
Page � of �1 16

Everyday Superpowers
by tom@Gilb.com
Version 020118, 080218 (ref edit)
There are a number of methods that I teach, which I have begun to headline
to students as intellectual 'superpowers', when I lecture-to, or 'coach' peo-
ple.

Intellectual Superpowers give you especially powerful abilities to analyze,
communicate, present, and decide

Here is a list of the superpowers I will discuss in this paper.

1. 	 Quantify value	

2. 	 Decompose solutions

3. 	 Quantify and measure the quality of technical specs

4. 	 Estimate solution attributes

5. 	 Identify good solutions

6. 	 Learn numerically what works

7. 	 Prioritise fact-based solutions and requirements dynamically.

8. 	 Quantify risks

9. 	 Understand stakeholders

10.	 Communicate clearly

These superpowers are described in detail in my books and writings [1,2,3]. This paper is an in-
troduction intended to stimulate further study to master the powers.

Here is one view of what a superpower is:
First, these are the cultural aspects of the superpowers:

• most people have not learned them yet

• most people do not do them intuitively

• many people will deny that it is possible to do them

• other people will argue they are too difficult to do

• most university teachings totally ignore these methods

• most books, talks, and papers do not teach these methods

In other words, they are rare: less than 1 out of 100 people can do them. If you can do them you
are in the upper 1% of capability in this area, at least.

Here are the teaching and learning aspects of these su-
perpowers:
• they are relatively quick to learn, within an hour or day each

• almost anybody in the professional area can learn to do them

• whole organizations can make them part of their culture

• they can be added one-by-one to the capabilities of any individual (yes, YOU)

• they can be added to any larger methods or processes, one by one

• it is easy to teach and coach them

• they can be taught 'on the fly', as you work and discuss or plan.

• the methods are described in detail in cheap, or free, sources [1, 2, 3]

Everyday Superpowers © tom@Gilb.com 2018

mailto:tom@Gilb.com
mailto:tom@Gilb.com

Page � of �2 16

Here are the expected results of using these superpow-
ers:
• order-of-magnitude improvements in saving time and money

• scale free: the methods work at any scale of problem or project

• lean: the powers help deal with problems upstream, early and to prevent problems.

• agile: the superpower methods work in agile value delivery cycles, and support them.

So here is some detail:
I will keep to 'one page' per superpower. Read references for more detail.

Everyday Superpowers © tom@Gilb.com 2018

mailto:tom@Gilb.com

Page � of �3 16

1. Quantify value [4]
Values are all those things we (stakeholders) 'value'. We want i of them to i. We want more of
them to be satisfied. Sometimes there is no limit to how much we dream that we want.

Values can be practically anything people can imagine. There is no finite, or limited, set of values.

Values are the primary reason we make plans, and do projects: we want to achieve improved lev-
els of values, as soon as possible.

We are normally dealing with more than one value simultaneously. In fact the number of desired
values for a set of stakeholders, for a 'project', normally exceeds 10, and values can seem to nev-
er end. So for this reason, we recommend that you focus on the 'top ten'; the Highest Priority
Critical Stakeholder Values, at any one time.

And shove all other desires into a waiting area, to be considered after you have delivered or mas-
tered production of the initial 'top 10'. [5]. I also recommend that this top 10 'requirements' or
'objectives' be drafted, and quantified, on the first day of a project [5, 6].

A key observation is that all 'values' are variable. We can always use terms like 'improved' in front
of them ('improved security'). This is a signal that we can 'quantify' them. That means we can de-
fine a 'scale of measure' (like bits per second), and we can put a number of the 'level we
desire' (like; '50 million bits/second by next January').

We have observed that there seem to be no exceptions to the rule that all values can be quanti-
fied. This is one key idea for many planning and decision-making applications, such as the other
superpowers below, like Communicating Clearly.

It is common that people declare that some value ideas 'cannot be quantified', but this is easily
disproved, and is actually a sign of their ignorance and 'arrogance'.

How do we quantify?

Method 1: Google it.

If you write the name of a value, followed by the word 'metrics', you will get many practical sug-
gestions, from experienced experts, on ways to quantify the value. There are normally many quan-
tification possibilities, several of which can be used in parallel. Try it.

