[bookmark: _WNSectionTitle_10][bookmark: _WNTabType_9]10.4 Rules: Evolutionary Project Management	01/09/2014 17:59
This is  QUICK AND DIRTY COPY AND PASTE AND NEEDS EDITING
BUT IT IS THE COLLECTION OF PLANGUAGE RULES FROM OUR COMPETITIVE ENGINEERING BOOK
I AM PLACING IT ON GILB.COM DOWNLOADS FOR GENERAL ACCESS
COPYRIGHT 2005-2014 TOM@GILB.COM

ANYBODY WHO MAKES A BETTER EDIT BEFORE I DO CAN SEND ME A COPY FOR UPLOAD!  SEPT 1 2014

I INTEND TO REFERENCE THIS IN THE Competitive Planning book I am writing now.


1.4
Rules: Generic Rules for Technical and Management Specification
Here are some very basic generic rules, for any type of specification. You will find that in spite of their ‘obviousness’ and simplicity, they are quite powerful. Most of my clients use some variation of these ‘by choice’.
Tag: Rules.GS.
Version: October 7, 2004.
Owner: TG.
Status: Draft.
Note: These rules are rather lengthy, as additional explanatory text is present. Readers should abbreviate as appropriate.

R1: Tag: Specifications must each have a unique identification tag.

R2: Version: Specifications must each have a unique version identifier. By default, use the date (and maybe also, time), as the version identifier.
Version: October 7, 2004 09:00.

R3: Unique: Specifications shall exist as one official ‘master’ version only. Then they shall be re-used, by cross-referencing, using their identity tag. Duplication (‘copy and paste’) should be strongly dis- couraged.

R4: Owner: The person or group responsible for authorizing a speci- fication should be stated (‘Authority’ would be an alternative or supplementary parameter, though it is a different concept!).

R5: Status: The status for using a specification should be given. Status: SQC Exited.

R6: Quality Level: All specifications shall explicitly indicate their current quality level, preferably in terms of the measure of ‘number of remaining major defects/page’ against the relevant official standard which applies.
3 The number is a rule tag (or identification, if you like) and the word after the colon is an equivalent alternative tag for referencing the rule. 
The following references are possible Rules.GS.R1, Rules.GS.Tag, Standards.Rules.GS.Tag and other combinations. The dot indicates that what follows is part of a set of things named by the term preceding the dot. For example, GS is part of a set of things called Rules.
EXAMPLE
[image: ]
EXAMPLE
[image: ] [image: ]
  
EXAMPLE Quality Level: Less than 1 remaining major defect/page.
EXAMPLE Quality Level: Undetermined.

R7: Gist: Where appropriate, specifications should be briefly sum- marized by a Gist statement. For performance requirements, ‘Ambition’ is a preferred alternative.

R8: Type: The type of every concept within specifications should be clear. It should be explicitly specified after every new parameter tag declaration unless the type will be immediately obvious to the intended readership.
EXAMPLE ABC1: Type: Function. R9: Clear: Specifications should be ‘clear enough to test’ and ‘unambiguous to their intended readers.’

R10: Simple: Complex specifications should be decomposed into a set of elementary, tagged specifications.

R11: Fuzzy: When any element of a specification is unclear then it shall be marked, for later clarification, by <fuzzy angle brackets>.

R12: Comment: Any text which is secondary to a specification, and where no defect in it could result in a costly problem later, must be clearly identified. It can be written in italic text statements, or headed by suitable warning (such as Note, Rationale or Comment), or written in ‘‘quotes,’’ and/or moved to footnotes. Non-commentary specification shall be in plain text. Italic can be used for emphasis of single terms in non-commentary statements. Readers should be able visually, at a glance without decoding the contents, to distinguish between ‘critical’ and ‘non-critical’ specification.

R13: Source: Specification statements shall contain information about their source of origin. Use the ‘<-’ icon and state the source person and the date, or the source document with detailed statement reference.

R14: Assumptions: All known assumptions (and any relevant source(s) of any assumptions) should be explicitly stated.
The ‘Assumption’ Planguage parameter can be used for this purpose. But there are also a number of alternative ways, such as {Risk, Source, Impacts, Depends On, Comment, Authority, [Qualifiers], If}. In fact, any reasonable device, suitable for the purpose, will do.
[image: ] [image: ] [image: ]
  
[bookmark: _GoBack]R15: Risks: You must specify any factors, which constitute known or
potential risks. You must identify risks explicitly.
There are a wide variety of devices for doing so, including the explicit Planguage statement: ‘Risks.’
EXAMPLE Goal [Market Y]: 60%. Risks: Market Y will have more competition than now.

