
“HOW TO QUALITY CONTROL AND MEASURE
QUALITY OF DESIGN AND ARCHITECTURE

USING PLANGUAGE AND SPEC QC”
Draft 0.1, i.e. rough cut

for
 GilbFest Friday 26 June 2015

12:10 to 13:00
(20 minutes lecture, + 30

discussion)
1

QC
to a

Standard

2

3

A Recent Example

Rev. # of
Defects

of
Pages

Defects/ Page
(DPP)

% Change in
DPP

0.3 312 31 10.06
0.5 209 44 4.75 -53%
0.6 247 60 4.12 -13%
0.7 114 33 3.45 -16%
0.8 45 38 1.18 -66%
1.0 10 45 0.22 -81%
Overall % change in DPP revision 0.3 to 1.0: -98%

Application of Specification Quality Control by a SW team resulted in the
following defect density reduction in requirements over several months:

Downstream benefits:
•Scope delivered at the Alpha milestone increased 300%, released scope up 233%
•SW defects reduced by ~50%
•Defects that did occur were resolved in far less time on average
• teams typically exit with densities ranging from 5 majors per page (600 words) to 1 defect in a
couple of pages.

Source Eric Simmons, erik.simmons@intel.com 25 Oct 2011
http://selab.fbk.eu/re11_download/industry/Terzakis.pdf

We are first going to look at QC
of design specifications

themselves

Based on Competitive Engineering
Design Chapter
https://www.dropbox.com/s/usfylrnek9dadsq/
185%20Ch007%20Design%20ideas%20and%20Design
%20Engineering.pdf?dl=0

or whole CE book
https://www.dropbox.com/sh/jneaayejpf2hmdm/
AACoXqKdkUbnp_zSMi_5q0_xa?dl=0 4

Design Rules from Competitive
Engineering, for Planguage

Version Oct 9 2013 for London
Software Architect conference Keynote

By Tom Gilb

© Tom@Gilb.com 2013

Specification Rule Types: useful for Architecture Processes and
Specification 3

See next slide
For detailed example

9 October 2013
6

© Tom@Gilb.com 2013

Architecture Specification Rules
from CE Book Ch. 7

7.4 Rules: Design Specification
(edited down for simplicity)

R1: Design Separation: Only design ideas that are
intentionally ‘constraints’ (Type: Design Constraint) are
specified in the requirements. Any other design ideas are
specified separately (Type: Design Idea).

R2: Detail: A design specification should be specified in
enough detail so that we know precisely what is
expected, and do not, and cannot,
inadvertently assume or include design elements, which
are not actually intended.

R3: Explode: Any design idea (Type: Complex Design Idea),
whose impact on attributes can be better controlled by
detailing it, should be broken down into a list of the tag
names of its elementary and/or complex sub-design ideas.

R4: Dependencies: Any known dependencies for
successful implementation of a design idea need to be
specified explicitly.

R5: Impacts: For each design idea, specify at least
one main performance attribute impacted by it.
Use an impact arrow ‘->’ or the Impacts
parameter.
R6: Side Effects: Document in the design
specification any side effects of the design idea
(on defined requirements or other specified
potential design ideas) that you expect or fear. Do
this using explicit parameters, such as Risks,
Impacts [Side Effect] and Assumptions.
R7: Background Information: Capture the
background information for any estimated or
actual impact of a design idea on a performance/
cost attribute. The evidence supporting the
impact, the level of, the level of credibility of any
information and the source(s) for all this
information should be given as far as possible.
R8: IE table: The set of design ideas specified to
meet a set of requirements should be validated at
an early stage by using an Impact Estimation (IE)
table.

9 October 2013
7

© Tom@Gilb.com 2013

Architecture Specification Rules
from CE Book Ch. 7

7.4 Rules: Design Specification
(edited down for simplicity)

R1: Design Separation:
Only design ideas that are
intentionally ‘constraints’
(Type: Design Constraint)
are specified in the
requirements.
Any other design ideas
are specified separately
(Type: Design Idea).

 Orbit Application Base:

Type: Primary Architecture Option

==== Basic Information ==========
Version: Nov. 30 20xx 16:49, updated 2.Dec by
telephone and in meeting. 14:34
Status: Draft (PUBLIC EXAMPLE EDIT)
Owner: Brent Barclays
Expert: Raj Shell, London
Authority: for differentiating business environment
characteristics, Raj Shell, Brent Barclays(for overview)
Source: <Source references for the information in this
specification. Could include people>. Various, can be
done later BB

Gist: risk and P/L aggregation service,
which also provides work flow/
adjustment and outbound and inbound
feed support. Currently used by Rates
Extra Business, Front Office and
Middle Office, USA & UK.9 October 2013

8

www.Gilb.com

Bad real example: Mixing Design and Requirements
OBJECTIVE (links) ARCHITECTURE 

RULE: No Design/Architecture in Requirements

 • Rationalize into a smaller number of core processing platforms.
This cuts technology spend on duplicate platforms, and creates the
opportunity for operational saves. Expected 60%-80% reduction in
processing cost to Fixed Income Business lines.

