
Power  
to the  

Programmers !  
Agile Change thru Software Engineering  

 Quantified Proven Real Best Practices

Geecon, Prague, 23 Oct 2015
@ImTomGilb

Tom at Gilb dot com
Gilb.com

These slides are at
http://www.gilb.com/dl821

(Gilb site Slides Downloads)

http://tinyurl.com/GilbGeecon
Has slides and my Agile papers

And historic papers, Raytheon , Mays DPP etc.

The Leader of the Revolution
Motto “Join or Die”

“Code or
 Create,

To determine your fate”

http://www.gilb.com/dl821
http://www.gilb.com/dl821
http://tinyurl.com/GilbGeecon

Copyright Tom@Gilb.com 201411 September 2014 2

• If management decides on clear, quantified,
improvement objectives (RARE EVENT!)

• Then the ‘troops’ can very effectively …
– More effectively than any management led

process ever reports in practice

• Deliver rapid effective and profitable
improvement
– In the direction of these quantified high level

goals

Thesis for this talk 
Theme High Level Objectives

Copyright Tom@Gilb.com 201411 September 2014 3

• Grass roots (developers) can change and
measure often and early
– Management cannot change and measure,

early and often

Effective because

Copyright Tom@Gilb.com 2014

Effective because

• Grass roots (developers) can change and
measure often and early
– Management cannot change and measure,

early and often

11 September 2014
4

“Because ‘special cause’ variation is ‘assignable’ (to a specific
cause),
workers, supervisors or middle managers that have direct
knowledge of the assignable cause,
best address this type of specific intervention.”
(Deming interpretation, Wikipedia)

© Gilb.com 2015 Power to ProgrammersOct 2015 Version Prague
Geecon 5

• I like fully filled-up, BUSY, DENSE, slides
• They reflect my reality: detailed facts, like ‘code’
• If you don’t like dense slides

– Close your eyes for the rest of this talk

• You can download my slides afterwards, and study
them deeply,

– when you feel more-technically receptive and
motivated

Sorry !  
(not really ☺)

Copyright Tom@Gilb.com 201411 September 2014 6

PS If you prefer very simple slides 
 and presentations  

see https://www.youtube.com/watch?v=kOfK6rSLVTA 
or Google: ‘Tom Gilb TEDx’

Same talk as Oct 22 2015 Geecon  

7

• I was a programmer (1958-1978),
– But I decided I wanted more power and influence

• on the quality and usefulness of my work
• I did not want to be part of the 50% totally failed IT

projects
• I wanted my projects to ALWAYS succeed

– And I was tired of being told what to do by
managers and users

• Who did not strike me as blindingly savvy

• So I became a real ‘Software Engineer’
– I did not just change my ‘title’
– I really turned to ENGINEERING

Confessions of a Coder

8

• The Agile ‘Grandfather’
– Practicing ‘Agile’ IT Projects since 1960
– Preaching Agile since 1970’s (Comp. Weekly UK)
– Acknowledged Pioneer by Agile Gurus and Research

• Beck, Sutherland, Highsmith, Cohn, Larman etc.
• Ask me for details on this! I am too shy to show it here!

• Agile Practice
– IT: for decades (Kai and Tom)
– Organisations: for Decades (Citigroup, Intel, HP, Boeing)

• Books: Presenting Agile: Incremental Delivery
– Principles of Software Engineering Management (1988) the book

Beck and others refer to.
– Competitive Engineering (2005)
– ‘Evo’: (Kai, evolving, 55 iterations)
– 1976 Software Metrics book

• As detailed in 1988 PoSEM citations
– NEW ‘Competitive Planning’ manuscript
– http://tinyurl.com/competitiveplanning

Agile Grandpa

© Gilb.com Agility is the ToolOct 2015 Version Prague
Geecon 9

Agile References:
"Tom Gilb invented Evo, arguably the first Agile process. He and his son Kai have been working with me in Norway to align
what they are doing with Scrum.
Kai has some excellent case studies where he has acted as Product Owner. He has done some of the most innovative things
I have seen in the Scrum community."
Jeff Sutherland, co-inventor of Scrum, 5Feb 2010 in Scrum Alliance Email.

“Tom Gilb's Planguage referenced and praised at #scrumgathering by Jeff Sutherland. I highly agree" Mike Cohn, Tweet, Oct
19 2009

“I’ve always considered Tom to have been the original agilist. In 1989, he wrote about short iterations (each should be no
more than 2% of the total project schedule). This was long before the rest of us had it figured out." Mike Cohn http://
blog.mountaingoatsoftware.com/?p=77

Comment of Kent Beck on Tom Gilb’s book , “Principles of Software Engineering Management”: “ A strong case for
evolutionary delivery – small releases, constant refactoring, intense dialog with the customer”. (Beck, page 173).
In a mail to Tom, Kent wrote: “I'm glad you and I have some alignment of ideas. I stole enough of yours that I'd be
disappointed if we didn't :-), Kent” (2003)

Jim Highsmith (an Agile Manifesto signatory) commented: “Two individuals in particular pioneered the evolution of iterative
development approached in the 1980’s – Barry Boehm with his Spiral Model and Tom Gilb with his Evo model. I drew on
Boehm’s and Gilb’s ideas for early inspiration in developing Adaptive Software Development. …. Gilb has long advocated this
more explicit (quantitative) valuation in order to capture the early value and increase ROI” (Cutter It Journal: The Journal of
Information Technology Management, July 2004page 4, July 2004).

