
Page � of � Version:0606161 8 © gilb.com Lean Value Planning

LEAN VALUE PLANNING
By tom@Gilb.com

‘Lean’ is a smart concept. It is a philosophy of doing things in an efficient way. ‘Avoid waste’ is one
way to summarize it. Lean is a set of ideas, working together to avoid wasted resources.

The exact set of ideas that is called ‘lean’ is not standard, or official. Anyone can ‘make up’ a
useful set of ‘Lean’ ideas, as long as they arguably contribute to efficient value delivery. In fact, one
useful lean idea is to keep your set of ‘lean’ tools up-to-date, and make sure they really are
continuously effective in reducing costs, and delivering value. Keep ‘lean’ lean.There is no need to
have a fixed or constant set of Lean Ideas, just because they were defined in a paper, talk or book
by some lean ‘authority’. You have to take responsibility for being your own best local ‘lean expert.

Figure 1: A Software development view of ‘Lean’. It is general enough to apply to most forms of development, and planning, outside
of ‘software’ and ‘IT’ too. It does not pretend to be a complete or correct list. Your situation might require other things. But, it will give
you some initial idea of what ‘Lean’ means in practice.

The purpose of this paper.
I have invented and developed a set of tools for planning ‘most anything’. The details are in my
writings (gilb.com), and in particular in my books ([1] Competitive Engineering (2005), [2] Value
Planning (2016))

Everything not adding value to the Stakeholder is considered to be waste.

This includes:
1. Unnecessary code and functionality
2. Delay in the (software) development process
3. Unclear requirements
4. Bureaucracy
5. Slow internal communication

And ‘lean’ means to:
6. Amplify Learning
7. The learning process is sped up by usage of short iteration cycles – each one

coupled with refactoring and integration testing. Increasing feedback via short
feedback sessions with stakeholders helps, when determining the current results of
development, and adjusting efforts for future improvements.

8. Decide as late as possible
9. Deliver as fast as possible
10. Empower the team
11. Build integrity in
12. Separate components work well together ,as a whole, with balance between

flexibility, maintainability, efficiency, and responsiveness.
13. See the whole system, or ‘picture’
14. “Think big, act small, fail fast; learn rapidly”

http://en.wikipedia.org/wiki/Lean_software_development

mailto:tom@gilb.com
http://gilb.com
http://en.wikipedia.org/wiki/Lean_software_development
http://en.wikipedia.org/wiki/Lean_software_development
http://gilb.com

Page � of � Version:0606162 8 © gilb.com Lean Value Planning
The main body of these tools is called ‘Planguage’ (Planning Language). It is my nature to find
intelligent ways of doing complex projects, and doing complex things. Consequently my Planguage
is ‘naturally lean’.

Many people, like yourself are already convinced that lean approaches are a ‘good thing’. Certainly
most every sane person wants to be efficient, to not waste time, people and money, etc., even if
they have never heard of the popular ‘lean’ concept.

So the main purpose of this paper is to show the reader precisely which parts of Planguage, are a
potential toolset, to help them be ‘as lean as they need to be’.

The simple answer, to the question of what Planguage has to offer for lean, is ‘all of Planguage’:
read the books. If you buy that idea, this overview is all you need. Stop reading this paper and start
learning ‘Planguage’.

But, some readers will want more specific detail, more convincing arguments about how lean
Planguage really is. If not for themselves, then for colleagues and clients, students and readers of
their own writings. So the rest of this paper will argue the case in more detail.

The High level View of Lean
Let me arbitrarily, classify the basic ‘lean tactics’: i.e. ‘tactics for being efficient’. This is based on
the detail in Figure 1 above.

1. Avoid Unnecessary Product.
2. Avoid Unnecessary Delay.
3. Avoid Unnecessary Bureaucracy.
4. Learn Fast.
5. Get Facts Right.
6. Seek Value for Stakeholders
7. Get good value for money
8. Avoid sub-optimization.

Everything else is a function of these ‘lean objectives’, or ‘lean principles’ if you prefer.

The result of doing practical things, like using Planguage specification and process tools, in order
to follow these principles, should be greater efficiency in delivering the values, which are the core
purpose of all projects.

Specific Planguage Lean Areas.
Here is a top-level overview of Planguage tools, that I believe can help you attain the Lean
Objectives above.