• International Securities on one platform, Fixed Income and Equities
(Institutional and PB).

• Global Processing consistency with single Operations In-Tray and
associated workflow.

• Consistent financial processing on one Accounting engine, feeding a
single sub-ledger across products.

• First step towards evolution of “Big Ideas” for Securities.
• Improved development environment, leading to increased capacity to

enhance functionality in future.
• Removes duplicative spend on two back office platforms in support

of mandatory message changes, etc.

April 21, 2015 9

© Tom@Gilb.com 2013

Architecture Specification Rules
from CE Book Ch. 7

7.4 Rules: Design Specification

R2: Detail:
A design specification
should be specified in

enough detail
 so that we know
precisely what is
expected,
and do not, and cannot,
inadvertently assume or
include design elements,
which are not actually
intended.

This is a BAD example, but a real
one. Too many undefined ideas.
Too many MAJOR DEFECTS. Need
rewrite!

D1: ETL Layer. Rules based
highly configurable
implementation of the ETL
Pattern, which allows the data
to be onboarded more quickly.
Load and persist new data very
quickly. With minimal
development required

9 October 2013

10

© Tom@Gilb.com 2013

Architecture Specification Rules
from CE Book Ch. 7

7.4 Rules: Design Specification

R3: Explode:
Any design idea
 (Type: Complex Design Idea),

whose impact on
attributes can be better
controlled by detailing
it, should be broken
down into a list of the tag
names of its elementary
and/or complex sub-
design ideas.

 Description: <Describe the design idea in sufficient detail to support the
estimated impacts and costs given below>.

D1: ETL Layer. Rules based highly configurable implementation of the
ETL Pattern, which allows the data to be onboarded more quickly.
Load and persist new data very quickly. With minimal development
required

D2: high performance risk and P/L aggregation processing (Cube
Building).

D3: Orbit supports BOTH Risk and P/

D4: a flexible configurable workflow tool, which can be used to easily
define new workflow processes

D5: a report definition language, which provides 90+% of the business
logic contained with Orbit, allows a quick turnaround of new and
enhanced reports with minimal regression testing and release
procedure impact.

D6: Orbit GUI. Utilizes an Outlook Explorer metaphor for ease of use,
and the Dxx Express Grid Control, to provide high performance Cube
Interrogation Capability

D7: downstream feeds. A configurable event-driven data export
service, which is used to generate feeds .

9 October 2013
11

© Tom@Gilb.com 2013

Architecture Specification Rules
from CE Book Ch. 7

7.4 Rules: Design Specification

R4: Dependencies:
Any known
dependencies for
successful
implementation of a
design idea
need to be specified
explicitly.

Dependencies:
D1: FCxx
replaces Px+ in
time. ? <- tsg
2.12

9 October 2013
12

© Tom@Gilb.com 2013

Architecture Specification Rules
7.4 Rules: Design Specification

R5: Impacts:
For each design idea,
specify at least one
main performance
attribute impacted
by it.
Use an impact arrow
‘->’ or the Impacts
parameter.

D1: ETL Layer.
Rules based highly configurable
implementation of the ETL
Pattern, which allows the data to
be onboarded more quickly. Load
and persist new data very
quickly. With minimal
development required.
 -> Business-Capability-Time-To-
Market, Business Scalability

9 October 2013
13

© Tom@Gilb.com 2013

Architecture Specification Rules
from CE Book Ch. 7

7.4 Rules: Design Specification

R6: Side Effects: Document
in the design specification
any side effects
of the design idea
(on defined requirements or other
specified potential design ideas)

that you expect or fear.
Do this using explicit
parameters, such as Risks,
Impacts [Side Effect] and
Assumptions.

9 October 2013
14

© Tom@Gilb.com 2013

Architecture Specification Rules
7.4 Rules: Design Specification

R6: Side Effects:
Document
in the design specification
any side effects
of the design idea
(on defined requirements or
other specified potential design
ideas)
that you expect or fear.
Do this using explicit
parameters, such as
Risks, Impacts [Side
Effect] and Assumptions.

9 October 2013
15

===================== Priority and Risk Management =====================

Assumptions: <Any assumptions that have been made>.
A1: FCCP is assumed to be a part of Orbit. FCxx does not currently exist and is Dec 20xx 6
months into Requirements Spec. <- Picked up by TsG from dec 2 discussions AH MA JH EC.