OK I am not that shy!

Will we never learn ?

• “Those who
cannot remember
the past are
condemned to
repeat it.”

• The Life of Reason
(1905-1906)
– Vol. I, Reason in

Common Sense

10

Jorge Agustín Nicolás Ruiz de Santayana y
Borrás,

 known as George Santayana
 (December 16, 1863 – September 26, 1952),

was a philosopher, essayist, poet, and novelist.

Copyright Tom@Gilb.com 2014

Grandpa Guru Tom Speaks
• I am your historian.
• I joined IBM in 1958
• And lived intensively through

the entire computer age
• I’ll tell you what I have

learned, before I go.
• But this might be your last

chance.
• You, and your teachers, have

missed all other such
opportunities up to now ….

• Are YOU doomed to repeat the
errors of the software past?

11 September 2014 11

Copyright Tom@Gilb.com 201411 September 2014 12

• Power to the Programmers
– Delegation of power to programmers is a smart idea.
– It is provably and measurably smarter than

• leaving the power with
– managers (BOO !)

• to design the developer’s own work environment, and

– with IT architects (BOO !) to design the technology,
• that we are then told to code.

– Delegating the power to DEVELOPERS (YESSSS !) ,
• to create a better working-environment,
• and to design the technology for our stakeholders,
• is better - because

– developers are closer to the action,
– are more informed in practical detail;
– and they can rapidly and frequently, test and measure, that their ideas really

work.

Basic ideas: of this talk

Copyright Tom@Gilb.com 2014 13

Tom, telling 300 IT Architects that they are ridiculous,
incompetent, immature, embarrassing, and pompous  

(diplomatically, of course!)

VIDEO = http://vimeo.com/user22258446/review/79092608/600e7bd650

http://vimeo.com/user22258446/review/79092608/600e7bd650
http://vimeo.com/user22258446/review/79092608/600e7bd650

14

• Make developers responsible
– for delivery of the ‘quantified’ critical requirements

• (Performance, Qualities, cost, deadline)

• Give them the freedom to decide the right designs
– With immediate responsibility to measure that they are delivering

the results
• Get the ‘unprofessional’ users and customers ‘off their

backs’
– Avoid receiving features and stories

• which are usually amateur design, by people who have no overview or
responsibility or design ability (users and customers, and managers)

• Elevate your talent by becoming a real ‘software ENGINEER’
– With coding-expert craftsmanship, as your basic talent

How?

Copyright Tom@Gilb.com 201411 September 2014 15

•

Cases: Raytheon and IBM 
use ‘Defect prevention Process’  

(‘DPP’,= CMM Level 5) to  
EMPOWER DEVELOPERS  

 TO RADICALLY CHANGE THEIR OWN WORK ENVIRONMENT

Copyright Tom@Gilb.com 2014

Designing Your Own Organization ?
Management Decides our fateCTO
• Architect

• Standards
• Audit
• Project Management

WE decide our fate

2. Find
Common
Cause of
Defects

3. Find and do
Change to
eliminate
common

cause

4. Measure
Results
Bugs,

Productivity,
Cost

overruns

5. Spread to
the larger

organization

1. Identify
major defects

With bad
costs

11 September 2014 16

Copyright Tom@Gilb.com 201411 September 2014 17

• Michael Fagan and Ron Radice co-invent
‘Software Inspection’
– The intent was to collect data on bugs and

defects
– Use it to find frequent common causes
– To improve development processes
– The attitude was explicitly

• ‘managers should manage’ (MEF to TsG)

– THEY FAILED TO GET REAL PROCESS
IMPROVEMENT

Background 1970-1980  
MANAGERS FAIL

Copyright Tom@Gilb.com 201411 September 2014 18

• Robert Mays and Carol L. Jones, at IBM
Research Triangle Park, NC

• Invent ‘Defect Prevention Process’ ! Ch 17
• Major idea:

– Delegate power to devs to
• Analyze their OWN defects
• And fix their OWN process

• THAT WORKED

1980  
The ‘Troops’ succeed, where the Generals Failed

Copyright Tom@Gilb.com 201411 September 2014 19

• Source : Raytheon Report 1995
– http://resources.sei.cmu.edu/library/

asset-view.cfm?assetid=12403 (this is
a header to the download) Tested May
2014

– Search “Dion & Raytheon” (Dion is
Florida retired in 2014)

– http://resources.sei.cmu.edu/
asset_files/TechnicalReport/
1995_005_001_16415.pdf

• An excellent example of process
improvement driven by
measurement of improvement

• Main Motor:
– “Document Inspection”, Defect

Detection
• Main Driver:

– “Defect Prevention Process” (DPP)

Software Process Improvement at
Raytheon

http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=12403
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=12403

Copyright Tom@Gilb.com 2014

Cost of Quality over Time: Raytheon 95

The individual learning
curve ??