[bookmark: _WNSectionTitle][bookmark: _WNTabType_0]Planguage Rules Collection from CE Book	01/09/2014 18:37

2.4 Rules: Requirement Specification
Tag: Rules.RS. Version: October 7, 2004. Owner: TG. Status: Draft.
Base: The rules for generic specification, Rules.GS apply. For the different types of requirement use also the relevant rules (that is, Rules.FR, Rules.SR and Rules.SD).
R1: Stakeholders: There must be a list of the defined stakeholders and it must span the entire product lifecycle and system space.
For any specific specification, the specific stakeholders can be stated or defined explicitly. For example, Stakeholders: {A, B, C}.
R2: Scope: The scope or ‘system space’ of the requirements must be defined. All specified qualifiers for requirements must be relevant to the system space.
Note: Scope states the ‘overall system boundaries’. The scope for specific require- ments is generally specified using [qualifiers]. See Section 2.7 for discussion of qualifiers. Use a Scope parameter if you want an explicit definition.
R3: Qualifier Conditions: Using qualifiers, requirement specifications must adequately cover the time period (When: long term and short term) and the physical scope (Where) for the system and, must state any known dependency on conditional states or events (If).
R4: Rationale: The rationale or justification for a requirement and for specific aspects of it should be given. Use the Rationale parameter.
R5: Dependencies: Any conditions or circumstances, which a require- ment depends on for relevance or authority, must be specified. (Use the ‘Dependency’ parameter, or any other relevant means.)
R6: Internal Links: All specified requirements can be grouped into relevant hierarchical levels of requirements. Linkage to related requirements should be explicit and complete.
For example, use Planguage specifications such as:
		.  Hierarchical tags (for example, ‘System.Subsystem.Component’). 
		.  ‘Consists Of’ or ‘Includes’ to link to lower hierarchical levels. 
		.  ‘Is Part Of’ to link to higher hierarchical levels. 
		.  ‘Supports’ and ‘Is Supported By’ to explicitly specify any intended direct links. 
		.  ‘Impacts’ and ‘Is Impacted By’ to explicitly specify impacts including any  side effects (Impact Estimation table linkage). 
 
R7: External Links: Requirements which are related to any level of product line requirements, corporate standards or policies, or anything outside of the specific system documentation, must always explicitly indicate that relationship by a suitable specification (By use of parameters, such as Supports and/or Impacts). The intended readership should not have to know or guess such relationships (for example, shared interfaces, shared objectives and use of generic templates).
R8: Testable: Each requirement must be specified so that it is possible to define an unambiguous test, to prove that it is actually implemented.
A specific test may be specified or outlined immediately in the Meter or Test statement. However, any specific tests will usually be designed in detail later. The key idea is that all requirements must be clear enough to be testable by some means.
R9: Design Separation: Only design ideas that are intentionally ‘constraints’ (Type: Design Constraint) are specified in the requirements. Any other design ideas are specified separately (Type: Design Idea). All the design ideas specified as requirements should be explicitly identified as ‘design constraints’ (that is, ‘design ideas’ which are ‘constraints’).

[bookmark: _WNSectionTitle_2][bookmark: _WNTabType_1]2.4 Rules: Requirement Specification	01/09/2014 17:59

3.4 
Rules: Function and Function Requirement Specification
Gist: Specific Rules for specification of Functions and Function Requirements.
Tag: Rules.FR.
Version: October 7, 2004.
Owner: TG.
Status: Draft.
Base: The rules for generic specification, Rules.GS and the rules for requirement specification, Rules.RS apply.
R1: Functionality: Function requirements will specify what the system must do and all specified functionality must be required by specified stakeholders (Type: Function Requirement).
Function requirements are not themselves ‘unconditionally required.’ Their actual implementation will depend on their relative priority – as specified by qualifiers and other parameters (such as ‘Authority’).
R2: Detail: The function requirement specification should be specified in enough detail so that we know precisely what is expected, and do not, and cannot, inadvertently assume or include
[image: ] 
 
Functions 95 function requirements, which are not actually intended. It should
be ‘foolproof’.
Detailed definition within sub-functions can satisfy this need for clarity, the higher level function does not need to hold all the information.
EXAMPLE Fuzzy Function Environment: Gist: Ensuring Environmental Considerations.
This is a defective specification, given Rule R2. A more detailed function definition is given in the following example.
EXAMPLE Ensuring Environmental Considerations: Type: Function Requirement.
Description: All legally and competitively necessary functionality, immediate and potential, regarding environmental protection, in the widest interpretation possible, to protect us against lawsuits, and give us a clear positive reputation amongst consumers.
R3: Not Degrees: Elementary function specifications must not be described in terms of degrees or variability.
Elementary functions are binary (present or absent in totality) in nature. If something is ‘variable in degrees,’ then it probably needs to be reclassified, and redefined as a performance or resource specification linked to a function.
R4: Not Design: The specified ‘function’ requirement must not be a design idea (for example, a strategy, a device, a method or a process) whose only or main justification is to satisfy a performance or resource requirement of the system.
If the ‘function specification’ is really a design idea, then it shall be re-classified as ‘Type: Design Idea’. If it was intended to support yet undefined performance or resource requirements (like Design X Impacts Performance Y), then action will be taken to properly define these attri- bute requirements. Such action might justify rewriting the so-called ‘function’ as a design specification, as there is now at least one requirement that the design idea can impact.
We must avoid ‘false’ function requirements, which are really just designs, which someone assumes would be good for meeting unspecified and unofficial performance requirements. (Local version of Rules.RS.R9: Design Separation.)4
4 This rule intentionally duplicates RS.R9 as it is considered so important for functions. Whenever such duplication occurs, specific reference should be made to the rule being duplicated.
[image: ] [image: ] [image: ]
 