Consequence: FCxx must be a part of the impact estimation and costs rating.
A2: Costs, the development costs will not be different. All will base on a budget of say $nn
mm and 3 years. The o+

 costs may differ slightly, like $n mm for hardware. MA AH 3 dec
A3:Boss X will continue to own Orbit. TSG DEC 2
A4: the schedule, 3 years, will constrained to a scope we can in fact deliver, OR we will be
given additional budget. If not “I would have a problem” <- BB

A5: the cost of expanding Orbit will not be prohibitive. <- BB 2 dec
A6: we have made the assumption that we can integrate Oribit with PX+ in a sensible way,
even in the short term <- BB

Dependencies: <State any dependencies for this design idea>.
D1: FCxx replaces Px+ in time. ? tsg 2.12

Risks: <Name or refer to tags of any factors, which could threaten your estimated impacts>.
R1. FCxx is delayed. Mitigation: continue to use Pxx <- tsg 2.12

R2: the technical integration of Px+ is not as easy as thought & we must redevelop Oribit
R3: the and or scalability and cost of coherence will not allow us to meet the delivery.
R4: scalability of Orbit team and infrastructure, first year especially <- BB. People,
environments, etc.
R5: re Cross Desk reporting Requirement, major impact on technical design. Solution not
currently known. Risk no solution allowing us to report all P/L

 Issues: <Unresolved concerns or problems in the specification or the system>.
I1: Do we need to put the fact that we own Orbit into the objectives (Ownership). MA said,
other agreed this is a huge differentiator. Dec 2.
I2: what are the time scales and scope now? Unclear now BB

I3: what will the success factors be? We don’t know what we are actually being asked to do.
BB 2 dec 20xx

I4: for the business other than flow options, there is still a lack of clarity as to what the
requirements are and how they might differ from Extra and Flow Options. BB

I5: the degree to which this option will be seen to be useful without Intra Day. BB 2 dec

© Tom@Gilb.com 2013

Architecture Specification Rules
7.4 Rules: Design Specification

R7: Background
Information:
 Capture the
background
information for any
estimated or actual
impact of a design
idea
on a performance/
cost attribute.
The evidence
supporting the
impact, the level of,
the level of credibility
of any information
and the source(s) for
all this information
should be given as far
as possible.

9 October 2013
16

© Tom@Gilb.com 2013

Architecture Specification Rules
from CE Book Ch. 7

7.4 Rules: Design Specification

R8: IE table:
The set of design ideas
specified to meet a set
of requirements
should be validated
 at an early stage
 by using an Impact
Estimation (IE) table.

9 October 2013
17

© Gilb.com

Defining a Design/Solution/Architecture/Strategy (Planguage, CE Design Template) 
1. enough detail to estimate, 2. some impact assertion, 3. Assumptions, Risks, Issues

9 October 2013
18

Orbit Application Base: (formal Cross reference Tag)
Type: Primary Architecture Option
============ Basic Information ==========
Version: Nov. 30 20xx 16:49, updated 2.Dec by telephone and in meeting. 14:34
Status: Draft
Owner: Brent Barclays
Expert: Raj Shell, London
Authority: for differentiating business environment characteristics, Raj Shell, Brent
Barclays(for overview)
Source: <Source references for the information in this specification. Could include people>.
Various, can be done later BB
Gist: risk and P/L aggregation service, which also provides work flow/adjustment and
outbound and inbound feed support. Currently used by Rates ExtraBusiness, Front Office
and Middle Office, USA & UK.
Description: <Describe the design idea in sufficient detail to support the estimated impacts
and costs given below>.

D1: ETL Layer. Rules based highly configurable implementation of the ETL Pattern,
which allows the data to be onboarded more quickly. Load and persist new data
very quickly. With minimal development required. -> Business-Capability-Time-To-
Market, Business Scalability
D2: high performance risk and P/L aggregation processing (Cube Building). ->
Timeliness, P/L Explanation, Risk & P/L Understanding, Decision Support, Business
Scalability, Responsiveness.
D3: Orbit supports BOTH Risk and P/L -> P/L Explanation, Risk & P/L Consistency,
Risk & P/L Understanding, Decision Support.
D4: a flexible configurable workflow tool, which can be used to easily define new
workflow processes -> Books/Records Consistency, Business Process Effectiveness,
Business Capability Time to Market.
D5: a report definition language, which provides 90+% of the business logic
contained with Orbit, allows a quick turnaround of new and enhanced reports with
minimal regression testing and release procedure impact. -> P/L Explanation, Risk
& P/L Understanding, Business Capability Time to Market, Business Scalability.
D6: Orbit GUI. Utilizes an Outlook Explorer metaphor for ease of use, and the Dxx
Express Grid Control, to provide high performance Cube Interrogation Capability. -
> Responsiveness, People Interchangeability, Decision Support, Risk & P/L
Understanding.
D7: downstream feeds. A configurable event-driven data export service, which is
used to generate feeds . -> Business Process Effectiveness, Business Capability
Time to Market.

===================== Priority and Risk Management =====================
Assumptions: <Any assumptions that have been made>.

A1: FCCP is assumed to be a part of Orbit. FCxx does not currently exist
and is Dec 20xx 6 months into Requirements Spec. <- Picked up by TsG
from dec 2 discussions AH MA JH EC.

Consequence: FCxx must be a part of the impact estimation and
costs rating.

