Advanced Product Owner

Paper at gilb.com/dl799

These slides at http://www.gilb.com/dl813

All Gilb's 11 Agile Mythodology Columns tinyurl.com/GilbMyth

Tom Gilb

Basic Product Owner Concept

Product Owner as Input to Scrum Team

Copyright © 2011, William B. Heys

Input sources to P.O. Stakeholders and Business Owner

Requirements and Design: Related but Separated and Specialized 'Engineering' Processes

Advanced 'Product Owner' and the 'Value Options List' (VOLare!)

Advanced: = 'Evo' Agile Method *

Advanced Product Owner

- Value Focussed
- Real Engineering
- Requirements = Value
- Stakeholder Focussed (all 50+!)
- Qualities Focussed (all 30)
- Measurable Value Stream
- Architecture Engineering

Conventional 'Product Owner'

- Code Focussed
- Craft ('Softcraft')
- Reqts = Function, Story
- User Customer Focussed (all 2)
- Bug Focussed (not even MTBF)
- Code Stream
- No clear design concept

^{*} CE book, Chapter 10: Evolutionary Project Management: http://www.gilb.com//tiki-download_file.php?fileId=77

POo (A Wave to Milne)

- The 'Owner of Product,' made stories
- So that Burndown was ferocious velocities
- But the Value delivered
- Made Stakeholders so shivered
- That the Owner turned into a Loner

Cheers Milne!

- There once was a 'soft engineer'
- Who knew no 'complexity fear'
- He *sorted* a project
- That beggared his logic
- So, '**Done**'!
 - who's having a beer

The Policy

- Advanced Product Owner' Policy: System 'Requirements Engineer' (RE).
 - Background: this policy defines the expectations for a 'Product Owner' (PO) for serious, critical, large, and complex systems.
 - This implies that it is not enough to manage a simple stream (Backlog) of 'user stories' fed to a programming team.
 - It is necessary to communicate with a systems engineering team, developing or maintaining the 'Product'.
 - System implies management of all technological components, people, data, hardware, organization, training, motivation, and programs.
 - Engineering: means systematic and quantified, 'real' engineering processes, where proactive design is used to manage system performance (incl. all qualities) attributes and costs.

1. COMPLETE REQUIREMENTS:

- The RE (Requirements Engineer) is responsible for absolutely all requirements specification that the system must be aware of, and be responsible for to all critical or relevant stakeholders.
 - In particular, the RE is
 - not narrowly responsible for requirements from users and customers alone.
 - They are responsible for all other stakeholders,
 - » such as operations, maintenance, laws, regulations, resource providers, and more.

2. QUALITY REQUIREMENTS:

- The RE is responsible for the quality level, in relation to official standards, of all requirements they transmit to others.
 - They are consequently responsible for making sure the quality of incoming raw requirements, needs, values, constraints etc. is good enough to process. No GIGO.
 - If input is not good quality,
 - they are responsible for making sure it is better quality,
 - or at least clearly annotated where there is
 - » doubt, incompleteness, ambiguity and any other potential problems, they cannot resolve yet.

3. ARCHITECTURE:

- The Requirements Engineer is NOT responsible for any architecture or design process itself.
 - This will be done by professional engineers and architects.
- They are however very much responsible for a complete and intelligible quality set of requirements,
 - transmitted to the designers and architects.
- The are also responsible for transmitting qualitycontrolled architecture or design specifications to any relevant system builders.
 - These are the designs which are input requirements to builders. Effectively they are 'design constraints requirements'.

4. Priority Information:

- The Requirements Engineer is NOT responsible for prioritization of requirements.
- Prioritization is done dynamically
 - at the project management (PM) level,
 - based on prioritization signals in the requirements,
 - and on current feedback and experience in the value delivery cycles (Sprints).
- The primary responsibility of the Requirements Engineer,
 - is to systematically and thoroughly collect and disseminate all relevant priority signals, into the requirement specification;
 - so that intelligent prioritization can be done at any relevant level, and at any time.

