
Best Practices for
Evolutionary Software Development

by
Darren Bronson

B. S. Computer Engineering, University of Illinois, 1992
M. S. Electrical Engineering, Stanford University, 1994

Submitted to the Sloan School of Management and the

Department of Electrical Engineering and Computer Science in partial fulfillment
of the requirements for the degrees of

Master of Business Administration

and
Master of Science in Electrical Engineering and Computer Science

in conjunction with the

Leaders for Manufacturing Program

At the
Massachusetts Institute of Technology

June 1999

©1999 Massachusetts Institute of Technology, All rights reserved

Signature of Author __
Sloan School of Management

Department of Electrical Engineering and Computer Science

Certified by __
Michael Cusumano, Thesis Advisor

Sloan Distinguished Professor of Management

Certified by __
Daniel Jackson, Thesis Advisor

Associate Professor of Electrical Engineering and Computer Science

Accepted by ___
Arthur C. Smith, Chairman, Committee on Graduate Students
Department of Electrical Engineering and Computer Science

Accepted by ___
Lawrence S. Abeln, Director of the Masters Program

Sloan School of Management

 Page 2

 Page 3

Best Practices for
Evolutionary Software Development

by
Darren F. Bronson

Submitted to the MIT Sloan School of Management
and the Department of Electrical Engineering and Computer Science

on May 9, 1999
in partial fulfillment of the requirements for the degrees of

Master of Business Administration
and Master of Science in Electrical Engineering and Computer Science

Abstract

In the past few years, Evolutionary Software Development processes have been adopted by many
development groups at Hewlett-Packard as an alternative to Waterfall Development. While there have
been many successes with the new process, there also have been several groups that have attempted to
adopt it, yet have decided to revert back to a simpler Waterfall process. Process consultants at HP believe
that while the process has tremendous potential, it is more complicated to manage than previous processes
and has some drawbacks when used inefficiently.

This project involves analyzing the efforts of Hewlett-Packard software teams that have adopted
Evolutionary Development in order to determine which are the factors that most impact a group’s success
with the process. These efforts studied include management of project milestones, software integration,
software architecture, and testing.

First, data on 30 previously completed evolutionary projects was collected. Case studies were performed
for four of these projects. These cases were then used in the evaluation stage, where experts with the
process drew conclusions about which factors have the most impact on success. Next, documents were
created which list best practices for using the process. Finally, experts reviewed these documents and
amended them until they become satisfactory tools for communicating best practices with teams.

 Page 4

 Page 5

Acknowledgements

Many people have contributed their knowledge, ideas, and encouragement toward the creation of this
thesis. To those people I am truly grateful.

First and foremost, I would like to thank Bill Crandall, my manager at HP for the length of the internship.
An alum himself (LFM’94), Bill is well familiar with the LFM program and recognized the benefit that
an LFM internship could bring to this project. Bill originally conceived the conceived the structure and
goals for the project. Yet gave me the freedom to run the project how I saw fit, so that I brought an
outsider’s view to the problem. Also, he gave a lot of his time, in terms of mentoring, lending his
expertise, and encouraging me, which helped me learn a great deal.

My management advisor, Michael Cusumano, was also instrumental in creating the thesis. Although, he
has been overloaded with a book release and two landmark trials, he still has been able to devote adequate
time to advising me. Michael is truly a “guru” in the field of software development and gave me much
insight into how to conduct research in this area.

Daniel Jackson, my engineering advisor, was a great resource. He provided a wealth of advice to help me
better manage the research process and methods.

The “Evo team”, consisting of several PGC consultants was also essential during the internship. Besides
Bill, the team consisted of Nancy Near, Guy Cox, Ruth Malan, Derek Coleman, and Todd Cotton.
Without their continual feedback and guidance, this project could never have gotten off the ground.
Further help at HP was given by Elaine May, perhaps HP’s leading expert with the process, who also
gave valuable feedback on my work. Also, I am grateful to the teams that let me interview them for the
case studies, particularly the project managers, which helped organize the process.

Tom Gilb, the originator of Evolutionary Development, also helped
guide the project several times throughout its course. Tom’s great
skill as a visionary in the field helped us see the project in new light.
Lastly, I’d like to thank the LFM program, which organizes the internship process and provided a great
education for me over the last two years. Thanks to all the directors, faculty, staff, and students.

 Page 6

 Page 7

Table of Contents

1 INTRODUCTION ... 9

1.1 CONTEXT .. 9
The internship .. 9
Software development processes ... 9
Current software development trends .. 9
Software development at HP .. 10

1.2 LIFECYCLE PROCESSES MODELS ... 10
1.3 EVOLUTIONARY SOFTWARE DEVELOPMENT AT HP .. 11
1.4 PROBLEM DEFINITION .. 11
1.5 STRUCTURE OF THE THESIS ... 12

2 DESCRIPTION OF EVOLUTIONARY DEVELOPMENT ... 13

2.1 BENEFITS OF EVOLUTIONARY DEVELOPMENT ... 13
Increased visibility of progress .. 13
Reduced schedule risk .. 13
Reduced risk of customer acceptance .. 14
Reduced risk of integration .. 14
Early introduction to market .. 14
Increased motivation of development team ... 15

2.2 COMPARISON TO OTHER LIFECYCLE MODELS ... 15
Waterfall Development .. 16
Rapid Prototyping .. 16
Incremental Development .. 17
Evolutionary Development .. 17

RELATIONSHIP OF MODEL BENEFITS AND COSTS ... 17

3 RESEARCH METHODOLOGY ... 19

3.1 CREATION OF A PAST PROJECT MATRIX .. 19
3.2 CREATION OF CONSULTING MODELS .. 19
3.3 CASE STUDIES ... 20
3.4 WEEKLY MEETINGS .. 21
3.5 CONCLUSION OF BEST PRACTICES .. 21
3.6 PILOT TEST OF BEST PRACTICES .. 22

4 OVERVIEW OF CASE STUDIES .. 23

4.1 DEEP FREEZE .. 23
4.2 REDWOOD FIRMWARE .. 23
4.3 CASPER ... 24
4.4 BISTRO .. 24

5 CONCLUDED BEST PRACTICES .. 26

5.1 PHASE I: ATTEND GROUND SCHOOL .. 26
Understand Evo philosophy ... 26
Develop product concept ... 26
Set project goals ... 27
Identify risks and dependencies of project ... 28
Create plan for "Flight Plans" stage ... 28

5.2 PHASE II: MAKE FLIGHT PLANS ... 29

 Page 8

Develop initial requirements ... 29
Develop high-level architecture ... 29
Create development environment .. 30
Create Evo plan for “Missions” stage .. 31

