
SCALE-FREE:
Practical Scaling Methods

 for Industrial Systems Engineering

Tom Gilb
for ALSSE

Norsec, Oslo
Monday 12 September 2016, minor edit 9March17

Based on a paper:
“Some Advanced Tools and Principles for Scaling Agile Projects - Agile Engineering.

40 practical Engineering ideas for scaling agile development successfully all the time.”

A very short pdf paper, supported by references to necessary detail. Not least the The new LeanPub.com/
ValuePlanning book

http://www.gilb.com/dl865

And based on detailed methods in Value Planning book

http://gilb.com/dl853
(free digital copy, for YOU)

 Planning book
Commercially available
Leanpub.com/ValuePlanning

og Get a Deal at Gilb.com for this and related products like Videos and Courses
My current book manuscript Value Planning
For my friends, use coupon code VP5 for a €5 discount.

http://www.gilb.com/dl865
http://gilb.com/dl853
http://leanpub.com/ValuePlanning
http://gilb.com/
https://gilb.com/store/2W2zCX6z
https://app.newkajabi.com/admin/coupons/2800/edit

Principles And Methods
for ‘Any Scale’
SYSTEMS ENGINEERING
Projects

Principles
• “As to methods, there

may be a million and
then some, but
principles are few.

• The man who grasps
principles can
successfully select his
own methods”.

• - Ralph Waldo
Emerson,
– 1803-1882, USA

Erik Simmons, Intel Scaling
On 08 Jan 2016, at 19:30, Simmons, Erik
erik.simmons@nucognitive.com wrote:

Just a couple of things come to mind
after reading this:

(Gilb:

Beyond Scaling: Scale-free
Principles for Agile Value
Delivery - Agile Engineering.
© tom@Gilb.com 2016, Posted at gilb.com resources/downloads/papers
http://www.gilb.com//dl865
Version March 14 2016, Modified April 11 2016 (XP)

Cheers,

e

mailto:erik.simmons@nucognitive.com
mailto:tom@gilb.com
http://gilb.com
http://www.gilb.com//dl865

Erik Simmons, Intel Scaling
 I’ve not been a fan of the scaling movement since it started.

There are very few things that scale well, and economies
of scale are often pursued without adequate understanding
of the accompanying diseconomies of scale.

SW development does not scale well
• because of the diseconomies of complexity,
• such as the number of communication pathways,

• cognitive load on programmer brains, etc.

• That is among the core reasons for Brooks’ Law.

What makes us think that scaling Scrum, which is
successful in small teams and projects, is a good idea?

A grown-up is not a scaled baby.

Scaling as a concept is selling a lot of books, consulting,
and certifications right now. But I don’t think it is a
valuable concept.

erik.simmons@nucognitive.com

mailto:erik.simmons@nucognitive.com

Erik Simmons, Intel Scaling
• Instead, I believe that the majority of what you have included for ideas, principles, etc. from CE and VP are in

fact scale-free.

• They are not dependent on project or organization size.

• They are good heuristics for almost any project,

• and nearly universally applicable
• (nearly universal because I hear Koen in my head, and all is heuristic).

• So, CE and VP are not about scaling

• so much as they should be taught and understood as scale-free.

• Size is not a reason to choose (or not choose) to use Competitive Engineering, Evo, Planguage, etc.

• As you quoted me in the paper – this stuff works.

• It works on small projects. It works on large projects.

• Evo on a 5-person team is not really much different than Evo on a 100-person team, except there are more people.

• The principles apply without alteration (or “scaling”).

• Anyone who sees a random page of your new paper would probably not guess the topic is scaling (unless you
happen to mention that in the text on that particular page).

• ‘Competitive Engineering’ does not scale. It doesn’t need to.

erik.simmons@nucognitive.com

mailto:erik.simmons@nucognitive.com

Erik Simmons, Intel Scaling
There’s no doubt that large projects are different.

There’s no doubt that we should approach them
differently.

We still don’t have a recipe for large projects, and
probably never will.

But all that does not lead me to think that the answer
to large projects can be found in scaling successful
practices for small projects.

Instead, it must be found in use of principles and
practices that are scale-free,

coupled with use of particular practices that are
effecting on large projects.

If something that works on small projects also works
on large projects, then I’d propose we call it a scale-
free practice, not a scaled practice.

erik.simmons@nucognitive.com

mailto:erik.simmons@nucognitive.com

Erik Simmons, Intel Scaling
 I’m deeply interested in scale-free practices.

I’m also interested in specific practices tuned to large,
small, complicated, and complex projects,

but I find particular power in scale-free practices.

