
Beyond Scaling: Scale-free
Principles for Agile Value
Delivery - Agile Engineering.
© tom@Gilb.com 2016, Posted at gilb.com resources/downloads/papers
http://www.gilb.com//dl865
Version March 14 2016, Modified April 11 2016 (XP), Modified 310519 Links and Emerson

Summary
There is widespread interest in how to make Agile (including Scrum) methods, work better, on a
large scale.

Mike Beedle’s paper [1] gives a good overview (references to much of the agile scaling
literature) of many different proposed methods. I am not going to argue whether these methods are
good or bad. No doubt most of the techniques have some value in some circumstances. My
concern is not this set of ‘conventional agile scaling’ ideas’. My concern is the large collection of
other possible ideas for ‘scaling up agile’ [18]. I will list them here, and reference the detail.
As a leader of practicing my ideas at Intel says: “scale-free things do not scale (because they just
don’t need to, and scale is irrelevant)” [25, Erik Simmons, 8 Jan. 2016]. So it is not about scaling
methods that initially are best suited for small scale. It is about methods that work at any scale.

When the conventional and new ideas are looked at all together, as a larger set of ideas, I
suspect that many conventional ideas will not seem as useful, or as necessary, or as cost effective
as they seem to be today; in the absence of my supplementary set of ideas. You judge.

The general nature of most of my agile scaling ideas is that they are based on engineering
concepts: that means systematic quantification of project-and-architecture values and costs [22,
20]. These critical ideas seem totally absent from the mainstream agile literature, and public
presentation that I can register [1]. But I have been publishing these engineering tools long before
‘Agile’ (1976 Software Metrics, 1988 Principles of Software Engineering Management [6, which is
deep on Agile delivery cycles)

This is not surprising since Scrum and similar variants of Agile (Cyclical delivery) are
admittedly almost completely lacking any notion of engineering, and of consequent quantification of
values and costs [18].

If we want to move from 60% project failure rates [1], towards better than 99% success
rates: we need engineering techniques to tackle large projects (in small ‘value’ increments).

Scaling up a ‘craft’ discipline has up to now been attempted, in ‘conventional scaling’ [1],
by scaling up the craft process. The normal way to scale up most other types of building processes
is by using an engineering paradigm (think: aircraft, computers, buildings, telecoms, cities, roads).

But Agile Manifesto and XP were developed by ‘Programmers’, not Engineers. If some
were not actually programmers, the end result is extremely focussed on programming. And they,
the ‘coders’ have consistently failed to even discuss an engineering paradigm [F1]. [18, 19 and
most references [2 to 17]].

mailto:tom@gilb.com
http://gilb.com
http://www.gilb.com//dl865

The Joke is, that they like to call themselves ‘software engineers. But they don’t do
software (like ‘data’) just code. And they don’t do engineering, just code hacking. We are allowing
‘carpenters’ to build and plan skyscrapers, and ‘ditch diggers’ to build and plan super-highways. It
cannot work.

So, here is the bottom line:

The main keys
 to any scale of software development in agile

 lie in ‘engineering methods’,
not ‘programming methods’.

THE BASIC TOOLS WITH [REFERENCES] TO PRACTICAL DETAIL
Now, rather than write a long-winded paper with detail, I am going to summarize 10 basic
principles, methods, tools, and policies: and for each cite [writings] where practical detail, and
more-convincing arguments, will be found. The references in this paper are very ‘Agile’ oriented.
The ‘VP’ References from my Value Planning book [20] are the best updated detailed practical
source of ‘how to do it’. So, I prefer to reference VP frequently, even though it is written for
‘managers’ not Agilistas. But VP is all about Enterprise Agile [1].

Principles for Any Scale Software Projects
1. Keep focus on measurable delivery of critical values and their costs. [3, 4, 5, 6, 9, 10, 12, VP

(20) Part 1, VP 10.6]
2. Deliver value early, quickly and regularly: in roughly 2% increments. [14, 11, VP Ch.4, 2, 5]
3. Do NOT focus on code delivery; focus on overall system value and costs. [VP Ch.4, 10D, 10F,

13, VP 3.4, VP 2.10, VP 9.8, 4, 12]
4. Focus on quantified critical stakeholder values. [19, VP 3.4, VP 3.7, VP 3.9, VP 3.10 VP 4.2,

10]
5. Synchronize all teams in terms of measurable value delivery. [VP 3.3, VP 3.4, VP Part 1, VP

3.6, VP 3.8, VP 8.4 , 11, 12, 13]
6. Solve big problems through ingenious architecture; not through coding faster. [VP 4.5, VP 5.1,

VP 5.3, VP 7.2, 15]
7. Decompose the large problems by incremental value deliveries: not code deliveries. [7, VP Ch.