5.3 PHASE III: FLY MISSIONS ... 33
Takeoff and land frequently--design, develop, integrate, and test incrementally 33
Evolve requirements and architecture ... 34
Keep your eye out the window--get user feedback early and often ... 34
Build frequently .. 35
Debrief after each mission ... 36

6 GENERAL CONCLUSIONS ... 37

6.1 PROCESS PREPARATION .. 37
6.2 PROCESS PHILOSOPHY .. 37
6.3 TEAM COMPETENCE .. 37
6.4 CREATING THE “RIGHT PRODUCT” ... 37
6.5 MOTIVATIONAL IMPLICATIONS .. 38

7 RECOMMENDATIONS FOR FUTURE RESEARCH .. 39

7.1 QUANTITATIVE STUDY .. 39
7.2 IMPORTANCE OF FLEXIBLE ARCHITECTURES .. 39
7.3 TAILORING OF THE MODEL TO SPECIFIC NEEDS (LARGE TEAMS, NEW MARKETS, ETC.) 39
7.4 RELATION TO OPEN SOURCE SOFTWARE (OSS) METHOD .. 40

BIBLIOGRAPHY ... 41

APPENDIX I: PAST PROJECT MATRIX DESCRIPTION ... 43

ROWS AND COLUMNS OF THE MATRIX .. 43
NOTES ON THE DATA ... 43
CONCLUSIONS FROM AGGREGATE DATA ... 43

APPENDIX II: FULL TEXTS OF CASE STUDIES .. 44

DEEP FREEZE ... 41
REDWOOD FIRMWARE ... 44
CASPER .. 48
BISTRO ... 51

 Page 9

1 Introduction

1.1 Context

The internship

Research for this thesis was conducted during a six-month on-site internship as a part of MIT’s Leaders
for Manufacturing (LFM) Program. LFM is a partnership between 14 major U.S. manufacturing
companies. Fellows of the LFM pursue both a master in management and a masters in engineering
during the 24 month program. Internships are generally setup so that the student can both perform
valuable research worthy of an MIT thesis and also make a significant impact on the sponsoring
company.

Software development processes

In the 50 years that computers have existed, most of the focus has been on hardware. Creating hardware
has always been orders of magnitude more difficult than creating software. Money was made from
selling hardware, not software. Hence, many processes were created to better manage the creation of
hardware, while software was usually slapped together quickly by a small team and updated later if bugs
were found.

Nowadays, thanks to the increase of CPU power, software code bases are much larger and more
complicated than ever before. To create operating systems and major applications, teams of several
hundred programmers are required. To manage teams today, large and small, developers must use stricter
processes. However, existing software processes are much less developed than their hardware
counterparts.

Because few software practices have become dominant standards, one group may use a vastly different
process than another. Also, since groups have different interpretations of the processes, even two groups
using the same process may be running it very differently.

Current software development trends

Just as with the development of computer hardware, the need for fast development cycles is great.
Releasing a product a few months early or late can sometimes be the difference between success and
failure. Groups often consider schedule to be their highest priority.

There is a wide variety of process competence between software groups today. Yet, the importance of
process capabilities is being more realized lately. Much of the recent focus on process is thanks to the
Capabilities Maturity Model (CMM), created by Carnegie Mellon’s Software Engineering Institute. The
CMM is a highly popularized tool, which helps a team benchmark its process capabilities against other
software groups. Based on the responses to the CMM questionnaire, teams are assigned a number
between 1 and 5, where a higher number means higher process competence. Knowledge of the CMM has
been wide spread in the U.S., and teams often set explicit goals of transitioning to a higher CMM rating
over periods of time. (Note that the CMM does not include a lifecycle model, and hence it is not
compared directly to the models presented in section 2.2.)

 Page 10

Software development at HP

Hewlett Packard, traditionally known as a “hardware company”, is finding itself developing more and
more software. Like many companies, HP now employs more software engineers than hardware
engineers. Still, since few of its end products are strictly software, the company still views itself as
mainly a hardware company. Many of the goals set for software projects are derived from goals used for
hardware teams. For example, teams sometimes tend to focus on quality more so than innovation and
cycle time.

To assist the specific needs of the many software development groups, an internal software development
consulting group was setup. Process Generation Consulting (PGC), formerly the Software Initiative, has
been assisting various software teams with both technical and managerial issues for the last 12 years.
Since this group has easy access to many HP software teams that use similar processes, it is an ideal
group from which to conduct a research study. PGC hired me to study how its customers were using one
particular process, Evolutionary Development.

In recent years, as an effort to combat the lack of revenue growth, HP upper management has been
preaching the value of new product generation. Most of the company’s revenues now come from new
products and versions of products introduced in the last 2 years, which it proudly publicizes. Yet, there is
a drive to be even more reliant on new products and product versions. Thus, demand for processes that
assist with new products and allow faster cycle times is high. Many groups, when adopting a new
software process, request the assistance of consultants from PGC to help them ease the transition to the
new process.

1.2 Lifecycle processes models

Software lifecycle processes help manage the order and interrelationship between the various stages of
development. The major development stages are investigation, design, implementation, and test. Several
models have been used to base processes upon. The simplest and most traditionally used model has been
the “Waterfall” model. In the waterfall model, the 4 stages occur serially, without overlapping or
repeating. Before the Waterfall, groups often lumped the stages together. When this occurs, rework often
results from tasks being performed without proper groundwork and planning. By helping teams avoid
such rework, the Waterfall model has served developers well for many years.

Yet, there are many limitations to Waterfall Development. Creating hard transitions between stages
makes it difficult to go back and change decisions that were made in previous stages1. Because of this
major limitation, new lifecycle models have been introduced in recent years.

The Spiral Development model2, introduced by Boehm in 1988, received much attention. The model
allows teams to create a product in a handful of cycles of increasing magnitude. With the primary
intention of reducing development risk, each cycle included checkpoints for risk assessment. Many teams
have created processes based on the Spiral model, and many are satisfied with it. However, the Spiral
model has often been criticized as being too complicated for most development teams.3

1 Steve McConnell, Rapid Development, Microsoft Press, p. 138.

2 Barry Boehm. “A Spiral Model of Software Development and Enhancement”, IEEE Computer, May 1988, pp. 61-
72.

3 McConnell, p. 143.

 Page 11

Several other models have been also introduced. The various models have much in common with each
other. However, there are some aspects which distinguish one model from another. For example, cycles
are present in many of the models, borrowing the concept of PDCA cycles from Total Quality
Management. However, some models involve only 3-5 cycles, while others involve 20-50. Also, when
groups implement a model into their software process, the implementations of the models often differ
vastly. Developers often decide to add or leave out certain aspects that the models recommend, usually
for purposes of simplification. Because of the similarity of the models and the variation of their
implementations, there is much confusion over the differences between them. McConnell has compared
10 models for development in recent work, yet there is still much overlap between the models. Hence, it
is often arguable which model a given development project is based on.