EXAMPLE Usability: ‘‘An example that violates R4 as the Type classification is incorrect! The Description also has errors.’’
Type: Function Requirement. Description: A state-of-the-art, user-friendly interface. ‘Usability’ is a performance attribute, and needs definition (using a Scale and other parameters, such as Goal). If your intuition doesn’t tell you this, then ‘state of the art’ is a clue as to ‘variability’ or ‘degree of goodness.’ ‘Interface’ is a ‘thing to be designed’ in order to achieve various attributes, including, but not limited to, ‘Usability.’ Specify this interface amongst the ‘design ideas.’ It is not a ‘what,’ but it is a ‘how’ (a design idea).
R5: Function Priority: If there is a required simple priority for a function requirement, then it should be explicitly stated with information about its authority and/or the source reference and the reason for the priority.
Use the Priority parameter ‘Priority: After Y’ or use suitable qualifiers ‘[Before X].’ Use the Authority, Source and Rationale parameters to specify the supporting information.
EXAMPLE Rationale: We must address Service Level Agreements as soon as possible to enable the correct level of support to be given when a customer phones with a problem. That is where we are incurring too much cost and tying up engineering support resources. <- Customer Services Director.
See also Section 7.7, which discusses Priority Determination.
R6: Testable: A function must be specified, so that it is possible to define an unambiguous test, to prove that it is later implemented (Local version of Rules.RS.R8: Testable).
R7: Test: Any notions of how or what needs to be tested, in order to validate a function may be described using the Planguage parameter ‘Test,’ with the function name as the qualifier.
The Test information is either specified with the function definition or as a separate item.
EXAMPLE Function Y: Type: Function Requirement.5
Description: Charging to Accounts. Test [Function Y]: Tests shall be developed to demonstrate that this function is available for all counties in this state, and prove that no other states or countries can access it.
5 Note: By default, a ‘Function Requirement’ is assumed to be a ‘Function Target’.
[image: ] [image: ] [image: ] [image: ]
 
Audit: Test [Function Requirement: Function Y]: We must demonstrate to internal auditors that no counties, which are <financially insolvent> are allowed access to this function <- Audit Report [August This Year].
[bookmark: _WNSectionTitle_3][bookmark: _WNTabType_2]Rules: Function and Function Requirement Specification	01/09/2014 17:59

4.4 Rules: Scalar Requirements
Tag: Rules.SR. Version: October 7, 2004. Owner: TG. Status: Draft. Gist: Rules for Scalar Requirement Specification.
 
Note: These rules apply to both performance requirement specification and to resource requirement specification.
Base: The generic rules for specification (Rules.GS), the rules for requirement specification (Rules.RS) and the specific rules for scale definition (Rules.SD) apply.
R1: Completeness: All scalar attributes, that are arguably critical to success or failure, shall be identified, specified and thoroughly defined.
R2: Explode: Where appropriate, a complex scalar requirement shall be specified in detail using a set of complex and/or elementary scalar attributes.
Note: In addition to detailing by means of elementary specifications, you can continue decomposing scalar specifications by using sets of [qualifiers].
R3: Scale: All elementary scalar attributes must define a single numeric Scale, fully and unambiguously, or reference such a definition.
R4: Meter: A practical and economic Meter, or set of Meters, shall be specified for tracking levels on each Scale. A reference to a full definition or standard measuring process for all identified Meters must be given. As an initial minimum for a new Meter, an outline of the Meter measuring process is permissible.
R5: Benchmark: A reasonable attempt shall be made to specify benchmarks {Past, Record, Trend} for our current system, and for relevant competitive systems. Explicit acknowledgement must be made where there is no known benchmark information.
R6: Requirement: At least one target level {Goal or Budget, Stretch, Wish} or Constraint {Fail, Survival} must be stated for a scalar attribute specification to classify as a requirement specification. A specification with only benchmarks is an analytical specification, but not a requirement of any kind.
R7: Goal or Budget: The numeric levels needed to meet requirements fully (and so achieve success) must be specified. In other words, one or more [qualifier defined] Goal or Budget targets must be specified. The need for target levels to specifically cover all short term, long term and special cases must be considered.
R8: Stretch: When you want to indicate an engineering challenge, in order to motivate design engineers to find designs to achieve better-than-expected levels, specify a ‘Stretch’ target (using a Stretch parameter). You should also include information about the benefits of reaching this target (using Rationale).
R9: Wish: Any known stakeholder wish level (a level that has some value to a stakeholder, but only a level to be dreamed of, it is a
 
Survival Wish
 
How the scalar requirement parameters can be used to describe real-world situations.
uncommitted level) shall be captured in a ‘Wish’ statement (with Rationale). Even if the Wish level cannot realistically yet be converted into a practical target level, it is valuable competitive marketing information and may allow us to better satisfy the stakeholder at some future point.