5, VP 5.1, VP 5.6 , 10, 11, 13, 15]
8. The software component needs to be integrated into the total system of hardware, data,

people, culture. [VP 5.2, 10]
9. If your team cannot deliver small increments of real value early, frequently, and predictably;

they are incompetent and need to be abandoned for those who can deliver. [7, VP 2.8, 10]
10. Never commit to contacts for work done or code delivered alone: there must always be a

sufficiently large contractual protection, of paying for measurable value delivered. [12, 15].

• “As to methods, there may be a
million and then some, but
principles are few.

• The man who grasps principles can
successfully select his own
methods”.

Methods for Any Scale Software Projects

1. Quantification of Values [10, VP 1.1].
2. Quantification of short term and long term costs [VP 3.4, VP 4.5, VP 6.7].
3. Design to Cost: Top Level Architecture [VP 7.9, 10].
4. Dynamic Design to Cost: Each Delivery Cycle [12 C, VP 4.5, VP 2.5, VP 2.3, 5, 10, 12].
5. Quality Control of Plans, Contracts, Code and all written artifacts [VP Part 2, VP Part 4, VP

7.7].
6. Flexible Contracting [12, VP 4.5].
7. Value delivery Cycle Measurable Feedback, Learning and Change [4, VP 7.3, VP 9.8, VP 6.7,

VP 8.6, 2, 9, 10, 11, 14].
8. Value Decision Tables (Impact Estimation Tables) [9, VP 2.3, VP 4.4, VP 5.3, 13].
9. Risk Management in all aspects of planning and Management [VP Ch. 7], 12.
10. Intelligent Prioritization Policies: for short term and long term [VP Ch. 6, 12, 13, 14].

Engineering Tools for Any Scale Software Projects
1. The Planning language: ‘Planguage’ [22, VP, 8, 9].
2. The 111111 Decomposition Method [7B, 7C, 3].
3. Flexible Contracts [12].
4. The ‘Needs and means Planning’ tool [16, 9].
5. Quantification of Values processes: Scales, Meters, Past, Tolerable, Wish, Goal. [VP 10.7].
6. The Agile Spec QC measurement process, Exit Processes, Rules [VP 10.4, VP Part 4].
7. Multiple Relationship Management technology [9, VP Ch.3, VP Ch. 6, 13].
8. Continuous Architecture adjustment based on delivery cycle feedback (Cleanroom) [5, 14, 8].
9. Graphic Visibility of Values, Costs, and Risks [16].
10. Design to Cost Practices: initially and continuously [14, 12 C, VP 4.5, VP 2.5, VP 2.3, 5].

Management Policies for Any Scale Software Projects

1. We will primarily manage critical stakeholder value improvements [VP Ch. 3, 8, 19].
2. We will simultaneously manage the short term and long term resources [VP 2.5, VP 9.9, VP

10.6,].
3. We will contract for measurable values for money, rather than ‘work done’ [12, VP 8.4].
4. We will manage all basic system qualities in a quantified engineering manner. [VP Part 1, 3, 4,

8, 10, 17].
5. We will prioritize delivery of measurable value, early, frequently, predictably [VP 1.2, VP Ch. 6,
6, 12].
6. We will not lock ourselves into investments or expenditures of any kind that cannot be reversed
if they do not produce expected value for money [VP Ch. 7, VP 8.10].
7. We will make the risks of all strategies, designs, actions, and relationships visible numerically;
and make decisions with regard to worst-case risks [VP Ch. 7, 12, 17].
8. We will empower the ‘troops’ to make real-time project decisions, based on current numeric
feedback, about real values and real costs [VP 8.1, VP 8.2, 10, 11, 13].
9. Every team or set or related teams will be judged by their ability to deliver a measurable,
predictable value improvement stream [VP 8.7].
10. Decisions will not be made on badly-defined-package costs: decisions will be made
continuously, and if necessary retracted, on provable values for costs, with regard to risks. [VP
7.2, 3, 6, 17]

Why Engineering methods help projects to scale up.