A2: Costs, the development costs will not be different. All will base on a
budget of say $nn mm and 3 years. The o+
 costs may differ slightly, like $n mm for hardware. MA AH 3 dec
A3:Boss X will continue to own Orbit. TSG DEC 2
A4: the schedule, 3 years, will constrained to a scope we can in fact deliver,
OR we will be given additional budget. If not “I would have a problem” <-
BB
A5: the cost of expanding Orbit will not be prohibitive. <- BB 2 dec
A6: we have made the assumption that we can integrate Oribit with PX+ in a
sensible way, even in the short term <- BB

Dependencies: <State any dependencies for this design idea>.
D1: FCxx replaces Px+ in time. ? tsg 2.12

Risks: <Name or refer to tags of any factors, which could threaten your estimated
impacts>.

R1. FCxx is delayed. Mitigation: continue to use Pxx <- tsg 2.12
R2: the technical integration of Px+ is not as easy as thought & we must
redevelop Oribit
R3: the and or scalability and cost of coherence will not allow us to meet
the delivery.
R4: scalability of Orbit team and infrastructure, first year especially <- BB.
People, environments, etc.
R5: re Cross Desk reporting Requirement, major impact on technical design.
Solution not currently known. Risk no solution allowing us to report all P/L

 Issues: <Unresolved concerns or problems in the specification or the system>.
I1: Do we need to put the fact that we own Orbit into the objectives
(Ownership). MA said, other agreed this is a huge differentiator. Dec 2.
I2: what are the time scales and scope now? Unclear now BB
I3: what will the success factors be? We don’t know what we are actually
being asked to do. BB 2 dec 20xx
I4: for the business other than flow options, there is still a lack of clarity as
to what the requirements are and how they might differ from Extra and
Flow Options. BB
I5: the degree to which this option will be seen to be useful without Intra
Day. BB 2 dec

See enlarged view of this slide in following slides. This is a 1-page overview

© Gilb.com

Design Spec Enlarged 1 of 2

Spec Headers

Orbit Application Base: (formal
Cross reference Tag)

Type: Primary Architecture Option

==== Basic Information ==========
Version: Nov. 30 20xx 16:49,
updated 2.Dec by telephone and in
meeting. 14:34
Status: Draft (PUBLIC EXAMPLE
EDIT)
Owner: Brent Barclays
Expert: Raj Shell, London
Authority: for differentiating
business environment
characteristics, Raj Shell, Brent
Barclays(for overview)
Source: <Source references for the
information in this specification.
Could include people>. Various, can
be done later BB
Gist: risk and P/L aggregation
service,
which also provides work flow/
adjustment and outbound and
inbound feed support. Currently
used by Rates Extra Business, Front
Office and Middle Office, USA & UK.

Detailed Description and -> Impacted Objectives
Description: <Describe the design idea in sufficient detail to support the
estimated impacts and costs given below>.
D1: ETL Layer. Rules based highly configurable implementation of the ETL
Pattern, which allows the data to be onboarded more quickly. Load and
persist new data very quickly. With minimal development required. ->
Business-Capability-Time-To-Market, Business Scalability
D2: high performance risk and P/L aggregation processing (Cube Building). ->
Timeliness, P/L Explanation, Risk & P/L Understanding, Decision Support,
Business Scalability, Responsiveness.
D3: Orbit supports BOTH Risk and P/L -> P/L Explanation, Risk & P/L
Consistency, Risk & P/L Understanding, Decision Support.
D4: a flexible configurable workflow tool, which can be used to easily define
new workflow processes -> Books/Records Consistency, Business Process
Effectiveness, Business Capability Time to Market.
D5: a report definition language, which provides 90+% of the business logic
contained with Orbit, allows a quick turnaround of new and enhanced reports
with minimal regression testing and release procedure impact. -> P/L
Explanation, Risk & P/L Understanding, Business Capability Time to Market,
Business Scalability.
D6: Orbit GUI. Utilizes an Outlook Explorer metaphor for ease of use, and the
Dxx Express Grid Control, to provide high performance Cube Interrogation
Capability. -> Responsiveness, People Interchangeability, Decision Support,
Risk & P/L Understanding.
D7: downstream feeds. A configurable event-driven data export service,
which is used to generate feeds . -> Business Process Effectiveness, Business
Capability Time to Market.

9 October 2013
19

The Detailed description is
useful,

 • to understand costs

 • to understand impacts on
your objectives

 • to permit separate
implementation and value
delivery, incrementally

© Gilb.com

Design Spec Enlarged 2 of 2

==== Priority & Risk Management
========
Assumptions: <Any assumptions that have
been made>.
A1: FCCP is assumed to be a part of Orbit. FCxx does
not currently exist and is Dec 20xx 6 months into
Requirements Spec. <- Picked up by TsG from dec 2
discussions AH MA JH EC.

Consequence: FCxx must be a part of the impact
estimation and costs rating.

