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Summary
There is widespread interest in how to make Agile (including Scrum) methods, work better, on a 
large scale. 

Mike Beedle’s paper [1] gives a good overview (references to much of the agile scaling 
literature) of many different proposed methods. I am not going to argue whether these methods are 
good or bad. No doubt most of the techniques have some value in some circumstances. My 
concern is not this set of ‘conventional agile scaling’ ideas’. My concern is the large collection of 
other possible ideas for ‘scaling up agile’ [18]. I will list them here, and reference the detail. 
As a leader of practicing my ideas at Intel says: “scale-free things do not scale (because they just 
don’t need to, and scale is irrelevant)” [25, Erik Simmons, 8 Jan. 2016]. So it is not about scaling 
methods that initially are best suited for small scale. It is about methods that work at any scale.

When the conventional and new ideas are looked at all together, as a larger set of ideas, I 
suspect that many conventional ideas will not seem as useful, or as necessary, or as cost effective 
as they seem to be today; in the absence of my supplementary set of ideas. You judge.

The general nature of most of my agile scaling ideas is that they are based on engineering 
concepts: that means systematic quantification of project-and-architecture values and costs [22, 
20]. These critical ideas seem totally absent from the mainstream agile literature, and public 
presentation that  I can register [1]. But I have been publishing these engineering tools long before 
‘Agile’ (1976 Software Metrics, 1988 Principles of Software Engineering Management [6, which is 
deep on Agile delivery cycles)

This is not surprising since Scrum and similar variants of Agile (Cyclical delivery) are 
admittedly almost completely lacking any notion of engineering, and of consequent quantification of 
values and costs [18]. 

If we want to move from 60% project failure rates [1], towards better than 99% success 
rates: we need engineering techniques to tackle large projects (in small ‘value’ increments).

Scaling up a ‘craft’ discipline has up to now been attempted, in ‘conventional scaling’ [1],  
by scaling up the craft process. The normal way to scale up most other types of building processes 
is by using an engineering paradigm (think: aircraft, computers, buildings, telecoms, cities, roads). 

But Agile Manifesto and XP were developed by ‘Programmers’, not Engineers. If some 
were not actually programmers, the end result is extremely focussed on programming. And they, 
the ‘coders’  have consistently failed to even discuss an engineering paradigm [F1]. [18, 19 and 
most references [2 to 17]  ]. 
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The Joke is, that they like to call themselves ‘software engineers. But they don’t do 
software (like ‘data’) just code. And they don’t do engineering, just code hacking. We are allowing 
‘carpenters’ to build and plan skyscrapers, and ‘ditch diggers’ to build and plan super-highways. It 
cannot work.

So, here is the bottom line:

The main keys
 to any scale of software development in agile

 lie in ‘engineering methods’, 
not ‘programming methods’.

THE BASIC TOOLS WITH [REFERENCES] TO PRACTICAL DETAIL
Now, rather than write a long-winded paper with detail, I am going to summarize 10 basic 
principles, methods, tools, and policies: and for each cite [writings] where practical detail, and 
more-convincing arguments, will be found. The references in this paper are very ‘Agile’ oriented. 
The ‘VP’ References from my Value Planning book [20] are the best updated detailed practical 
source of ‘how to do it’. So, I prefer to reference VP frequently, even though it is written for 
‘managers’ not Agilistas. But VP is all about Enterprise Agile [1]. 



Principles for Any Scale Software Projects
1. Keep focus on measurable delivery of critical values and their costs. [3, 4, 5, 6, 9, 10,  12, VP 

(20) Part 1, VP 10.6 ]
2. Deliver value early, quickly and regularly: in roughly 2% increments. [14, 11, VP Ch.4, 2, 5  ]
3. Do NOT focus on code delivery; focus on overall system value and costs.  [ VP Ch.4, 10D, 10F, 

13, VP 3.4, VP 2.10, VP 9.8, 4, 12]
4. Focus on quantified critical stakeholder values.  [19, VP 3.4, VP 3.7, VP 3.9, VP 3.10 VP 4.2, 

10 ] 
5. Synchronize all teams in terms of measurable value delivery. [VP 3.3, VP 3.4, VP Part 1, VP 

3.6, VP 3.8, VP 8.4 , 11, 12, 13 ]
6. Solve big problems through ingenious architecture; not through coding faster. [VP 4.5, VP 5.1, 

VP 5.3, VP 7.2, 15 ]
7. Decompose the large problems by incremental value deliveries: not code deliveries. [7, VP Ch. 