Method 2: Look it up in a textbook.

You can also Google your way to a textbook, rather than just a paper or a webpages. For example
my books give a great many systematic examples [1, 2, 3]. My chapter 'Scales of Measure [7] is a
reasonable general collection of quality values such as adaptability, security and usability. These
can be thought of as general patterns, and there is built-in scope for tailoring them any way you
like or need. The tool needsandmeans.com has built-in scales of measure, initially borrowed from
my CE book [7]. Studying, copying and tailoring previous scales of measure from other projects
is quite useful too.

Method 3: Work it out, using 'domain understanding'

It will almost always work out, to ask a small team of stakeholders to craft a special scale of mea-
sure, and desired levels of value performance, and value level deadlines. Learning ideas of quan-
tification such as the above 2 methods, or having an experienced coach on first try helps a lot.

Everyday Superpowers © tom@Gilb.com 2018

http://needsandmeans.com
mailto:tom@Gilb.com

Page � of �4 16

2. Decompose solutions. [9]
Solutions are defined as the means by which we propose to achieve our value levels. Synonyms
for 'solutions' are strategies, architecture, design, means objectives.

The solution problem, requiring 'value decomposition', is that some solutions will take far too
much money and time to implement fully (years, and millions). We are interested in some faster-
cheaper results, by means of partial solutions. This is a prerequisite for agile value delivery cycles,
and for 'lean' (getting results early, and learning early, and preventing problems downstream).

Most people can decompose a solution into some parts, but the problem is that these parts alone
will not deliver any value. Example, 'just supply the database, without any applications yet'.

So we have to constrain decomposition using some rules. The simplest practical teaching
method, I use, which works quite well, goes like this:

1. Decompose to about 10 solution sub-components.

2. Make sure that each one can be implemented before any of the others: no dependencies.

3. Make sure each one, if implemented, can be expected to deliver some measurable, planned,

value increment, to at least 1 stakeholder. Rather than no-value-delivered at all.

This concept of independence (2 above), and value deliverability (3 above) is not immediately ob-
vious to everybody. They will often in spite of my instructions, try to decompose into a sequence
of tasks (Prepare Requirements, Do Architecture, Code the App, Test it. But their coach needs to
spot this early, and ask the simple question "How much 'measurable value', do you expect, as a
result of implementing, that suggested sub-solution?" And when the answer is 'none', then they
need to think about what we are asking them to do (1, 2, 3 above), and try again.

This superpower enables you to get real measurable results early; which most people see as a
good idea! This superpower is fundamental to the agile methods.

An advanced tool for decomposition is the Impact Estimation Table (above) [1, 2, 3]. It decompos-
es the system by requirements (9+2) and Solutions [6]. About 2 orders of magnitude.

By searching for good impact (value, cost, or value for costs), like the 200% (2x Goal level), we
can spot an opportunity. In this case for delivering an improvement in Availability, by some subset
of Business Process Engineering. We found 2 opportunities, and implemented one, same day.[8]
A 'Quick Win'. 

Everyday Superpowers © tom@Gilb.com 2018

mailto:tom@Gilb.com

Page � of �5 16

3. Quantify and measure the quality of technical
specs. [13]
We all understand the concepts of 'reviewing' a technical specification (like 'requirements', 'con-
tract', 'architecture'). And we can all understand a concept of sign-off, or approval, of a specifica-
tion. But very few (1% or less) know anything about 'measuring' the degree of 'goodness' of a
technical specification. We have however practiced this extensively since about 1980 when IBM
invented 'Inspection' for technical specifications [14]. Some major corporations, clients of ours,
have practiced it pervasively like Boeing, Ericsson, Intel [15], IBM, NASA, and HP. But most orga-
nizations of today are totally ignorant of it. The CTO never heard of it. The universities do not
teach it. Quite sad because this superpower will result in 10x, 100x and more reduction of up-
stream defects, with large corresponding reductions in being late, over budget, or failing to deliver
enough quality.

Terzakis' (Intel, [15]) shows a real example, above. He comments that it leads to 233% more de-
livered scope (engineering productivity). This is a result of strictly demanding, a very high require-
ment quality, before allowing anyone to use them for other purposes; before 'process exit'.