A2: Costs, the development costs will not be
different. All will base on a budget of say $ nn mm
and 3 years. The ops costs may differ slightly, like $n
mm for hardware. MA AH 3 dec
A3:Boss X will continue to own Orbit. TSG DEC 2
A4: the schedule, 3 years, will constrained to a scope
we can in fact deliver, OR we will be given additional
budget. If not “I would have a problem” <- BB
A5: the cost of expanding Orbit will not be
prohibitive. <- BB 2 dec
A6: we have made the assumption that we can
integrate Oribit with PX+ in a sensible way, even in
the short term <- BB

Dependencies: <State any dependencies for this design idea>.
D1: FCxx replaces Px+ in time. ? tsg 2.12

 Risks: <Name or refer to tags of any factors, which
could threaten your estimated impacts>.
R1. FCxx is delayed. Mitigation: continue to use Pxx<-
tsg 2.12
R2: the technical integration of Px+ is not as easy as
thought & we must redevelop Oribit
R3: the and or scalability and cost of coherence will
not allow us to meet the delivery.
R4: scalability of Orbit team and infrastructure, first
year especially <- BB. People, environments, etc.
R5: re Cross Desk reporting Requirement, major impact
on technical design. Solution not currently known.
Risk no solution allowing us to report all P/L
 Issues: <Unresolved concerns or problems in the
specification or the system>.
I1: Do we need to put the fact that we own Orbit into
the objectives (Ownership). MA said, other agreed this
is a huge differentiator. Dec 2.
I2: what are the time scales and scope now? Unclear
now BB
I3: what will the success factors be? We don’t know
what we are actually being asked to do. BB 2 dec 20xx
I4: for the business other than flow options, there is
still a lack of clarity as to what the requirements are
and how they might differ from Extra and Flow Options.
BB
I5: the degree to which this option will be seen to be
useful without Intra Day. BB 2 dec

9 October 2013
20

Risks specification:
• shares group risk
knowhow
• permits redesign to
mitigate the risk
• allows relistic
estimates of cost and
impacts

Issues:
• when answered can
turn into a risk
• shares group
knowledge
• makes sure we
don’t forget to
analyze later

ASSUMPTIONS:
• broadcasts
critical factors for
present and future
re-examination
• helps risk
analysis
• are an integral
part of the design
specifiction

DEPENDENCIES:

Part 2

Quality Control
of Impact Estimation Specifications

Based on Competitive Engineering book
Chapter on Impact Estimation
https://www.dropbox.com/s/3oad3xhlzeljjvw/
261%20Ch009%20Impact%20Estimation.pdf?dl=0

or whole CE book
https://www.dropbox.com/sh/jneaayejpf2hmdm/
AACoXqKdkUbnp_zSMi_5q0_xa?dl=0

21

IET Rules part 1
R1: Table Format: The requirements must be specified in
the left-hand column. The design ideas must be specified
along the top row.

R2: Requirement: Each performance requirement
(objective) and each resource requirement must be
identified by its tag and by a simplified version of the
chosen Baseline<->Target Pair (B<->T pair). The B<->T
pair should be written under the tag.

Each B<->T pair must consist of two reference points, the
chosen baseline (Past) and the planned target (Goal or
Budget). Each refer- ence point must be stated as a numeric
value or as a tag to a numeric value. The numeric values
must be expressed using the chosen Scale for the
requirement.

The baseline is stated first as it represents the 0%
incremental impact point. Then usually an arrow ‘<->’.
Then the planned target, which represents the 100%
incremental impact point.

It must be possible to distinguish between multiple-level
specifications for the same Goal or Budget statement.
Where necessary, to be unambiguous, use a qualifier or tag
the specific baseline and/or target for use in the IE table. 22

 R3: Qualifiers: If there is one common set of qualifier
[time, place and event] conditions for reaching all targets,
this should be explicitly stated in the notes accompanying
the IE table. If the qualifiers vary then they must be
explicitly stated next to the relevant B<->T pair.

EXAMPLE

By default, the entire system is implied and no specific
conditions are assumed. The deadline time period must
always be explicitly stated.

R4: Design Idea: Each single column must identify a
design idea or set of design ideas that could be
implemented as a distinct Evo step. Each design idea must
be identified by its tag. Multiple tags may be specified as a
set of design ideas in a single column. All tags must be
supported by a design specification, which must exist in the
supporting documentation and must be sufficiently detailed
to allow impact estimations to the required level of
accuracy. As a minimum, each design specification must be
sufficiently detailed to permit financial cost to be estimated
to within an ‘order of magnitude.’

R5: Scale Impact: For each goal or budget, the Scale

IET Rules part 1; 1 to 5
simplified

R1: Table Format: The requirements must be specified in
the left-hand column. The design ideas must be
specified along the top row.

R2: Requirement: Each performance requirement
(objective) and each resource requirement must be
identified by its tag and by a simplified version of the
chosen Baseline<->Target Pair (B<->T pair). The B<-
>T pair should be written under the tag.

 Format:

Tag

30% <-> 75%

 R3: Qualifiers: If there is one common set of qualifier
[time, place and event] conditions for reaching all targets,
this should be explicitly stated in the notes accompanying
the IE table.