5, VP 5.1, VP 5.6 , 10, 11, 13, 15]
8. The software component needs to be integrated into the total system of hardware, data, 

people, culture. [ VP 5.2, 10 ]
9. If your team cannot deliver small increments of real value early, frequently, and predictably; 

they are incompetent and need to be abandoned for those who can deliver. [7,  VP 2.8, 10]
10. Never commit to contacts for work done or code delivered alone: there must always be a 

sufficiently large contractual protection, of paying for measurable value delivered. [12, 15 ]. 

• “As to methods, there may be a 
million and then some, but 
principles are few.  



• The man who grasps principles can 
successfully select his own 
methods”.  



Methods for  Any Scale Software Projects

1. Quantification of Values [10, VP 1.1].
2. Quantification of short term and long term costs [VP 3.4, VP 4.5, VP 6.7 ].
3. Design to Cost: Top Level Architecture [ VP 7.9, 10 ].
4. Dynamic Design to Cost: Each Delivery Cycle [12 C, VP 4.5, VP 2.5, VP 2.3, 5, 10, 12  ].
5. Quality Control of Plans, Contracts, Code and all written artifacts [VP Part 2, VP Part 4, VP 

7.7 ].
6. Flexible Contracting [12,  VP 4.5].
7. Value delivery Cycle Measurable Feedback, Learning and Change [4,  VP 7.3, VP 9.8, VP 6.7, 

VP 8.6, 2, 9, 10, 11, 14 ].
8. Value Decision Tables (Impact Estimation Tables) [9, VP 2.3, VP 4.4, VP 5.3, 13 ].
9. Risk Management in all aspects of planning and Management [ VP Ch. 7], 12.
10. Intelligent Prioritization Policies: for short term and long term [ VP Ch. 6, 12, 13, 14].



Engineering Tools for  Any Scale Software Projects
1. The Planning language: ‘Planguage’ [ 22, VP, 8, 9].
2. The 111111 Decomposition Method [7B, 7C, 3 ].
3. Flexible Contracts  [12 ]. 
4. The ‘Needs and means Planning’ tool [16, 9 ].
5. Quantification of Values processes: Scales, Meters, Past, Tolerable, Wish, Goal. [VP 10.7 ].
6. The Agile Spec QC measurement process, Exit Processes, Rules [VP 10.4, VP Part 4 ].
7. Multiple Relationship Management technology [9, VP Ch.3, VP Ch. 6, 13 ].
8. Continuous Architecture adjustment based on delivery cycle feedback (Cleanroom) [ 5, 14, 8].
9. Graphic Visibility of Values, Costs, and Risks [16 ].
10. Design to Cost Practices: initially and continuously [14, 12 C, VP 4.5, VP 2.5, VP 2.3, 5 ].



Management Policies for Any Scale Software Projects

1. We will primarily manage critical stakeholder value improvements [VP Ch. 3, 8, 19 ].
2. We will simultaneously manage the short term and long term resources [VP 2.5, VP 9.9, VP 

10.6,   ].
3. We will contract for measurable values for money, rather than ‘work done’ [12,  VP 8.4].
4. We will manage all basic system qualities in a quantified engineering manner. [VP Part 1, 3, 4, 

8, 10, 17 ].
5.   We will prioritize delivery of measurable value, early, frequently, predictably [VP 1.2, VP Ch. 6, 
6, 12 ].
6.   We will not lock ourselves into investments or expenditures of any kind that cannot be reversed 
if they do not produce expected value for money [VP Ch. 7, VP 8.10 ].
7.   We will make the risks of all strategies, designs, actions, and relationships visible numerically; 
and make decisions with regard to worst-case risks [VP Ch. 7, 12, 17 ].
8.   We will empower the ‘troops’ to make real-time project decisions, based on current numeric 
feedback, about real values and real costs [VP 8.1, VP 8.2, 10, 11, 13 ].
9.   Every team or set or related teams will be judged by their ability to deliver a measurable, 
predictable value improvement stream [ VP 8.7].
10. Decisions will not be made on badly-defined-package costs: decisions will be made 
continuously, and if necessary retracted,  on provable values for costs, with regard to risks. [VP 
7.2, 3, 6, 17]



Why Engineering methods help projects to scale up.

I would like to attempt an explanation as to why the above principles, methods, tools and policies 
help us deal with very large systems.