The technical specification measurement process, which we call 'Specification Quality
Control' [1,2, 13, 15] or SQC, or Spec QC, simply asks 'checkers' to count Rule violations. The
Rules are simply 'your current standards' for that specification type. Rule violations are called
specification defects. The most 'generic' rules, applying to all tech specs, insist on unambiguous
clarity.

In the Intel example above, the initial submission (for an SQC Review process), finds a density of
'only' 10 defects per 600-words (Page). Much better than the 100-300 defects per 300-word page
which you have today, and do not measure, and do nothing about. But in this case Intel rejects
the specification (no 'exit', defect level is initially 47x worse than the maximum allowed).

	 The result is that the requirements team is motivated into learning, to conform to the Intel
Standards; which takes them 5 more rounds of review. But the result is 47x (10.06/0.22) better
quality as we start serious use of the requirements, moving downstream, to architecture and test-
ing. With any luck at all, this team has been motivated to learn to do more-rigorous specification
next time, and will go straight to suitable levels. Doing it right the first time (lean).

Intel in this case is about 10 x 47 = 470 times better than you probably are: SUPERPOWER.

Everyday Superpowers © tom@Gilb.com 2018

mailto:tom@Gilb.com

Page � of �6 16

4. Estimate solution attributes [10 Sub-Ch 6.5, 16
(Strategies (=Solutions))]

It is very fundamental to a logical system development process [17, Logic of Design] that we can
estimate the multiple impacts of any solution proposal, on our critical requirements (values and
costs). If we cannot do this, then we cannot safely decide what to do, and we run very high risks
of failure (IT total or partial failure is 40% to 90%, Google 'IT project failure').

Estimations have their perils, but not estimating is suicidal.

Impact Estimations do not, and cannot, predict the results of solutions accurately (like

±5%) but they can hopefully give us 'order of magnitude': a normal engineering aspiration. And
hopefully they will give us insight into the uncertainties, and into the 'more-certain solutions'. And
hopefully they can lead to decisions to pilot-test solutions, before scaling up and committing. And
hopefully estimations can give us a pretty good tool for agile prioritization: the things we should
do early, in order to get most value for resources, with regard to risks.

	 The important idea is to 'know what you don't know', and to 'know how uncertain you are'
about your knowledge. The worst situation is, your normal situation today, that you have not ever
tried to estimate, all the effects of your solutions, on all of your most-critical requirements: i.e. on
your success-and-failure value-and-cost levels. You are consequently Powerless!

Don't work harder, work smarter (my IBM manager's saying, 1962).

	 The discipline in the Impact Estimation Table (IET), example above, is simple, but it gives
the superpower of understanding all proposals, solutions, options, architecture (i. e. all tech
specs) etc. before costly committment.

	 You need to estimate the impact of each solution, on each planned value-and-cost re-
quirement. In simple terms, '0%' means no impact. '100%' means we expect to reach our Goal
on time. This can be difficult, but it is better than the alternative of project failure.

Everyday Superpowers © tom@Gilb.com 2018

mailto:tom@Gilb.com

Page � of �7 16

5. Identify good solutions:
How do solve a problem like Maria? (https://www.youtube.com/watch?v=M1HwVmY28Pk). Go on
enjoy the song for a moment!

I define a 'good solution' (or 'useful') as one which has the capability of moving us towards our
objectives, within our constraints. A 'better' solution (more economic) moves us equally far to-
wards our goals, using less resources, or (more valuable) 'moves us further towards our goals at
the same costs'. A 'perfect' solution moves us to all of our critical numeric goals, on time, within
budget, at the end of the famous day, for real.

This means that:

1. we cannot identify good solutions without defining our 'critical requirements' numerically.

2. we cannot identify good solutions without knowing (facts, evidence, guarantees, experience)

about the degree of impacts expected from a solution.

3. if even one single attribute of a solution (like a security level, or a maintenance cost) threatens,

or risks, to take us below the 'minimum acceptable level' we specified (worst case), then the
entire solution is invalid. The operation is NOT a success, then 'the patient dies'.

 https://www.barrypopik.com/index.php/new_york_city/entry/the_operation_was_successful_but_the_patient_died

There are some interesting observations here:

1. the 'next new solution' you add to the solution mix, can threaten to destroy the success of all

previous solutions in your total solution set.