If the qualifiers vary then they must be explicitly stated
next to the relevant B<->T pair.

 The deadline time period must always be explicitly stated.

23

R4: Design Idea: Each single column must identify a
design idea or set of design ideas that could be
implemented as a distinct Evo step.

Each design idea must be identified by its tag.

R5: Scale Impact: For each goal or budget, the Scale
Impact is the estimated or actual performance or cost
level respectively (expressed using the relevant Scale)
that is brought about by implementing the design
idea(s) in each column.

R6: Percentage Impact:

The Percentage Impact is a percentage (%) value derived
from the Scale Impact

 An estimate of zero percent, ‘0%,’ means the impact of
the implementation of this design idea is estimated to be
equal to the specified baseline level of the objective.

‘100%’ means the specified target level would probably
be met exactly and on time.

R7: Uncertainty: The 􀀀􀀁􀀂􀀃􀀄􀀅􀀆􀀇􀀈􀀉􀀊􀀋􀀌􀀍􀀎􀀏􀀐􀀑􀀒􀀓􀀔􀀕􀀖􀀗􀀘􀀙􀀚􀀛􀀜􀀝􀀞􀀟􀀠􀀡􀀢􀀣􀀤􀀥􀀦􀀧􀀨􀀩􀀪􀀫􀀬􀀭􀀮􀀯􀀰􀀱􀀲􀀳􀀴􀀵􀀶􀀷􀀸􀀹􀀺􀀻􀀼􀀽􀀾􀀿􀁀􀁁􀁂􀁃􀁄􀁅􀁆􀁇􀁈􀁉􀁊􀁋􀁌􀁍􀁎􀁏􀁐􀁑􀁒􀁓􀁔􀁕􀁖􀁗􀁘􀁙􀁚􀁛􀁜􀁝􀁞􀁟􀁠􀁡􀁢􀁣􀁤􀁥􀁦􀁧􀁨􀁩􀁪􀁫􀁬􀁭􀁮􀁯􀁰􀁱􀁲􀁳􀁴􀁵􀁶􀁷􀁸􀁹􀁺􀁻􀁼􀁽􀁾􀁿 Uncertainty (based on the
evidence experience borders) of the Scale Impact estimate
shall normally be specified. Percentage Uncertainty values

IE Table Rules
Part 2 Rules 5-10

Full text, the 1 page of Rules for IET
R5: Scale Impact: For each goal or budget, the Scale
Impact is the estimated or actual performance or cost level
respectively (expressed using the relevant Scale) that is
brought about by implementing the design idea(s) in each
column.

R6: Percentage Impact: The Percentage Impact is a
percentage (%) value derived from the Scale Impact (see
Rules.IE.R2). An estimate of zero percent, ‘0%,’ means the
impact of the implementation of this design idea is
estimated to be equal to the specified baseline level of the
objective. ‘100%’ means the specified target level would
probably be met exactly and on time. All other percentage
estimates are in relation to these two points. Note: In an IE
table, it is acceptable to specify either Percentage Impacts
and/or the Scale Impacts (the absolute values on the
defined scale of measure). Examples: 60%, 4 minutes.

R7: Uncertainty: The ± Uncertainty (based on the
evidence experience borders) of the Scale Impact estimate
shall normally be specified. Percentage Uncertainty values
are then calculated in a similar way to the Percentage
Impacts. Example: 60%±20%. Usually, the uncertainty
values are calculated individually for each cell. An
exception to this occurs when some overall uncertainty
(such as ±50%) is declared for the whole table or specified

24

 parts of it. Another more fundamental exception can be
when a decision is made to defer dealing with uncertainty
data.

R8: Evidence: Each estimate must be supported by facts
that credibly show how it was derived. Numbers, dates and
places are expected. If there is no evidence, a clear honest
risk-identifying state- ment expressing the problem is
expected (such as ‘Random Guess’ or ‘No Evidence’). The
exact source of the evidence must also be expli- citly
stated. Note: Reference to a specific section of a document
is permitted as evidence.

R9: Credibility: The evidence, together with its source,
must be rated for its level of credibility on a scale of 0.0
(no credibility) to 1.0 (perfect credibility).

The relevant standard Credibility Ratings Table must be
considered for use. Explanation must be given if alternative
ratings are chosen.

R10: Completeness: All IE cells (intersections of a design
idea and a requirement) must have a non-blank statement
of estimated impact. This must be given as a numeric value
using the relevant Scale units, or as a Percentage Impact as
assessed against the defined Baseline <->Target Pair, or

IET Rule Part 2: 6-10
simplified

 R6: Percentage Impact:

The Percentage Impact is a percentage (%) value derived
from the Scale Impact (see Rules.IE.R2).

 An estimate of zero percent, ‘0%,’ means the impact of the
implementation of this design idea is estimated to be equal
to the specified baseline level of the objective.

‘100%’ means the specified target level would probably be
met exactly and on time.

All other percentage estimates are in relation to these two
points.