This thesis is not attempting to redefine the various lifecycle models. Yet, for the purposes of
distinguishing between them, we will use some characteristics of the models to create working
definitions. The conclusions presented here are not only applicable toward users of Evolutionary and
Incremental Development, but also for other processes that share the characteristics of having iterative
cycles and/or utilizing user feedback.

1.3 Evolutionary Software Development at HP

Evolutionary Development, often called Evo, was first introduced by Tom Gilb, in the book Principles of
Software Engineering Management.4 Like many other lifecycle models, Evo was proposed as an
alternative to the waterfall model. Gilb has further defined the process and created tools to aid it in later
works.

Elaine May, as a project manager, was the first to formally use the process at HP in 1991. Gilb was hired
as a consultant to help the group adopt the process. May’s team discovered that it was possible to relax
some of Gilb’s instructions for implementing Evo. In particular, they used internal or “surrogate
customers”, to give much of the user feedback, because of the difficulty in using external customers5.
After the project, May left the team to join PGC as a software process consultant. There, she helped other
teams throughout the company similarly adopt the process. After her departure from the group in 1995,
PGC continued to consult on the process.

Since 1991, PGC has assisted around 30 HP teams with the process over the last 8 years. Teams have
varied the process dramatically, and some have had great success, while others have failed. Some of the
failures have been attributed to early lack of confidence in the process, as well as increased overhead in
running the process6.

1.4 Problem Definition

The problem as defined by PGC managers was to determine why some groups found Evo to be greatly
beneficial, while others have found it mediocre or even aborted the process midway through a project.

Because the process is regarded so highly, most all of the consultants in PGC would prescribe groups to
shift from Waterfall Development to Evolutionary Development. However, recent failures to adopt the

4 Tom Gilb, Principles of Software Engineering Management, Addison Wesley, 1988.

5 Elaine May and Barbara Zimmer, “The Evolutionary Development Model for Software Development”, HP
Journal, August 1996, p.1.

6 May and Zimmer, pp.3-4

 Page 12

process cast some doubt on Evo’s image as the “miracle cure”. What was most interesting was the
disparity between some teams’ classifications of the project as successful and other teams’ claims that it is
ineffective. PGC consultants hypothesized that the process had great potential, yet it would succeed or
fail, based on how it was implemented. Perhaps teams were basing critical decisions such as their cycle
lengths based on intuition, when there might be a better method to decide such parameters, based on
studying the success of past projects.

Thus, my task was to determine how teams could better handle implementation decisions, in order to
make their Evo adoption more effective.

1.5 Structure of the thesis

This thesis begins by defining and describing Evolutionary Development in Chapter 2. In order to make
the definition more clear, the evolutionary model is compared to 3 other lifecycle models. Also, the
relationships between the 4 models is discussed, as well as the benefits of transitioning from one model to
another.

Next, Chapter 3 describes the research methodology I used in conducting research and generating best
practices.

Chapter 4 is a summary of the four case studies that were performed on teams that had used Evolutionary
or Incremental Development to produce a product. Full texts of the cases are included as appendices.

The next section, chapter 5, lists the best practices that were concluded from the research. These best
practices are grouped into 3 stages, according to when, chronologically, they are applied during a project.
For each best practice, reasoning behind using the practice is discussed, as well as heuristics for
implementing the practice.

Chapter 6 then presents some general conclusions about the about the process and how HP software
groups operate in general. Included here are discussions of the most critical best practices, barriers to
success with the process, and the organizational impact of the process.

Finally, chapter 7 lists the topics that this study did not yet address and provides some insight into what
research can be performed in the future, concerning software lifecycle processes.

 Page 13

2 Description of Evolutionary Development

Evolutionary Development (Evo) is a software development methodology in which a product is created
via many iterative delivery cycles, while gathering of user feedback regularly during development.
Within each delivery cycle, the software is designed, coded, tested and then delivered to users. The users
give feedback on the product and the team responds, often by changing the product, plans, or process.
These cycles continue until the product is shipped.

2.1 Benefits of Evolutionary Development

Groups decide to follow an Evolutionary Development model for various reasons. At HP, managers
generally state 2 or 3 of the following benefits as their motivation for using the process.

Increased visibility of progress

Because the product is developed in cycles, each cycle boundary serves as a checkpoint for progress. The
traditional method of estimating progress, where team members estimate what percent of their code is
complete, is highly inaccurate. In the evolutionary approach, features are developed serially and are
checked into a working code base upon each feature’s completion. Progress monitoring becomes much
more accurate, since features are deemed complete when they are both integrated and runable.

Reduced schedule risk

Developing features sequentially allows teams to save low priority features for last. Then, if the schedule
slips, the latest cycles can simply be skipped to pull in the schedule. Compared to the waterfall approach,
which usually requires a project to build all desired features in parallel during a single development
phase, this approach makes the project much more likely to hit its market window.

 Page 14

Figure 1: Ability of the lifecycle process to adapt to schedule changes

Reduced risk of customer acceptance

Evolutionary Development involves getting feedback from customers (and those who can act as
customers) throughout the development process. This feedback often helps the team make critical
decisions about the interface and feature set, so as to increase the odds of customer acceptance.

Reduced risk of integration

Big bang approaches, in which all subsystems are integrated at the end, can become a huge time sink at
the end of a project. Several projects at HP have spent months or even failed because their integration has
been overly complex. (The rationale is as follows. If 1 bug caused by 1 new code section takes 1 minute
to fix, then 10 bugs caused by 10 new code sections will take >10 minutes to fix, because there is more
new code to sift through when searching for each bug.) Incremental integration at every cycle boundary
reduces this risk.

Early introduction to market

Early versions of the product can be easily released with only the major features available. Only a brief
Q/A phase is needed to complete the product after the team concludes that the current cycle should be the
last.

Market	
 Window

Investig ate Design Implement Test

Investig ate Design Implement Test

Original	
 Plan

Actual	
 Plan

You	
 know	
 you're	
 in
trouble!

✓ -­‐ 	
 actual	
 project	
 checkpoints

✓ ✓ ✓

Investig ate Design Plan Cycle	
 1
	
 	
 	
 Market
	
 	
 	
 Window

Original	
 Plan

Actual	
 Plan	
 -­‐	
 2 (added	
 features 	
 or	
 schedule	
 sl ippage)

-­‐ 	
 existing	
 project	
 checkpoints

Actual	
 Plan	
 -­‐	
 1 	
 (early	
 release)

✗

✗ -­‐ 	
 optional	
 project	
 che ckpoints

✓ ✓

Investig ate

✓

Design Plan

Investig ate Design Plan Cycle	
 1

✓

✓ ✓ ✗ ✗ ✗ ✓

Sys.	
 Test

Cy cle	
 N-­‐1 Sys.	
 Test

Cy cle	
 N-­‐1 Cycle	
 N Cycle	
 N+1 Sys.	
 Test

✓

✓✗ ✗

✓

✓

...