Cost of Rework
(non-conformance)

Cost of
Conformance

End 1988 End 1994

43% Start of Effort

5%

Bad
Process
Change

11 September 2014 20

Copyright Tom@Gilb.com 2014

Raytheon 95 Software Productivity 2.7X better

+

170%

Productivity

1988 199411 September 2014 21

Copyright Tom@Gilb.com 201411 September 2014 22

• Body Level One
– Body Level Two

• Body Level Three
– Body Level Four

» Body Level Five

Achieving Project Predictability:
Raytheon 95

140%

100%

1988 19941990

Cost At Completion / Budget %

Copyright Tom@Gilb.com 2014

Examples of Process Improvements: Raytheon 95

11 September 2014 23

• Process Improvements Made
• Erroneous interfaces during integration and test -

– Increased the detail required for interface design during the
requirements analysis phase and preliminary design phase - Increased
thoroughness of inspections of interface specifications

• Lack of regression test repeatability -
– Automated testing - Standardized the tool set for automated testing

- Increased frequency of regression testing
• Inconsistent inspection process -

– Established control limits that are monitored by project teams - Trained
project teams in the use of statistical process control - Continually analyze
the inspection data for trends at the organisation level

• Late requirements up-dates -
– Improved the tool set for maintaining requirements traceability - Confirm the requirements mapping

at each process phase

• Unplanned growth of functionality during Requirements Analysis
– - Improved the monitoring of the evolving specifications against the customer baseline - Continually

map the requirements to the functional proposal baseline to identify changes in addition to the
passive monitoring of code growth - Improved requirements, design, cost, and schedule tradeoffs
to reduce impacts

Copyright Tom@Gilb.com 201411 September 2014 24

Overall Product Quality: Raytheon 95  
(Bug density going down by 3:1) 

Defect Density Versus Time

Copyright Tom@Gilb.com 201411 September 2014 25

• $7.70 per $1 invested at Raytheon
• Sell your improvement program to top

management on this basis
• Set a concrete target for it

– PLAN [Our Division, 2 years hence] 8 to 1

Return On Investment

Copyright Tom@Gilb.com 201411 September 2014 26

The DPP Process

Copyright Tom@Gilb.com 201411 September 2014 27

• 1,000 programmers
– Later joined by 1,000 merged new

programmers
– Are

• Analyzing their own bugs and spec defects
• Suggesting their own work environment changes
• And reducing their 43% rework by 10 X

• Power has been delegated to the
programmers

What’s Going on Here?

Copyright Tom@Gilb.com 2014

Maj

min

Errors/Customer

 per Year

19 19

5

5
28

Improving the Reliability Attribute  
Primark, London (Gilb Client) 

see case study Dick Holland, “Agent of Change” from Gilb.com 
Using, Inspections, Defect Prevention, and Planguage for Management Objectives

11 September 2014

Copyright Tom@Gilb.com 2014

Positive Motivation: 
Personal Improvement

80 Majors Found
(~160-240 exist!)

40

23

8
00

20

40

60

80

100

0 1 2 3 4 5

Defects/Page

February April
Inspections of Gary’s Designs

“Gary” at  
McDonnell-Douglas

“We find an hour of doing
Inspection is worth ten hours of
company classroom training.”

A McDonnell-Douglas line
manager

“Even if Inspection did not have
all the other measurable quality
and cost benefits which we are
finding, then it would still pay off
for the training value alone.”

A McDonnellDouglas Director

2911 September 2014

Copyright Tom@Gilb.com 2014Half-day Inspection Economics. Gilb@acm.org

\

50%

70%
80%
90%

<-Mays & Jones 50% prevented(IBM) 1990

<- Mays 1993, 70% prevented

1 2 3 4 5 6

 "Prevented"

70% Detection
 by Inspection

95% cumulative detection
by Inspection (state of the art limit)

Test

 "Detected
Cheaply"

100%Use

30

• Prevention data based on state of the art prevention experiences (IBM RTP),
Others (Space Shuttle IBM SJ 1-95) 95%+ (99.99% in Fixes)

• Cumulative Inspection detection data based on state of the art Inspection (in an
environment where prevention is also being used, IBM MN, Sema UK, IBM UK)

Prevention + Pre-test Detection  
is the most effective and efficient

11 September 2014

Copyright Tom@Gilb.com 2014Half-day Inspection Economics. Gilb@acm.org 31

• 2162 DPP Actions implemented
– between Dec. 91 and May 1993 (30 months)<-Kan

• RTP about 182 per year for 200 people.<-Mays 1995
– 1822 suggested ten years (85-94)
– 175 test related

• RTP 227 person org<- Mays slides
– 130 actions (@ 0.5 work-years
– 34 causal analysis meetings @ 0.2 work-years
– 19 action team meetings @ 0.1work-years
– Kickoff meeting @ 0.1 work-years
– TOTAL costs 1% of org. resources

• ROI DPP 10:1 to 13:1, internal 2:1 to 3:1
• Defect Rates at all stages 50% lower with DPP

IBM MN & NC DP Experience

11 September 2014

Copyright Tom@Gilb.com 2014

The ICL Bill of Rights  
for Company Communication (by TsG) 

1. You have a right to
know precisely what is

expected of you.
2. You have a right to

clarify things with
colleagues,

anywhere in the
organization.

