
"Dynamic Design to Cost for Value
(DDtCV):

copes with imposed deadlines and
fixed prices."

Tom Gilb and Kai Gilb
gilb.com

@ImTomGilb
Workshop at ‘Smidig’ (Agile) Conference, Oslo Monday 2 November 2015,

13:15-14:00
tom@gilb.com, kai@gilb.com

Our Column
http://tinyurl.com/AGILEMYTHS

http://tinyurl.com/AGILEMYTHS

http://gilb.com
mailto:tom@gilb.com
mailto:kai@gilb.com
http://tinyurl.com/AGILEMYTHS
http://tinyurl.com/AGILEMYTHS

Free
Workshops

at #smidig15
Oslo 16-17 Dec.

http://www.meetup.com/Oslo-Software-
Architecture/events/225774527/

London 10-11 Nov. BCS
Startup Planning for
Entrepreneurs, Startups, Innovator
http://www.bcs.org/category/10136

an Oslo version of this is being
planned with Peter Skeide, Skalar

http://www.meetup.com/Oslo-Software-Architecture/events/225774527/
http://www.bcs.org/category/10136

Critical Body Priorities
Dynamic prioritization, the
human body method, is a
pretty smart prioritization
method, and keeps you
alive in changing
conditions.

We could do worse than to
use this dynamic and
logical method
for management planning.

 © 2008 Kai Gilb

Compare Apple & Oranges

?

 © 2008 Kai Gilb
6

Product Value 1
Product Value 2
Resources

1Copyright: Kai@Gilb.com

Value Decision Tables

 © 2008 Kai Gilb
7

Product Value 1
Product Value 2
Resources

1Copyright: Kai@Gilb.com

Value Decision Tables

 © 2008 Kai Gilb
8

Product Value 1
Product Value 2
Resources

1Copyright: Kai@Gilb.com

Value Decision Tables

 © 2008 Kai Gilb
9

Taste

Resources

1Copyright: Kai@Gilb.com

Value Decision Tables

 © 2008 Kai Gilb
10

Taste
Nutrition
Resources

1Copyright: Kai@Gilb.com

Value Decision Tables

 © 2008 Kai Gilb
11

Taste
Nutrition
Shelf Life
Resources

1Copyright: Kai@Gilb.com

Value Decision Tables

 © 2008 Kai Gilb
12

Taste
Nutrition
Shelf Life

Sum Goodies
Resources

1Copyright: Kai@Gilb.com

Value Decision Tables

 © 2008 Kai Gilb
13

Taste
Nutrition
Shelf Life

Sum Goodies
Resources

1Copyright: Kai@Gilb.com

Value Decision Tables

0,2 0,5 0,9
0,3 0,7 0,9
0,8 0,3 -0,1

1,3 1,5 1,7
0,4 0,6 0,8

Goodies
Resources

Goodies for Resources

 © 2008 Kai Gilb
14

Taste
Nutrition
Shelf Life

Sum Goodies
Resources

1Copyright: Kai@Gilb.com

Value Decision Tables

0,2 0,5 0,9
0,3 0,7 0,9
0,8 0,3 -0,1

1,3 1,5 1,7
0,4 0,6 0,8

Goodies
Resources

Goodies for Resources

Confirmit: Results
Description of requirement/work task Past Status

Usability.Productivity: Time for the system to generate a survey 7200 sec 15 sec

Usability.Productivity: Time to set up a typical specified Market Research-
report (MR)

65 min 20 min

Usability.Productivity: Time to grant a set of End-users access to a Report
set and distribute report login info.

80 min 5 min

Usability.Intuitiveness: The time in minutes it takes a medium experienced
programmer to define a complete and correct data transfer definition with
Confirmit Web Services without any user documentation or any other aid

15 min 5 min

Performance.Runtime.Concurrency: Maximum number of simultaneous
respondents executing a survey with a click rate of 20 sec and an response
time<500 ms, given a defined [Survey-Complexity] and a defined [Server
Configuration, Typical]

250 users 6000

Confirmit: Results
Description of requirement/work task Past Status

Usability.Productivity: Time for the system to generate a survey 7200 sec 15 sec

Usability.Productivity: Time to set up a typical specified Market Research-
report (MR)

65 min 20 min

Usability.Productivity: Time to grant a set of End-users access to a Report
set and distribute report login info.