End of Summary in Detail

Detail **gilb.com/dl799** in Following slides

The Policy

- Advanced Product Owner' Policy: System 'Requirements Engineer' (RE).
 - Background: this policy defines the expectations for a 'Product Owner' (PO) for serious, critical, large, and complex systems.
 - This implies that it is not enough to manage a simple stream (Backlog) of 'user stories' fed to a programming team.
 - It is necessary to communicate with a systems engineering team, developing or maintaining the 'Product'.
 - System implies management of all technological components, people, data, hardware, organization, training, motivation, and programs.
 - Engineering: means systematic and quantified, 'real' engineering processes, where proactive design is used to manage system performance (incl. all qualities) attributes and costs.

1. COMPLETE REQUIREMENTS:

- The RE (Requirements Engineer) is responsible for absolutely all requirements specification that the system must be aware of, and be responsible for to all critical or relevant stakeholders.
 - In particular, the RE is
 - not narrowly responsible for requirements from users and customers alone.
 - They are responsible for all other stakeholders,
 - » such as operations, maintenance, laws, regulations, resource providers, and more.

Rich and Complete Requirement Concepts

<u>Multiple</u> Required Performance and Cost Attributes are the basis for architecture selection and evaluation

Planguage stages

Man-Chie Tse1,2 & Ravinder Singh Kahlon 1,2 {Man-Chie, Ravi}@dkode.co

EVO Plan Confirmit 8.5 in **Evo Step Impact Measurement**4 product areas were attacked in all: **25 Qualities** concurrently, one quarter of a year. Total development staff = 12

			Impact Estimation	<u>Table: R</u>	eportal	coden	<u>ame "Hy</u>	ggen"				
Current Status	Improve	ements	Reportal - E-SA	AT features			Current Status	Improv	ements	Survey En	gine .NET	
Units	Units	%	Past	Tolerable	Goal		Units	Units	%	Past	Tolerable	Goal
			Usability.Intuitivness (%)							Backwards.Compatibility	(%)	
75,0	25,0	62,5	50	75	90		83,0	48,0	80,0	40	85	95
			Usability.Consistency.Visu	al (Elemen	ts)		0,0	67,0	100,0	67	0	0
14,0	14,0	100,0	0	11	14					Generate.WI.Time (small/	medium/lar	ge secor
			Usability.Consistency.Inter	raction (Co	mponents		4,0	59,0	100,0	63	8	4
15,0	15,0	107,1	0	11	14		10,0	397,0	100,0	407	100	10
			Usability.Productivity (minu	utes)			94,0	2290,0	103,9	2384	500	180
5,0	75,0	96,2		5	2					Testability (%)		
5,0	45,0	95,7	50	5	1		10,0	10,0	13,3		100	100
			Usability.Flexibility.OfflineR	eport.Expo	ortFormats					Usability.Speed (seconds	user rating	1-10)
3,0	2,0	66,7	1	3	4		774,0	507,0	51,7	1281	600	300
			Usability.Robustness (erro	ors)			5,0	3,0	60,0	2	5	7
1,0	22,0	95,7	7	1	0					Runtime.ResourceUsage.	Memory	
			Usability.Replacability (nr o	f features)			0,0	0,0	0,0		?	?
4,0	5,0	100,0		5	3					Runtime.ResourceUsage.	CPU	
			Usability.ResponseTime.Ex	kportRep	t (min es		3,0	35.	97,2		3	2
1,0	12,0	150,0	13	13 2	5 9	2.2	62	6 86		Runtime.ResourceUsage.	MemoryLea	ak
			Usability.ResponseTime.Vi	iewRepc	(seco 3)	32	l 🥞 d.@	8 0 0 €	100,0	800	0	0
1,0	14,0	100,0	15		1					Runtime.Concurrency (nu	mber of us	ers)
			Development resources	X	X	IX	X 350	X 1100 X	146,7	150	500	1000
203,0			0	V	91	1/ /			N .	Development resources		
							64)	C		
Current Status	Improve		Reportal - MR		Goal	B	Cur ent	Improv	ements	XML Web	Senices	
Units	Units	%	Usability.Replacability (feat		Goal		it tus	improv	ements	AIVIL VVeb	Services	
1.0	1.0	50.0		ure count) 13	12	V	Units	Units	%	Past	Tolerable	Goal
1,0	1,0	50,0	Usability.Productivity (minu		14		Utills	Offics	70	TransferDefinition.Usabili		
20.0	45.0	112,5			25		7.0	9.0	81,8		10	5
20,0	45,0	112,5	Usability.ClientAcceptance				17,0	8,0	53,3		15	10
4.4	4.4	36.7		4	12	-	17,0	0,0	55,5			
4,4	4,4	36,7	Development resources	4	12		943.0	-186.0	######	TransferDefinition.Usabili 170	ty.Respons	e 30
101.0			0		86	-	343,0	-100,0	**********	TransferDefinition.Usabili		
101,0			•				5.0	10.0	95,2		7.5	4.5
							0,0	,.	00,2	Development resources	1,0	-1-