...

...

Hitting	
 Market	
 Windows

EVO:

Waterfall:

Cycle	
 1 Cy cle	
 N-­‐1 Cycle	
 N

 Page 15

Increased motivation of development team

Seeing a working product evolve every cycle is usually a rewarding experience for developers. One team
member’s check-ins become immediately available and usable by others.

2.2 Comparison to other lifecycle models

There are two major characteristics of Evolutionary Development that make it distinct from other models:
(1) delivery of the product in short discrete cycles, and (2) early and frequent user feedback. Most
lifecycle models can be differentiated based on how strictly they adhere to each of these characteristics.

A delivery cycle is defined as a portion of the project's implementation phase, which concludes with a
working product (or the software portion of a product). Some software projects do not integrate the code
together into a single executable until the end of the project, thus creating only one delivery cycle. Other
projects are divided up into multiple deliveries for various purposes. The upper bound observed at
Hewlett Packard is around 50 deliveries, in which about 2% of the project is developed in each cycle.

User feedback can be any sort of feedback the team receives from an end user or someone emulating an
end user. The primary purpose of this feedback is to help the team decide which features are important in
the product and how those features should be implemented to best meet the user's needs. The latest when
feedback can begin is at the product's release to the market. (Most products receive their first user
feedback at their Beta release, at which time most of the feedback is used for bug fixes.) The earliest that
a product can receive feedback is at the beginning of the implementation phase of the project, by creating
a prototype or patching together a few key features to deliver to users.

For simplicity, we will consider only 4 development models: Waterfall, Incremental Development, Rapid
Prototyping and Evolutionary Development. These definitions shall be working definitions for the
purposes of this analysis, and are not meant to undermine definitions that are currently used by others.

The figure below shows how the four models relate to the two characteristics:

When user
feedback

begins

At beginning of
implementation

(early)
Rapid

Prototyping
Development

Evolutionary
Development

Pure
Evolutionary
Development

At product
release (late)

Waterfall
Development

Incremental
Development

Pure

Waterfall

1 many

 Number of delivery cycles

Figure 2: Model comparison matrix

 Page 16

Timeline diagrams are now shown to further illustrate the differences between the models:

Waterfall Development

Figure 3: Waterfall Development Lifecycle
(1 cycle, no user feedback)

The traditional Waterfall model strings together investigation, design, implementation, and test phases
sequentially and there is usually no delivery of a working product until the end of the project. Thus, there
is only one delivery. There is also typically little or no user feedback involved in the process until late,
often at beta release time or later.

The Waterfall model is strong in creating explicit checkpoints between phases and allowing groups to
move forward with confidence. However, it is often criticized for making it difficult to backtrack to
previous phases in order to make changes.

Rapid Prototyping Development

Figure 4: Rapid Prototyping Development Lifecycle
(1 cycle, early user feedback)

For Rapid Prototyping Development, we assume a basic Waterfall model with the added measure of
prototype creation early in the product's implementation phase. Prototyping is usually performed either to
(1) assess customer acceptance or to (2) assess feasibility of a new technology. Both are considered
forms of user feedback, even though developers may be emulating the user when evaluating the
prototype. It is conventional wisdom to throw away the prototype and start from scratch since the
prototype is not based on a thoroughly planned architecture. (Note that user feedback here is slightly
earlier than that of Evolutionary Development, since the feedback occurs before the design phase.
Evolutionary Development can also be managed with a throwaway prototype up front, in order to push
user feedback even earlier.)

The benefit of prototyping is the knowledge gained from early feedback. Adjustments can be made or the
project cancelled if deemed appropriate. The downside is that prototyping efforts consume valuable
resources and early feedback is never entirely accurate. Also, managers and customers may mistakenly
assume that the whole product is "almost ready" after seeing the prototype.

Investigate Design Implement Test

Investigate Implement Test

User Feedback

DesignPrototype

 Page 17

Incremental Development

Figure 5: Incremental Development Lifecycle
(many cycles, no user feedback)

Incremental projects generally contain 3 or more delivery cycles, where a working executable is ready at
the end of each cycle. Some projects contain 3-5 long cycles are usually described as "milestone
approaches" or "phased development." Other projects contain around 50 short cycles, around 1-3 weeks
each. No user feedback is collected until product release or upon release of the Beta version at the
earliest.

Products are usually generated via delivery cycles to allow the team visibility of progress at the end of
each cycle. If progress is greater or less than what was predicted, the schedule may be adjusted by adding
or skipping features in the product. Also, continual integration makes a project more manageable by
reducing risk from big-bang integration and helping teams spot problems earlier. The cost of the process
is usually the extra overhead of management tasks at each cycle boundary.

Evolutionary Development

Figure 6: Evolutionary Development Lifecycle
(many cycles, early user feedback)

Evolutionary projects contain both many cycles and early feedback and take advantage of the synergy
between the two characteristics. In products with many delivery cycles, since a working product is ready
at the end of each cycle, this product may be used to get feedback from users, often with little overhead.

The benefits, therefore, of Evolutionary Development are the sum of the benefits of both Rapid
Prototyping and Incremental Development, without consuming resources normally required for
prototyping. However, the downside is that the effort required in project management tasks is increased
somewhat over Incremental Development, due to managing the relationship with and the delivery to the
users.

2.3 Relationship of Model Benefits and Costs

Few development experts will claim that one of the four models is best in all cases. Rather, each project’s
needs and resources will determine the optimal approach. Evolutionary Development, the most complex
of the models, yields the most benefit, but also the most cost. In moving to a more complex model, one
must tradeoff the benefit with the associated cost.

Test

Test

Investigate Design Plan Cycle 1 Cycle 2 Cycle 3

Plan Design Implement Test

... Cycle N Test

Customers: Use N-1 Plan N+1

Investigate Design Plan Cycle 1 Cycle 2 Cycle 3

Plan Design Implement Test

... Cycle N

User Feedback

Test

 Page 18

When moving from the bottom to the top of the chart, earlier feedback allows teams to make more
changes to better meet customer needs. Also, feedback helps teams respond more quickly to changes in
the technology or the marketplace, such as moves by competitors. Therefore, moving up the chart gives a
project higher probability of building "the right" product. However, this benefit comes at the cost of
higher effort in managing the user relationship. To serve this effort, groups usually designate a user
liaison to manage such relationships.