80 min 5 min

Usability.Intuitiveness: The time in minutes it takes a medium experienced
programmer to define a complete and correct data transfer definition with
Confirmit Web Services without any user documentation or any other aid

15 min 5 min

Performance.Runtime.Concurrency: Maximum number of simultaneous
respondents executing a survey with a click rate of 20 sec and an response
time<500 ms, given a defined [Survey-Complexity] and a defined [Server
Configuration, Typical]

250 users 6000

Confirmit  
Snapshot End Week 9 of 12

Confirmit  
Snapshot End Week 9 of 12

 © 2008 Kai Gilb
19

Function

Values

 © 2008 Kai Gilb
20

Function

Values

 © 2008 Kai Gilb
21

Function

Values

Confirmit  
Snapshot End Week 9 of 12

Confirmit  
Snapshot End Week 9 of 12

Wee
kly

Pro
gres

s

Dyn
am

ic
Pr

io
rit

y
Met

ric

Constr
ain

t
Ta

rg
et

Esti
mate

s
Wee

kly
Te

sti
ng

Confirmit  
4 product areas were attacked in all: 25 Qualities concurrently

#NoEstimates

“Estimation: A Paradigm Shift
Toward Dynamic Design-to Cost and
Radical Management”

Volume 13 Issue 2 of SQP journal - the March 2011 version.
Software Quality Professional, USA
The American Society for Quality (ASQ)

http://www.gilb.com/tiki-download_file.php?fileId=460

Slides: For BCS SPA, London

http://www.gilb.com/tiki-download_file.php?fileId=470

March 8, 2014
25

http://www.gilb.com/tiki-download_file.php?fileId=460
http://www.gilb.com/tiki-download_file.php?fileId=460
http://www.gilb.com/tiki-download_file.php?fileId=460
http://www.gilb.com/tiki-download_file.php?fileId=460
http://www.gilb.com/tiki-download_file.php?fileId=460
http://www.gilb.com/tiki-download_file.php?fileId=460
http://www.gilb.com/tiki-download_file.php?fileId=470

The basic process: DDtCV
• If all is ‘on track’

• x% values, for

• X% costs

• Do a new value
delivery cycle

• If not on track, then
‘change something’;
to get back on track PDSA: Plan Do Study Act

Deming Cycle

Dynamic Design to Cost
requires

things absent in Scrum and ‘Agile’
• Multiple resource constraints

• deadline, money, people,
space

• Multiple measurable values

• qualities, savings

• Cycle Decomposition by Value

• Measurement of Value each cycle

• Design to cost

Attributes of Dynamic
Design to Cost (DDC)

• Ability to deliver on time

• Ability to deliver to budget

• Ability to delivery to multiple
ambitious quality targets

• Ability to learn what works early

• Ability to experiment with high
promise architecture, at low risk

• Ability to experiment, low risk, with
development processes

• Fits a no cure no-pay contracting
model

• flexiblecontracts-com

Attributes

Deadline

Qualities

Risk
Management

Contracting

Learn

Dynamic Design to Cost as a defence against
arbitrary budgets and deadlines.

in 4.5 VP

‘Dynamic design to cost’ as a management process, is particularly interesting to
understand,

when you do not have the luxury to estimate how much you need or want, for your own
scheduling and funding purposes.

 You are not asked, you are told the costs and deadlines.

The government client, or other powerful forces, set a deadline for you; and they allocated
a fixed-cost budget.

Your salespeople ‘happily’ won, as low bidder of a fixed-price contract.
You, however, are then stuck with the problem of ‘making it happen’, on time, under

budget.

Principle 6.2

DYNAMIC PRIORITY

(VP book):

Static initial
prioritization

is unrealistic –

 things change

Why
Priority
must be
Dynamic

• The facts needed to determine your
current priority,

o are constantly and arbitrarily
changing

• The facts needed are:
o remaining limited resources,

and remaining distance to Goals
• Only when these facts are available,

can you search for a ‘suitable strategy’:
o one that will move you towards your

Goals as much as possible,
o within the (weekly) cycle duration,
o with as little use of other resources,

like money, as possible.
• We can prioritize any strategy, which

we can find,
o that gives best progress, towards

residual Goal levels,
o at the lowest consumption of

residual resources.