8

Real Bank Project: Project Progress Testability Quantification of the most-critical project objectives on day 1

<u>P&L-Consistency&T P&L</u>: Scale: total adjustments btw Flash/Predict and Operational-Control. Timely. Trade-Bookings Scale: number of trades Actual (T+1) signed off P&L. per day. Past 60 Goal: 15 per day that are not booked on trade date. Past [April 20xx] 20?

Speed-To-Deliver: Scale: average Calendar days needed from New Idea Front-Office-Trade-Management-Efficiency Scale: Time from Ticket Approved until Idea Operational, for given Tasks, on given Markets. Past [2009, Market = EURex, Task = Bond Execution] 2-3 months? Goal [Deadline = End 20xz, Market = EURex, Task = Bond Execution] 5 days

Operational-Control: Scale: % of trades per day, where the calculated economic difference between OUR CO and Marketplace/Clients, is less than "1 Yen" (or equivalent).

Past [April 20xx] 10% change this to 90% NH Goal [Dec. 20xy] 100%

Operational-Control.Consistent: Scale: % of defined [Trades] failing full metrics is delayed by more than 0.5 sec. Past [April 20xx, NA] 1% Past STP across the transaction cycle. Past [April 20xx, Trades=Voice Trades] [April 20xx, EMEA] ??% Past [April 20xx, AP] 100% Goal [Dec. 20xy] 0% 95%

Past [April 20xx, Trades=eTrades] 93%

Goal [April 20xz, Trades=Voice Trades] <95 ± 2%>

Goal [April 20xz, Trades=eTrades] 98.5 ± 0.5 %

Operational-Control.Timely.End&OvernightP&L Scale: number of times, per guarter, the P&L information is not delivered timely to the defined [Bach-Run].

Past [April 20xx, Batch-Run=Overnight] 1 Goal [Dec. 20xy, Batch-Run=Overnight] <0.5> Past [April 20xx, Batch-Run= T+1] 1 Goal [Dec. 20xy, Batch-Run=End-Of-Day, Delay<1hour] 1

Operational-Control.Timely.IntradayP&L Scale: number of times per day the intraday P&L process is delayed more than 0.5 sec.

Launch to trade updating real-time risk view Past [20xx, Function = Risk Mgt, Region = Global] ~ 80s +/- 45s ?? **Goal** [End 20xz, Function = Risk Mgt, Region = Global] ~ 50% better? Managing Risk - Accurate - Consolidated - Real Time

Risk.Cross-Product Scale: % of financial products that risk metrics can be displayed in a single position blotter in a way appropriate for the trader (i.e. – around a benchmark vs. across the curve).

Risk.Low-latency Scale: number of times per day the intraday risk

Goal [Dec. 20xy] 100%

Risk. user-configurable Scale: ??? pretty binary – feature is there or not - how do we represent?

Past [April 20xx] 1% Goal [Dec. 20xy] 0%

Past [April 20xx] 0% 95%.