I would like to attempt an explanation as to why the above principles, methods, tools and policies
help us deal with very large systems.

1. Value quantification allows us to focus on the stakeholder results, the main objectives of any
project. All other activity, below this level should be contributing to delivery of the planned
values. This means we can delegate the activity to any combination of specialist teams of any
size and complexity: yet we can judge whether things are ‘working’. We keep our eyes on
measured value delivery. We can judge whether both our organization and our architecture are
delivering as expected and needed. If not we can adjust (dynamic design to cost) and go with
things that are actually delivering necessary value.

2. Contracting for value relates to the above explanation, with the added benefit that outside
contractors are now motivated to focus on value delivery, not just ‘doing work’, or
‘programming’. It does not matter so much about the underlying complexity. That underlying
complexity either works (delivers contracted value measurably) or not. If not, we change it until it
does, or give up if we cannot change to satisfy value delivery needs.

3. Decomposition by small 2% deliverable value architecture components: this is a very basic
attack on large size and consequent complexity. We can see the incremental impact of each
step on the whole system, regarding both value delivery and costs. If it is not good enough we
try new ideas. If we run out of ideas that work, we need to stop.

4. Risk Management: our methods, including 1-3 above, are really all about managing the risk of
failing to deliver value for money, on time. In addition we have suggested a number of additional
risk management ideas. For example estimating the ± uncertainty of a design impact on values
and costs [9]. For example asking for specific evidence [9] that any given design, or strategy will
deliver the values and costs we need. The more engineering effort we put in to planning for risk
up front, the less likely we are to get nasty surprises later (and then blame them on ‘project size
and complexity’; rather than our own lack of decent engineering planning).

5. Delegation of decision-making [23]. Delegating the power to make decisions to a grass roots
level, and in addition to do so incrementally while keeping any eye of their level of concern (in
terms of value and costs), should obviously help us make better decisions, in an evidence-
based situation.

I have personally used these methods, with remarkable success, on projects involving for example
1,000 programmers and 1,000 hardware engineers (example HICOM (which was in total failure
mode after 2 years, at Siemens. Boeing Aircraft projects [thousands of employees involved. To
mention just a couple of many). There is no doubt for me that they work, and why they work.

Conclusion

I believe, based on my long term client experience, and other peoples experiences [5, 6, 10, 11,
22, VP (dozens of case studies) for example], that these ideas above are the basic engineering
ideas we need to take seriously, if we are to get control over large-scale software projects.

The ideas above are described in practical detail in the references [especially 20, 22], have
extensive documented practical international experience, and can be tried out one-by-one. They
can be added to any other practices, that are, or will be successful for you, They are free ideas.

‘This stuff works!” (Erik Simmons, Intel, [22, 25])

Just do it!

References

[1] “Enterprise Scrum- Executive Summary:
Agile Management for the 21st Century”
Authored, Developed and Sustained by Mike Beedle Enterprise Scrum Inc.
http://static1.1.sqspcdn.com/static/f/608893/25858383/1441617422010/
Enterprise+Scrum+Executive+Summary.pdf?token=pl51QbvOlQDj0jML9CJdAuX08GM%3D

‘Scaling’ is not the primary purpose of this work, but the overview of references does give a fairly
complete picture of the Scaling Writings.

Beedle says (7 Jan 2016 to me):
Enterprise Scrum is about 3 things: 1) genericity - agile management of ANY business process, 2)
Techniques (some business–like) to work with the Enterprise Scrum framework, 3) Scaling (not only for
software) — businesses, business processes, programs or projects.

In this 4th generation industrial revolution that we live in — I call it the the Innovation Revolution, where
some companies are experiencing exponential growth after founding an MTP (massive transformative
purpose), and are getting to get to 1 billion dollar valuations in record times … they need a different type of
management that is more agile.

