
How to succeed in your IT Project,
when all others fail, more or less:

the ‘secret' methods.

Tom Gilb
Hon. Fellow BCS

1: Being on time and under budget. 2:
Delivering what stakeholders actually

value, useful results; not just IT systems
that do NOT deliver real value. The

methods in a nutshell are; quantify all
critical stakeholder values, as your main
requirements. And, use Dynamic Design

to Cost, like IBM did in Cleanroom
projects, to be ‘agile' in correcting

projects on a bad path.

tom@Gilb.com
www.Gilb.comGuest Lecture at London

Metropolitan University
Friday 3rd Feb 2015

2PM

1

 https://www.dropbox.com/s/qf3bfbc0wh81kbv/How%20to%20succeed%20in%20your%20IT%20Project%2C%20when%20all%20others%20fail%20more%20or%20less-%20the%C2%A0%E2%80%98secret%27%20methods.pptx?dl=0

mailto:tom@gilb.com
http://www.gilb.com
https://www.dropbox.com/s/qf3bfbc0wh81kbv/How%20to%20succeed%20in%20your%20IT%20Project%2C%20when%20all%20others%20fail%20more%20or%20less-%20the%C2%A0%E2%80%98secret%27%20methods.pptx?dl=0

For your FREE copy of
Competitive Engineering PDF

sign up to our email list at

bit.ly/CompetitiveEngineering

2

http://bit.ly/CompetitiveEngineering

bit.ly/CompetitiveEngineering © Tom@Gilb.com 2013

The Principle that 
 Principles beat methods

• “As to methods, there
may be a million and
then some, but
principles are few.

• The man who grasps
principles can
successfully select his
own methods”.

• - Ralph Waldo
Emerson,
– 1803-1882, USA

3

http://bit.ly/CompetitiveEngineering

Presented to the INCOSE 2007 Symposium by Tom.Gilb
See www.gilb.com page 3

Role of Principles in Education

bit.ly/CompetitiveEngineering

Last slide

5

Over 100 Principles, and practical methods

leanpub.com/valueplanning

http://bit.ly/CompetitiveEngineering
http://leanpub.com/valueplanning

bit.ly/CompetitiveEngineering

when I was 24 years old

6

http://bit.ly/CompetitiveEngineering

bit.ly/CompetitiveEngineering

Jevon’s 1869 ‘Logic Piano’ Machine

http://www.eoht.info/page/Stanley+Jevons
7

http://bit.ly/CompetitiveEngineering
http://www.eoht.info/page/Stanley+Jevons

bit.ly/CompetitiveEngineering

(William) Stanley Jevons
Quotes

“There exists much prejudice against
attempts to introduce the methods and
language of mathematics into any
branch of the moral sciences. Most
persons appear to hold that the
physical sciences form the proper
sphere of mathematical method, and
that the moral sciences demand some
other method, I know not what.”
— Stanley Jevons (1871), Theory of
Political Economy (pg. 3)

“We cannot weigh, or gauge, or test the
feelings of the mind; there is no unit of
labor, or suffering, or enjoyment.”
— Stanley Jevons (1871), Theory of
Political Economy (pg. 9)

8

http://bit.ly/CompetitiveEngineering
http://www.eoht.info/page/mathematics
http://www.eoht.info/page/Feeling
http://www.eoht.info/page/mind
http://www.eoht.info/page/unit

bit.ly/CompetitiveEngineering

My Point
Some knowledge is ‘eternal’

Some knowledge is more
powerful than other

knowledge

9

http://bit.ly/CompetitiveEngineering

BEING ON TIME

10bit.ly/CompetitiveEngineering

http://bit.ly/CompetitiveEngineering

bit.ly/CompetitiveEngineering

why do you think IT projects
are often very late?

• Audience Opinions ? • My Opinions ?

11

http://bit.ly/CompetitiveEngineering

bit.ly/CompetitiveEngineering

why do you think IT projects
are often very late?

• Audience Opinions ?

• My Opinions ?