3. You have a right to
initiate clearer

definitions
 of objectives and

strategies.
4. You have a right to

get objectives
presented

 in measurable,
quantified formats.

5. You have a right to
change your objectives

and strategies,
for better performance.

6. You have the right to try out new ideas
 for improving communication.

007. You have the right to fail when trying,
but also to kill failures quickly.

8. You have a right to constructively
challenge
higher-level objectives and strategies.

9. You have a right to be judged objectively
on your performance against measurable
objectives.

10. You have a right to offer constructive
help
to colleagues to improve communication.

11 September 2014 32

Copyright Tom@Gilb.com 201411 September 2014 33

• Developers are better at managing their own
work environment, than their managers are

• ‘Directors’ should NOT design the work
environment

• Developers should ‘evolve the environment’
– through practical deep personal insights,
– and take responsibility for their own work situation

Summary DPP 
Managers: 0 Devs : 1

Copyright Tom@Gilb.com 201411 September 2014 34

Case: Delegating Software product
design to the Developers

Copyright Tom@Gilb.com 2014

Product/IT System Design

Coder

Customer User
Sales

Architect

Analyze
Values

Design
for

Values

Implement
And

Measure
Values and

costs

Learn
and

Change

Decide
if done

11 September 2014 35

or

Copyright Tom@Gilb.com 2014

Programmer Team does design  
and measurement of their design

Coder

Customer User
Sales

Architect

Analyze
Values

Design
for
Values

Implem
ent
And
Measur
e
Values
and
costs

Learn
and
Change

Decide
if done

11 September 2014 36

Copyright Tom@Gilb.com 2014

Trond Johansen

11 September 2014 37

Their product =

The Confirmit Case Study 2003-2014

© Tom @ Gilb.com

We gave them a 1 day briefing on
our Evo method and Planguage

That’s all they needed to succeed!
They were Real engineers

Oct 2015 Version Prague
Geecon 38

Copyright Tom@Gilb.com 2014

Customer Successes in Corporate Sector

11 September 2014 39

Copyright Tom@Gilb.com 2014 40

Usability.Productivity:

Scale for quantification: Time in minutes to set up
a typical specified Market Research-report

Past Level [Release 8.0]: 65 mins.,

Tolerable Limit [Release 8.5]: 35 mins.,

Goal [Release 8.5]: 25 mins.

 Real Example of 1 of the 25 Quality Requirements

Trond Johansen11 September 2014

Copyright Tom@Gilb.com 201411 September 2014 41

• Our new focus is on the daily operations of our
Market Research users,
– not a list of features. that they might or might not like.

50% never used!
–
– We KNOW that increased efficiency, which leads to more

profit, will please them.

– The ‘45 minutes actually saved x thousands of customer
reports’

• = big $$$ saved

• After one week we had defined more or less all the
requirements for the next version (8.5) of Confirmit.

Shift: from Function to Quality

© Tom @ Gilb.com

Cumulative
weekly

progress
metric

Priority
Next

week
Warning
metrics

C
onstraint

Target
E

stim
ates

W
eekly

Oct 2015 Version Prague
Geecon 42

Quantified Value Delivery Project Management in a Nutshell 
Quantified Value Requirements, Design, Design Value/cost estimation,
Measurement of Value Delivery, Incremental Project Progress to Date

© Tom @ Gilb.comOct 2015 Version Prague
Geecon 43

Every user, every day, was using an average of 65 minutes to 
set up a report

Usability.Productivity
Scale for quantification: Time in minutes to set
up a typical specified Market Research-report

Past Level [Release 8.0]: 65 mins.,

Tolerable Limit [Release 8.5]: 35 mins.,

Goal [Release 8.5]: 25 mins.

© Tom @ Gilb.comOct 2015 Version Prague
Geecon 44

 The worst acceptable case requirement, for the next quarterly world
release, is 35 minutes, or better; less is ‘intolerable’

Usability.Productivity
Scale for quantification: Time in minutes to set
up a typical specified Market Research-report

Past Level [Release 8.0]: 65 mins.

Tolerable Limit [Release 8.5]: 35 mins.,

Goal [Release 8.5]: 25 mins.

© Tom @ Gilb.comOct 2015 Version Prague
Geecon 45

The committed target level requirement, the ‘Goal’,  
is to get the user task down to 25 minutes or better.

Usability.Productivity
Scale for quantification: Time in minutes to
set up a typical specified Market Research-
report

Past Level [Release 8.0]: 65 mins.,

Tolerable Limit [Release 8.5]: 35 mins.,

Goal [Release 8.5]: 25 mins.

© Tom @ Gilb.comOct 2015 Version Prague
Geecon 46

The weekly ‘value delivery cycle’ resource is 110 work-hours 
(4 days, effective time for the team of 3 to 4 people)

Work Hours available
 this weekly delivery

cycle.
For 4 people.

