solutions can be
decomposed

by 10x or 100x

And we can estimate the
solution sub-component

value and cost,

so as to prioritize the best
value/cost

for short term delivery

Solution Decomposition
Example

2017 Polish Export Example

24

Several Solution Decompositions

25

Detail of 1 Solution Decomposition

Criteria for Decomposition
1. Each decomposition will deliver measure value to at least 1 stakeholder requirement
2. Any decomposition (D1… Dn) can be delivered independently of any other.

26

27

We can estimate the value of the decomposed
architecture, on different quantified requirements targets

28

We can simplify presentation
and even automatically sort design options into delivery priority

(Product Owner Engineering)

29

30

Stakeholders

Values

Solutions

DecomposeDevelop

Deliver

Measure

Learn

The sub-solutions are
made ready (developed)

for delivery to real
stakeholders,

next week and every week.
Or in about 2% of budget/

deadline increments

31

Stakeholders

Values

Solutions

DecomposeDevelop

Deliver

Measure

Learn

The sub-solutions are
delivered

 to real stakeholders,
in order to experiment,
to test, to pilot, to get

reactions,
NUMERICALLY

and to allow for potential
corrections in design, in

implementation process, and
in lower-priority requirements

32

The sub-solutions are
measured as to effect

on
all the

top
stakeholder

critical
objectives,

and
on their critical cost

increments,
with a view to improving

prediction of
final cumulative costs

Stakeholders

Values

Solutions

DecomposeDevelop

Deliver

Measure

Learn

33

Stakeholders

Values

Solutions

DecomposeDevelop

Deliver

Measure

LearnFrom the measurements,
and

other feedback
from stakeholders

Learn what you need to do
to avoid failure
and to succeed

These 2 diagrams are © kai@Gilb.com

2017, as well as several other illustrations

 used in this talk

mailto:kai@Gilb.com

 © 2008 Kai Gilb © Kai@Gilb.com

Stakeholders

Values
Measure

Learn

Value Management  
Learning Process

34

Solutions

DecomposeDevelop

Deliver

Evo Development / Scrum

Architecture /
Engineering

Business Analyst
Re

ali
ty

(B
us

ine
ss/

Arc
hit

ec
tu

re
/En

gin
ee

rin
g/

Dev
elo

pm
en

t)

www.Gilb.com 35

APRIL (1981) SOFTWARE ENGINEERING NOTES

APRIL (1981) SOFTWARE ENGINEERING NOTES

www.Gilb.com 36

We need to add: ‘Value Management’:
Quantified, Engineering, Not just ‘coding’

23

Copyright: Kai@Gilb.com

ADD ADD

www.Gilb.com 37

Copyright Tom@Gilb.com 2018

‘Cleanroom Method’
at IBM Federal Systems Division (1980)

38

Dr. Harlan D. Mills
(May 14, 1919 – January 8, 1996)

quality is designed in, not
tested in

“The first guarantee of quality in design is in well-informed, well-educated,
and well-motivated designers.
Quality must be built into designs, and cannot be inspected in or
tested in.
Nevertheless, any prudent development process verifies quality
through inspection and testing.
 Inspection by peers in design, by users or surrogates, by other financial
specialists concerned with cost, reliability, or maintainability not only
increases confidence in the design at hand, but also provides designers
with valuable lessons and insights to be applied to future designs.
The very fact that designs face inspections motivates even the most
conscientious designers to greater care, deeper simplicities, and more
precision in their work.” Harlan Mills, IBM
 inIBM sj 4 80 p.419
In

Mills, H. 1980. The management of software engineering: part 1: principles of software engineering. IBM Systems Journal 19, issue 4 (Dec.):414-420.
Direct Copy
http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan
Library header
http://trace.tennessee.edu/utk_harlan/5/

39

© Gilb.com 2017

In the Cleanroom Method, developed by IBM’s Harlan Mills
(1980) they reported:  

• “Software Engineering began to emerge in FSD” (IBM Federal Systems Division,
from 1996 a part of Lockheed Martin Marietta) “some ten years ago [Ed. about
1970] in a continuing evolution that is still underway:

• Ten years ago general management expected the worst from software projects –
cost overruns, late deliveries, unreliable and incomplete software