Your work for decades has been focused on a very
good set of these.

SQC, for example, works on any size
specification. It does not (need to) scale.
SQC: (Specification Quality Control).see next slide

BTW, I think the agile principles are also quite scale-
free. But most Scrum practices are definitely not.

So, perhaps you can chart a better course by
advocating for use of scale-free core practices,

augmented with a set of specific, tailored practices

that are effective for the size of the project in
question.

erik.simmons@nucognitive.com

mailto:erik.simmons@nucognitive.com

9

A Recent Example

Rev. # of
Defects

of Pages Defects/ Page
(DPP)

% Change in
DPP

0.3 312 31 10.06
0.5 209 44 4.75 -53%
0.6 247 60 4.12 -13%
0.7 114 33 3.45 -16%
0.8 45 38 1.18 -66%
1.0 10 45 0.22 -81%
Overall % change in DPP revision 0.3 to 1.0: -98%

Application of Specification Quality Control by a SW team resulted in the
following defect density reduction in requirements over several months:

Downstream benefits:
•Scope delivered at the Alpha milestone increased 300%, released scope up 233%
•SW defects reduced by ~50%
•Defects that did occur were resolved in far less time on average

Source Eric Simmons,erik.simmons@nucognitive.com 25 Oct 2011-17
Personal Public Communication

The Impact of a Requirements Specification on Software Defects and Other Quality Indicators
http://selab.fbk.eu/re11_download/industry/Terzakis.pdf
see his 2013 IEEE IREC Rio paper for update: see comment in this slide

mailto:erik.simmons@nucognitive.com

Scale-free Principles
1.Keep focus on measurable delivery of critical values and their costs. [3, 4, 5, 6, 9, 10, 12, VP

(20) Part 1, VP 10.6]
2.Deliver value early, quickly and regularly: in roughly 2% increments. [14, 11, VP Ch.4, 2, 5]
3.Do NOT focus on code delivery; focus on overall system value and costs. [VP Ch.4, 10D,

10F, 13, VP 3.4, VP 2.10, VP 9.8, 4, 12]
4.Focus on quantified critical stakeholder values. [19, VP 3.4, VP 3.7, VP 3.9, VP 3.10 VP 4.2,

10]
5.Synchronize all teams in terms of measurable value delivery. [VP 3.3, VP 3.4, VP Part 1, VP

3.6, VP 3.8, VP 8.4 , 11, 12, 13]
6.Solve big problems through ingenious architecture; not through coding faster. [VP 4.5, VP

5.1, VP 5.3, VP 7.2, 15]
7.Decompose the large problems by incremental value deliveries: not code deliveries. [7, VP

Ch. 5, VP 5.1, VP 5.6 , 10, 11, 13, 15]
8.The software component needs to be integrated into the total system of hardware, data,

people, culture. [VP 5.2, 10]
9.If your team cannot deliver small increments of real value early, frequently, and predictably;

they are incompetent and need to be abandoned for those who can deliver. [7, VP 2.8, 10]
10.Never commit to contacts for work done or code delivered alone: there must always be a

sufficiently large contractual protection, of paying for measurable value delivered. [12, 15].

Methods
1.Quantification of Values [10, VP 1.1].
2.Quantification of short term and long term costs [VP 3.4, VP 4.5, VP 6.7].
3.Design to Cost: Top Level Architecture [VP 7.9, 10].
4.Dynamic Design to Cost: Each Delivery Cycle [12 C, VP 4.5, VP 2.5, VP

2.3, 5, 10, 12].
5.Quality Control of Plans, Contracts, Code and all written artifacts [VP Part

2, VP Part 4, VP 7.7].
6.Flexible Contracting [12, VP 4.5].
7.Value delivery Cycle Measurable Feedback, Learning and Change [4,
 VP 7.3, VP 9.8, VP 6.7, VP 8.6, 2, 9, 10, 11, 14].

8.Value Decision Tables (Impact Estimation Tables) [9, VP 2.3, VP 4.4,
VP 5.3, 13].

9.Risk Management in all aspects of planning and Management [VP Ch. 7],
12.

10.Intelligent Prioritization Policies: for short term and long term [VP Ch. 6,
12, 13, 14].

Value Planning Cycle = ‘Evo’
Cycle of Value delivery of any size project

7. Value delivery Cycle Measurable Feedback, Learning and Change [4, VP 7.3, VP 9.8, VP 6.7, VP 8.6, 2, 9, 10, 11, 14].

Top Level View of Any Size Project
a Model of Relation between

Requirements and Architecture
8. Value Decision Tables (Impact Estimation Tables) [9, VP 2.3, VP 4.4, VP 5.3, 13].