R10: Fail: Any known numeric levels to avoid system, political, legal, social, or economic loss or pain must be specified. In other words, one or more [qualifier defined] Fail constraints must be specified. Several Fail levels may be useful for a variety of short term, long term, and special situations.

R11: Survival: The numeric levels to avoid complete system failure (a totally unusable or unrecoverable system) must be specified. In other words, any [qualifier defined] constraint levels at which system survival is completely at risk must be identified, using Survival parameters.
[bookmark: _WNSectionTitle_4][bookmark: _WNTabType_3]Rules for Scalar Requirement Specification	01/09/2014 18:37

5.4 Rules: Scale Definition
Tag: Rules.SD. Version: October 7, 2004. Owner: TG. Status: Draft. Gist: Rules for Scale Definition.
Note: These rules are concerned with the use of scales of measure and also specification of scalar parameters, including specification of numeric values. They complement Rules.SR.
Base: These rules are to be used in addition to the rules for Scalar Requirement Specification (Rules.SR).
R1: Standard: The Scale and/or Meter must, wherever possible, be derived from a standard version (held in named files or referenced sources) and the standard shall be source referenced in the specifica- tion. For example, Scale: . . . <- Corporate Scale 1.2.
  
 
 
R2: Notify Owner: If a Scale or Meter is not standard, a notification must be sent to the appropriate Library Owner to inform them about the availability of this new case. ‘‘Note sent to <Library Owner>’’ will be included as a specification comment to confirm this act.
R3: Scale Definition: Each scale definition in a specification is part of an elementary attribute (that is, the associated elementary requirement definition must have a unique tag, and appropriate set of parameters, such as Past and Goal). The scale definition must define the units of measure so that benchmarks, constraints and targets can be set clearly and consistently.
R4: Elementary Attribute: An elementary attribute must only have one Scale.
R5: Differentiate: A distinction will be made, by using qualifiers, between those system components which must have significantly higher performance levels than others, and components which do not require such levels. ‘‘The most ambitious level [across an entire system] can cost too much.’’1
EXAMPLE Goal [Operating System Core]: 99.98%, [Online Internet Components]: 99.90%, [Offline Components]: 99%.
R6: Uncertainty: Whenever there is known uncertainty in the precise level for a specified numeric value, its upper and lower boundaries should be explicitly stated. Expressions, such as {60 􏰁 20, 60 to 80, 60?, 60??}, can be used.
R7: Scalar Priority: No artificial ‘weights’. Use scalar priority. The relative ‘static’ (initial) priority of a scalar requirement (its ‘claim on limited resources) is initially given by means of the target and constraint statements {Goal, Stretch and Wish, Fail and Survival levels} and, also by the complementary information given by qualifiers, Source and Authority statements. It is unnecessary and ‘corrupting’ to add any other priority information (such as weights or relative priority).
The final real ‘dynamic’ priority of meeting a scalar requirement is a matter for systematic engineering tradeoff later, when the total real impacts and costs of design ideas are better understood during design analysis or system development.
(Note: Function requirements can however state ‘simple priority’ directly. They have no scalar mechanisms for determining priority based on unfulfilled Goal attainment. See Rules.FR:R5: Function Priority.)
1 I once participated in ‘saving’ a German telecoms project, which had run about 3,000 work years over financial budget and two to three calendar years late, mainly as a result of applying the highest quality levels across the entire system (in fact, only the core software warranted such levels).
[bookmark: _WNSectionTitle_5][bookmark: _WNTabType_4]5.4 Rules: Scale Definition5	01/09/2014 17:59

6.4 Rules: Resource Requirement Specification
The rules for scalar requirement specification (Rules.SR) apply (see Section 4.4).
[bookmark: _WNSectionTitle_6][bookmark: _WNTabType_5]	01/09/2014 17:59