Conditions for Logical Prioritization
VP 6.8

1. Critical Objectives identified

2. Objectives Quantified

3. Constraints ID & Quantified

4. Clear detailed strategies

5. Estimates of Strategy Impacts &
Costs

6. Risks and Uncertainties ID

7. Policy for deciding what to
prioritize (Value / € ?), Risk

http://www.slideshare.net/KarenMartinGroup/08-232012-value-stream-mapping

Multiple Constraints and Multiple Objectives (Static)

www.Gilb.com MenuV14. Sep. 12Copyright © Kai Gilb 34

IntolerableSuccessC 4

Each Evolutionary Cycle uses a constrained budget of
Development Resources

SuccessIntolerable Tolerable

Past Tolerable/Fail Goal

Usability

Cycle 1C 2C 4 C 5 C 6 C 7

SuccessIntolerable Tolerable

Past
30 sec.

Tolerable/Fail
20 sec.

Goal
15 sec.

Speed

Cycle 1C 2C 3 C 4 C 5 C 6 C 7

C 8IntolerableSuccess Tolerable

Past TolerableBudget

Cycle 1C 2C 4C 5 C 6 C 7

Tolerable

Past
30 sec.

Tolerable/Fail
20 sec.

Budget
15 sec.

Cycle 1C 2C 3 C 5C 6C 7

C 8

Money

Engineers

Dynamic ‘Restaurant’ Prioritization (Static)

Figure 6.3 One visualization of the prioritization problem.
On the one hand, we are investing up front in the back room, consuming limited
budget, and not immediately getting any value back. Is this a wise investment?
A necessary evil? But we can track incremental value delivery from Past to Goal,
and see the value build up. We need to figure out the lowest-cost set of sub-
strategies to reach our Goal levels. Reality is of course at least ten times more
complicated than this simple model.

www.Gilb.com MenuV14. Sep. 12Copyright © Kai Gilb 36

Back Room Front Room 2

Back-room Design Development

Front-room Evolutionary Delivery1 2 3 4 5 6 7 8 9 n

n1 2 3 4 5 6 7 8 9

Health

Satisfaction

Costs / Effects

Past

Past
Goal

Goal

Past Budget

www.Gilb.com MenuV14. Sep. 12Copyright © Kai Gilb 37

Back Room Front Room 2

Back-room Design Development

Front-room Evolutionary Delivery1 2 3 4 5 6 7 8 9 n

n1 2 3 4 5 6 7 8 9

Health

Satisfaction

Costs / Effects

Past

Past
Goal

Goal

Past Budget

Impact Table with highly varied costs, for ‘same impact’ on requirements

Bar Chart from the Impact Table

Dynamic Prioritizing with Risks using IE Table

<- ‘worst worst case’

Value
Coverage

Strategy
Power

Strategy
Efficiency

Impact Table with Risks

Bar Graph of the Impact Table with Risks

The 2 Estimation Elements in ‘Design to Cost’.
VP 4.5

1. You estimate, and then re-estimate,
repeatedly, based on ‘costs to date’,
you extrapolate and say something like
‘if we continue with these strategies,
then we will run over budget, and past
the deadline. So, we must change
strategies, and we must do it now.’

2. In addition to the cost and value
extrapolation, based on incremented
facts, and on hard credible evidence,
we use a second sort of estimation:

‘what will candidate strategy X cost, in
time and/or money?

is this going to
fail?

Cost? Value?

Decomposition
Separating out

small stakeholder-delivery
value increments

from your top-level
Architecture/Strategies

Ideal Separation of a
Value-Delivery Step

1. No dependencies, that are
not already existing in the to-
be-incremented system base

2. Will give measurable value(s)
to some stakeholder (s)

3. Can be completed in a single
value delivery cycle (2% of
time to deadline, a week)

4. Acceptable risk of deviation
(±30% ?) from estimated
values and costs

8 %
9 %

11 %

2 %

32 %

38 %

Methods for Extraction
1. Just ask: ‘what

could we do next
week to deliver
some value’ ?