110 effective hours

© Tom @ Gilb.comOct 2015 Version Prague
Geecon 47

The developer team can choose the requirement they want to
prioritize, and work on, this week. They chose the 0.0 (no

improvement yet, in last 8 weeks) of the ‘Productivity requirement

The team chooses to work on a
weak point.

This is ‘dynamic prioritization’ –
Decisions based on the weekly

‘state of play’

 0.0

© Tom @ Gilb.comOct 2015 Version Prague
Geecon 48

Every user, every day, was using an average of 65 minutes to 
set up a report. We want a 40 minute improvement to that,  

to 25 minutes

Usability.Productivity
Scale for quantification: Time in minutes to set up a
typical specified Market Research-report

Past Level [Release 8.0]: 65 mins.,

Tolerable Limit [Release 8.5]: 35 mins.,

Goal [Release 8.5]: 25 mins.

© Tom @ Gilb.comOct 2015 Version Prague
Geecon 49

The team has a 30 minute ‘design’ meeting, to suggest designs which
might help move from 65 minutes for the task, towards the 25 minute

Goal level

© Tom @ Gilb.comOct 2015 Version Prague
Geecon 50

‘Recoding’ is the name of 1 of 12 suggested, brainstormed, designs for
saving user effort, by any member of the developer team

© Tom @ Gilb.comOct 2015 Version Prague
Geecon 51

‘Recoding’ was estimated, by the suggester, to save 20 minutes time
for the users

© Tom @ Gilb.comOct 2015 Version Prague
Geecon 52

‘Recoding’ was also estimated to take the entire 4 day delivery cycle
available. No time left to add more solutions, in order to try to get

closer to the target, on this delivery cycle.

© Tom @ Gilb.comOct 2015 Version Prague
Geecon 53

And 20 minutes saving, was the best ‘impact’ estimated from the 12
total suggestions made by the team members. So ‘Recoding’ (of
marketing codes) was chosen as the best thing to do that week.

© Tom @ Gilb.comOct 2015 Version Prague
Geecon 54

And 20 minutes saving, is equivalent to 50% of the way betweem Past
and Goal (65 – 25 = 40, 20/40 = 50%). 

This is another way of expressing the expected impact of Recoding

© Tom @ Gilb.comOct 2015 Version Prague
Geecon 55

The team commits to the ‘Recoding’ solution. They code, test and
handover to Microsoft usability Labs in Washington State, who

volunteered to independently measure all the Usability designs.

© Tom @ Gilb.comOct 2015 Version Prague
Geecon 56

The result was a saving, or improvement of 38 minutes, or 95% of the
way to the target requirement of 25 minutes

© Tom @ Gilb.comOct 2015 Version Prague
Geecon 57

This was not good enough for Trond Johansen. 
And he did not want to use 1 of the 3 remaining weeks to release (10, 11, 12th weeks) in

order to get to 100% of the target.  
So, he asked one team member to spend the weekend tuning the ‘Recoding’ solution.  

And he managed to get the timing down to 20 minutes.  
12.5% more than the 25 minutes targeted.  

 Thus total impact is 112.5%

© Tom @ Gilb.comOct 2015 Version Prague
Geecon 58

And the priority flag turns Green (no priority, Goal reached)

Copyright Tom@Gilb.com 2014

9
8

3
3

11 September 2014 59

EVO Plan Confirmit 8.5 in Evo Step Impact Measurement 
4 product areas were attacked in all: 25 Qualities concurrently, one quarter of a

year. Total development staff = 13

Copyright Tom@Gilb.com 201411 September 2014 60

Confirmit Evo Weekly Value Delivery Cycle

Copyright Tom@Gilb.com 2014

Evo’s impact on Confirmit product qualities 1st Qtr

• Only 5 highlights of the 25 impacts are listed here

Description of requirement/work task Past Status

Usability.Productivity: Time for the system to generate a survey 7200 sec 15 sec

Usability.Productivity: Time to set up a typical specified Market Research-
report (MR)

65 min 20 min

Usability.Productivity: Time to grant a set of End-users access to a Report
set and distribute report login info.

80 min 5 min

Usability.Intuitiveness: The time in minutes it takes a medium experienced
programmer to define a complete and correct data transfer definition with
Confirmit Web Services without any user documentation or any other aid

15 min 5 min

Performance.Runtime.Concurrency: Maximum number of simultaneous
respondents executing a survey with a click rate of 20 sec and an response
time<500 ms, given a defined [Survey-Complexity] and a defined [Server
Configuration, Typical]

250 users 6000

Release 8.5

Copyright Tom@Gilb.com 2014
Trond Johansen

11 September 2014 62

• EVO has resulted in
– increased motivation and
– enthusiasm amongst developers,
– it opens up for empowered creativity

• Developers
– embraced the method and
– saw the value of using it,
– even though they found parts of Evo

difficult to understand and execute
(without training)

Developers love ‘Empowered
Creativity’

 
Initial Customer Feedback  
on the new Confirmit 9.0

November 24th, 2004

Copyright Tom@Gilb.com 2014

Base: 73

11 September 2014 64

Initial perceived value of the new release  
(Base 73 people)

Copyright Tom@Gilb.com 2014

Evo’s impact on Confirmit 9.0 product qualities 
Results from the second quarter of using Evo. 1/2

Productivity

Intuitiveness

Product quality

Time reduced by

38%
Time in minutes for a defined
advanced user, with full knowledge of
9.0 functionality, to set up a defined
advanced survey correctly.