1. Value quantification allows us to focus on the stakeholder results, the main objectives of any 
project. All other activity, below this level should be contributing to delivery of the planned 
values. This means we can delegate the activity to any combination of specialist teams of any 
size and complexity: yet we can judge whether things are ‘working’.  We keep our eyes on 
measured value delivery. We can judge whether both our organization and our architecture are 
delivering as expected and needed. If not we can adjust (dynamic design to cost) and go with 
things that are actually delivering necessary value.

2. Contracting for value relates to the above explanation, with the added benefit that outside 
contractors are now motivated to focus on value delivery, not just ‘doing work’, or 
‘programming’. It does not matter so much about the underlying complexity. That underlying 
complexity either works (delivers contracted value measurably) or not. If not, we change it until it 
does, or give up if we cannot change to satisfy value delivery needs.

3. Decomposition by small 2% deliverable value architecture components: this is a very basic 
attack on large size and consequent complexity. We can see the incremental impact of each 
step on the whole system, regarding both value delivery and costs. If it is not good enough we 
try new ideas. If we run out of ideas that work, we need to stop.

4. Risk Management: our methods, including 1-3 above, are really all about managing the risk of 
failing to deliver value for money, on time. In addition we have suggested a number of additional 
risk management ideas. For example estimating the ± uncertainty of a design impact on values 
and costs [9]. For example asking for specific evidence [9] that any given design, or strategy will 
deliver the values and costs we need. The more engineering effort we put in to planning for risk 
up front, the less likely we are to get nasty surprises later (and then blame them on ‘project size 
and complexity’; rather than our own lack of decent engineering planning). 

5. Delegation of decision-making [23]. Delegating the power to make decisions to a grass roots 
level, and in addition to do so incrementally while keeping any eye of their level of concern (in 
terms of value and costs), should obviously help us make better decisions, in an evidence-
based situation.

I have personally used these methods, with remarkable success, on projects involving for example  
1,000 programmers and 1,000 hardware engineers (example HICOM (which was in total failure 
mode after 2 years, at Siemens. Boeing Aircraft projects [thousands of employees involved. To 
mention just a couple of many). There is no doubt for me that they work, and why they work.



Conclusion

I believe, based on my long term client experience, and other peoples experiences [5, 6, 10, 11, 
22, VP (dozens of case studies) for example], that these ideas above are the basic engineering 
ideas we need to take seriously, if we are to get control over large-scale software projects.

The ideas above are described in practical detail in the references [especially 20, 22], have 
extensive documented practical international experience, and can be tried out one-by-one. They 
can be added to any other practices, that are, or will be successful for you, They are free ideas. 

‘This stuff works!” (Erik Simmons, Intel, [22, 25])

Just do it!
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free. Size is not a reason to choose (or not choose) to use CE, Evo, Planguage, etc. As you quoted me in the 
paper – this stuff works. It works on small projects. It works on large projects. Evo on a 5-person team is not 
really much different than Evo on a 100-person team, except there are more people. The principles apply 
without alteration (or “scaling”). Anyone who sees a random page of your new paper would probably not 
guess the topic is scaling (unless you happen to mention that in the text on that particular page). CE does 
not scale. It doesn’t need to. 
  
There’s no doubt that large projects are different. There’s no doubt that we should approach them differently. 
We still don’t have a recipe for large projects, and probably never will. But all that does not lead me to think 
that the answer to large projects can be found in scaling successful practices for small projects. Instead, it 
must be found in use of principles and practices that are scale-free, coupled with use of particular practices 
that are effecting on large projects. If something that works on small projects also works on large projects, 
then I’d propose we call it a scale-free practice, not a scaled practice. 
  
I’m deeply interested in scale-free practices. I’m also interested in specific practices tuned to large, small, 
complicated, and complex projects, but I find particular power in scale-free practices. Your work for decades 
has been focused on a very good set of these. SQC, for example, works on any size specification. It does 
not (need to) scale. 
  
BTW, I think the agile principles are also quite scale-free. But most Scrum practices are definitely not. 
  
So, perhaps you can chart a better course by advocating for use of scale-free core practices, augmented 
with a set of specific, tailored practices that are effective for the size of the project in question. 
  
Cheers, 
e
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FOOTNOTES 
F1: Reaction to the paper from a major author and developer of Agile Scaling 
Methods: Demonstrates my point! 
Hi,

Thanks for sharing. I do not agree with them though. I do not think rigorous measurements is going to 
improve things.

We do need more programmers as most aren’t able to write proper code yet.

To extend your analogy. We wouldn’t want to focus on “engineering skyscrapers" if we don’t even have 
proper carpenters.

Anyways, thanks for sharing!
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