R7: Uncertainty: The ±Uncertainty (based on the evidence
experience borders) of the Scale Impact estimate shall
normally be specified.

Percentage Uncertainty values are then calculated in a
similar way to the Percentage Impacts. Example: 60%
±20%. Usually, the uncertainty values are calculated
individually for each cell.

R8: Evidence: Each estimate must be supported by facts
that credibly show how it was derived.

25

R9: Credibility: The evidence, together with its source,
must be rated for its level of credibility on a scale of 0.0
(no credibility) to 1.0 (perfect credibility).

The relevant standard Credibility Ratings Table must be
considered for use. Explanation must be given if alternative
ratings are chosen.

R10: Completeness: All IE cells (intersections of a design
idea and a requirement) must have a non-blank statement
of estimated impact. This must be given as a numeric value
using the relevant Scale units, or as a Percentage Impact as
assessed against the defined Baseline <->Target Pair, or
both. If there is no estimate, then a clear indication of this
must be given.

R11: Calculations: All the appropriate IE calculations
must be carried out and the arithmetic must be correct.
Hint: Using an application, such as a spreadsheet, helps!
The IE calculated values include:

. Percentage Impact: See Rule R6.  

. Percentage Uncertainty: See Rule R7.  

Class Exercise Medical, Ward 2015 
Richard Smith’s Tool

Impact Estimation Tables

Estimate
Units & %

± Uncertainty
Worst Case

range

Credibility
Adjustment0.

0 to 1.0

Improvement

Based on tool built by Kai Gilb, and his practice

Summary of Options wrt Risk (2010)

Sum Impact
Of strategy on all

goals

Sum ±
Variation or
Range of

uncertainty

Sum
Conservative Impact
“worst worst case”

Based on work done by Kai Gilb

© Gilb.com2 March 2015 29

Management
Summary of

the
Architecture

Model

Skyscrapers
are ‘good’

© Gilb.com2 March 2015 30

How good are the
architecture options

with respect to all our
Bank Values AND with
respect to the worst
case ± uncertainty

edge ?
60±35 edge = 25

How good are
the

architecture
options with

respect to the
quality of the
evidence +
source , for
the impact
estimates.

50% x 0.5 =
25%

Cut down
badly founded

estimates.
Avoid false

optimism. Be
realistic!

Management
Summary of

the
Architecture

Model

© Gilb.com2 March 2015 31

© Gilb.com2 March 2015 32

• Combining the ‘risk’
management factors

 (± & Credibility Level (0.0 to 1.0)
The ‘worst worst case’

◆ The worst ± ‘edge, times the
credibility factor.

◆ Reduces false optimism.
◆ Keeps you realistic.
◆ Allows management to understand

the risks and take the risks
consciously

The
‘Source’

Part 3

Evaluating (Reviewing) Architecture Specs,
for ‘RELEVANCE’

to OBJECTIVES AND CONSTRAINTS

BASIC PROCESS

Determine if
1. there is enough design to meet the goals
2. with respect to risk
3. within resource budgets

33

www.Gilb.com Slide ‹#›

‹#›Using Impact Estimation to get a quick initial picture of how the 7 Strategies
are expected to impact the 11 Objectives and 1 cost factor.

DoD IE Table

Part 4

Getting Feedback from real incremental delivery
of architecture,

in order to measure how well architecture
really delivered values

and
what it costs

Quinnans Cleanroom Process
Confirmit Process

36

Copyright Tom@Gilb.com 2013

Cleanroom

16 October 2013
37

© Gilb.com 2011

In the Cleanroom Method, developed by IBM’s Harlan Mills
(1980) they reported:  

• “Software Engineering began to emerge in FSD” (IBM Federal Systems Division,
from 1996 a part of Lockheed Martin Marietta) “some ten years ago [Ed. about
1970] in a continuing evolution that is still underway:

• Ten years ago general management expected the worst from software projects
– cost overruns, late deliveries, unreliable and incomplete software

• Today [Ed. 1980!], management has learned to expect on-time, within budget,
deliveries of high-quality software. A Navy helicopter ship system, called
LAMPS, provides a recent example. LAMPS software was a four-year project of
over 200 person-years of effort, developing over three million, and integrating
over seven million words of program and data for eight different processors
distributed between a helicopter and a ship in 45 incremental deliveries [Ed.
Note 2%!]s. Every one of those deliveries was on time and under budget

• A more extended example can be found in the NASA space program,
• - Where in the past ten years, FSD has managed some 7,000 person-years of

software development, developing and integrating over a hundred million
bytes of program and data for ground and space processors in over a dozen
projects.

• - There were few late or overrun deliveries in that decade, and none at all in
the past four years.”