• Today [Ed. 1980!], management has learned to expect on-time, within budget,
deliveries of high-quality software. A Navy helicopter ship system, called
LAMPS, provides a recent example. LAMPS software was a four-year project of
over 200 person-years of effort, developing over three million, and integrating
over seven million words of program and data for eight different processors
distributed between a helicopter and a ship in 45 incremental deliveries [Ed.
Note 2%!]s. Every one of those deliveries was on time and under budget

• A more extended example can be found in the NASA space program,
• - Where in the past ten years, FSD has managed some 7,000 person-years of

software development, developing and integrating over a hundred million bytes
of program and data for ground and space processors in over a dozen projects.

• - There were few late or overrun deliveries in that
decade, and none at all in the past four years.”

40

© Gilb.com 2017

In the Cleanroom Method, developed by IBM’s Harlan Mills
(1980) they reported:  

• “Software Engineering began to emerge in FSD” (IBM Federal Systems Division,
from 1996 a part of Lockheed Martin Marietta) “some ten years ago [Ed. about
1970] in a continuing evolution that is still underway:

• Ten years ago general management expected the worst from software projects –
cost overruns, late deliveries, unreliable and incomplete software

• Today [Ed. 1980!], management has learned to expect on-time, within budget,
deliveries of high-quality software. A Navy helicopter ship system, called
LAMPS, provides a recent example. LAMPS software was a four-year project of
over 200 person-years of effort, developing over three million, and integrating
over seven million words of program and data for eight different processors
distributed between a helicopter and a ship in 45 incremental deliveries [Ed.
Note 2%!]s. Every one of those deliveries was on time and under budget

• A more extended example can be found in the NASA space program,
• - Where in the past ten years, FSD has managed some 7,000 person-years of

software development, developing and integrating over a hundred million bytes
of program and data for ground and space processors in over a dozen projects.

• - There were few late or overrun deliveries in that decade, and none at all in
the past four years.”

41

in 45 incremental deliveries

were few late or overrun
deliveries in that decade,
and none at all in the past

four years

Mills on ‘Design to Cost’
• “To meet cost/schedule commitments based on

imperfect estimation techniques, a software
engineering manager must adopt a manage-and-
design-to-cost/schedule process.

• That process requires a continuous and relentless
rectification of design objectives with the cost/
schedule needed to achieve those objectives.”

• in IBM System Journal, No. 4 1980 p.420, see
Links below

42

Mills, H. 1980. The management of software engineering: part 1: principles of software engineering. IBM Systems Journal 19, issue 4 (Dec.):414-420.
Direct Copy
http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan
Library header
http://trace.tennessee.edu/utk_harlan/5/

Copyright Tom@Gilb.com 2017

Robert E. Quinnan (-2015):
IBM FSD Cleanroom  

Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management
farther by introducing design-to-cost guidance. Design, development, and managerial practices are applied in an
integrated way to ensure that software technical management is consistent with cost management. The method
[illustrated in this book by Figure 7.10] consists of developing a design, estimating its cost, and ensuring that the
design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing
'planned capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of
each increment can proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the
appropriate balance between cost and design for a single increment, but they iterate through a series of increments,
thus reducing the complexity of the task, and increasing the probability of learning from experience, won as each
increment develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp.
466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

43

Copyright Tom@Gilb.com 2017

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure that
software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10] consists of
developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can proceed
concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the appropriate
balance between cost and design for a single increment, but they iterate through a series of increments, thus reducing the complexity of
the task, and increasing the probability of learning from experience, won as each increment develops, and as the true cost of the
increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

44

of developing a design,
estimating its cost, and
ensuring that the design

is cost-effective

Copyright Tom@Gilb.com 2017

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure that
software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10] consists of
developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can proceed
concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the appropriate
balance between cost and design for a single increment, but they iterate through a series of increments, thus reducing the complexity of
the task, and increasing the probability of learning from experience, won as each increment develops, and as the true cost of the
increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

45

iteration process
trying to meet cost

targets by either
redesign or by

sacrificing 'planned
capability’