1. RQT: Planguage for clear and full requirements (objectives) specification. End states.
2. DESIGN: Planguage for clear and full design (architecture, strategy) specification. Means to

ends.
3. SQC: Specification Quality Control (SQC) to measure how good the requirements and designs

are.
4. IET: Impact Estimation tables for quantitatively relating all levels ends and means. Good

design?

http://gilb.com

Page � of � Version:0606163 8 © gilb.com Lean Value Planning
5. EVO: Evolutionary Value delivery (Evo): an ‘agile’ project management process for delivering

stakeholder value early and continuously and measurably; while ‘learning’ and ‘ correcting’
continuously.

It may be worth adding at this point, that all of our methods are true ‘engineering’ methods. They
are based on pervasive and logical quantification of all values, costs and process measures.

This implies that we can ‘prove’ that these lean Planguage methods work efficiently. We have
decades of international case studies confirming that these ideas really are lean. And you can
expect to do the same, prove by measurement, that you are indeed more ‘lean’: more cost
effective than your older methods are. If you apply Planguage methods.

Specific Planguage Lean Tools
So let me go to a second level of level of detail on the lean tools.

1. RQT: Planguage for clear and full requirements (objectives) specification. End states.
2. DESIGN: Planguage for clear and full design (architecture, strategy) specification. Means to

ends.
3. SQC: Specification Quality Control (SQC) to measure how good the requirements and designs

are.
4. IET: Impact Estimation tables for quantitatively relating all levels ends and means. Good

design?
5. EVO: Evolutionary Value delivery (Evo): an ‘agile’ project management process for delivering

stakeholder value early and continuously and measurably; while ‘learning’ and ‘ correcting’
continuously.

Figure 2: the top level of Planguage tool body of tools.

Here is some more, second level, detail: but by no means the most-detailed ideas at a practical
level [See 1, 2, 3 for detail]:

1. RQT: Planguage for clear and full requirements (objectives) specification. End states.
1. QUANTIFY: All variable requirements (values, qualities, costs) are always expressed

quantitatively. No exception. Nothing critical is treated by Planguage, as ‘soft’, using
management BS words (like extremely high security).

2. MEASURABLE: all critical variable requirements, can be tracked and measured frequently
as they emerge, and are being delivered by the project or the process. This confirms our
estimates and theories; or invalidates them quickly. It is the basis of our learning: what
works and does not work.

3. RICH: all requirements are data-rich with all useful related information, such as who are
stakeholders, justifications, related designs, minimum levels to avoid failure, goal levels
needed for formal success, parameters for each requirement - about when, where, who and
under which conditions it is valid.

http://gilb.com

Page � of � Version:0606164 8 © gilb.com Lean Value Planning
4. PRIORITIES: there is a comprehensive set of information about requirements that enables

us to compute their current and instantaneous priority, during a project, in spite of changes
and complexity.

2. DESIGN: Planguage for clear and full design (architecture, strategy) specification.
Means to ends.
1. DETAILED: you can include enough detail about a design, so that it cannot be

misunderstood by anyone (contractors), it can be thoroughly tested for complete
implementation, it can be decomposed to allow early partial implementation for value flow.
And the design detail will allow us to estimate the multiple values the implemented design
can deliver, and the design’s multiple long-range costs, and short-range costs: with useful
accuracy.

2. PURPOSES: every design (architecture, strategy, solution, means) must address at least
one defined and ‘official’ accepted ‘purpose (requirement). A set of designs must finally all
deliver the requirements, within the defined constraints of the system. We document the
intended purposes of every design, we estimate the degree of satisfaction the design is
supposed to give us, and its costs - numerically. We know exactly what a design is
supposed to do, and ultimately what it is really doing in practice. We know the design’s
intended efficiency, and real efficiency. We can manage the designs ‘leanness’.

3. RISKS: we document in detail, all suspected and known problems with a design, together
with the core design idea itself. We are honest ethical, skeptical and transparent about
design problems. Risks are documented at the individual design level, and may be
systematically mitigated at that same design level. Finally, by being extremely quantitative
about designs, we have very strong tools for managing risk of the designs, so that they
deliver real value, at profitable costs. Most other methods do not even try to do this at all.
Check it out.