Risk.Accuracy

Operational Cost Efficiency Scale: <Increased efficiency (Straight through processing STP Rates)>

Cost-Per-Trade Scale: % reduction in Cost-Per-Trade

Goal (EOY 20xy, cost type = I 1 - REGION = ALL) Reduce cost by 60% (BW)

Goal (EOY 20xy, cost type = I 2 - REGION = ALL) Reduce cost by x % Goal (EOY 20xy, cost type = E1 - REGION = ALL) Reduce cost by x % Goal (EOY 20xy, cost type = E 2 - REGION = ALL) Reduce cost by 100%

Goal (EOY 20xy, cost type = E 3 - REGION = ALL) Reduce cost by x %

Detailed Example

- Operational-Control. Consistent :
 - Scale: % of defined [Trades] failing full STP across the transaction cycle.
 - Past [April 20xx, Trades=Voice Trades] 95%
 Past [April 20xx, Trades=eTrades] 93%
 - Goal [April 20xz, Trades=Voice Trades] <95 ± 2%>
 Goal [April 20xz, Trades=eTrades] 98.5 ± 0.5 %

Impacts On ...

The Requirements in Planguage

Man-Chie Tse1,2 & Ravinder Singh Kahlon 1,2

			·• - · ·			
	Impacts [Functions]	Impacts [Intended Performance Requirements]	Impacts [intended Scale]	Impact Past	Impact Tolerable	Impact Goal
11	Enter Content [Consumer] request details	Efficiency. Effort Saving. Reduce Time for [User] to produce request	Average time taken for define [request type: default=user]	[<2012, HH, User, 180 minutes]	30 minutes	5 minutes
12	Submit [Content] Request	Efficiency. Effort Saving. Reduce Time for [User] to enter request	Average time taken for define [request type: default=user]	[<2012, HH, User, 30 minutes]	15 minutes	10 minutes
13	Process a [User] Request	Efficiency. Elapse Time Saving. Reduce [TIME] to process user request	Average time taken for define [request type: default=processor]	[<2012, HH, User, 70 minutes]	30 minutes	15 minutes
14	Usability.[Sheet] Type	Average Number of [Sheet] Completed Manually Monthly	1412 sheets	[<2012, HH, Completed Sheets, 1412]	1000 lines	850 lines
15	Usability. Reduce number of Content [Errors]	Average Number [Errors] of Content	353 errors per week	[<2012, HH, User, 353 per week]	100 per week	30 per week
16	Update.[Process] rules	Efficiency. Elapse Time Saving. Reduce [TIME] to update the rules	Average time taken for [Content Validation]	[<2012, HH, Verifier, 50 minutes]	35 minutes	20 minutes
17	Distribution.[Location]	Accessibility. Elapse Time Saving. Increase the information flow distribution	Number of sheets distributed	[<2012, HH, Send Information [Physical] location]	20 wards	Anywhere
18	Distribution.[Accessibility]	Accessibility. Elapse Time Access	System access volume	[<2012, HH, Open Time, 9am -5pm]	9am – 12pm	Anytime
19	Notification.[Query Calls]	Notification. Elapse Change Over [Query Calls]	[Decrease the number of query calls]	[<2012, Calls Measure, 85% Volume]	40%	10%
I10	Update.[Connect Content] Rules	Efficiency. Elapse Time Saving. Reduce [Time] taken to produce label	Average [time] taken	[<2012, HH, Producer, Processing, 10 minutes]	6 minutes	2 minutes
111	Time. Costing to [Retrieve]	Cost. Cost Saving. Reduce cost in retrieval of information	Average [time] taken	[<2012, HH, User, 240 minutes searching time]	60 minutes	15 minutes
112	Time.[File]	Efficiency. Efficiency Saving. Reduce time taken to file	Average [time] taken	[<2012, HH, Administrator, 30 minutes]	15 minutes	3 minutes
113	Time.[Leam]	Learn ability. Elapse Time Learning. Reduce Time on Training	Average time taken for [request type: default=user] to learn process	[<2012, HH, Learner, 1 day]	4 hours	1 hour