2. nobody really knows how solutions will interact (sort of like cooking or chemistry, or engineer-

ing) in the short term and the long term: so you will ultimately have to 'suck it and see': and if it
tastes sour, spit it out, fast. https://www.urbandictionary.com/define.php?term=Suck%20it%20and%20See

3. the only response to a failed solution that in fact fails you, is to rapidly and early discover it
(measurement and learning) and change or replace it.

4. this means we have to implement the solutions sequentially, in an agile incremental mode; we
cannot finally commit to anything, even if initially works fine. [Cleanroom, 18, 19]. Architecture
needs to be decomposed, and implemented in small measured steps, to prove what happens
as soon as possible, with as little failure risk as possible. Agile and lean.

The solutions for a Polish-Startup Export-plan (2017, training exercise, Warsaw) ranked by all per-
formance values, for all costs (resources). This is derived from data on the Impact Estimation Ta-

Everyday Superpowers © tom@Gilb.com 2018

mailto:tom@Gilb.com
https://www.youtube.com/watch?v=M1HwVmY28Pk
https://www.barrypopik.com/index.php/new_york_city/entry/the_operation_was_successful_but_the_patient_died
https://www.urbandictionary.com/define.php?term=Suck%2520it%2520and%2520See

Page � of �8 16

ble. It gives a simple presentation of your probably best solution options. Super-vision for com-
plex problems. 

Everyday Superpowers © tom@Gilb.com 2018

mailto:tom@Gilb.com

Page � of �9 16

6. Learn numerically what 'works'.

Here is a real example, of learning what works (2003, Confirmit, [20]. A sub-team of 4 developers,
decided to implement an architecture component called (Marketing Information) 'Recoding' (3/
BY), because they estimated they would save 20 minutes (15/BX) of the planned 40 minutes sav-
ing, to their Goal level (15/E - 15/G = 40). Four days later (21/BX), (their agile measured result de-
livery cycle), Microsoft Usability Labs measured the effect, and the partial solution saved 38 min-
utes (15/BZ). They were so close to 100% of their goal (15/CA 95%) that they decided to make it
'over the hill' by means of one person putting in weekend overtime, and in fact ended up at 20
minutes, 12.5% more than the goal (15/D). Having reliable numeric feedback allowed them to
make smart decisions, which I call 'Dynamic Design to Cost'. This is identical in principle to the
IBM Cleanroom Method by Quinnan [18, 19].

	 With this 'superpower' they crushed their competitors on the world market by delivering
over 25 (in 3 mo.) incredible customer-visible quality improvements. And many more in 2nd qtr.

Observations:

1. most projects (yours, I assume) have not defined all their critical values (in this case 'Usability'

which was 'market critical', worth 100x more business from Boeing and Microsoft alone), so
they cannot relate 'value improvement measurement' to their 'planned objectives'. They do not
know what to do with actual feedback from reality. They have no 'value budget' [20], so - what
does the 'accounting' (numeric feedback after delivery) mean?

2. most projects have no process of actually measuring the result of a small solution-increment.
So they cannot draw any 'learning' and corresponding 'action' from the solution delivery.

Everyday Superpowers © tom@Gilb.com 2018

Our agile value delivery cycle.

Measuring actual results at each small de-
composed solution delivery cycle, is nec-
essary in order to keep your ship 'on
course' towards success.

© Kai Gilb (Value cycle)

mailto:tom@Gilb.com

Page � of �10 16

7. Prioritise fact-based solutions and requirements dy-
namically. [10, VP Book Chapter on Prioritization]
Smart prioritization of the 'sequence of system development actions' is a superpower. Most
taught methods, for example Balanced Scorecards, and Quality Function Deployment [21] priori-
tize using subjective, anonymous, no-reason-given, static, up-front - priority 'weights', for exam-
ple 1 to 5 stars, or 0-6 numbers. This is a widespread 'priority' method, and I argue that it is not
suited for purpose, in complex system engineering [21, 10]. I am in fact astounded that such a
bad method of prioritization has become so popular, and widespread, for so long, with almost no
intellectual challenge to it.