2. Use an Impact
Estimation Table to
decompose and
see high value
opportunities

3. Use 20 Principles
of Decomposition
(CE Ch 10, VP) 29.5 to 1

© Gilb.com

Decomposition Principles  
A Teachable Discipline

How to decompose systems into small evolutionary steps:
 some principles to apply:
1• Believe there is a way to do it, you just have not found it yet!
2• Identify obstacles, but don't use them as excuses: use your imagination to get
rid of them!
3• Focus on some usefulness for the user or customer, however small.
4• Do not focus on the design ideas themselves, they are distracting, especially for
small initial cycles. Sometimes you have to ignore them entirely in the short term!
5• Think; one customer, tomorrow, one interesting improvement.
6• Focus on the results (which you should have defined in your goals, moving
toward target levels).
7• Don't be afraid to use temporary-scaffolding designs. Their cost must be seen in
the light of the value of making some progress, and getting practical experience.
8• Don't be worried that your design is inelegant; it is results that count, not
style.
9• Don't be afraid that the customer won't like it. If you are focusing on results
they want, then by definition, they should like it. If you are not, then do!
10• Don't get so worried about "what might happen afterwards" that you can make
no practical progress.
11• You cannot foresee everything. Don't even think about it!
12• If you focus on helping your customer in practice, now, where they really
need it, you will be forgiven a lot of ‘sins’!
13• You can understand things much better, by getting some practical experience
(and removing some of your fears).
14• Do early cycles, on willing local mature parts of your user community.
15• When some cycles, like a purchase-order cycle, take a long time, initiate them
early, and do other useful cycles while you wait.
16• If something seems to need to wait for ‘the big new system’, ask if you cannot
usefully do it with the ‘awful old system’, so as to pilot it realistically, and
perhaps alleviate some 'pain' in the old system.
17• If something seems too costly to buy, for limited initial use, see if you can
negotiate some kind of ‘pay as you really use’ contract. Most suppliers would like
to do this to get your patronage, and to avoid competitors making the same deal.
18• If you can't think of some useful small cycles, then talk directly with the real
‘customer’ or end user. They probably have dozens of suggestions.
19• Talk with end users in any case, they have insights you need.
20• Don't be afraid to use the old system and the old ‘culture’ as a launching
platform for the radical new system. There is a lot of merit in this, and many
people overlook it.
I have never seen an exception in 33 years of doing this with many varied cultures.
Oh Ye of little faith!

http://www.gilb.com/tiki-download_file.php?fileId=41
13 April 2015 47

Cleanroom Method
Robert Quinnan

uses Dynamic Design to Cost
on 2% (monthly) steps

and result is years of always on time under
budget for 10 years on end.

On Military and Space Projects:
the highest state of art qualities

LAMPS Sub.

Copyright Tom@Gilb.com 2013

Cleanroom: IBM FSD, Federal Systems Division
(Agile ‘as it should be’: 1980-1990)

IBM SJ 4/1980, http://trace.tennessee.edu/utk_harlan/18/

16 August 2014 49
Harlan Mills

DESIGN
The first guarantee of quality

“The first guarantee of quality in design
 is in well-informed, well-educated, and well-motivated designers.

Quality must be built into designs, and cannot be inspected in or tested in.

Nevertheless, any prudent development process verifies quality through inspection and
testing.

 Inspection by peers in design, by users or surrogates, by other financial specialists concerned
with cost, reliability, or maintainability

not only increases confidence in the design at hand,
but also provides designers with valuable lessons and insights to be applied to future
designs.

The very fact that designs face inspections
 motivates even the most conscientious designers
to greater care, deeper simplicities, and more precision in their work.”

 inIBM sj 4 80 p.419
In

Mills, H. 1980. The management of software engineering: part 1: principles of software engineering. IBM Systems Journal 19, issue 4 (Dec.):414-420.
Direct Copy
http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan
Library header
http://trace.tennessee.edu/utk_harlan/5/

© Gilb.com 2015

In the Cleanroom Method, developed by IBM’s Harlan Mills
(1980) they reported:  

• “Software Engineering began to emerge in FSD” (IBM Federal Systems Division,
from 1996 a part of Lockheed Martin Marietta) “some ten years ago [Ed. about
1970] in a continuing evolution that is still underway:

• Ten years ago general management expected the worst from software projects –
cost overruns, late deliveries, unreliable and incomplete software

• Today [Ed. 1980!], management has learned to expect on-time, within budget,
deliveries of high-quality software. A Navy helicopter ship system, called
LAMPS, provides a recent example. LAMPS software was a four-year project of
over 200 person-years of effort, developing over three million, and integrating
over seven million words of program and data for eight different processors
distributed between a helicopter and a ship in 45 incremental deliveries [Ed.
Note 2%!]s. Every one of those deliveries was on time and under budget

• A more extended example can be found in the NASA space program,
• - Where in the past ten years, FSD has managed some 7,000 person-years of

software development, developing and integrating over a hundred million bytes
of program and data for ground and space processors in over a dozen projects.

• - There were few late or overrun deliveries in that decade, and none at all in
the past four years.”

51

© Gilb.com 2015

In the Cleanroom Method, developed by IBM’s Harlan Mills
(1980) they reported:  

• “Software Engineering began to emerge in FSD” (IBM Federal Systems Division,
from 1996 a part of Lockheed Martin Marietta) “some ten years ago [Ed. about
1970] in a continuing evolution that is still underway:

• Ten years ago general management expected the worst from software projects –
cost overruns, late deliveries, unreliable and incomplete software

• Today [Ed. 1980!], management has learned to expect on-time, within budget,
deliveries of high-quality software. A Navy helicopter ship system, called
LAMPS, provides a recent example. LAMPS software was a four-year project of
over 200 person-years of effort, developing over three million, and integrating
over seven million words of program and data for eight different processors
distributed between a helicopter and a ship in 45 incremental deliveries [Ed.
Note 2%!]s. Every one of those deliveries was on time and under budget

• A more extended example can be found in the NASA space program,
• - Where in the past ten years, FSD has managed some 7,000 person-years of

software development, developing and integrating over a hundred million bytes
of program and data for ground and space processors in over a dozen projects.

• - There were few late or overrun deliveries in that decade, and none at all in
the past four years.”

52

in 45 incremental deliveries

were few late or overrun
deliveries in that decade,
and none at all in the past

four years

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure that
software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10] consists of
developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can proceed
concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the appropriate
balance between cost and design for a single increment, but they iterate through a series of increments, thus reducing the complexity of
the task, and increasing the probability of learning from experience, won as each increment develops, and as the true cost of the
increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

16 August 2014 53

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure that
software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10] consists of
developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can proceed
concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the appropriate
balance between cost and design for a single increment, but they iterate through a series of increments, thus reducing the complexity of
the task, and increasing the probability of learning from experience, won as each increment develops, and as the true cost of the
increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

16 August 2014 54

of developing a design,
estimating its cost, and
ensuring that the design

is cost-effective

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure that
software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10] consists of
developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can proceed
concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the appropriate
balance between cost and design for a single increment, but they iterate through a series of increments, thus reducing the complexity of
the task, and increasing the probability of learning from experience, won as each increment develops, and as the true cost of the
increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

16 August 2014 55

iteration process
trying to meet cost

targets by either
redesign or by

sacrificing 'planned
capability’

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure that
software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10] consists of
developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can proceed
concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the appropriate
balance between cost and design for a single increment, but they iterate through a series of increments, thus reducing the complexity of
the task, and increasing the probability of learning from experience, won as each increment develops, and as the true cost of the
increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

16 August 2014 56

Design is an iterative
process

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure that
software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10] consists of
developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can proceed
concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the appropriate
balance between cost and design for a single increment, but they iterate through a series of increments, thus reducing the complexity of
the task, and increasing the probability of learning from experience, won as each increment develops, and as the true cost of the
increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

16 August 2014 57

but they iterate through a series of
increments,

thus reducing the complexity of the
task,

and increasing the probability of
learning from experience

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure that
software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10] consists of
developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can proceed
concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the appropriate
balance between cost and design for a single increment, but they iterate through a series of increments, thus reducing the complexity of
the task, and increasing the probability of learning from experience, won as each increment develops, and as the true cost of the
increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

16 August 2014 58

 an estimate to complete
the remaining
increments is

computed.