7.4 Rules: Design Specification
Tag: Rules.DS. Version: October 7, 2004. Owner: TG. Status: Draft.
Note: Design specifications are either for optional design ideas (possible solutions) or required design constraints (that is, actual requirements AND consequently, pre-selected solutions).
Base: The rules for generic specification, Rules.GS apply. If the design idea is a design constraint (a requirement), the rules for requirement specification, Rules.RS also apply.
R1: Design Separation: Only design ideas that are intentionally ‘con- straints’ (Type: Design Constraint) are specified in the requirements. Any other design ideas are specified separately (Type: Design Idea). Note all the design ideas specified as requirements should be explicitly identified as ‘Design Constraints.’ (Repeat of Rules.RS.R9: Design Separation.)
R2: Detail: A design specification should be specified in enough detail so that we know precisely what is expected, and do not, and cannot, inadvertently assume or include design elements, which are not actu- ally intended. It should be ‘foolproof.’ For complex designs, the detailed definition of its sub-designs can satisfy this need for clarity, the highest level design description does not need to hold all the detail.
R3: Explode: Any design idea (Type: Complex Design Idea), whose impact on attributes can be better controlled by detailing it, should be broken down into a list of the tag names of its elementary and/or complex sub-design ideas. Use the parameter ‘Definition’ for Sub-Designs.
If you know it can be decomposed; but don’t want to decompose it just now, at least explicitly indicate the potential of such a breakdown. Use a Comment or Note parameter.
R4: Dependencies: Any known dependencies for successful imple- mentation of a design idea need to be specified explicitly. Nothing should be assumed to be ‘obvious.’ Use the parameter, Dependency (or Depends On), or other suitable notation such as [qualifiers].
(For design constraints (requirements), this is a repeat of the rule, Rules.RS.R5: Dependencies.)
R5: Impacts: For each design idea, specify at least one main perform- ance attribute impacted by it. Use an impact arrow ‘->’ or the Impacts parameter.
 
 
Comment: At early stages of design specification, you are just establishing that the design idea has some relevance to meeting your requirements. Later, an IE table can be used to establish the performance to cost ratio and/or the value to cost ratio of each design idea.
EXAMPLE Design Idea 1 -> Availability. Design Tag 2: Design Idea.
Impacts: Performance X.
R6: Side Effects: Document in the design specification any side effects of the design idea (on defined requirements or other specified potential design ideas) that you expect or fear. Do this using explicit parameters, such as Risks, Impacts [Side Effect] and Assumptions.
Do not assume others will know, suspect or bother to deal with risks, side effects and assumptions. Do it yourself. Understanding potential side effects is a sign of your system engineering competence and maturity. Don’t be shy!
EXAMPLE Design Idea 5: Have a <circus> -> Cost A. Risk [Design Idea 5]: This might cost us more than justified. Design Idea 6: Hold the conference in Acapulco. Risk: Students might not be able to afford attendance at such a place? Design Idea 7: Use Widget Model 2.3. Assumption: Cost of purchasing quantities of 100 or more is 40% less due to discount. Impacts [Side Effects]: {Reliability, Usability}.
R7: Background Information: Capture the background information for any estimated or actual impact of a design idea on a performance/ cost attribute. The evidence supporting the impact, the level of uncertainty (the error margins), the level of credibility of any informa- tion and the source(s) for all this information should be given as far as possible. For example, state a previous project’s experience of using the design idea. Use Evidence, Uncertainty, Credibility, and Source parameters.
Comment: This helps ‘ground’ opinions on how the design ideas contri- bute to meeting the requirements. It is also preparation for filling out an IE table.
EXAMPLE Design Tag 2 -> Performance X <- Source Y.
R8: IE table: The set of design ideas specified to meet a set of requirements should be validated at an early stage by using an Impact Estimation (IE) table.
Does the selected set of design ideas produce a good enough set of expected attributes, with respect to all requirements and any other proposed design
  
 
EXAMPLE
7.5
ideas? Use an IE table as a working tool when specifying design ideas and also, when performing quality control or design reviews on design idea specifications.
See Chapter 9, ‘Impact Estimation.’ Failing that, at least ask the ‘Twelve Tough Questions’ about the design ideas! (Can you quantify the impacts?) See Section 1.2 for details of the ‘Twelve Tough Questions.’

R9: Constraints: No single design specification, or set of design specifications cumulatively, can violate any specified constraint. If there is any risk that this might occur, the system engineer will give a suitable warning signal. Use the Risk or Issues parameters, for example.

R10: Rejected Designs: A design idea may be declared ‘rejected’ for any number of reasons. It should be retained in the design documen- tation or database, with information showing that it was rejected, and also, why it was rejected and by whom.