	 The desire for simplicity has outweighed the need for intelligent capability again. But the
lack of challenge from academia, at least tells us that academia is not capable of fulfilling its role
properly. One London professor explained this to me: the stupid fee-paying children of rich foreign
parents would not be intellectually incapable of understanding anything more complex: and keep-
ing their University 'business', is more important than doing the right thing! What a sad comment
on humanity today. Organizations cannot afford to be misled by bad teachings. But can organiza-
tions do the right thing without dangerous oversimplification?

Simple observation of our own body prioritization, for survival and comfort, with respect to food,
water, air temperature, sex, and human interaction, tell us clearly what the 'great architect of na-
ture' has given us to prioritize. And it is not pre-birth fixed weights. It is dynamic calculation of the
smartest short term actions to enhance comfort and survival.

We copy this behavior pattern in Planguage [1, 2, 3]. We set different levels of our multiple objec-
tives for survival, for comfort, and for success. We then incrementally (short term) compute our
priorities. Survival is highest priority (breath now, or suffocate), next priority - if no survival issues
outstanding, next priority is comfort (can you turn up the thermostat in the car), and lastly total
satisfaction, 'no more is necessary' ('I couldn't eat another bite now', of this incredible healthy
veggie gourmet dining experience).

What has 'current priority', is logically calculable. Smart method! And smart people use it in their
professional lives, not those silly Balanced Scorecard Weights, for unquantified requirements!
Study Elon Musk, or any other smart businessperson or inventor. In Musks biography he points
out that the Tesla production car gets about 20 improvements per week continuously. Half are
new hardware in the production car, and half are over-the-air software improvements (like in
smartphones). This is agile at its best. On my own, second, Tesla S, I note that the car is
'perfect' [22], exceeding my expectations, and getting better all the time!

When we iterate (agile) through solution delivery cycles (C1, C2, Cn) our priorities change; de-
pending on the degree-of-satisfaction of our multiple critical values, and the concurrent depletion
of our resources. The current cycle priority is logically 'computable'; both at design stages, and
implementation, and operation stages. The red, yellow, and green signals in Column A 7-15, in the
diagram from Confirmit (Superpower 6 above), is a real example of computed priorities at cycle 9
of 12 delivery cycles. The needsandmeans.com app has even more sophisticated automatic pri-
oritization, based on costs and risks. (Diagram © Kai Gilb)

Everyday Superpowers © tom@Gilb.com 2018

mailto:tom@Gilb.com
http://needsandmeans.com

Page � of �11 16

8. Quantify risks [11, Chapter in VP book on Risks]

I have no understanding or sympathy about attempts to estimate, or quantify, the probability of a
risk ('Threat' and 'Attack' above diagram) occurring. If it might happen at all, I need to consider
dealing with it; or not. I do believe we can estimate, with useful accuracy, the damage caused by
a successful attack, or series of them. We can estimate the costs for preventing, detecting and
mitigating attacks. We might even be able to estimate the effects of anti-risk strategies.

I also believe that, as with all other values, we can test (using both test cases, and some reality)
the ability of an incrementally-improved system, to deal with risks. We can get information on how
well solutions work, and improve the design.

I am sure that all aspects of security, safety, and all other interesting risks, can best be ap-
proached by a systematic engineering approach, using numbers as a basic tool.

This can not be taken for granted. Years ago in Berlin, during the Cold War, a security course
teacher from Washinton DC used a book he had written about security. I looked at it, and I could
find a catalogue of hundreds of 'good ideas' for security, but absolutely no information for any of
them about their quantified effectiveness for any attribute at all, nor any information about their
costs of implementation and operation.

I told the Security Teacher, that his book did not given me any information that would allow me to
select any security techniques. I asked him if he were ignorant of such information, or if he was
hiding it intentionally? His answer was simply that 'nobody asks me for this data, I do know.'

So this tells us something about the state of ignorance we are in. We do not even ask for facts
about subjects as critical as security ! Facts we could feed into an Impact Estimation Table, for
example. We seem like our own worst enemy. Who is to blame? Our educational systems, and
our management, right up to the top levels.