Engineering Tools
1.The Planning language: ‘Planguage’ [22, VP,

8, 9].
2.The 111111 Decomposition Method [7B, 7C,

3].
3.Flexible Contracts [12].
4.The ‘Needs and means Planning’ tool [16,

9].
5.Quantification of Values processes: Scales,

Meters, Past, Tolerable, Wish, Goal. [VP
10.7].

6.The Agile Spec QC measurement process,
Exit Processes, Rules [VP 10.4, VP Part 4].

7.Multiple Relationship Management technology
[9, VP Ch.3, VP Ch. 6, 13].

8.Continuous Architecture adjustment based on
delivery cycle feedback (Cleanroom) [5, 14,
8].

9.Graphic Visibility of Values, Costs, and Risks
[16].

10.Design to Cost Practices: initially and
continuously [14, 12 C, VP 4.5, VP 2.5, VP
2.3, 5].

4. The ‘Needs and means
Planning’ tool [16, 9].

app.needsandmeans.com

4. The ‘Needs and means
Planning’ tool [16, 9].

app.needsandmeans.com

Management Policies
for any scale

1. We will primarily manage critical stakeholder value
improvements [VP Ch. 3, 8, 19].

2. We will simultaneously manage the short term and long term
resources [VP 2.5, VP 9.9, VP 10.6,].

3. We will contract for measurable values for money, rather than
‘work done’ [12, VP 8.4].

4. We will manage all basic system qualities in a quantified
engineering manner. [VP Part 1, 3, 4, 8, 10, 17].

5. We will prioritize delivery of measurable value, early,
frequently, predictably [VP 1.2, VP Ch. 6, 6, 12].
6. We will not lock ourselves into investments or expenditures of
any kind that cannot be reversed if they do not produce expected
value for money [VP Ch. 7, VP 8.10].

7. We will make the risks of all strategies,
designs, actions, and relationships visible
numerically; and make decisions with
regard to worst-case risks [VP Ch. 7, 12,
17].
8. We will empower the ‘troops’ to make real-time project
decisions, based on current numeric feedback, about real values
and real costs [VP 8.1, VP 8.2, 10, 11, 13].
9. Every team or set or related teams will be judged by their
ability to deliver a measurable, predictable value improvement
stream [VP 8.7].
10. Decisions will not be made on badly-defined-package costs:
decisions will be made continuously, and if necessary retracted,
on provable values for costs, with regard to risks. [VP 7.2, 3, 6, 17]

EVIDENC
E

SOURCE

Estimate

±
Uncertainty

or
Range

Credibili
ty

Large Scale Problem (Brexit)
with risks visible

Management Policy 7. We will make the risks of all strategies, designs, actions, and relationships visible
numerically; and make decisions with regard to worst-case risks [VP Ch. 7, 12, 17].

± deviation

Large Scale Problem (Brexit)
with risks visible

Management Policy 7. We will make the risks of all strategies, designs, actions, and relationships visible
numerically; and make decisions with regard to worst-case risks [VP Ch. 7, 12, 17].

50% Credibility
of source and evidence

of the design impact estimate

Why do these scaling ideas work?
1. Value quantification allows us to focus on the stakeholder results, the main objectives of

any project. All other activity, below this level should be contributing to delivery of the
planned values. This means we can delegate the activity to any combination of specialist
teams of any size and complexity: yet we can judge whether things are ‘working’. We
keep our eyes on measured value delivery. We can judge whether both our organization
and our architecture are delivering as expected and needed. If not we can adjust
(dynamic design to cost) and go with things that are actually delivering necessary value.

2. Contracting for value relates to the above explanation, with the added benefit that
outside contractors are now motivated to focus on value delivery, not just ‘doing work’, or
‘programming’. It does not matter so much about the underlying complexity. That
underlying complexity either works (delivers contracted value measurably) or not. If not,
we change it until it does, or give up if we cannot change to satisfy value delivery needs.

3. Decomposition by small 2% deliverable value architecture components: this is a
very basic attack on large size and consequent complexity. We can see the incremental
impact of each step on the whole system, regarding both value delivery and costs. If it is
not good enough we try new ideas. If we run out of ideas that work, we need to stop.

4. Risk Management: our methods, including 1-3 above, are really all about managing the
risk of failing to deliver value for money, on time. In addition we have suggested a number
of additional risk management ideas. For example estimating the ± uncertainty of a design
impact on values and costs [9]. For example asking for specific evidence [9] that any
given design, or strategy will deliver the values and costs we need. The more engineering
effort we put in to planning for risk up front, the less likely we are to get nasty surprises
later (and then blame them on ‘project size and complexity’; rather than our own lack of
decent engineering planning).