Design Idea D: Design Idea. Status: Rejected. Rationale [Status]: Exceeds Operational Costs. Authority: Mary Fine. Date [Status]: April 20, This Year.
[bookmark: _WNSectionTitle_7][bookmark: _WNTabType_6]7.4 Rules: Design Specification7	01/09/2014 17:59

8.4 Standards: Specification Quality Control
Rules are standards, and are central to the SQC process; specifications must be checked against their agreed specification rules. However, the rules to be used depend on the specification type, so we won’t attempt to list them here. The rules given in other chapters of this book are suitable examples of such rules (but they are by no means a complete list).
Here is a list of guidelines for assessing whether your overall SQC process is functioning correctly.
Guidelines for assessing functioning of overall SQC
Economic: SQC must always make economic sense. If SQC is not saving in the order of 10 hours for every hour spent on SQC, then your SQC process should probably be modified or abandoned.
SQC Champion: There must be an SQC champion within the organization. (At the very least, a nominated person responsible for SQC; an SQC process owner.)
Team Leaders: There must be a list of current SQC team leaders. It should show that there is a sufficient number of team leaders within the organization and also that the team leaders are trained, tested and ‘certified’ to ensure they know what they are doing.
Statistics: The SQC statistics must be up-to-date on the SQC data- base.
Meetings: All meetings must be of maximum length of two hours (tiredness reasons). If more time is needed, schedule a set of such meetings (but do consider the possibility of using sampling).
Specification Quality Control 231
 
Checkers: Unless you are training novices, the number of check- ers at a meeting should be five or less. Two or three people is typically most cost-effective, Four to five is generally more ‘effective.’3
Checking Rate: All checking must be carried out near the relevant optimum checking rate. This rate will vary by document type and organization. It is about 1 page/hour.
Condition: Entry and exit conditions must be taken seriously. They are there to save you wasting time. The number of remaining major defects/page for successful exit must be ultimately less than one (major defect/page).
Standards: There must be an up-to-date (intranet) ‘library’ of official rules, checklists and forms.
Upstream Pollution: The number of major issues identified by your team in source specifications, which have just previously- exited SQC, should be approximately 15% of the total number of logged issues. Otherwise, this is a sign that your team is not taking the ‘second-round’ opportunity to find source defects, seriously.
Forms
SQC uses four main forms: the Master Plan, the Editor Advice Log, the Data Summary and the Process Meeting Log. There are examples of these forms filled in, in Figures 8.2, 8.3, 8.4 and 8.5. Blank forms are given in Section 8.9.
Note forms are a ‘procedure’ (in the format of the form) for gathering data. Most of our clients have their own local variation of the forms and automate them (usually on an intranet web site).


Footnote in CE Book
3 The original evidence for this came from research performed by Søren Nielsen in the Danish electricity industry (Danish Technical Institute, Lyngby, 1987; cited in Gilb and Graham 1993), and was confirmed by further research at Jet Propulsion Labs by John Kelly (Kelly 1990a; 1990b). Optimum effectiveness (number of unique issues per checker) was achieved with teams of 4–6 people, optimum efficiency (cost per unique issue found) with teams of 2–4 people. The recommended team size of 4–5 people achieves the best compromise between these factors. It was Edward Weller, analysing data from more than 6,000 inspection meetings conducted at Bull HN (Weller 1993), who reported that ‘‘four-person teams were twice as effective . . . as three person teams.’’ Also included in Wheeler, Brykczynski and Meeson (1996).
[bookmark: _WNSectionTitle_8][bookmark: _WNTabType_7]8.4 Standards: Specification Quality Control	01/09/2014 18:37

9.4 Rules/Forms/Standards: Impact Estimation
Tag: Rules.IE.
Version: October 7, 2004.
Owner: TG.
Status: Draft.
Base: The generic rules, Rules.GS and the requirement specification rules, Rules.RS apply.
R1: Table Format: The requirements must be specified in the left-hand column. The design ideas must be specified along the top row.
R2: Requirement: Each performance requirement (objective) and each resource requirement must be identified by its tag and by a simplified version of the chosen Baseline<->Target Pair (B<->T pair). The B<->T pair should be written under the tag.
Each B<->T pair must consist of two reference points, the chosen baseline (Past) and the planned target (Goal or Budget). Each refer- ence point must be stated as a numeric value or as a tag to a numeric value. The numeric values must be expressed using the chosen Scale for the requirement.
The baseline is stated first as it represents the 0% incremental impact point. Then usually an arrow ‘<->’. Then the planned target, which represents the 100% incremental impact point.
It must be possible to distinguish between multiple-level specifications for the same Goal or Budget statement. Where necessary, to be unambiguous, use a qualifier or tag the specific baseline and/or target for use in the IE table.
Reliability: Type: Performance Requirement.
Baseline<->Target Pair: Benchmark Reliability <-> 30,000 hours [USA, Next Year].
Note: Reliability and Benchmark Reliability are tags.
R3: Qualifiers: If there is one common set of qualifier [time, place and event] conditions for reaching all targets, this should be explicitly stated in the notes accompanying the IE table. If the qualifiers vary then they must be explicitly stated next to the relevant B<->T pair.
EXAMPLE