If we learn 'security engineering' we would indeed have a useful superpower. But who will
'bother'? Let me know if you are serious about security and safety and risk management. 

Everyday Superpowers © tom@Gilb.com 2018

mailto:tom@Gilb.com

Page � of �12 16

9. Understand stakeholders [23, VP Chapter on Levels
of Interest.]

Everyday Superpowers © tom@Gilb.com 2018

One superpower, well-known to systems en-
gineering, like space and military projects, is

stakeholder analysis.

But, there are too many cultures, outside of
that, for example IT cultures and manage-
ment cultures who have no relationship to

'stakeholders'.

Failure to identify and analyze critical stake-
holders, is the first step in failure. We will not
understand critical requirements, we will fail
to design for these requirements and budget

for them. We will fail.

The first step in a serious, large-scale, com-
plex project is 'deep stakeholder analysis',
and this needs to be a continuous process.

We need to invest in this discipline, stake-
holder analysis, as a very 'Lean' approach to
dealing with potential problems at the earliest

possible stage.

[25, NeedsandMeans]

mailto:tom@Gilb.com

Page � of �13 16

10. Communicate clearly [12]

When all involved parties really understand exactly the same thing, as the original writer intended:
then we have clear communication. And that perfect shared understanding is the pre-requisite for
teamwork.

All the above superpowers will be tools for communicating more clearly.

Here are some principles of clear communication and Clear Thinking

1. You have to have a clear set of objectives and constraints, to evaluate pro-
posed solutions or strategies against.

2. You have to have a reasonable set of facts about the benefits and costs of
any proposed idea, so that you can relate it to you current outstanding re-
quirements.

3. You have to have some notion of the risks associated with the idea, so that
you can understand and take account of the worst possible case.

4. You have to have some ideas about how to test the ideas gradually, early
and on a small scale before committing to full scale implementation.

5. If there are more than very few factors involved (2 to 4) then you are going
to have to use a written model of the objectives, constraints, costs, benefits,
and risks.

6. If you want to check your thinking with anyone else, then you will need a
written model to safely and completely share your understanding with anyone
else.

7. You will need to make a clear distinction between necessities (constraints)
and desirables (targets).

8. You will need to state all assumptions clearly, in writing, and to challenge
them, or ask ‘what if they are not true?’

9. You will want to have a backup plan, contingencies, for the worst case sce-
narios – failure to fund, failure for benefits to materialize, unexpected risk el-
ements, political problems.

10. Assume that information from other people is unreliable, slanted, incom-
plete, risky – and needs checking.

 REFERENCES:
Everyday Superpowers © tom@Gilb.com 2018

mailto:tom@Gilb.com

Page � of �14 16

1.Value Planning (2017): leanpub.com/ValuePlanning, or
50% https://goo.gl/MB6kaR Code: CONNECT

2.Competitive Engineering (2005): Get a free e-copy of
‘Competitive Engineering’ book. https://www.gilb.-
com/p/competitive-engineering

3.gilb.com downloads website, http://concepts.gilb.com/
file24

4.TedX Talk: Tom Gilb, 'Quantify the Unquantifiable' https://
www.youtube.com/watch?v=kOfK6rSLVTA

5.Gilb's Mythodology: Top Ten 'The Top 10 Critical Require-
ments are the Most Agile Way to Run Agile' Projects
http://www.gilb.com/dl797

6.Gilb: An Agile Project Startup Week www.gilb.com/dl568
7.Gilb, Competitive Engineering, Chapter 5 Scales of Mea-

sure.https://www.dropbox.com/s/z031wn8s6aduvze/
8. in CE book [2] and See Persinscom Case: US DoD Army

Personnel System. “111111 Unity Method of Decom-
position into weekly increments of value delivery”.
(10 min. talk slides) http://www.gilb.com/DL451

9.See the Chapter 5 Decomposition chapter in Value Plan-
ning [1] or https://www.dropbox.com/sh/
dc7v636m7w7vvgx/AABfMAW_FnJny23XZKQZQk-
F4a?dl=0