1. lack of motivation to deliver
on time

2. lack of clear definition of
what will be delivered on
time

3. lack of easy and
continuous feedback, about
time and progress; with
consequent adjustments to
make sure the essentials

12

http://bit.ly/CompetitiveEngineering

bit.ly/CompetitiveEngineering © Gilb.com

Summary of Top ‘8’ Project Objectives

1. Central to The Corporations business strategy is to be the world’s premier integrated
<domain> service provider.

2. Will provide a much more efficient user experience

3. Dramatically scale back the time frequently needed after the last data is acquired to time
align, depth correct, splice, merge, recompute and/or do whatever else is needed to generate
the desired products

4. Make the system much easier to understand and use than has been the case for previous
system.

5. A primary goal is to provide a much more productive system development environment than
was previously the case.

6. Will provide a richer set of functionality for supporting next-generation logging tools and
applications.

7. Robustness is an essential system requirement

8. Major improvements in data quality over current practices

Real Example of Lack of Quantification in large Engineering Company Project

This lack of clarity cost them over $100,000, 000. and 8 years delay
13

http://bit.ly/CompetitiveEngineering

bit.ly/CompetitiveEngineering © Gilb.com

Rock Solid Robustness: many splendored

• Type: Complex Product Quality Requirement.
• Includes:

– {Software Downtime,
– Restore Speed,
– Testability,
– Fault Prevention Capability,
– Fault Isolation Capability,
– Fault Analysis Capability,
– Hardware Debugging Capability}.

•

14

http://bit.ly/CompetitiveEngineering

bit.ly/CompetitiveEngineering © Gilb.com

Software Downtime:

Type: Software Quality Requirement. Version: 25 October 2007.
Part of: Rock Solid Robustness.
Ambition: to have minimal downtime due to software failures <- HFA 6.1
Issue: does this not imply that there is a system wide downtime requirement?

Scale: <mean time between forced restarts for
defined [Activity], for a defined [Intensity].>

Fail [Any Release or Evo Step, Activity = Recompute, Intensity = Peak Level] 14 days

<- HFA 6.1.1

Goal [By 2008?, Activity = Data Acquisition, Intensity = Lowest level] : 300 days ??
Stretch: 600 days.

15

http://bit.ly/CompetitiveEngineering

bit.ly/CompetitiveEngineering © Gilb.com

Restore Speed:
Type: Software Quality Requirement. Version: 25 October 2007.
Part of: Rock Solid Robustness
Ambition: Should an error occur (or the user otherwise desire to do so), the

system shall be able to restore the system to a previously saved state
in less than 10 minutes. <-6.1.2 HFA.

Scale: Duration from Initiation of Restore
to Complete and verified state of a
defined [Previous: Default =
Immediately Previous]] saved state.

Initiation: defined as {Operator Initiation, System Initiation, ?}. Default =

Any.

Goal [Initial and all subsequent released and
Evo steps] 1 minute?

Fail [Initial and all subsequent released and
Evo steps] 10 minutes. <- 6.1.2 HFA

Catastrophe: 100 minutes.

16

http://bit.ly/CompetitiveEngineering

bit.ly/CompetitiveEngineering © Gilb.com

A Complex Requirement  
“Robustness”

Robustness

Software
Downtime

Restore
Speed Testability

Fault
Prevention
Capability

Fault
Isolation

Capability

Fault
Analysis

Capability

Hardware
Debugging
Capability

17

http://bit.ly/CompetitiveEngineering

Software 2015 © Gilb.com

Testability:
Type: Software Quality Requirement.
Version: 20 Oct 2006-10-20
Status: Demo draft,
Stakeholder: {Operator, Tester}.
Ambition: Rapid-duration automatic testing of <critical complex tests>, with extreme operator setup and initiation.

Scale: the duration of a defined [Volume] of testing, or a defined [Type],
by a defined [Skill Level] of system operator, under defined [Operating
Conditions].
Goal [All Customer Use, Volume = 1,000,000 data items, Type = WireXXXX Vs DXX, Skill = First Time Novice,
Operating Conditions = Field, {Sea Or Desert}. <10 mins.
Design Hypothesis: Tool Simulators, Reverse Cracking Tool, Generation of simulated telemetry frames entirely in
software, Application specific sophistication, for drilling – recorded mode simulation by playing back the dump file,
Application test harness console <-6.2.1 HFA

Testability:

18

bit.ly/CompetitiveEngineering

BEING UNDER
BUDGET

19

http://bit.ly/CompetitiveEngineering

bit.ly/CompetitiveEngineering

why do you think IT projects
run over budgets?

• Audience Opinions ? • My Opinions ?

20

http://bit.ly/CompetitiveEngineering

bit.ly/CompetitiveEngineering

why do you think IT projects
run over budgets?

• Audience Opinions ?

• My Opinions ?