4. IMPACTS: The purpose of any design is to have an efficient impact. That means to deliver
value early, at lowest costs. Planguage has a rich system of direct and numeric factual
objective connections, between any or all designs - and the value and costs we need to
manage. No fluffy assertions will be accepted. No design can survive our process if it really
does not measure up. We manage the leanness of all designs from cradle to grave. From
inception of design idea, and through the lifetime of the system.

3. SQC: Specification Quality Control (SQC) to measure how good the requirements and
designs are.
1. MEASUREMENT: all planning and specification artifacts, everything written by people in

your system planning, needs to have a systematic quality control, with respect to your best
practice standards. Requirements, architecture, contract. request for proposals, code, test
plans. The QC should never be some kind of sign off, or ‘approval’. It needs to be based on
an objective measure of the level of defects in the document. This is a powerful upstream
early (lean!) device, that is far more efficient than the usual discovery of problems
downstream, bemoans of testing or with field use. SQC is proven roughly 100 times more
‘lean’. (ref Terzakis, Intel 2013, [4])

http://gilb.com

Page � of � Version:0606165 8 © gilb.com Lean Value Planning

Figure 3. Terzakis, Intel. 2013 [4] This use of our SQC, to measure delivered requirements written
in our Planguage. Exit to next process is refused, until the requirements are delivered with an
acceptable (economic, upstream level) level of defect density per page. Terzakis cited 200% to
300% engineering productivity increase in his projects, as a result of this upstream QC on the
requirements to prevent garbage in downstream.

2. NUMERIC GATES: when the defect density of engineering specification work is measured,
we have the opportunity to release work, only when the level of defects is so low, that it
pays off to release it. Intel for example publishes use of our methods with a gate-exit defect
level for requirements, of no more that 1 defect per 4 pages (2400 words). You, by
comparison, I believe based on my experience, are right now, wallowing in filth (garbage in
requirements, designs, contracts) with about 800 major defects per 2400 words, and you do
not measure and do not know it. You just pay at the downstream, customer, end. You
cannot see the microbes on your hands, but they are there. Hope you washed your hands
afterwards, anyway. Se Fig. 3 above and ref [4].

4. IET: Impact Estimation tables for quantitatively relating all levels ends and means. Good
design?
1. VALUES ESTIMATES: IETs insist that you estimate not only the primary value expected

from a design, but that you also estimate all side-effects, on all other critical values (your
top-ten objectives). This IE Table requirements/design development, is an engineering
process, of analyzing side-effects, and is a lean way, compared to ‘getting surprises
later’ (security destroys user-friendliness, for example)

2. COSTS ESTIMATES: IETs encourage you to estimate, all manner of initial, and long-term
costs, which are consequences of a design. Capital expenditure, staff, time to develop
initially as well as corresponding annual maintenance costs for lifetime. This will help us
avoid costly surprises later, ‘surprises’ due mainly to not even trying to think about the costs
of design or architecture (the norm, I am afraid).

3. RISK ESTIMATES: IETs capture, for all estimates of value delivered and costs, the upper
and lower range of possible results (60±20 for example) as well as the evidence and
sources for the estimates. The impact estimate evidence is used to determine how shaky
the estimates are (Credibility scale 0.0 to 1.0). These data can be used to prioritize safer
and more certain designs implemented early. Or the credibility ratings can be used to

http://gilb.com

Page � of � Version:0606166 8 © gilb.com Lean Value Planning
consciously accept risk, while you are trying some new, uncertain, technology of high
‘promise’.

4. PRIORITIZATION: IETs build a picture of value delivered progress to date as you evolve
towards value targets, and a picture of consumed budgeted costs and deadlines. This
update information about value delivered, and resources used, can be used to calculate
current priorities (like ‘focus remaining resources on un-met value targets’). This, in turn
results in high values delivered early, in a prioritized stream of values. Very Lean.

5. ALIGNMENT: IETs can model, and numerically relate, any number of stakeholder levels of
planning. Business levels, individual stakeholder types levels, and system development
levels (like IT). The connection is numeric. The numbers say how the lower levels are
contributing to the higher levels. This give management exceptional overview of how the
whole organization is synchronized with top level objectives and top level strategies.