When moving from left to right on the chart, we find that increasing the number of delivery cycles yields
a greater visibility of progress. It also gives a project more manageability in terms of reducing integration
risk and making breakages visible sooner. Yet, the cost incurred is in the increased effort in managing
cycle boundaries. This means that someone, often the project manager, must spend many extra hours
each cycle in planning and rescheduling.7

The figure below graphically displays these benefits:

When
user

feedback
begins

Early
Rapid

Prototyping
Development

Evolutionary
Development

Pure
Evolutionary
Development

Late

Waterfall
Development

Incremental
Development

 Pure
Waterfall

1 many

 Number of delivery cycles

Figure 7: Model comparison matrix with benefits

7 May and Zimmer, p.6

Higher
Probability
of building
the “right”
product

Higher
effort in
managing the
user
relationship

Project Manageability, Progress Visibility

Higher effort in managing cycle boundaries

benefit cost

benefit

cost

 Page 19

3 Research methodology

3.1 Creation of a past project matrix

By working as an intern in PGC, I had access to data from all of the projects that hired PGC to assist with
their Evolutionary Development process. Most of the knowledge about the process still existed in the
heads of the consultants and the project managers they assisted. However, some of the consultants did
compile a matrix of past projects in 1995, when PGC last examined the process for critical success
factors. The matrix contained only around 10 projects as row headings and a handful of column headings,
such as cycle length, factors that occurred during the project, and key learnings. My first task was to
expand this matrix to contain more projects and enough additional fields, such that conclusions could be
drawn.

Counting the projects between 1995 and 1998, the total number jumped to 30. I also added around 20
more fields to hold data about the projects that might be relevant. The first fields that were added
reflected success. Because success of the project was different than success of the Evo process, we used
two separate fields to track success. The rest of the fields were chosen, based on which variances between
projects had a likely chance of influencing the success of the Evo process. (See Appendix I: past project
matrix description for a list of column headings.)

Next, filling in the blank matrix proved to be a challenge. Many of the PGC consultants were still around
and could be questioned about the projects they assisted. However, it was often the case that certain data
about the project was forgotten, since it happened many years before, or that the data was never known.
Also, the project managers themselves were somewhat difficult to contact. Several had left the company.
Others, I was instructed by PGC not to contact, since they were potential future customers that should not
be troubled.

Teams also did not often perform retrospective analyses of Evo’s effectiveness. Instead, they would
deem the process successful or unsuccessful and then move on. Evo is seen by most teams as either
“good” or “evil”, instead of being a model, whose implementations are the cause of success or failure.
Hence, few written analyses of the projects were made, and it was somewhat common for project
managers to forget why the process was effective or ineffective. Hence, only about 50-60% of the entries
in the matrix were filled.

Only a few conclusions could be made from aggregating the data in the matrix. (See Appendix I: past
project matrix description for conclusions from aggregate data.) Because there were so many process
variables that teams “tweaked”, a variety of team and project types, and incompleteness of data, there was
not enough data to make quantitative conclusions. (See Section 7.1 for quantitative study ideas.)
However, the project matrix was effective for reference during dialogue about past projects and it is a
good tool to collect future data.

3.2 Creation of consulting models

Before conducting case studies, much time was spent creating consulting “models”. A model, in this
sense, is a short (usually one page) drawing or slide that represents an abstraction of the process. The
purpose of these models is to convey an idea and to promote dialogue about the process. An example of
such a model is the 2 x 2 matrix in chapter 2.

 Page 20

The models were used for discussions with consultants and process experts. Often these discussions
would lead to the creation of new models. The models that were most liked were kept and evolved into
more detailed slides. The interest in these models helped me decide which aspects of the process people
would most like me to study.

3.3 Case studies

Four case studies were performed, from which conclusions were derived. Each case was based on a
previous Evolutionary Development project at HP. Interviews were conducted with team members, and
questions addressed many topics related to the implementation of the process.

Questions asked during the interviews fell into 5 categories:

1) Project and process concepts and goals
2) Team background
3) Software architecture
4) Handling of Evo cycles
5) Handling of user feedback

Category 1 was intended to address the initial organization phase of the project. Most questions
concerned the selection of the Evo process, how the process related to the project goals, and how the
goals were communicated with the team. Category 2 addressed mainly team experience in relation to the
product and process. Both of these sections consisted mainly of short, quick questions to get background
information that can be compared with other projects.

Categories 3-5 contained the bulk of the interview. Most questions were open ended, to inspire anecdotes
about how well or poorly something worked in the process. Category 3 attempted to characterize the
amount of focus the group spent on their architecture, and in particular, how much of it was created up
front, versus in the cycles. Category 4 addressed the managerial issues that occurred in managing short,
repetitive development cycles (e.g. order of development, handling schedule slippage, etc.) Finally,
category 5 addressed issues related to gathering user feedback (e.g. how often gathered, who were the
users, etc.). If the project did not gather user feedback, this time was spent focussing on hand-offs with
other teams.

Selecting candidates for case studies proved more difficult than was originally thought. First, projects
who were considered to have “process failures” were ruled out. It was thought that only one or two major
factors caused such failures, and most of these factors had already been determined by PGC consultants
or the development teams. Also, groups generally have cultural aversions to talking about past failures.
Therefore, it was concluded that more would be gained by talking with teams that had mostly success
with the process.

Next, many of the 30 past projects were ruled out because the teams were no longer available. Since the
project manager typically takes the lead on installing the new process, teams whose project managers had
left were immediately excluded. Lastly, several more teams were too busy or not interested in helping to
create a case study. A couple teams were in the middle of “crunch mode” at the time or had recently
completed analysis of their process and did not wish to spend a few hours with interviews.

The field of 30 was whittled down to a handful and 4 studies were conducted. The first two were
conducted on-site, by interviewing 5-6 team members for an hour each. In each case, the interviewees
consisted of the project manager, technical lead, user liaison (usually an engineer), and some developers.
Interviews for the third case were conducted via telephone with the project manager and technical lead.

 Page 21

This proved effective, since many of the focus areas were narrowed down after completing the first two
studies. The fourth and last case was conducted via a series of emails with a project manager overseas.

The four teams had some similarities, by the nature of their relationship with PGC. Because of the
variety of products at HP, software groups come in all shapes and sizes. Yet, most of teams that contact
PGC for assistance have between 8-30 developers. (Teams with fewer than 8 members have less of a
budget for consultants, while very large teams generally hire someone full-time to handle their processes.)
Also, all four products were attached to hardware, and thus had to work closely with their corresponding
hardware development teams.

The case studies were written up each as 3-4 page documents, with common sections, so that consultants
and experts could easily compare them. Their full texts are presented as appendices (cleansed for external
use) and short synopses appear in chapter 4.