1. ‘somebody’ is earning a
profit on the overrun

(Greed)

2. the budget is not the
projects personal money: it
is taxpayer’s, the company

(lack of responsibility)

3. we do not make ‘no cure no

21

http://bit.ly/CompetitiveEngineering

© Gilb.com 2011

In the Cleanroom Method, developed by IBM’s Harlan Mills
(1980) they reported:  

• “Software Engineering began to emerge in FSD” (IBM Federal Systems Division,
from 1996 a part of Lockheed Martin Marietta) “some ten years ago [Ed. about
1970] in a continuing evolution that is still underway:

• Ten years ago general management expected the worst from software projects –
cost overruns, late deliveries, unreliable and incomplete software

• Today [Ed. 1980!], management has learned to expect on-time, within budget,
deliveries of high-quality software. A Navy helicopter ship system, called
LAMPS, provides a recent example. LAMPS software was a four-year project of
over 200 person-years of effort, developing over three million, and integrating
over seven million words of program and data for eight different processors
distributed between a helicopter and a ship in 45 incremental deliveries [Ed.
Note 2%!]s. Every one of those deliveries was on time and under budget

• A more extended example can be found in the NASA space program,
• - Where in the past ten years, FSD has managed some 7,000 person-years of

software development, developing and integrating over a hundred million bytes
of program and data for ground and space processors in over a dozen projects.

• - There were few late or overrun deliveries in that decade, and none at all in
the past four years.”

October 2, 2014 22

in 45 incremental deliveries

were few late or overrun
deliveries in that decade,
and none at all in the past

four years

bit.ly/CompetitiveEngineering

DELIVERING VALUE

23

http://bit.ly/CompetitiveEngineering

bit.ly/CompetitiveEngineering

why do you think IT projects fail
to deliver impressive value?

• Audience Opinions ? • My Opinions ?

24

http://bit.ly/CompetitiveEngineering

bit.ly/CompetitiveEngineering

why do you think IT projects fail
to deliver impressive value?

• Audience Opinions ?

• My Opinions ?

1. real stakeholder values are
not explicitly used as
primary project drivers

2. values are loose woolly
bullshit (‘greater flexibility’)

3. Values are not quantified

(65% by 100917)

4. values are not contracted

25

http://bit.ly/CompetitiveEngineering

bit.ly/CompetitiveEngineering

Incremental Value delivery at Philips

Source Gilb: Value Planning, 5.6

26

http://bit.ly/CompetitiveEngineering

Tracking Value Delivery Progress: after each Evo value delivery cycle

<- 50% of way to
Goal level

<- Met goal
<- Twice as good
as Goal level

<- No progress
from Past level

<- 12.5 % over the
Goal level
<- 91.8 average % to
Goal in 9 of 12 weeks

Source Value Planning
section 5.9
Confirmit

Copyright Tom@Gilb.com 2016

EVO Value Tracking ‘Confirmit’ Version 8.5, in Evo Step Impact Measurement 
4 product areas were attacked in all: 25 Qualities concurrently, one quarter of a

year. Total development staff = 13

9
8

3
3

28

QUANTIFYING
STAKEHOLDER VALUE

29

bit.ly/CompetitiveEngineering

what is the difference between
stakeholder value’ and IT system Quality ?

• Audience Opinions ? • My Opinions ?

30

http://bit.ly/CompetitiveEngineering

bit.ly/CompetitiveEngineering

what is the difference between stakeholder value’ and IT system Quality ?,

example Long term organisational flexibility,
and Software Portability)

• Audience Opinions ?

• My Opinions ?

1. Stakeholders care about
their critical values deeply

2. IT qualities are merely a
possible means to the
Value ‘ends’.

3. There are many ways to
deliver the values, and
many of them have nothing
to do with IT

31

http://bit.ly/CompetitiveEngineering

Q
ua

nt
ify

in
g

Q
ua

lit
y

© Tom@Gilb.com 2014

Quality Quantification Methods #1

• Common Sense, Domain Knowledge
– Decompose “until quantification becomes

obvious”.
– Then use Planguage specification:

• Scale: define a measurement scale

• Meter: define a test or process for measuring on the
scale

• Past: define benchmarks, old system, competitors
on the scale

• Goal: define a committed level of future stakeholder
quality, on your scale.

1 July 2014
32

Q
ua

nt
ify

in
g

Q
ua

lit
y

© Tom@Gilb.com 2014

Quality Quantification Methods #2,  
Look it up in a book 

1 July 2014
33

Q
ua

nt
ify

in
g

Q
ua

lit
y

© Tom@Gilb.com 2014

Quality Quantification Methods #2,  
Look it up in a book 

Tool Collection:  
Scale: Clock hours for defined
[Maintenance Instance: Default:
Whoever is assigned] to acquire all
defined [Tools: Default: all systems and
information necessary to analyze,
correct and quality control the
correction].