10. Ch. 6 Prioritization VP book [1] ,https://www.dropbox.-
com/sh/34llx1a7ckyagxl/AAA0pDzSxN5WmoP9l-
OKR0Mpca?dl=0

11.Ch. 7, Risk Management in VP [1], https://www.drop-
box.com/sh/fxvtya6gyvgwkfa/AAA5-vr-
LUt_z0h9EYt1ql3Uma?dl=0

12. Ch. 9 in VP book [1], Communication, https://www.drop-
box.com/sh/fxvtya6gyvgwkfa/AAA5-vr-
LUt_z0h9EYt1ql3Uma?dl=0

Everyday Superpowers © tom@Gilb.com 2018

http://leanpub.com/ValuePlanning
https://goo.gl/MB6kaR
https://www.gilb.com/p/competitive-engineering
https://www.gilb.com/p/competitive-engineering
http://gilb.com
http://concepts.gilb.com/file24
http://concepts.gilb.com/file24
https://www.youtube.com/watch?v=kOfK6rSLVTA
https://www.youtube.com/watch?v=kOfK6rSLVTA
http://www.gilb.com/dl797
http://www.gilb.com/dl568
https://www.dropbox.com/s/z031wn8s6aduvze/
http://www.gilb.com/DL451
https://www.dropbox.com/sh/dc7v636m7w7vvgx/AABfMAW_FnJny23XZKQZQkF4a?dl=0
https://www.dropbox.com/sh/dc7v636m7w7vvgx/AABfMAW_FnJny23XZKQZQkF4a?dl=0
https://www.dropbox.com/sh/dc7v636m7w7vvgx/AABfMAW_FnJny23XZKQZQkF4a?dl=0
https://www.dropbox.com/sh/34llx1a7ckyagxl/AAA0pDzSxN5WmoP9lOKR0Mpca?dl=0
https://www.dropbox.com/sh/34llx1a7ckyagxl/AAA0pDzSxN5WmoP9lOKR0Mpca?dl=0
https://www.dropbox.com/sh/34llx1a7ckyagxl/AAA0pDzSxN5WmoP9lOKR0Mpca?dl=0
https://www.dropbox.com/sh/34llx1a7ckyagxl/AAA0pDzSxN5WmoP9lOKR0Mpca?dl=0
https://www.dropbox.com/sh/fxvtya6gyvgwkfa/AAA5-vrLUt_z0h9EYt1ql3Uma?dl=0
https://www.dropbox.com/sh/fxvtya6gyvgwkfa/AAA5-vrLUt_z0h9EYt1ql3Uma?dl=0
https://www.dropbox.com/sh/fxvtya6gyvgwkfa/AAA5-vrLUt_z0h9EYt1ql3Uma?dl=0
https://www.dropbox.com/sh/fxvtya6gyvgwkfa/AAA5-vrLUt_z0h9EYt1ql3Uma?dl=0
https://www.dropbox.com/sh/fxvtya6gyvgwkfa/AAA5-vrLUt_z0h9EYt1ql3Uma?dl=0
https://www.dropbox.com/sh/fxvtya6gyvgwkfa/AAA5-vrLUt_z0h9EYt1ql3Uma?dl=0
https://www.dropbox.com/sh/fxvtya6gyvgwkfa/AAA5-vrLUt_z0h9EYt1ql3Uma?dl=0
https://www.dropbox.com/sh/fxvtya6gyvgwkfa/AAA5-vrLUt_z0h9EYt1ql3Uma?dl=0
mailto:tom@Gilb.com

Page � of �15 16

13. Ch. 10 in VP book [1] 'Quality Management. https://
www.dropbox.com/sh/vjwybhqfxrvctk7/AAAdab-
ECBSo5x-tSOI85R-1da?dl=0

14. Gilb & Graham, Software Inspection, 1993
15. J. Terzakis, (Intel) "The impact of requirements on soft-

ware quality across three product generations,"
2013 21st IEEE International Requirements Engi-
neering Conference (RE), Rio de Janeiro, 2013, pp.
284-289. https://www.thinkmind.org/download.php?
articleid=iccgi_2013_3_10_10012

16.Ch. 2 Strategies in VP [1], https://www.dropbox.com/sh/
xab857l9ksfs7w0/AACKonxV1x_LI5TW62FICMM-
Pa?dl=0