October 16, 2013
38

© Gilb.com 2011

In the Cleanroom Method, developed by IBM’s Harlan Mills
(1980) they reported:  

• “Software Engineering began to emerge in FSD” (IBM Federal Systems Division,
from 1996 a part of Lockheed Martin Marietta) “some ten years ago [Ed. about
1970] in a continuing evolution that is still underway:

• Ten years ago general management expected the worst from software projects
– cost overruns, late deliveries, unreliable and incomplete software

• Today [Ed. 1980!], management has learned to expect on-time, within budget,
deliveries of high-quality software. A Navy helicopter ship system, called
LAMPS, provides a recent example. LAMPS software was a four-year project of
over 200 person-years of effort, developing over three million, and integrating
over seven million words of program and data for eight different processors
distributed between a helicopter and a ship in 45 incremental deliveries [Ed.
Note 2%!]s. Every one of those deliveries was on time and under budget

• A more extended example can be found in the NASA space program,
• - Where in the past ten years, FSD has managed some 7,000 person-years of

software development, developing and integrating over a hundred million
bytes of program and data for ground and space processors in over a dozen
projects.

• - There were few late or overrun deliveries in that decade, and none at all in
the past four years.”

October 16, 2013
39

in 45 incremental deliveries

were few late or overrun
deliveries in that decade,
and none at all in the past

four years

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure
that software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10]
consists of developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can
proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the
appropriate balance between cost and design for a single increment, but they iterate through a series of increments, thus
reducing the complexity of the task, and increasing the probability of learning from experience, won as each increment
develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

16 October 2013
40

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure
that software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10]
consists of developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can
proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the
appropriate balance between cost and design for a single increment, but they iterate through a series of increments, thus
reducing the complexity of the task, and increasing the probability of learning from experience, won as each increment
develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

16 October 2013
41

of developing a design,
estimating its cost, and
ensuring that the design

is cost-effective

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure
that software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10]
consists of developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can
proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the
appropriate balance between cost and design for a single increment, but they iterate through a series of increments, thus
reducing the complexity of the task, and increasing the probability of learning from experience, won as each increment
develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

16 October 2013
42

iteration process
trying to meet cost

targets by either
redesign or by

sacrificing 'planned
capability’

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure
that software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10]
consists of developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can
proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the
appropriate balance between cost and design for a single increment, but they iterate through a series of increments, thus
reducing the complexity of the task, and increasing the probability of learning from experience, won as each increment
develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

16 October 2013
43

Design is an

iterative process

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure
that software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10]
consists of developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can
proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the
appropriate balance between cost and design for a single increment, but they iterate through a series of increments, thus
reducing the complexity of the task, and increasing the probability of learning from experience, won as each increment
develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

16 October 2013
44

but they iterate through a series of
increments,

thus reducing the complexity of the
task,

and increasing the probability of
learning from experience

© Gilb.com

The proof is in the pudding;

• “The proof is in the pudding;

• I have used Evo
• (albeit in disguise sometimes)
• on two large, high-risk projects in front-office investment

banking businesses,
• and several smaller tasks. “

10 October 2014
45

Richard Smith

© Gilb.com

Experience: if top level requirements
are separated from design, the

‘requirements’ are stable!

• “On the largest critical project,
• the original business functions & performance objective

requirements document,
• which included no design,
• essentially remained unchanged
• over the 14 months the project took to deliver,….”

10 October 2014
46 “ I attended a 3-day course with you and Kai whilst at Citigroup in 2006”, Richard

Smith

Richard Smith

© Gilb.com

Dynamic (Agile, Evo) design testing:  
not unlike ‘Lean Startup’

• “… but the detailed designs
– (of the GUI, business logic, performance characteristics)

• changed many many times,
• guided by lessons learnt
• and feedback gained by
• delivering a succession of early deliveries
• to real users”

10 October 2014
47 “ I attended a 3-day course with you and Kai whilst at Citigroup in 2006”, Richard

Smith

Richard Smith

© Gilb.com

It looks like the stakeholders liked the top
level system qualities,  

on first try

• “ In the end, the new system responsible for 10s
of USD billions of notional risk,

– successfully went live
– over one weekend
– for 800 users worldwide,

– and was seen as a big success
– by the sponsoring stakeholders.”

10 October 2014
48 “ I attended a 3-day course with you and Kai whilst at Citigroup in 2006” , Richard

Smith

Richard Smith

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure
that software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10]
consists of developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can
proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the
appropriate balance between cost and design for a single increment, but they iterate through a series of increments, thus
reducing the complexity of the task, and increasing the probability of learning from experience, won as each increment
develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

16 October 2013
49

 an estimate to
complete the remaining

increments is
computed.

EVO Plan Confirmit 8.5 in Evo Step Impact Measurement 
4 product areas were attacked in all: 25 USER Qualities concurrently, one

quarter of a year. Total development staff = 13

9
8

3
3

April 13, 2015

Quantified Value Delivery Project Management in a Nutshell 
Quantified Value Requirements, Design, Design Value/cost estimation,
Measurement of Value Delivery, Incremental Project Progress to Date

Cumulative

weekly

progress

metric

Priority

Next
week

Warning

metrics
based

C
onstraint

Target
E

stim
ates

W
eekly

Testing

April 13, 2015