 
By default, the entire system is implied and no specific conditions are assumed. The deadline time period must always be explicitly stated.
R4: Design Idea: Each single column must identify a design idea or set of design ideas that could be implemented as a distinct Evo step. Each design idea must be identified by its tag. Multiple tags may be specified as a set of design ideas in a single column. All tags must be supported by a design specification, which must exist in the supporting documentation and must be sufficiently detailed to allow impact estimations to the required level of accuracy. As a minimum, each design specification must be sufficiently detailed to permit financial cost to be estimated to within an ‘order of magnitude.’
R5: Scale Impact: For each goal or budget, the Scale Impact is the estimated or actual performance or cost level respectively (expressed using the relevant Scale) that is brought about by implementing the design idea(s) in each column.
R6: Percentage Impact: The Percentage Impact is a percentage (%) value derived from the Scale Impact (see Rules.IE.R2). An estimate of zero percent, ‘0%,’ means the impact of the implementation of this design idea is estimated to be equal to the specified baseline level of the objective. ‘100%’ means the specified target level would probably be met exactly and on time. All other percentage estimates are in relation to these two points. Note: In an IE table, it is acceptable to specify either Percentage Impacts and/or the Scale Impacts (the absolute values on the defined scale of measure). Examples: 60%, 4 minutes.
R7: Uncertainty: The ± Uncertainty (based on the evidence experience borders) of the Scale Impact estimate shall normally be specified. Percentage Uncertainty values are then calculated in a similar way to the Percentage Impacts. Example: 60%±20%. Usually, the uncertainty values are calculated individually for each cell. An exception to this occurs when some overall uncertainty (such as ±50%) is declared for the whole table or specified parts of it. Another more fundamental exception can be when a decision is made to defer dealing with uncertainty data.
R8: Evidence: Each estimate must be supported by facts that credibly show how it was derived. Numbers, dates and places are expected. If there is no evidence, a clear honest risk-identifying state- ment expressing the problem is expected (such as ‘Random Guess’ or ‘No Evidence’). The exact source of the evidence must also be expli- citly stated. Note: Reference to a specific section of a document is permitted as evidence.
 
R9: Credibility: The evidence, together with its source, must be rated for its level of credibility on a scale of 0.0 (no credibility) to 1.0 (perfect credibility).
The relevant standard Credibility Ratings Table must be considered for use. Explanation must be given if alternative ratings are chosen.
R10: Completeness: All IE cells (intersections of a design idea and a requirement) must have a non-blank statement of estimated impact. This must be given as a numeric value using the relevant Scale units, or as a Percentage Impact as assessed against the defined Baseline <->Target Pair, or both. If there is no estimate, then a clear indication of this must be given.
R11: Calculations: All the appropriate IE calculations must be carried out and the arithmetic must be correct. Hint: Using an application, such as a spreadsheet, helps! The IE calculated values include:
		.  Percentage Impact: See Rule R6. 
		.  Percentage Uncertainty: See Rule R7. 
		.  Sum of Performance: For each design idea, an algebraic sum of its  Percentage Impacts on all the performance requirements. (A ‘vertical’ sum.) 
		.  Sum of Costs: For each design idea, an algebraic sum of all its  Percentage Impacts on the selected resource requirements. (‘Selected’ as it might well not make sense to sum all the costs represented in an IE table.) (A ‘vertical’ sum) 
		.  Sum of Scale Costs: For each design idea, an algebraic sum of all its Scale Impacts on the selected resource requirements. (A ‘vertical’ sum.) 
		.  Performance to Cost Ratio: The performance to cost ratios are calculated using either (Sum of Performance/Sum of Costs or  Sum of Performance/Sum of Scale Costs). 
		.  Sum for Requirement: For each requirement, an algebraic sum of all  the Percentage Impacts for the simultaneously applicable and compatible design ideas. (A ‘horizontal’ sum.) 
		.  Safety Deviation: For each requirement, subtract the Safety Margin  from the Sum for Requirement. The relevant standard safety margin must be considered for use. Explanation or justification must be given if an alternative safety margin is chosen for use. By default, a standard safety margin of factor 2 (200% for performance require- ments, 50% for budgets) will be used. For example, if the required safety margin is 200% and Sum for Requirement for a performance requirement is 120%, then ‘‘–80%’’ is the deviation to be displayed. (A ‘horizontal’ sum.) 
		.  Calculate all the relevant (±) uncertainty values. Base this on best case and worst case observations or estimates. 
 
 
[bookmark: _WNSectionTitle_9][bookmark: _WNTabType_8]9.4 Rules/Forms/Standards: Impact Estimation 	01/09/2014 17:59

10.4 Rules: Evolutionary Project Management
Tag: Rules.EVO.
Version: October 7, 2004.
Owner: TG.
Status: Draft.
Gist: Rules for Evo Plan Specification.
Base: The rules for generic specification, Rules.GS apply as well as all other Planguage rules needed to express requirements and design.

R1: Tags: All steps of an Evo plan will have a unique tag to enable cross- referencing from other specifications (such as test planning or costing).