5.Delegation of decision-making [23]. Delegating
the power to make decisions to a grass roots
level, and in addition to do so incrementally
while keeping any eye of their level of concern
(in terms of value and costs), should obviously
help us make better decisions, in an evidence-
based situation.

I have personally used these methods, with remarkable success, on projects involving for
example 1,000 programmers and 1,000 hardware engineers (example HICOM (which was in
total failure mode after 2 years, at Siemens. Boeing Aircraft projects [thousands of
employees involved. To mention just a couple of many). There is no doubt for me that they
work, and why they work.

Delegation Examples

Copyright Tom@Gilb.com 2014

My Own Project Development Process:
delegation of design to implementors and programmers

• Make developers responsible
– for delivery of the ‘quantified’ critical requirements levels
• (Performance, Qualities, cost, deadline)

• Give them the freedom to decide the ‘right’ designs
– With immediate responsibility to measure that they are delivering the results

• Get the ‘unprofessional’ users and customers ‘off their backs’
– Avoid receiving features and stories; avoid ‘architecture from managers’.
• which are usually amateur design, by people who have no overview or responsibility or design

ability (users and customers, and managers)

• Elevate your talent by becoming a real ‘software ENGINEER’
– With coding-expert craftsmanship, as your basic talent

19 August 2014 22

These slides are at
http://www.gilb.com/dl821

Cases and real examples
‘Value Driven Project Management’ slides

Includes ‘Confirmit’ Case, slide 70 on.
http://www.gilb.com/dl152

Competitive Engineering: Book 2005
http://tinyurl.com/CEset2015

Is a dropbox set of Full Glossary
Chapter By Chapter pdfs and full pdf

http://www.gilb.com/dl821
http://www.gilb.com/dl821

Copyright Tom@Gilb.com 2014

Prevention + Pre-test Detection  
is the most effective and efficient

• Prevention data based on state of the art prevention experiences (IBM RTP), Others
(Space Shuttle IBM SJ 1-95) 95%+ (99.99% in Fixes)

• Cumulative Inspection detection data based on state of the art Inspection (in an
environment where prevention is also being used, IBM MN, Sema UK, IBM UK)

\

50%

70%
80%
90%

<-Mays & Jones 50% prevented(IBM) 1990

<- Mays 1993, 70% prevented

1 2 3 4 5 6

 "Prevented"

70% Detection
 by Inspection

95% cumulative detection
by Inspection (state of the art limit)

Test

 "Detected
Cheaply"

100%Use

2319 August 2014
These slides are at

http://www.gilb.com/dl821

http://www.gilb.com/dl821
http://www.gilb.com/dl821

Copyright Tom@Gilb.com 2016

IBM MN & NC DP Experience
• 2162 DPP Actions implemented
– between Dec. 91 and May 1993 (30 months)<-Kan

• RTP about 182 per year for 200 people.<-Mays 1995
– 1822 suggested ten years (85-94)
– 175 test related

• RTP 227 person org<- Mays slides
– 130 actions (@ 0.5 work-years
– 34 causal analysis meetings @ 0.2 work-years
– 19 action team meetings @ 0.1work-years
– Kickoff meeting @ 0.1 work-years
– TOTAL costs 1% of org. resources

• ROI DPP 10:1 to 13:1, internal 2:1 to 3:1
• Defect Rates at all stages 50% lower with DPP

24
These slides are at

http://www.gilb.com/dl821

Research
Triangle

Park

http://www.gilb.com/dl821
http://www.gilb.com/dl821

Conclusion
We need to take these scale-free engineering
ideas seriously

 if we are to get better control
over large-scale software and systems
engineering projects.

The ideas have serious practical international
experience,
and can be tried out one-by-one.
They can be added to any other practices, that
are, or will be successful for you,
They are free ideas.

‘This stuff works!”
(Erik Simmons, Intel, [22, 25])
Experience 1999 to 2016 for 20,000 engineers

Just do it!

References
Very Detailed references are in the presenter notes in

this slide

The Main Reference is the Value Planning Book

[20: VP] “Value Planning: Practical Tools for Clearer
Management Communication”

leanpub.com/ValuePlanning

Free sample (Part 0 to 5), and ridiculously cheap
download with bundled tools and updates.

“Value Planning: Practical Tools for Clearer
Management Communication”

http://gilb.com/dl853

(Free copy for you alone)

Email me.

Tom@Gilb.com

Russian & German
Translations: Leanpub

Go back
End slide