2. QUALITY REQUIREMENTS:

- The RE is responsible for the quality level, in relation to official standards, of all requirements they transmit to others.
 - They are consequently responsible for making sure the quality of incoming raw requirements, needs, values, constraints etc. is good enough to process. No GIGO.
 - If input is not good quality,
 - they are responsible for making sure it is better quality,
 - or at least clearly annotated where there is
 - » doubt, incompleteness, ambiguity and any other potential problems, they cannot resolve yet.

A Recent Example

Application of Specification Quality Control by a SW team resulted in the following defect density reduction in requirements over several months:

Rev.	# of Defects	# of Pages		% Change in DPP
0.3	312	31	10.06	
0.5	209	44	4.75	-53%
0.6	247	60	4.12	-13%
0.7	114	33	3.45	-16%
0.8	45	38	1.18	-66%
1.0	10	45	0.22	-81%
Overall 9	6 change in I	DPP revisio	n 0.3 to 1.0:	-98%

Downstream benefits:

- Scope delivered at the Alpha milestone increased 300%, released scope up 233%
- •SW defects reduced by ~50%
- •Defects that did occur were resolved in far less time on average

3. ARCHITECTURE:

- The Requirements Engineer is NOT responsible for any architecture or design process itself.
 - This will be done by professional engineers and architects.
- They are however very much responsible for a complete and intelligible quality set of requirements,
 - transmitted to the designers and architects.
- The are also responsible for transmitting qualitycontrolled architecture or design specifications to any relevant system builders.
 - These are the designs which are input requirements to builders. Effectively they are 'design constraints requirements'.

Impact Estimation Elements

Man-Chie Tse1,2 & Ravinder Singh Kahlon 1,2 {Man-Chie, Ravi}@dkode.co

Architecture Specification Rules

from CE Book Ch. 7

7.4 Rules: Design Specification

R8: IE table:

The set of design ideas specified to meet a set of requirements should be validated at an early stage by using an Impact

Estimation (IE) table.

Acer Project: Impact Estimation Table

Strategies	Identify Binding Compliance Requirements Strategy	System Control Strategy	System Implementation Strategy	Find Services That Meet Our Goals Strategy	Use The Lowest Cost Provider Strategy
Goals		Strate	eaies		
Security Administration Compliance 25% → 90%	100%	100%	100%	50%	0%
Security Administration Performance 24 hrs	75%	100%	100%	100%	0%
Security Administration Availability 10 hrs → 24 hrs	0%	0%	pacts ***	100%	0%
Security Administration Cost 100% → 60%	50%	100%	100%	100%	100%
Total Percentage Impact	225%	300%	300%	350%	100%
Evidence	ISAG Gap Analysis Oct-03	John Collins	John Collins	John Collins	John Collins
Cost to Implement Strategy	15 man days (US\$ 5,550)	15 man days (US\$ 5,550)	15 man days (US\$ 5,550)	15 man days (US\$ 5,550)	1man day (US\$ 1,110)
Credibility	0.9	0.6	0.6	0.75	0.9
Cost Adjusted Percentage Impact	202.5%	180%	180%	262.5%	90%