[2]
A. The Agile Evo Project Startup Week Standard

http://www.gilb.com/dl562

This is a detailed standard for conducting an 'Evo' (Evolutionary
Project Management, Gilb's Agile Method) as described in my book
Competitive Engineering, Chapter 10
www.gilb.com/DL77

B. Evo Project Management Standard, Jan 12 2013
http://www.gilb.com/dl563

[3]: ONE WEEK STARTUP PLANNING FOR PROJECTS; FRONT END TO EVO
• [3] A. ‘An Agile Project Startup Week’: Papers and slides

o Talk slides pdf from ACCU Conference, Bristol UK, April 9 2014
o 90 minutes talk. Includes Startup Planning for Business

Startups, Confirmit, US DoD case, 2 Bank cases, Detailed
Startup week outlines and links to sources.

 http://www.gilb.com/dl812
o

• [3] B. See Persinscom Case
o “111111 Unity Method of Decomposition into weekly

increments of value delivery”. (10 min. talk slides)
 www.gilb.com/DL451

http://static1.1.sqspcdn.com/static/f/608893/25858383/1441617422010/Enterprise+Scrum+Executive+Summary.pdf?token=pl51QbvOlQDj0jML9CJdAuX08GM%3D
http://static1.1.sqspcdn.com/static/f/608893/25858383/1441617422010/Enterprise+Scrum+Executive+Summary.pdf?token=pl51QbvOlQDj0jML9CJdAuX08GM%3D
http://www.gilb.com/dl562
http://www.gilb.com/DL77
http://www.gilb.com/dl563
http://www.gilb.com/dl812
http://www.gilb.com/DL451

o Includes Persinscom case US DoD.
o

• [3] C. Software Plans in Less Than a Week

 http://www.dtic.mil/ndia/2004cmmi/CMMIT7Tue/MelissaOlson.pdf
o Melissa Olson 

Raytheon Company McKinney, TX  
972-952-4502 Melissa_olson@raytheon.com Abstract #1196

 [3] D. “An Agile Project Startup Week.”
 Gilb’s Mythodology Column
 www.gilb.com/dl568

[4] The Top 10 Critical Requirements are the Most Agile Way to Run Agile Projects
http://www.gilb.com/dl554

[5] QUINNAN AND MILLS CLEANROOM
QUINNAN AND MILLS CLEANROOM

http://www.gilb.com/dl821
is contained in these slides.
See reference [14]

[6] ‘DEEPER PERSPECTIVES ON EVO DELIVERY ‘
Chapter 15 in (1988) Principles of Software Engineering management
www.gilb.com/dl561
“Deeper Perspectives on Evolutionary Delivery”
plus a page extra of quotations from Agile Gurus crediting it as
inspiration for them, and it being first.

http://www.gilb.com/dl821
is contained in these slides.

http://www.dtic.mil/ndia/2004cmmi/CMMIT7Tue/MelissaOlson.pdf
http://www.gilb.com/dl568
http://www.gilb.com/dl554
http://www.gilb.com/dl561
http://www.gilb.com/dl821

[7] Decomposition of strategies by Value
A. “Decomposition of Projects - How to design small incremental
result steps”, 2008 Paper
www.gilb.com/DL41

The 20 decomposition principles alone, from CE [1] Ch. 10 on Evo are [in
the VP book at Figure 5.6 A]

B. “The Unity Method of Decomposition”
Column 2 of Gilb’s Mythodology
in Agile Record
http://www.gilb.com/dl826

C. “111111 Unity Method of Decomposition into weekly
increments of value delivery”. (10 min. talk slides)
www.gilb.com/DL451

Includes Persinscom case US DoD.

[8] Competitive Engineering, Chapter 10: Evolutionary Project
Management:
www.gilb.com/DL77

[9] Impact Estimation
Impact Estimation Table MASTER.ppt (8.49 Mb)
You can download this file using: www.gilb.com/DL146

Design Evaluation Paper
www.gilb.com/DL58

See IE Table Chapter in CE Book [22]

Impact Estimation Tutorial MASTER 2012_compressed.pdf
http://www.gilb.com/dl553

Impact Estimation Tables
Understanding Complex Technology Quantitatively

http://www.crosstalkonline.org/storage/issue-archives/
1998/199812/199812-Gilb.pdf
Crosstalk, US DoD, December 1998.