3.4 Weekly meetings

Because an “evolutionary” approach was used to generate conclusions for this thesis (we were “eating our
own dogfood”), the weekly meetings with PGC consultants and other experts were critical. In an effort to
“practice what we preach”, in-progress deliverables for the research project were presented incrementally,
every two weeks, along with a progress report. User feedback was attained mostly from PGC consultants,
some of whom will use the consulting models that were created. Evo team meetings were held weekly
and 1-on-1 meetings were held with each of them bi-weekly on average.

Thus, weekly meetings were held with an “Evo team”, consisting of PGC consultants whom had expertise
related to the process. Team members were:

Bill Crandall – Intern mentor, some consulting experience with Evo
Nancy Near – consulted on many Evo projects
Guy Cox – social anthropology background, some consulting experience with Evo
Ruth Malan – architecture expert
Derek Coleman – architecture and requirements expert
Todd Cotton – consulted on many Evo projects

Other experts were contacted less frequently, but provided valuable feedback:
Tom Gilb – creator of Evo (contacted every 2 months)
Michael Cusumano – renowned researcher of software development, thesis advisor (contacted
monthly)
Elaine May – originated Evo usage at HP, currently a Lab Manager at HP (contacted monthly)

3.5 Conclusion of best practices

Most of the best practices presented in chapter 5 were concluded from discussions related to the case
studies or projects in the past project matrix. When Evo team members agreed that a practice that a group
performed or neglected to perform impacted its success, the practice was generally included in the list of
best practices.

 Page 22

For each non-obvious recommendation in the best practice section, sources are listed in brackets,
following the recommendation (except when literature is footnoted). An explanation of how the source
relates is included if relevant. Sources are from one of the following:

1) Past project data
2) Case studies
3) May and Zimmer, a paper based on a previous HP study on Evolutionary Development

(footnoted)
4) Relevant literature (footnoted)
5) Recommendations from interviews with experts

As a caveat to the reader, please note that the best practices are not based on enough data to be
statistically conclusive. However, each of them has passed a panel of experts in Evo, including most of
the people listed above, in section 3.5.

The best practices were stored and presented to individuals in the form of a consulting model. The model
started as a single page graphic, which separated the process into 3 phases, chronologically. Best
practices were added into their corresponding phase, and the model soon expanded into a 7-page slide set.
To house additional notes and ideas that could not be classified as best practices, a 20 page slide set was
created which contained a page or more on each of the subcategories in the best practice model. These
notes were called heuristics. In general, the best practice model describes the “what” of the process (i.e.
what to do), and the heuristics answers the “how” (i.e. how to do it). Both of these slide sets were then
combined to create chapter 5.

3.6 Pilot test of best practices

Finally, to validate the compilation of best practices, a pilot test was performed. The slide set was
presented to a couple members of a team that was considering using the process for the first time. The
team claimed that the material would be very valuable, yet they could not afford consulting services for
their project.

However, as PGC consultants continue to assist HP groups with the process, they will use the list of best
practices and attempt to validate its usefulness and correctness.

 Page 23

4 Overview of case studies

The approach to analyzing best practices for Incremental and Evolutionary Development involved
creating four separate case studies of evolutionary projects at Hewlett Packard. The studies were created
via interviews with between one and six team members, retrospectively. Two of the projects had
completed within a few months of the study, while the other two completed two to three years prior. All
four groups were software development groups for an end product that included both hardware and
software.

(Even though all of the teams refer to their processes as “evolutionary”, some teams did not collect
significant user feedback, and thus were using Incremental Development, instead.)

4.1 Deep Freeze

The Deep Freeze project is a clean-cut example of a successful transition from Waterfall to an
incremental process. The product was the software component for a semiconductor test system.
Management clearly defined the risks of the product up-front. There was significant risk in meeting the
target performance and also in meeting the development schedule. A cyclical development process was
used mainly to make progress visible, in order to manage project risks. The team decided not to
incorporate user feedback into the process.

The seven software developers were well experienced, yet had never used an incremental process before.
Since they were required to write progress reports at the end of each cycle, many developers were not
initially fond of the new process and its associated overhead. However, when they realized the
importance of the reports to management, they soon regarded them as a trivial routine task.

Since there was a high schedule risk, low priority functionality was planned for the later cycles. In this
way, these later cycles acted as a schedule buffer, in case the schedule slipped. Some of these features
were indeed pushed off to the next product iteration, so that the schedule wouldn’t slip.

The final product had phenomenal market success. It released within 2 months of the original target (total
project length was 18 months), while the competitor's product was a whole year late. The group has since
then, used the process in much the same way.

4.2 Redwood Firmware

The Redwood Firmware group, which developed firmware for a printer, was also successful with their
adoption of the Evo process, even though they were part of a much larger development team. The
firmware team had to interface with both the hardware and software teams for their product.

The software team was also using an Evo process for the first time. However, while the firmware team
used 2-week cycles, the software team chose 3-week cycles. In the end, this didn't pose much of a
problem, since the two teams were not very reliant on each other’s releases.

Managing interactions with the hardware team proved more of a challenge. The hardware team was not
using an Evo process, but the team was very dependent on new firmware releases. Since the firmware
from the previous product was “broken and rebuilt from scratch”, the hardware team could not use some
of its basic functionality during the early phases of the project. Although, the decision to build the

 Page 24

firmware from the ground up had little to do with the firmware team’s Evo process, the hardware team
associated Evo with these problems, and subsequently formed a disliking of the process.

Team members also noticed that Evo requires developers to use their planning skills more than before.
New engineers are notoriously optimistic when planning schedules, until they become more familiar with
development efforts. On Redwood, there was often slippage due to overoptimistic estimations. However,
by the end of the project, the accuracy of estimations had improved.

The firmware team met most of its goals and was very satisfied with using Evo. (Market success is too
premature to determine.) One of the largest impacts of the process was that by forcing the team to do
much of their detailed planning up front, many critical dependencies were determined. (The first 5 cycles
were planned in detail before cycle 1 began.) However, the project manager said that the Evo process
required much more of her time than previous processes.

4.3 Casper

The Casper team was developing the latest product in a line of Network Protocol Analyzers, the first of
which to have a GUI. Evo was originally considered as an effort to improve quality up-front in the
project, however, the team soon realized other benefits.

Since the team was releasing a product every 2 weeks, their progress was very visible, and they received
much attention from management and marketing. Also, the incremental process allowed them to avoid
the “big crunch” which often occurs at the end of projects.

Marketing personnel were utilized to give user feedback on the product. This worked well for getting
feedback on the GUI, since there are always many usability issues of new interfaces. However, the team
did not get feedback from any customers until late in the development process. At that point, demand for
a key feature was realized, but it was already too late to implement it. Although the marketing team
members were cheaper to use, they did not have the same knowledge of customer needs that actual
customers had.