200 Mighin trans @6164com 2014

Impact Estimation: Value-for-Money Delivery Table

STRATEGIES →	Technology	Business	People	Empow-	Principles	Business	SUM
	Investment	Practices		erment	of IMA	Process Re-	
OBJECTIVES					Management	engineering	
Customer Service	50%	10%	5%	5%	5%	60%	185%
? → 0 Violation of agreement				<u> </u>	<u> </u>		<u> </u>
Availability	50%	5%	5-10%	0	0	200%	265%
90% → 99.5% Up time				<u> </u>			l
Usability	50%	5-10%	5-10%	50%	0	10%	130%
200 → 60 Requests by Users							l !
Responsiveness	50%	10%	90%	25%	5%	50%	180%
$70\% \rightarrow ECP$'s on time							
Productivity	45%	60%	10%	35%	100%	53%	303%
3:1 Return on Investment							
Morale	50%	5%	75%	45%	15%	61%	251%
72 → 60 per mo. Sick Leave							
Data Integrity	42%	10%	25%	5%	70%	25%	177%
88% → 97% Data Error %	<u> </u>			<u> </u>	<u> </u>		<u> </u>
Technology Adaptability	5%	30%	5%	60%	0	60%	160%
75% Adapt Technology							
Requirement Adaptability	80%	20%	60%	75%	20%	5%	260%
? → 2.6% Adapt to Change							
Resource Adaptability	10%	80%	5%	50%	50%	75%	270%
2.1M → ? Resource Change							
Cost Reduction	50%	40%	10%	40%	50%	50%	240%
FADS → 30% Total Funding					<u> </u>	<u> </u>	<u> </u>
SUM IMPACT FOR EACH	482%	280%	305%	390%	315%	649%	
SOLUTION	<u> </u>			<u> </u>			
Money % of total budget	15%	4%	3%	4%	6%	4%	
Time % total work	15%	15%	20%	10%	20%	18%	
months/year	1	10		1.4	26		ļ
SUM RESOURCES	30 16:1	19	23	14	26	22	
BENEFIT/RESOURCES RATIO	10:1	14:7	13:3	27:9	12:1	29.5 : 1	
KATIO				<u> </u>		41	<u></u>
4							

Healthcare Impact Estimation

Man-Chie Tse1,2 & Ravinder Singh Kahlon 1,2 {Man-Chie, Ravi}@dkode.co

VALUE Decision Tables: Multiple

Product - Solution - VKoT				economic overview		l		Netbank server		payment.tonone		search.contexta				
				213%		208%		171%		175%		367%		194%		0%
				52%		25%		38%		31%		-37%		123%		
				123%		119%		50%		9%		59%		99%		
Value Requi	rement	s	units	% of Goal	units	% of Goal	units	% of Goal	units	% of Goal	units	% of Goal	units	% of Goal	units	% of Goal
Snappiness	•		10				10	71%		86%		-7%			units	% Of Goal
85	90	99	5	36%			5	36%	3	21%	5	36%	10	71%		
5-Dec-13	5-Jun-14	5-Jun-14	0.1	7%		-11%	0.7	50%	0.1	9%	0.1	-1%	0.5	50%		
Reliability			10	11%	30	33%	90	100%	80	89%	-1	-1%	-5	-6%		
30	60	120	1	1%		8%	2	2%	9	10%	2	2%	1	1%		
5-Dec-13	5-Jun-14	5-Jun-14	0.4	4%							0.7	-1%		-1%		
Usability.Intuitive			40	100%							30	75%		100%		
30	40	70	10	25%							10	25%		50%		
5-Dec-13	5-Jun-14	5-Jun-14	0.9	90%							0.8	60%		50%		
Productivity-Task	Productivity-Task		-3	30%		10%					-30	300%				
30	25	20	1	-10%		-10%					10	-100%				
5-Dec-13	5-Jun-14	5-Jun-14	0.7	21%	0.3	3%										
PV5																
1	2	3														

4. Priority Information:

- The Requirements Engineer is NOT responsible for prioritization of requirements.
- Prioritization is done dynamically
 - at the project management (PM) level,
 - based on prioritization signals in the requirements,
 - and on current feedback and experience in the value delivery cycles (Sprints).
- The primary responsibility of the Requirements Engineer,
 - is to systematically and thoroughly collect and disseminate all relevant priority signals, into the requirement specification;
 - so that intelligent prioritization can be done at any relevant level, and at any time.

Risk Management

- the Requirements Engineer is NOT responsible for Risk Management
 - But is responsible for
 - making sure that all specifications follow guidelines
 - (Rules, Quality Levels) that demand information specified about, or related to, risks and their mitigations.