Citibank London Case
Using Gilb’s Evo & Planguage

Notice that designs that do not work
are immediately swapped

with hopefully better designs

© Gilb.com

20 Sept, 2015 Report on Gilb Evo
method (Richard Smith, Citigroup)

• http://rsbatechnology.co.uk/blog:8
• Back in 2004, I was employed by a large investment bank in their FX e-commerce IT department as a business analyst.
• The wider IT organisation used a complex waterfall-based project methodology that required use of an intranet application

to manage and report progress.
• However, it's main failings were that it almost totally missed the ability to track delivery of actual value improvements to a

project's stakeholders, and the ability to react to changes in requirements and priority for the project's duration.
• The toolset generated lots of charts and stats that provided the illusion of risk control. but actually provided very little help

to the analysts, developers and testers actually doing the work at the coal face.
• The proof is in the pudding;

– I have used Evo (albeit in disguise sometimes) on two large, high-risk projects in front-office investment banking businesses, and
several smaller tasks.

– On the largest critical project, the original business functions & performance objective requirements document,
which included no design, essentially remained unchanged over the 14
months the project took to deliver,

– but the detailed designs (of the GUI, business logic, performance characteristics) changed many
many times, guided by lessons learnt and feedback gained by delivering a succession of early deliveries to real users.

– In the end, the new system responsible for 10s of USD billions of notional risk, successfully went live
over one weekend for 800 users worldwide, and was seen
as a big success by the sponsoring stakeholders.

4 December 2013 60

 “ I attended a 3-day course with you and Kai whilst at Citigroup in 2006”

http://rsbatechnology.co.uk/blog:8
http://rsbatechnology.co.uk/blog:8

© Gilb.com4 December 2013 61
 “ I attended a 3-day course with you and Kai whilst at Citigroup in 2006”

Richard Smith

© Gilb.com

Previous PM Methods:  
No ‘Value delivery tracking’. 
No change reaction ability

• “However, (our old project management methodology)
main failings were that

• it almost totally missed the ability to track delivery of
actual value improvements to a project's stakeholders,

• and the ability to react to changes
– in requirements and
– priority
– for the project's duration”

4 December 2013 62

Richard Smith

© Gilb.com

We only had the illusion of control.  
But little help to testers and analysts

• “The (old) toolset generated lots of charts and
stats

• that provided the illusion of risk control.
• But actually provided very little help to the

analysts, developers and testers actually doing the
work at the coal face.”

4 December 2013 63

Richard Smith

© Gilb.com

The proof is in the pudding;

• “The proof is in the pudding;

• I have used Evo
• (albeit in disguise sometimes)
• on two large, high-risk projects in front-office investment

banking businesses,
• and several smaller tasks. “

4 December 2013 64

Richard Smith

© Gilb.com

Experience: if top level requirements
are separated from design, the

‘requirements’ are stable!

• “On the largest critical project,
• the original business functions & performance objective

requirements document,
• which included no design,
• essentially remained unchanged
• over the 14 months the project took to deliver,….”

4 December 2013 65
 “ I attended a 3-day course with you and Kai whilst at Citigroup in 2006”, Richard Smith

Richard Smith

© Gilb.com

Dynamic (Agile, Evo) design testing:  
not unlike ‘Lean Startup’

• “… but the detailed designs
– (of the GUI, business logic, performance characteristics)

• changed many many times,
• guided by lessons learnt
• and feedback gained by
• delivering a succession of early deliveries
• to real users”

4 December 2013 66

 “ I attended a 3-day course with you and Kai whilst at Citigroup in 2006”, Richard Smith

Richard Smith

© Gilb.com

It looks like the stakeholders liked the top
level system qualities,  

on first try

– “ In the end, the new system responsible for 10s of
USD billions of notional risk,

– successfully went live
– over one weekend
– for 800 users worldwide,
– and was seen as a big success
– by the sponsoring stakeholders.”

4 December 2013 67

 “ I attended a 3-day course with you and Kai whilst at Citigroup in 2006” , Richard Smith

Richard Smith

Tom Gilb & Kai Gilb

www.Gilb.com

Our Column
http://tinyurl.com/AGILEMYTHS

http://tinyurl.com/AGILEMYTHS