The project ended up meeting most of its goals and concluded that the new process was beneficial.
Market success of the product, however was less than expected, due in part to the exclusion of the key
feature. Team members enjoyed the visibility that the new process created. Yet, just as with Redwood,
the project manager found that the process increased her workload.

4.4 Bistro

The Bistro team, which developed software for a printed circuit board tester, had mixed success with its
incremental process. The project employed 23 software engineers, split into 2 main teams, with a project
manager for each team. One of the teams focussed on throughput speed, while the other implemented a
radical new feature. The new feature had a high degree of technology risk, and required several
mathematicians to help with the development.

The group is one of the earliest adopters of Evo at HP, and has been using some form of the process for 8
years. Although previous projects have involved significant user feedback, Bistro used very little of it.
The reason is that their customers are highly risk-averse and are usually reluctant to use a product that has
not been thoroughly tested. (Some groups find that this is an encouragement to have Evo users, since the
product can then be marketed as having been used longer.)

 Page 25

A remarkable disappointment with the project was the slippage in schedule of the new feature. Its
schedule slipped so much that it was pushed off into the follow-on product. Several redesign efforts were
necessary in the feature’s development, each of which set it back by more than a month. Team members
suggest that more up-front design effort should have been used for the feature.

On the upside, the performance goals of the project were met, and the team thought that their process was
successful.

 Page 26

5 Concluded best practices

5.1 Phase I: Attend Ground School

Much like military pilots spending time in the classroom, development teams must spend some time in
meeting rooms learning about the process, deciding how to tweak the process to meet their needs, and
satisfying some entry criteria for the process. It is important that all affected team members, including
project managers and oftentimes marketing personnel attend, to assure that the process meets everyone's
needs.

Understand Evo philosophy
✔ Recognize the benefits and costs of frequent iteration and early & often user feedback

✔ Learn philosophy by comparing approaches and results of Evo and non-Evo projects

Since Evo requires expending some additional effort, it is extremely important to educate the entire team
about the process, so that everyone will realize what value is achieved from the extra effort. Also, since
there are many ways to implement the process in order to achieve different benefits, teams need to be
aware of the "knobs" in the process, and what results are achieved by turning them.8 (See section 2.3 for
major process knobs and their associated costs and benefits.)

Many teams confuse Evo with the “milestone approach”. Milestones, like evolutionary approaches, help
avoid the “80% syndrome”, where developers often incorrectly estimate that a task is 80% complete.9
Yet, Evo has the additional requirement that a working product be delivered each cycle to measure
progress and usefulness. If a working product (or partial product) is not delivered at the cycle boundaries,
then user feedback cannot be given and progress cannot be easily measured.

An important heuristic to follow is to implement software “depth first”, or one feature at a time, instead of
“breadth first”, or developing them all simultaneously. By developing depth first as much as possible, it
will be easier to release a working product early with minimal functionality and it will be easier to
smoothly distribute the release of new features.

One should also note that Evo is an “organic” approach, and thus its philosophy differs from
“mechanistic” approaches. For instance, Waterfall Development, a mechanistic approach, assumes that
requirements are well known and unchanging from the start. However, Evolutionary Development
assumes that requirements are only partially known and will change during the project.

Develop product concept
✔ Translate customer needs into product concept that captures key features, quality

attributes, and components

✔ Have a value proposition that answers the question, "why will customers buy your
product vs. the competition's?"

8 Past project data shows high correlation between the team clearly understanding the Evo value proposition and
success with the process.

9 Michael Cusumano and Richard Selby, Microsoft Secrets, Free Press, 1995, p. 277.

 Page 27

Creating the original concept for the product is not a trivial task. If basic characteristics of the product are
not outlined at the start, defining proper project goals and creating a software architecture will be difficult.
Even though these characteristics may change slightly during the development process, it is always best to
set an initial target. A clear value proposition will also help guide prioritizing and decision making, and
will make it easier for users and developers to understand why some changes are approved and others are
not.10

Much research has been performed in the area of product concept development. Concept Engineering11, a
process developed by the Center for Quality Management, deals with clarifying the “fuzzy front end” of
the product development process that precedes detailed design and implementation. Also, Crossing the
Chasm12, and related work by Geoffrey Moore, deals with value propositions.

Set project goals
✔ Set quantified targets for results (schedule, budget, market share, profit, revenue)

✔ Prioritize them

✔ Communicate them to the team and stakeholders

Once the product concept has been created, project goals can be set. Goals should be quantified13,
prioritized, and communicated to the team and stakeholders. Since the Evo process requires multiple
people to make decisions often, alignment on project goals will aid the decision making in the project.

The most common method of setting team goals and making them public is by creating a compelling
project vision, and then putting it on a banner on the wall. However, quantified targets are seldom posted
on the wall for proprietary reasons. Yet it recommended conveying such information to key stakeholders
by whatever means is appropriate.14 (Some groups, for example, use password-protected web pages to
post such data.) The most common stakeholders for projects are:

• developers
• customers
• marketing
• sales representatives
• test team
• dependent teams (e.g. hardware team)

10 May and Zimmer, p. 6.

11 Center for Quality Management, Concept Engineering, 1996.

12 Geoffrey A. Moore, Crossing the Chasm, HarperBusiness, 1991.

13 Personal interview with Tom Gilb, 8/1/98.

14 Casper did not have an explicitly stated vision and each had conflicting motivations about whether to release the
project early. Redwood Firmware and Deep Freeze both had explicit vision statements and did not have such
problems.

 Page 28

Most project managers use an informal process to create goals before the requirements creation phase.
However, Tom Gilb, creator of Evolutionary Development recommends a more formal process, such as
his planning language, Planguage15.

Identify risks and dependencies of project
✔ List the primary risks expected from product, process, people, and technology

✔ Consider how Evolutionary Development can help overcome these risks

✔ List key dependencies

Listing the project's major risks and dependencies will make explicit to the whole team the things that the
experienced members are worrying about. In that way, everyone can help navigate through these murky
waters. 16 Some common risks are schedule risk, uncertain product requirements, feature creep, new team
member risk, and new technology risk. Common dependencies often involve deliveries to hardware
groups, sub-teams, or trade shows.