Design Spec Enlarged 2 of 2

==== Priority & Risk Management ======

Assumptions: <*Any assumptions that have* been made>.

A1: FCCP is assumed to be a part of Orbit. FCxx does not

currently exist and is Dec Requirements Spec. <- P discussions AH MA JH EC.

> Consequence: FCxx estimation and cos

A2: Costs, the developme All will base on a budget (The ops costs may differ s hardware. MA AH 3 dec

A3:Boss X will continue to

A4: the schedule, 3 years, can in fact deliver, OR we budget. If not "I would ha.

ASSUMPTIONS:

 broadcasts critical factors for present and future reexamination

- helps risk analysis
- are an integral part of the design specifiction

A5: the cost of expanding Orbit will not be prohibitive. <-BB 2 dec

A6: we have made the assumption that we can integrate Oribit with PX+ in a sensible way, even in the short term <- BB

Dependencies: <State any DEPENDENCIES:

D1: FCxx replaces Px+ in time. ? tsg 2.12

14: for the business other

lack of clarity as to what might differ from Extra ai

Risks: <Name or refer to tags of any factors, which could threaten your estimated impacts>.

R1. FCxx is delayed 2.12

R2: the technical in & we must redevel

allow us to meet th

R4: scalability of O especially <- BB. Pe

Risks specification:

shares group risk knowhow

- R3: the and or scale permits redesign to mitigate the risk
 - allows relistic estimates

R5: re Cross Desk re of cost and impacts

technical design. Solution not currently known. Misk no solution allowing us to report all P/L

Issues: <Unresolved concerns or problems in the specification or the system>.

11: Do we need to put the objectives (Ownership). differentiator. Dec 2.

12: what are the time scal

13: what will the success t are actually being asked t

Issues:

- when answered can turn into a risk
- shares group knowledge
- makes sure we don't forget to analyze later

J5: the degree to which this option will be seen to be useful without Intra Day. BB 2 dec

Product:

 The system that delivers the primary critical values to stakeholders. (Tsg 7 dec 2013)

Product Owner:

 The instance (person or team) responsible for Effective Communication between all stakeholders, and any technical project, both development and maintenance. (Tsg 7 Dec 2013)

Effective Communication:

- Two-way communication, between all related instances in technical projects, is effective when:
 - 1. Communication is rapid: first try
 - 2. Communication meets relevant standards (Rules,) including these basic rules.
 - Clear enough to test
 - Unambiguous to intended readership
 - Critical variables (esp. qualities) quantified
 - Clear distinction between ends and means
 - 3. Communication is 'relevant'.
 - What stakeholders really want
 - » NOT perceived means to their true ends
 - What developers really need to know

Priority Signals

- When Due
- Higher level requirements
- Stakeholders
- Under which conditions
- Constraints
- Residual resources (running out of time, money etc)

What About scaledagileframework.com?

Epic value Statement Format

Forward-Looking Position Statement				
For	<customers></customers>			
who	<do something=""></do>			
the	<solution></solution>			
is a	<something "how"="" the="" –=""></something>			
that	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>			
Unlike	<competitor, current="" non-existing="" or="" solution="" solution,=""></competitor,>			
oursolution	<does "why"="" -="" better="" something="" the=""></does>			
Scope				
Success Criteria:	→→			
In Scope:	→→			
Out of Scope:	→→			
NFRs:	→→			

Epic Lightweight Business Case

Epic Name	Go or NO Go		Date entered Ar		Analyst			
	Recomm	endation:	Backlog:	E	Epic (Owner:		
Version		Changes						
Description of the Epic		Estimated investment	Story points:			Cost:		
		Weighted rating	(WSJF)	Type of retur		(Nature of potential return. Revenue, market share, new markets served)		
		In house or outsource	(describes recommendations for where the epicis to be developed)					
Success Criteria		development						
Stakeholders	(Identifie	Estimated development	Start Date:			Completion date:		
sponsors	(racini in	timeline	(Estimated calendar date or number of				e or number of PSIs)	
Users and markets affected Increment Implement Strategy			(Breaks initiative down into preliminary epics or sub-epics that fit the companies PSI cadence)					
Products, progra affected		(If the epic is large, identifies potential milestones or checkpoints for reevaluation)						
Impact on sales, distributio Analysis			(Brief summary of the analysis that has been formed to create the business					
deployment summary			case. Pointers to other data, feasibility studies, models, market analysis, etc.					
			that was used on the creation of the business case)					
		Attachments	Project Stakeholder Needs Assessment (see Chapter 7)					
			System Stakeho	lder Needs A	ssess	ment		
		Other notes and comments						