17."The Logic of Design: Design Process Principles". Tom
Gilb, 2015, Paper. http://www.gilb.com/dl857

18. Cleanroom, Quinnan, in VP, case 2.5 [8], QUINNAN
AND MILLS CLEANROOM http://www.gilb.com/
dl821. Cleanroom

19.A. Mills, H. 1980. The management of software engi-
neering: part 1: principles of software engineer-
ing. IBM Systems Jour- nal 19, issue 4 (Dec.):
414-420. 
Direct Copy http://trace.tennessee.edu/cgi/viewcon-
tent.cgi?article=1004&con- text=utk_harlan  
Library header 
http://trace.tennessee.edu/utk_harlan/5/

B. Mills, Harlan D.; Dyer, M.; and Linger, R. C., "Clean-
room Soft- ware Engineering" (1987). The Harlan D.
Mills Collection. http:// trace.tennessee.edu/utk_harlan/18

20.Value Driven Project Management 17.5MB slides 2008 '152'. Includes
Confirmit Case (slide 70-93). http://www.gilb.com/dl152

21.T. Gilb and L.Brodie, "How problems with Quality Function Deploy-
ment's(QFD's) House of Quality (HoQ) can be addressed by ap-

Everyday Superpowers © tom@Gilb.com 2018

https://www.dropbox.com/sh/vjwybhqfxrvctk7/AAAdabECBSo5x-tSOI85R-1da?dl=0
https://www.dropbox.com/sh/vjwybhqfxrvctk7/AAAdabECBSo5x-tSOI85R-1da?dl=0
https://www.dropbox.com/sh/vjwybhqfxrvctk7/AAAdabECBSo5x-tSOI85R-1da?dl=0
https://www.dropbox.com/sh/vjwybhqfxrvctk7/AAAdabECBSo5x-tSOI85R-1da?dl=0
https://www.thinkmind.org/download.php?articleid=iccgi_2013_3_10_10012
https://www.thinkmind.org/download.php?articleid=iccgi_2013_3_10_10012
https://www.thinkmind.org/download.php?articleid=iccgi_2013_3_10_10012
https://www.dropbox.com/sh/xab857l9ksfs7w0/AACKonxV1x_LI5TW62FICMMPa?dl=0
https://www.dropbox.com/sh/xab857l9ksfs7w0/AACKonxV1x_LI5TW62FICMMPa?dl=0
https://www.dropbox.com/sh/xab857l9ksfs7w0/AACKonxV1x_LI5TW62FICMMPa?dl=0
https://www.dropbox.com/sh/xab857l9ksfs7w0/AACKonxV1x_LI5TW62FICMMPa?dl=0
http://www.gilb.com/dl857
http://www.gilb.com/dl821
http://www.gilb.com/dl821
http://www.gilb.com/dl152
mailto:tom@Gilb.com

Page � of �16 16

plying some concepts of Impact Estimation (IE)" http://
www.gilb.com/DL119

22.Elon Musk, the bio by Ashlee Vance, 2015. The only fault in my Tesla
S from Oct 2016 to December 2016 was that the remote tire
pressure sensors did not work properly with non-standard winter
tires. This was fixed for free by Tesla. That record is not an ac-
cident, it is a result of iterative intelligent prioritization weekly
forever.

23.Value Planning, Chapter 3, Levels of Interest. About stakeholders.
24. https://www.dropbox.com/sh/xbzn5s8imf9vla0/AAB8h-OFvQm-

J_w3wNhrDxa9_a?dl=0
25.Needs and Means Planning tool.
26. Slides
10 Consultant Superpowers
http://concepts.gilb.com/dl927

70 slides 20 MB
Feb 7 2018 at Ciber Oslo

Everyday Superpowers © tom@Gilb.com 2018

mailto:tom@Gilb.com
http://www.gilb.com/DL119
http://www.gilb.com/DL119
https://www.dropbox.com/sh/xbzn5s8imf9vla0/AAB8h-OFvQmJ_w3wNhrDxa9_a?dl=0
https://www.dropbox.com/sh/xbzn5s8imf9vla0/AAB8h-OFvQmJ_w3wNhrDxa9_a?dl=0
http://concepts.gilb.com/dl927