Copyright Tom@Gilb.com 2017

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure that
software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10] consists of
developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can proceed
concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the appropriate
balance between cost and design for a single increment, but they iterate through a series of increments, thus reducing the complexity of
the task, and increasing the probability of learning from experience, won as each increment develops, and as the true cost of the
increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

46

Design is an iterative
process

Copyright Tom@Gilb.com 2017

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure that
software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10] consists of
developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can proceed
concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the appropriate
balance between cost and design for a single increment, but they iterate through a series of increments, thus reducing the complexity of
the task, and increasing the probability of learning from experience, won as each increment develops, and as the true cost of the
increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

47

but they iterate through a series of
increments,

thus reducing the complexity of the
task,

and increasing the probability of
learning from experience

Copyright Tom@Gilb.com 2017

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure that
software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10] consists of
developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can proceed
concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the appropriate
balance between cost and design for a single increment, but they iterate through a series of increments, thus reducing the complexity of
the task, and increasing the probability of learning from experience, won as each increment develops, and as the true cost of the
increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

48

 an estimate to complete
the remaining
increments is

computed.

4. Measuring Development Specifications
Quality: Lean Quality Assurance

49

The Agile Specification Quality Control process
 for lean (early, prevents defect injection) measurement of quality of requirements,

architecture specs, and contracts

• Our IT planning documents
are heavily polluted

• with dozens of ‘major
defects’ per page

• we need to measure
defects by sampling

• and we need to refuse to
‘exit’ garbage out

• this lean approach can
improve productivity 2x
and 3x (Intel)

50

51

A Recent Example

Rev. # of
Defects

of Pages Defects/ Page
(DPP)

% Change in
DPP

0.3 312 31 10.06
0.5 209 44 4.75 -53%
0.6 247 60 4.12 -13%
0.7 114 33 3.45 -16%
0.8 45 38 1.18 -66%
1.0 10 45 0.22 -81%
Overall % change in DPP revision 0.3 to 1.0: -98%

Application of ‘Specification Quality Control’ (Gilb method) by an Intel software
team, resulted in the following defect-density reduction,
 in requirements over several months:

Downstream benefits:
•Scope delivered at the Alpha milestone increased 300%, released scope up 233%
•SW defects reduced by ~50%
•Defects that did occur were resolved in far less time on average

Source Eric Simmons, erik.simmons@construx.com
25 Oct 2011. See Terzakis research reports.

mailto:erik.simmons@construx.com

Industrial Studies of Planguage and SQC to measure quality of requirements

Our ‘Quality Engineering’ in practice at Intel for 20,000 engineers and 17 years

2013 Rio Paper
https://www.thinkmind.org/download.php?articleid=iccgi_2013_3_10_10012

52

End Game

53

Tool Credit:
www.NeedsandMeans.com

Richard Smith, London

also
ValPlan.net (soon)

http://www.NeedsandMeans.com
http://ValPlan.net

We need to ‘engineer’
quality into software
• You can expand your current use of metrics to

include QUALITY, and VALUE metrics

• Quantification of values is useful, even without
measurement. Quantification itself is useful for
clearer communication about critical objectives

• Estimation of ‘multiple critical impacts' of any
design/architecture/strategy, is useful for intelligent
prioritization of value delivery, and for considering
risks

• You can manage costs and deadlines by agile
feedback and correction; the ‘dynamic design to
cost’ process

• We can and should measure the quality of
upstream planning, and code, specs, in order to
motivate people, to follow high standards of
specification, and to avoid downstream bugs and
delays

Get a free e-copy
 of ‘Competitive Engineering’ book.

 https://www.gilb.com/p/competitive-engineering

Get 50% discount on Value Planning
Use this link: https://goo.gl/MB6kaR

Coupon Code: CONNECT54Free Core: lean.com/ValuePlanning

http://lean.com/ValuePlanning

© Tom@Gilb.com 2017

The Principle that 
 Principles beat methods

• “As to methods, there
may be a million and
then some, but
principles are few.

• The man who grasps
principles can
successfully select his
own methods”.

• - Emerson, Harrington
• (Not as thought, R W E)

–

55

My ‘Planguage’
Requirements Concepts <-CE book

56