[10] confirmit.com

http://www.gilb.com/dl826
http://www.gilb.com/DL451
http://www.gilb.com/DL146
http://www.gilb.com/DL58
http://www.gilb.com/dl553
http://www.crosstalkonline.org/storage/issue-archives/1998/199812/199812-Gilb.pdf
http://www.crosstalkonline.org/storage/issue-archives/1998/199812/199812-Gilb.pdf
http://confirmit.com

 Confirmit Case Study.

A: The Green Week Slides
http://www.gilb.com/dl660
Smidig/Agile Conference 2013 Oslo
Nov 5 2013

B: The GREEN WEEK- Agile Technical Debt Engineering beats
Refactoring.
http://vimeo.com/78635151
Agile Oslo 2013, Video 10 minutes.
IN NORWEGIAN, English slides

C: Gilb, co author Trond Johansen Confirmit case paper
www.gilb.com/DL32

D: Value Driven Project Management
17.5MB slides 2008
Includes Firm Case
www.gilb.com/DL152

E. ‘What’s Wrong With Agile Methods? Some Principles And
Values To Encourage Quantification’ with Confirmit Case. http://
www.gilb.com/dl50

[11] Hewlett Packard Case
 HP Evo

A. The Evolutionary Development Model for Software
by Elaine L. May and Barbara A. Zimmer
August 1996 Hewlett-Packard Journal
www.gilb.com/DL67

B. Evolutionary Fusion: A Customer- Oriented Incremental Life
Cycle for Fusion
by Todd A
www.gilb.com/DL35

August 1996 Hewlett-Packard Journal

C. RAPID AND FLEXIBLE PRODUCT DEVELOPMENT: AN ANALYSIS
OF SOFTWARE PROJECTS AT HEWLETT PACKARD AND AGILENT
(2001)

http://www.gilb.com/dl660
http://www.gilb.com/DL152
http://www.gilb.com/dl50
http://www.gilb.com/dl50
http://www.gilb.com/DL35

by
Sharma Upadhyayula
www.gilb.com/DL65

M.S., Computer Engineering University of South Carolina, 1991
And
Massachusetts Institute of Technology
January 2001

D. Best Practices for Evolutionary Software Development
by
Darren Bronson
http://www.gilb.com/dl825

57 pages., 1999.

URI: http//hdl.handle.net/1721.1/80490

[12] PRIORITIZATION (SEE CHAPTER 6 of Value Planning book)

A. Choice and Priority Using Planguage:
A wide variety of specification devices and analytical tools.
Copyright © 2006 by Tom Gilb.
www.gilb.com/DL48

B. Managing Priorities:  
A Key to Systematic Decision-Making
Tom Gilb Tom@Gilb.com Mark W. Maier Mark.w.maier@aero.org
Copyright © 2005 Tom Gilb and Mark Maier. Used by Permission of the
authors by INCOSE.
www.gilb.com/DL60

C. Dynamic Design Prioritization in the ‘Evo’ Agile Framework for
Scrum or other Iterative Methods
http://www.gilb.com/dl602
Slides up pdf 122 slides, for London Software Architect Conference Oct 9
2013

[13] Bring Case (Kai Gilb)
 Bring Case and more: Hierarchical Impact Estimation Tables

http://www.gilb.com/dl500

"Value-Driven Development: Principles and Values."

http://www.gilb.com/DL65
http://www.gilb.com/dl825
http://hdl.handle.net/1721.1/80490
http://www.gilb.com/dl500

Slides for , 50 minute talk, Software Passion Conference 20 March 2012
Gothenburg, Sweden

Value Management
(Evo)
with Scrum development, March 2010 English Version , Kai Gilb
www.gilb.com/DL277

The Inmates are running the asylum, Construx Summit talk Oct
25 2011 Seattle
Contains considerable Bring Case slides

www.gilb.com/DL488

Norwegian Version, Bring Case
www.gilb.com/DL279

[14] IBM Cleanroom (Large Scale Agile in 1970s)
 Cleanroom, See [5]

A. Mills, H. 1980. The management of software engineering: part 1:
principles of software engineering. IBM Systems Journal 19, issue 4
(Dec.):414-420.
Direct Copy
http://trace.tennessee.edu/cgi/viewcontent.cgi?
article=1004&context=utk_harlan
Library header
http://trace.tennessee.edu/utk_harlan/5/