Probability
increased by

175%

Probability that an inexperienced user
can intuitively figure out how to set up
a defined Simple Survey correctly.

Customer value Description

Productivity
Product quality

Time reduced by

83% and

error tracking
increased by 25%

Time (in minutes) to test a defined survey
and identify 4 inserted script errors, starting
from when the questionnaire is finished to
the time testing is complete and is ready for
production. (Defined Survey: Complex
survey, 60 questions, comprehensive
JScripting.)

Customer value Description

6511 September 2014

Copyright Tom@Gilb.com 2014

Evo’s impact on Confirmit 9.0 product qualities 
 Results from the second quarter of using Evo. 2/2

Number of responses
increased by 1400%

Number of responses a database can
contain if the generation of a defined table
should be run in 5 seconds.

Performance

Number of panelists
increased by 700%

Ability to accomplish a bulk-update of X
panelists within a timeframe of Z second

Scalability

Performance

Product quality

Number of panelists
increased by

1500%

Max number of panelists that the system
can support without exceeding a defined
time for the defined task, with all
components of the panel system performing
acceptable.

Customer value Description

6611 September 2014

Copyright Tom@Gilb.com 201411 September 2014 67

Case:  
Delegating  

Developer Environment  
 to Developers  

using Multidimensional Engineering

© Tom @ Gilb.com

Technical debt  
From Wikipedia, the free encyclopedia

Technical debt

consequences
of poor
software
architecture
and software
development
within a codebase.

Causes of technical debt
1. Business pressures
2. Lack of process or

understanding
3. Lack of building loosely

coupled components,
4. Lack of test suite,
5. Lack of documentation,
6. Lack of collaboration
7. Parallel
8. Delayed Refactoring

Oct 2015 Version Prague
Geecon 68

http://en.wikipedia.org/wiki/Software_architecture
http://en.wikipedia.org/wiki/Software_architecture
http://en.wikipedia.org/wiki/Software_development
http://en.wikipedia.org/wiki/Software_development
http://en.wikipedia.org/wiki/Software_development
http://en.wikipedia.org/wiki/Codebase
http://en.wikipedia.org/wiki/Codebase

© Tom @ Gilb.comOct 2015 Version Prague
Geecon 69

• But it means we have to become real
software engineers,

• Not just- - - softcrafters*

• * coders, developers, programmers.
– Term coined in
– “Principles of Software Engineering Management”, 1988, Gilb

There is a smarter way

Copyright Tom@Gilb.com 2014

Speed

Maintainability

Nunit Tests

PeerTests

TestDirectorTests

Robustness.Correctness

Robustness.Boundary
Conditions

ResourceUsage.CPU

Maintainability.DocCode

SynchronizationStatus11 September 2014 70

• Instead of Refactoring 1 day a week (failed)
• Let the Dev Teams engineer using ‘agile’ (Evo): Design Dev Quality in to their own process
• To meeting their own internal stakeholder Quality Objectives
• 1 week a month

Code quality – ”green” week 
Empowered Creativity: for Maintainability

Copyright Tom@Gilb.com 201411 September 2014 71

• 1. define better quality dev and testing environment
QUANTITATIVELY
– Scale of measure and Goal level

• 2. Figure out, brainstorm ANY systems engineering
design or architecture to get to their self determined
improvement goals
– Not just code refactoring, but any tools, processes,

motivations, hardware etc that WORK
• 3. Implement, measure

– Keep the stuff that works
– Dump the stuff that does not MEASURABLY work

• 4. Keep on trucking’ (monthly, forever, or …)
– DONE is when devs have no further improvement needs

Same Process as for their External
(User, Customer) stakeholders

Copyright Tom@Gilb.com 2014

 User Week 1
• Select a Goal
• Brainstorm

Designs
• Estimate

Design
Impact/Cost

• Pick best
design

• Implement
design

• Test design
• Update

Progress to
Goal

Developer
Week 4
• Select a

Goal
• Brainstorm

Designs
• Estimate

Design
Impact/Cost

• Pick best
design

• Implement
design

• Test design
• Update

Progress to
Goal

11 September 2014 72

The Monthly ‘Green Week’

 User Week 2
• Select a Goal
• Brainstorm

Designs
• Estimate

Design
Impact/Cost

• Pick best
design

• Implement
design

• Test design
• Update

Progress to
Goal

 User Week 3
• Select a Goal
• Brainstorm

Designs
• Estimate

Design
Impact/Cost

• Pick best
design

• Implement
design

• Test design
• Update

Progress to
Goal

Copyright Tom@Gilb.com 201411 September 2014 73

• Developers
Acting like real software engineers
Can engineer technical debt reduction

 It is NOT about refactoring, and patterns
 though if they work measurably best, we can use them.
 But, did you ever see measurement or re they just belief systems?