R2: Detail: All detailed design idea specifications shall be kept sepa- rate from the Evo plan. For brevity, use Planguage step descriptions only. Any Evo plan elements yet to be defined in detail must be specified by a unique tag in fuzzy brackets (<Tag Name 1>). This will indicate that the detail is not specified yet. Rationale: We need to avoid the clutter of design idea definitions in the Evo plan itself. Tags are sufficient.

R3: Cost: Any planned step, that has an estimated incremental impact, for any resource attribute, which exceeds 5% of the total budget planned level, will be re-specified into smaller steps, to reduce risk. An average of 2%-of-budget steps is desirable (as risk of economic loss is then at 2% maximum), but individual projects may specify their own budget constraints. All planned steps still exceeding these single step budget constraints must be agreed by authorized signature.

R4: Time: Any step, which would take more than 5% of the total project calendar time (from project start up to the main long-term deadline), must be divided into smaller steps. An average of 2%-of- time steps is desirable, but individual projects may specify their own time constraints. All steps exceeding the 5% time constraint must be agreed by authorized signature. Rationale: Control time to deadline.

R5: Priority: The ‘next step’, at any point in the project, should ideally be selected using an Impact Estimation table to evaluate step options. Steps that you estimate to deliver the greatest stakeholder benefits, performance improvements (Sum of Percentage Impacts) to stakeholders, or that have the best performance to cost ratio, shall generally be done earliest, wherever logically possible, and when ‘other considerations’ (such as a customer contract or request) do not have higher priority. Any specific priority factors, which override going for the greatest stakeholder benefits first, shall be clearly documented.
 
There must be some specified clear rationale, policy or rule behind prioritizing steps differently from this rule. This could be some estimate of value of a step, which is outside the scope of the specific Impact Estimation table, which might have priority.
EXAMPLE Step 44: Type: Step.
Consists Of: ABC [UK]: <- Contract Requirement 6.4. Rationale: The contract demands we deliver this step at this point.
Optionally, there can be a project-defined constraint of a step having to achieve a minimum estimated value (financial growth or saving), overall performance improvement or performance to cost ratio before being considered for implementation at all.

R6: Next: Only the current step, or the approved next step, has ‘commitment to implementation’ (and even then, it could be termi- nated mid-implementation, if seen not to be delivering to plan). The sequencing specification of subsequent steps is not necessary and is certainly not fixed. In practice, there is likely to be a tentative step sequencing mapped out, which captures any dependencies.

R7: Impact: The next step must be numerically estimated in detail for its impacts on all the critical performance and resource requirements. Other later steps may be more roughly estimated, either individually or in relevant groups. They will be estimated in greater detail as their ‘turn’ approaches. Rationale: To force us to estimate, measure and consider deviation in small immediate steps.

R8: Learn: The actual results of the steps already implemented (that is, the cumulative impacts on all requirement levels to date) and the esti- mated results for the next step must be specified in an IE table (see Table 10.1 example). Specific comment about negative deviations already experienced, and what you have specifically done in your plan to learn from them, should be included in some form of footnote or comment. (Note: We assume the use of an IE table, but other formats are possible.)

R9: Completeness: All the specified design ideas for a system, imple- mented or not, must be represented somewhere on an Evo plan. (Remember, you can use tags and you can declare a large set of designs with a single tag. For example, A: Defined As: {B, C. D, E, F}.)
Rationale: This is because failure to include all the specified design ideas somewhere on the Evo plan causes confusion. It leaves us to wonder:
		.  Was it forgotten inadvertently? 
		.  Why is it specified, if it is planned never to be implemented? (If you are  just keeping the idea in reserve, be specific.) 

image2.png




image3.png




image4.png




image5.png




image6.png




image7.png




image8.png




image9.png




image10.png




image1.png





Planguage Rules Collection from CE Bookayos 2014 1837

Tt 1 QUICK AND DIRTY COPY AND PASTE YO NECDS EDITNG
COMAIGHT 2005014 TOUEGHE COM

YO0DY WO WAKES A BETTER EDIT BEFORE 100 CAN SEHO ME A
COPY FOR UNAD! SET 1 2018

INTEND T REFERENCE TS N THE Compettive o bk am.
g .

R Gerc e o Techcand Mansgeen:Specca

Hore e some ey bai enac s, o sy fspchcaton. You
0 1 1) 0O ol OVRARDGG 1 Ty ey 310 Qs
Dowertu,Mos of o <hrt e s aritn o sk e’

Tog s G5

Versan: Getoer 7, 2004

poey

Nt Thae s bt ey, o ol egonty st
st aads S ot 4 gt

R0 To: Spuclaons st ach v e enlcaton g

R2:Version: Specicaion st each have e varsion derte. oy
o, e h gt (ord a3, e, 3 0 e o,

R5:Unau: Spocfiatons st et one i matr vrson ny.
Than ey 118 b -, by o weng, Ui e ey 5
Ouplcaion Cepy and ot Sho e ronayd: coused

eaon s e st CAuary wokd b o Sk r
e T p—