B. Mills, Harlan D.; Dyer, M.; and Linger, R. C., "Cleanroom Software
Engineering" (1987). The Harlan D. Mills Collection. http://
trace.tennessee.edu/utk_harlan/18

C. Mills Generally
http://trace.tennessee.edu/utk_harlan

[15] User Stories
A. User Stories paper by Tom and Kai Gilb
In Gilbs' Mythodology Column, Agilerecord.com March 2011
www.gilb.com/DL461
“User stories and the conversations provoked by them 
comprise verbal communication, which is clearer than written
communication.” (Mike Cohn via Denning)

http://www.gilb.com/DL488
http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan
http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan
http://trace.tennessee.edu/utk_harlan/5/
http://trace.tennessee.edu/utk_harlan/18
http://trace.tennessee.edu/utk_harlan/18
http://trace.tennessee.edu/utk_harlan

B. Stephen. Denning, The Leaders Guide to Radical Management.
http://stevedenning.typepad.com

[16] Richard Smith’s Planguage Tool: ‘Needs and Means’
 http://needsandmeans.com
 There have been several tools supporting Planguage. This tool by
 Richard Smith
 rsmith@rsbatechnology.co.uk
 is emerging in 2015. We have used it on training courses in 2015. I am
impressed by it capabilities and ease of use. It is very helpful on the
dynamic prioritization methods.
 Free Trial Use is bundled with the VP book [20]

[17]
The Logic of Design: Design Process Principles.
http://www.gilb.com/dl857

T Gilb
14 Oct 2015

[18]
What are the Dangers of Current Agile Practices, and How Can We Fix
Them?
Values for Value

www.gilb.com/DL456

by Tom Gilb & Lindsey Brodie

[19] Some Alternative Ideas On Agile Values For Delivering Stakeholder
Value Principles and Values – Agility is the Tool, Not the Master.
Part 2 “Values for Value”

www.gilb.com/DL448

 Agile Record 2010, www.agilerecord.com, October 2010, Issue 4

[20: VP] “Value Planning: Practical Tools for Clearer Management Communication”
leanpub.com/ValuePlanning
Free sample (Part 0 to 5), and ridiculously cheap download with bundled tools and updates.
If any reader cannot afford, or has technical problems paying the minimum $1 fee, I’ll send them a
free link to the text so they can explore all references. Email me.

http://stevedenning.typepad.com
http://needsandmeans.com
mailto:rsmith@rsbatechnology.co.uk
http://www.gilb.com/dl857
http://www.gilb.com/DL448
http://leanpub.com/ValuePlanning

[21] Contracting
No Cure No Pay Contracting

A. Agile Contracting for Results The Next Level of Agile Project
Management: Gilb's Mythodology Column, in Agile Record August 2013.
http://www.gilb.com//dl581
 see in that respect
www.flexiblecontracts.com

B. No Cure Slides

www.gilb.com/DL85

C. NO Cure Paper
www.gilb.com/DL38

D. Contracting For Value. Slides 2015
 http://www.gilb.com/dl864

[22] Gilb: Competitive Engineering: A Handbook For Systems Engineering,
Requirements Engineering, and Software Engineering Using Planguage, ISBN
0750665076, 2005, Publisher: Elsevier Butterworth-Heinemann., 2005
http://www.gilb.com//dl540
For your personal use only. Do not refer to or publicize this URL.
The Paper Book, and E versions Book are for sale. This is a simple pdf.
See Download [24]

[23] Power to the Programmers
“POWER TO THE PROGRAMMERS” TALK SLIDES AND VIDEO

Note Paul Klipp has transcribed this and published my talk in a book.
21.7.14 mail hpps://leanpub.com/ACE2014

http://www.gilb.com/dl821
(Slides)
Power to The Programmers, as held Krakow ACE Conference June
2014
Video: http://vimeo.com/98733453

[24] Case of Siemens 1,000 Programmer project.
Additional Text (to the CE book [22]).
Chapter 10: Evolutionary Project Management: see page 315

www.gilb.com/DL77

There is a second story here, related to our methods. They had focussed on a
main quantified goal of low bugs per thousand lines of code. Three people were
set aside to manage and report on that alone. I actually met them.