 It is about mature teams, with common goals, and practical experience, taking
charge of their own fate

If management resists, I suggest going on strike!
Why should we suffer agonizing technical debt, wasting 50% or more of our work
hours,

Surely we have better things to do!

Conclusion: Technical Debt

Copyright Tom@Gilb.com 201311 September 2014 74

Cleanroom

© Gilb.com 2011Oct 2015 Version Prague
Geecon 75

• “Software Engineering began to emerge in FSD” (IBM Federal Systems Division, from
1996 a part of Lockheed Martin Marietta) “some ten years ago [Ed. about 1970] in a
continuing evolution that is still underway:

• Ten years ago general management expected the worst from software projects – cost
overruns, late deliveries, unreliable and incomplete software

• Today [Ed. 1980!], management has learned to expect on-time, within budget,
deliveries of high-quality software. A Navy helicopter ship system, called LAMPS,
provides a recent example. LAMPS software was a four-year project of over 200 person-
years of effort, developing over three million, and integrating over seven million words
of program and data for eight different processors distributed between a helicopter
and a ship in 45 incremental deliveries [Ed. Note 2%!]s. Every one of those
deliveries was on time and under budget

• A more extended example can be found in the NASA space program,
• - Where in the past ten years, FSD has managed some 7,000 person-years of software

development, developing and integrating over a hundred million bytes of program and
data for ground and space processors in over a dozen projects.

• - There were few late or overrun deliveries in that decade, and none at
all in the past four years.”

In the Cleanroom Method, developed by IBM’s Harlan Mills
1970-1980 they reported:  

IBM SJ 4/80

© Gilb.com 2011Oct 2015 Version Prague
Geecon 76

• “Software Engineering began to emerge in FSD” (IBM Federal Systems Division,
from 1996 a part of Lockheed Martin Marietta) “some ten years ago [Ed. about
1970] in a continuing evolution that is still underway:

• Ten years ago general management expected the worst from software projects
– cost overruns, late deliveries, unreliable and incomplete software

• Today [Ed. 1980!], management has learned to expect on-time, within budget,
deliveries of high-quality software. A Navy helicopter ship system, called
LAMPS, provides a recent example. LAMPS software was a four-year project of
over 200 person-years of effort, developing over three million, and integrating
over seven million words of program and data for eight different processors
distributed between a helicopter and a ship in 45 incremental deliveries [Ed.
Note 2%!]s. Every one of those deliveries was on time and under budget

• A more extended example can be found in the NASA space program,
• - Where in the past ten years, FSD has managed some 7,000 person-years of

software development, developing and integrating over a hundred million
bytes of program and data for ground and space processors in over a dozen
projects.

• - There were few late or overrun deliveries in that decade, and none at all in
the past four years.”

In the Cleanroom Method, developed by IBM’s Harlan Mills (1980) they reported:  
PERFECT SOFTWARE PROJECTS: by Feedback  

in 45 incremental deliveries

were few late or overrun
deliveries in that decade,
and none at all in the past

four years

Copyright Tom@Gilb.com 201311 September 2014 77

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost
management farther by introducing design-to-cost guidance. Design, development, and managerial practices are
applied in an integrated way to ensure that software technical management is consistent with cost management.
The method [illustrated in this book by Figure 7.10] consists of developing a design, estimating its cost, and
ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by
sacrificing 'planned capability.' When a satisfactory design at cost target is achieved for a single increment, the
'development of each increment can proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking
the appropriate balance between cost and design for a single increment, but they iterate through a series of
increments, thus reducing the complexity of the task, and increasing the probability of learning from experience,
won as each increment develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp.
466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Copyright Tom@Gilb.com 201311 September 2014 78

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure
that software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10]
consists of developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can
proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the
appropriate balance between cost and design for a single increment, but they iterate through a series of increments, thus
reducing the complexity of the task, and increasing the probability of learning from experience, won as each increment
develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

of developing a design,
estimating its cost, and
ensuring that the design

is cost-effective

Copyright Tom@Gilb.com 201311 September 2014 79

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure
that software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10]
consists of developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can
proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the
appropriate balance between cost and design for a single increment, but they iterate through a series of increments, thus
reducing the complexity of the task, and increasing the probability of learning from experience, won as each increment
develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

iteration process
trying to meet cost

targets by either
redesign or by

sacrificing 'planned
capability’

Copyright Tom@Gilb.com 201311 September 2014 80

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure
that software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10]
consists of developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can
proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the
appropriate balance between cost and design for a single increment, but they iterate through a series of increments, thus
reducing the complexity of the task, and increasing the probability of learning from experience, won as each increment
develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Design is an

iterative process

Copyright Tom@Gilb.com 201311 September 2014 81

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure
that software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10]
consists of developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can
proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the
appropriate balance between cost and design for a single increment, but they iterate through a series of increments, thus
reducing the complexity of the task, and increasing the probability of learning from experience, won as each increment
develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

but they iterate through a series of
increments,

thus reducing the complexity of the
task,

and increasing the probability of
learning from experience

Copyright Tom@Gilb.com 201311 September 2014 82

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by
introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure
that software technical management is consistent with cost management. The method [illustrated in this book by Figure 7.10]
consists of developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can
proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the
appropriate balance between cost and design for a single increment, but they iterate through a series of increments, thus
reducing the complexity of the task, and increasing the probability of learning from experience, won as each increment
develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

 an estimate to
complete the remaining

increments is
computed.