1 July 2014
34

Q
ua

nt
ify

in
g

Q
ua

lit
y

© Tom@Gilb.com 2014

Quality Quantification Methods #3,  
 Google It

1 July 2014
35

bit.ly/CompetitiveEngineering

Exercise on Value
Quantification

• what is your most critical
stakeholder's most critical
non-financial value?

• be sure it is their real value,
not an iT product quality (like
security, usability). nOt a
solution to getting their real
values (like an IT system)

• can you write down a
quantified requirement for that
value, that cannot be
misunderstood?

36

http://bit.ly/CompetitiveEngineering

bit.ly/CompetitiveEngineering

CORRECTING BAD
DESIGN, AGILE

37

http://bit.ly/CompetitiveEngineering

bit.ly/CompetitiveEngineering

can bad architecture or design be
corrected in time to prevent IT project

failure?

• Audience Opinions ? • My Opinions ?

38

http://bit.ly/CompetitiveEngineering

bit.ly/CompetitiveEngineering

can bad architecture or design be
corrected in time to prevent IT project

failure?

• Audience Opinions ?

• My Opinions ?

1. Yes, as for example
Confirmit, and IBM
Cleanroom have proven for
years. Supported by similar
recent Lean Startup
methods

2. Yes. If we decompose all
implementation into small
short term incremental
value delivery

39

http://bit.ly/CompetitiveEngineering

Mills on Design to Cost
• “To meet cost/schedule commitments based on

imperfect estimation techniques, a software
engineering manager must adopt a manage-and-
design-to-cost/schedule process.

• That process requires a continuous and
relentless rectification of design objectives
with the cost/schedule needed to achieve those
objectives.”

• in IBM Systems Journal, 4/80 p.420

40

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom: Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost
management farther by introducing design-to-cost guidance. Design, development, and managerial
practices are applied in an integrated way to ensure that software technical management is consistent
with cost management. The method [illustrated in this book by Figure 7.10] consists of developing a design,
estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by
sacrificing 'planned capability.' When a satisfactory design at cost target is achieved for a single increment,
the 'development of each increment can proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in
seeking the appropriate balance between cost and design for a single increment, but they iterate through a
series of increments, thus reducing the complexity of the task, and increasing the probability of learning
from experience, won as each increment develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining
increments is computed.' (p. 474)

Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19,
No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

41

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure
that software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10]
consists of developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can
proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the
appropriate balance between cost and design for a single increment, but they iterate through a series of increments, thus reducing
the complexity of the task, and increasing the probability of learning from experience, won as each increment develops, and as the
true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is computed.' (p.
474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

16 August 2014 42

of developing a
design, estimating

its cost, and
ensuring that the

design is cost-
effective

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure
that software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10]
consists of developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can
proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the
appropriate balance between cost and design for a single increment, but they iterate through a series of increments, thus reducing
the complexity of the task, and increasing the probability of learning from experience, won as each increment develops, and as the
true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is computed.' (p.
474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

16 August 2014 43

iteration process
trying to meet
cost targets by
either redesign

or by sacrificing
'planned

capability’

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure
that software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10]
consists of developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can
proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the
appropriate balance between cost and design for a single increment, but they iterate through a series of increments, thus reducing
the complexity of the task, and increasing the probability of learning from experience, won as each increment develops, and as the
true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is computed.' (p.
474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

16 August 2014 44

Design is an
iterative
process

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure
that software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10]
consists of developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can
proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the
appropriate balance between cost and design for a single increment, but they iterate through a series of increments, thus reducing
the complexity of the task, and increasing the probability of learning from experience, won as each increment develops, and as the
true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is computed.' (p.
474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

16 August 2014 45

but they iterate through a
series of increments,

thus reducing the
complexity of the task,

and increasing the
probability of learning from

experience

bit.ly/CompetitiveEngineering

decomposing architecture

• think of a big strategy for IT

• or architecture idea for IT

• name 5 ways to decompose
one of these ‘solution ideas’ so
it can be delivered in
weeklyincrements

46

http://bit.ly/CompetitiveEngineering

bit.ly/CompetitiveEngineering

decomposing architecture

• think of a big strategy for IT

• or architecture idea for IT

• name 5 ways to decompose
one of these ‘solution ideas’ so
it can be delivered in
weeklyincrements

examples
do it one town at a time,

do it one employee, one department at a
time

one major function at a time

47

http://bit.ly/CompetitiveEngineering

For your FREE copy of
Competitive Engineering PDF

sign up to our email list at

bit.ly/CompetitiveEngineering

http://bit.ly/CompetitiveEngineering