Figure 4: a real Impact Estimation table for planning a small business. Using the Needs and Means tool app. The app can show and
hide detail as necessary, but the underlying detail is easily available as a mouse click. Tags like MarketingStrategy and
MarketSegment are just cross references for much more detailed planning, you can drill down to detail as needed. To understand
this table, as a reader of this paper, you would need to read up on it in a book [1,2]. But the table shows the things we have
discussed in the paper. The green boxes represent ‘best’ options 6.06 for value for money, and the 3.20 is best with respect to worst
case risk evaluation.

http://gilb.com

Page � of � Version:0606167 8 © gilb.com Lean Value Planning

Figure 5 The needs and means tool can provide summaries of the table data such as this. it shows the design options, their total
value, their total costs and their uncertainty (the I bars). The tool can sort the options into a prioritized sequence based on efficiency
(value to cost), and or by riskiness.

5. EVO: Evolutionary Value delivery (Evo): an ‘agile’ project management process for
delivering stakeholder value early and continuously and measurably; while ‘learning’
and ‘ correcting’ continuously.
1. ENGINEERING THE VALUE IN: Evo is an agile (incremental delivery) project management

process, with a difference. It is focussed on delivery of multiple numeric targets of key
stakeholder values. Other older PM process are focused on building a system, which we
assume, or hope, will deliver value. But there is little or no actual quantification, estimation
and measurement of these values, in older methods. And there is almost no measurement
of the various costs (for example annual maintenance costs).

2. LEARNING EARLY: Evo, since it is totally numeric, can sense that there are real deviation
in delivery value and costs, by comparison with the estimated ones. This triggers quick
analysis of causes and quick upstream cures better design, for example). In addition to
getting the value delivery, back on track early, lessons are learned about how to do it right
in future steps.

Summary
The hundreds of actual details, examples and case studies are already written up in the CE and
VP [1,2] books, as well as freely available slides and papers [gilb.com). The reader needing more
detail is referred to these sources.

http://gilb.com
http://gilb.com

Page � of � Version:0606168 8 © gilb.com Lean Value Planning
Planguage, a synchronized collection of tools, supporting lean thinking at the practical and detailed
level. It is not a mere generic recommendation, that I see in so many papers and talks (‘analyze
the cause, prioritize value first, get it right the first time, design quality in’).

Planguage is devoted to designing quality, value, and low costs; into any system, by conscious
detailed numeric specification of desired levels of value and cost. Followed by conscious design
with estimated impact values to rate alternative designs. Followed by quick (2nd week and every
week) attempt to try out the highest priority designs, and then we can learn if they are as good as
we thought they were.

The history of Evo, and of identical parallel methods such as IBM Cleanroom ([5] Mills and
Quinnan) tells us that all projects are usually delivered on time, under budget, even for the most
demanding, high-quality, large-scale, and complex projects. Agile itself has about 40% failure rate,
and Scrum (source J. Sutherland) has ‘only 19% failure rate’. These popular frameworks are not
lean enough to consistently success in complex and large scale development. We could enhance
the Scrum and Agile frameworks with Planguage methods to deal with this. Scrum delivers the
code faster than their forerunners; but they do not deliver the values and costs, because they are
not focussed on trying to manage value and cost. They do not even quantify their critical objectives
such as ‘security’ amongst many others.

REFERENCES
1. Value Planning. leanpub.com/Valueplanning, or via Gilb.com
2. Competitive Engineering. 2005 Elsevier
3. needsandmeans.com Automated Planguage tool by Richard Smith,

info@NeedsAndMeans.com
4. Terzakis.
 "The impact of requirements on software quality across three product generations,"
2013 21st IEEE International Requirements Engineering Conference (RE), Rio de Janeiro, 2013, pp. 284-289
http://selab.fbk.eu/re11_download/industry/Terzakis.pdf (this is the 2011 paper.
I don’t have a good free link for his 2013 paper. But http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6636731&url=http%3A
%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6636731
Paper link requirs purchase and sign in

5. Mills, H. 1980. The management of software engineering: part 1: principles of software engineering. IBM Systems Journal 19,
issue 4 (Dec.):414-420.
Direct Copy
http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan

http://leanpub.com/Value
http://needsandmeans.com
mailto:info@needsandmeans.com
http://selab.fbk.eu/re11_download/industry/Terzakis.pdf
http://gilb.com