1/2

Epic Name	Ge or NO Ge		Date	entered	A	nalyst			
	Recommendat	ion:	Back	acklog:		pic Owner:			
Version		Changes							
Description of				•					
the Epic									
Success Criteria									
Stakeholders	(Identifies key	business sp	ponsor	s who will be sup	porting	g the initiative)			
sponsors									
Users and market		45 constitu				abelia and and			
Osers and market	ts arrected			iser community (of the s	tolution and any			
		markets	arrect	ea)					
Products, program	ms, services	(Identifi	(Identifies products, programs, services, teams,						
affected		departm	ients, e	rtc. that will be in	mpacte	ed by this epics)			
	.,								
Impact on sales, o	distribution,	(Describ	(Describes any impact on how the product is sold,						
deployment		distribut	distributed, or deployed)						
Estimated	fter relate								
	Story points:		Cost:						
investment									
Weighted rating	(WSJF)	Type of	return	(Nature of po	tential	return. Revenue,			
				market share,	new m	narkets served)			
				1					
In house or	(describes reco	mmendati	ons for	where the epic	is to be	e developed)			
outsource									
development									
Estimated	Start Date:			Completion date	=				
development									
timeline				(Estimated calen	dar dat	te or number of PSIs)			
Incremental	(Breaks initiativ	re down in	to prel	iminary epics or:	sub-epi	ics that fit the			
Implementation	companies PSI	cadence)	adence)						
Strategy									
Reevaluation	(If the epic is la	rge, identi	fies po	tential milestone	s or ch	eckpoints for			
checkpoints	reevaluation)								
Analysis	(Brief summary of the analysis that has been formed to create the business								
summary	case. Pointers to other data, feasibility studies, models, market analysis, etc.								
	**Copyright Torre Citb.com 2014								

1/2

Epic Name	Go or NO Go Recommenda	tion:	Date entered Backlog:		Analyst Epic Owner:	
Version		Changes			•	
Description of the Epic						
Success Criteria	:					
Stakeholders sponsors	(Identifies key	business sp	onsors	who will be s	upporting the initiative)	
Users and marke	ts affected	(Describ markets			y of the solution and any	
Products, program affected		(Identifies products, programs, services, teams, departments, etc. that will be impacted by this epics)				
impact on sales, o		right Tom@GNB.edm 2014				

2/2

Estimated development timeline	Start Date:	Completion date: (Estimated calendar date or number of PSIs)			
Incremental Implementation Strategy	(Breaks initiative down into pro companies PSI cadence)	eliminary epics or sub-epics that fit the			
Reevaluation checkpoints	(If the epic is large, identifies potential milestones or checkpoints for reevaluation)				
Analysis summary		that has been formed to create the business easibility studies, models, market analysis, etc. of the business case)			

	Project Stakeholder Needs Assessment (see Chapter 7) System Stakeholder Needs Assessment
Other notes 014 and comments	Copyright Tom@Gilb.com 2014

Initial Take

- Is moving in the direction of Planguage for specification
- But, does not go near the concepts of managing value by means of quantified value and quality directly
- Does not understand dynamic prioritization via values and costs (see the weighting scheme)

Last Slide

Want the detail free?

- Email me
 - -Tom @ Gilb . Com
 - -Subject: **BOOK**

- Free manuscript
- Tinyurl.com/ valueplanning

Book For Mature IT Engineers Not For Softcrafters