http://www.gilb.com//dl581
http://www.flexiblecontracts.com
http://www.gilb.com/DL85
http://www.gilb.com/dl864
http://www.gilb.com//dl540
http://www.gilb.com/dl821
http://vimeo.com/98733453
http://www.gilb.com/DL77

I suggested this was the wrong major metric. I suggested that they needed to
focus on the Availability metric. They agreed, but said they did not know how
to measure this in software. So they chose a metric they knew how to
measure! Bad mistake.
I pointed out the Books of my friend John Musa (ATT) on measurements of
availability in telecoms software. And suggested they use common sense (lift
up handset 100 times and count % dial tone!). They agreed to focus on their
Availability Metric. They were in danger of failing to deliver one of their critical
values.

[25] with his kind permission, you might like the views of a large Scale
(20,000+ Intel Employees over many years) adopter of these methods: Erik
Simmons

On 08 Jan 2016, at 19:30, Simmons, Erik <erik.simmons@intel.com> wrote:
Just a couple of things come to mind after reading this:

I’ve not been a fan of the scaling movement since it started. There are very few things that scale well, and
economies of scale are often pursued without adequate understanding of the accompanying diseconomies
of scale. SW development does not scale well because of the diseconomies of complexity, such as the
number of communication pathways, cognitive load on programmer brains, etc. That is among the core
reasons for Brook’s Law.

What makes us think that scaling Scrum, which is successful in small teams and projects, is a good idea? A
grown-up is not a scaled baby. Scaling as a concept is selling a lot of books, consulting, and certifications
right now. But I don’t think it is a valuable concept.

Instead, I believe that the majority of what you have included for ideas, principles, etc. from CE and VP are in
fact scale-free. They are not dependent on project or organization size. They are good heuristics for almost
any project, and nearly universally applicable (nearly universal because I hear Koen in my head, and all is
heuristic). So, CE and VP are not about scaling so much as they should be taught and understood as scale-
free. Size is not a reason to choose (or not choose) to use CE, Evo, Planguage, etc. As you quoted me in the
paper – this stuff works. It works on small projects. It works on large projects. Evo on a 5-person team is not
really much different than Evo on a 100-person team, except there are more people. The principles apply
without alteration (or “scaling”). Anyone who sees a random page of your new paper would probably not
guess the topic is scaling (unless you happen to mention that in the text on that particular page). CE does
not scale. It doesn’t need to.

There’s no doubt that large projects are different. There’s no doubt that we should approach them differently.
We still don’t have a recipe for large projects, and probably never will. But all that does not lead me to think
that the answer to large projects can be found in scaling successful practices for small projects. Instead, it
must be found in use of principles and practices that are scale-free, coupled with use of particular practices
that are effecting on large projects. If something that works on small projects also works on large projects,
then I’d propose we call it a scale-free practice, not a scaled practice.

I’m deeply interested in scale-free practices. I’m also interested in specific practices tuned to large, small,
complicated, and complex projects, but I find particular power in scale-free practices. Your work for decades
has been focused on a very good set of these. SQC, for example, works on any size specification. It does
not (need to) scale.

BTW, I think the agile principles are also quite scale-free. But most Scrum practices are definitely not.

So, perhaps you can chart a better course by advocating for use of scale-free core practices, augmented
with a set of specific, tailored practices that are effective for the size of the project in question.

Cheers,
e

mailto:erik.simmons@intel.com

FOOTNOTES
F1: Reaction to the paper from a major author and developer of Agile Scaling
Methods: Demonstrates my point!
Hi,

Thanks for sharing. I do not agree with them though. I do not think rigorous measurements is going to
improve things.

We do need more programmers as most aren’t able to write proper code yet.

To extend your analogy. We wouldn’t want to focus on “engineering skyscrapers" if we don’t even have
proper carpenters.

Anyways, thanks for sharing!

paper: version January 8 2016, Edit 20:46 CET

on gilb.com papers
http://www.gilb.com/dl865
Has been updated several times already

May be freely shared, as is.

Thanks to the following for advice which i have taken in editing the paper:
Mary Poppendieck
Erik Simmons

http://gilb.com
http://www.gilb.com/dl865