© Gilb.com11 September 2014 83
 “ I attended a 3-day course with you and Kai whilst at Citigroup in 2006”

Richard Smith

A story of devs
 refusing to be told how to design
 by Bank IT architects. Focussing
on a few critical value measurable
Objectives;
 and delivering on time for full
user satisfaction: 100% success
Using Agile Evo: The Engineering
Agile Method

© Gilb.com

Previous IT Project Management Methods:  
No ‘Value delivery tracking’. 
No change reaction ability

• “However, (our old project management methodology)
main failings were that

• it almost totally missed the ability to track delivery of
actual value improvements to a project's stakeholders,

• and the ability to react to changes
– in requirements and
– priority
– for the project's duration”

11 September 2014 84

Richard Smith

© Gilb.com

We only had the illusion of control.  
But little help to testers and analysts

• “The (old) toolset generated lots of charts and
stats

• that provided the illusion of risk control.
• But actually provided very little help to the

analysts, developers and testers actually doing
the work at the coal face.”

11 September 2014 85

Richard Smith

© Gilb.com

The proof is in the pudding;

• “The proof is in the pudding;

• I have used Evo
• (albeit in disguise sometimes)
• on two large, high-risk projects in front-office investment

banking businesses,
• and several smaller tasks. “

11 September 2014 86

Richard Smith

© Gilb.com

Experience: if top level requirements
are separated from design, the

‘requirements’ are stable!

• “On the largest critical project,
• the original business functions & performance objective

requirements document,
• which included no design,
• essentially remained unchanged
• over the 14 months the project took to deliver,….”

11 September 2014 87
 “ I attended a 3-day course with you and Kai whilst at Citigroup in 2006”, Richard
Smith

Richard Smith

© Gilb.com

Dynamic (Agile, Evo) design testing:  
not unlike ‘Lean Startup’

• “… but the detailed designs
– (of the GUI, business logic, performance characteristics)

• changed many many times,
• guided by lessons learnt
• and feedback gained by
• delivering a succession of early deliveries
• to real users”

11 September 2014 88

 “ I attended a 3-day course with you and Kai whilst at Citigroup in 2006”, Richard
Smith

Richard Smith

© Gilb.com

It looks like the stakeholders liked the top
level system qualities,  

on first try

– “ In the end, the new system responsible for 10s of
USD billions of notional risk,

– successfully went live
– over one weekend
– for 800 users worldwide,

– and was seen as a big success
– by the sponsoring stakeholders.”

11 September 2014 89

 “ I attended a 3-day course with you and Kai whilst at Citigroup in 2006” , Richard
Smith

Richard Smith

Copyright Tom@Gilb.com 2014

Is it so hard to change?

• NOT if we delegate power to the
people in the trenches

• And that means giving them
information about the problems

• Letting them be driven by
stakeholder values and goals

– But finding their own solutions to
these challenges

• And giving them a chance to
suggest, and make, changes

• And giving them a chance to
measure the success, or failure, of
their own ideas

• To learn and try again
• To eternally perform a change

process, at their own pace
• Supported, protected, and funded

by management

• YES IT IS damned HARD
• If managers try top down, command

and control
– And dictate solutions like agile,

lean, CMMI
– With a deadline next year

• And hard if outside or inside
consultants, are the source of the
‘big change ideas’
– It is the many small practical ideas

that win in the long term

11 September 2014 90

Copyright Tom@Gilb.com 2014

My 10 Principles of Improvement

Work Environment
1. Delegate to the doers
2. Measure the

improvements
3. Let troops identify

common cause defects
4. Let them suggest root

causes
5. Let them suggest and try

cures

Product Development
6. Let troops choose the value
goal to work on
7. Let them estimate the power
of their ideas
8. Let them decide which
design to implement
9. Let them measure the
results, this week and total to
date
10. Credit them for the results,
and reward success

11 September 2014 91

Copyright Tom@Gilb.com 201411 September 2014 92

• Programmers of the world Unite!

The Revolution is here

93

For a free underground revolutionary Handbook 
for changing 

 Coder -> Software Engineer.  
(The Revolution) 

But it might take 10,000 hours to Master it all ! 
Email to Tom @ Gilb . Com  

with Subject “GeeCon 2015”  
if you also want my new book manuscript. ‘Value Planning’ 

put ‘VP’ in subject

http://tinyurl.com/
GilbGeecon

Will get you a copy of these slides
And my papers on Agile

And original historical papers
referred to in this talk

Mays, Mills, Holland, etc.

Copyright Tom@Gilb.com 201411 September 2014 94

• http://tinyurl.com/GilbGeecon

Go back a slide

http://tinyurl.com/GilbGeecon