In most cases, Evolutionary Development will help to reduce a project’s overall risk. The types of risk
that Evo helps mitigate are:

• schedule risk
• customer acceptance risk (e.g. from unknown requirements)
• component integration risk
• team motivation risk

However, one must keep in mind that introducing Evo for the first time creates new risks. Some
commonly encountered new risks are:

• acceptance of the process by team
• managing delivery to dependent teams
• feature creep
• difficulty in obtaining early users
• testing neglect during the cycles
• temptation to skip up-front architecture and design work

Create plan for "Flight Plans" stage
✔ Define evolutionary plan for gathering initial requirements, defining high-level

architecture, creating development environment and preparing for development

The next phase of the process, "Make Flight Plans", can be performed in an evolutionary fashion by
breaking down each of the tasks into sub-tasks and creating frequent checkpoints. For instance,
architecture can be broken down into first setting the principles and style and then secondly breaking
down the system into components. Creating sub-tasks and checkpoints allow for easier progress
monitoring and allow dependencies to become more recognizable. 17

15 Tom Gilb, (see http://result-planning.com)

16 Redwood failed to identify the dependency between the hardware and firmware teams. Bistro’s schedule slipped
dramatically from high technology risk.

17 Source: PGC experts.

 Page 29

While the process gurus usually recommend such cycling for the middle stage, some project managers
believe otherwise. Hence, it is important to recognize the pros and cons and formulate a decision for your
own team. “Investigation phases” are generally somewhat amorphous with developers not yet in the mode
of thinking about deadlines and dependencies with other teammates. Evolutionary planning for this phase
will add more structure, and give managers more progress visibility in order to manage a schedule-driven
project. However, some argue that this structure is too constrictive for developers and that such detailed
planning will stifle new ideas.18

5.2 Phase II: Make Flight Plans

Now that the team has completed Ground School, they are ready to start planning for the mission.
Several activities need to be performed up-front before implementation begins. The four main activities
are (1) requirements, (2) architecture, (3) creating the development environment, and (4) project planning.

Develop initial requirements
✔ Identify functional requirements and quality attributes for customers and stakeholders

According to Tom Gilb, requirements definition is the one area where software projects have the most
need for improvement. For evolutionary projects in particular, it is important to make requirements
explicit especially if the team plans to utilize user feedback to better match the product with customer
needs. If so, these requirements will be changed and refined by analyzing the user feedback data.19

In my experience, it is rare for groups to keep a formal requirements document that is updated after
analyzing user feedback data. The reason for this discrepancy is unknown. However, this is what process
consultants recommend.

Requirements definition is an entire discipline of its own, with likely more literature available than all of
the lifecycle processes put together. HP customers can contact PGS experts in this field and request
related reports. (Contact Derek Coleman.) Another good source is Gilb’s Requirements Driven
Management20.

Quality attributes are often referred to as the “ilities” of a project. Examples are usability, reliability,
maintainability, etc. These “ilities” can be broken into two categories: real-time and development.
Quality attributes can often be best described with use cases. (Contact PGC for further info.)

Develop high-level architecture
✔ Develop meta architecture - architectural vision, guiding principles, philosophies, style

✔ Develop conceptual architecture - breakdown of system into components with
responsibilities and interconnects

Since evolutionary projects' designs have the tendency to change during the project, creating an
architecture that is “flexible” enough to anticipate changes is ideal. One way of making the architecture
more flexible is to design the inter-component architecture up front, and save the intra-component

18 The Casper project manager presented this argument.

19 Source: interviews with Gilb, PGC experts.

20 Tom Gilb, Requirements Driven Management, (currently in publication, see http://result-planning.com)

 Page 30

architecture until right before implementation for the component. Inter-component architecture can be
divided into meta architecture and conceptual architecture.21

Specifically, architectures should be designed to allow “depth first” development, where features are
implemented serially and plugged in one after another. Although much literature is available in the realm
of software architecture, little research is focussed on flexible architectures that allow such serial
development of features. Instead, groups are advised to employ experienced and talented architects when
appropriate.22

HP developers are encouraged to contact PGS experts in this area. (Contact Mike Ogush.)

Create development environment
✔ Install source tree, version control

✔ Lay groundwork for build process

✔ Lay groundwork for unit, system, integration, and regression tests

Creating a development environment that supports Evo is important because with Evo there is "more
frequent everything." Builds should be more frequent, so creating automated scripts to handle the build
(both working and not working scenarios) is advisable. Also, since testing can be done during the cycles,
it is best to create the testing infrastructure early so that it is not neglected.

Many groups in HP do not fully automate their build process. The choice of whether to automate or not is
generally based on which method will incur the least amount of development time. Automating the
process at the start is sometimes not worth the effort for very short projects with few builds. However,
since Evo involves continual additions of small features, rather than a "once a month" plug-in of a
subsystem, it is best to build frequently in order to keep up with rapid code changes. Automating the build
process will make this easier. 23

An example of an automated build is one that compiles the entire code set, performs a dead-or-alive test
(e.g. printing “hello world”), and sends an email to the build owner telling whether the build worked or
not. If the main code base has been broken, a message is sent to the entire team, informing them of the
breakage, when the most recent check-ins occurred, and who checked them in. The group that
implemented this builds script set it up to run twice daily. By alerting them to problems immediately,
they avoided wasted effort in searching for which changes caused the problem.24

Cultural incentives can also be created to keep developers from breaking the build. The fear of disrupting
someone else’s work causes developers to be very careful in testing their code before checking it in.
However, some groups create informal policies of small punishments for build breaking offenders. For

21 Deep Freeze split their “up front” and “during the cycles” architecture in this way and found it effective.

22 Casper created a strong architecture that allowed them to create a prototype easily and interchange components
with little effort.

23 Redwood Firmware did not automate their build process because of hardware difficulties, and later claimed that
automation would’ve helped them.

24 The author draws on his own software development experience at a group within another company (unnamed).

 Page 31

instance, some groups charge offenders $5 and others require offenders to own the build process for the
next few builds.25

As far as setting up a testing environment, teams are encouraged to treat “testware” in the same fashion
that they treat software. Thus, it should be properly architected, designed, developed in an evolutionary
fashion, and tested. Also proper planning and good testing infrastructure should have the goal of keeping
developers from neglecting testing during the cycles.

Create Evo plan for “Missions” stage
✔ Choose cycle length

✔ Decide upon a sequencing strategy for deciding the order of tasks

✔ Develop a chunking strategy for decomposing tasks

✔ Define a rapid decision-making process

✔ Assign Evo-specific roles of Technical Manager and User Liaison

✔ Create cycle template

✔ Create detailed plan for first few cycles, highlights for rest of cycles

Now, a lot of Evo-specific details need to be handled. The most time-consuming of these is creating the
cycle plans. Usually, teams decide to call a large meeting or hold an Evo workshop to hammer out
detailed plans for the first few cycles. Then during each "Fly Missions" cycle, teams should hold a
planning meeting to determine what should be implemented for the next cycle.

Before creating the detailed plan, however, several other tasks should be completed. First, a cycle length
must be determined. Most HP groups use either 2 or 3 weeks and a constant length is always
recommended to create rhythm. The cycle length should be based on how often the team desires to view
its progress, versus how much it wants to avoid the overhead incurred at cycle boundaries (i.e. builds,
cycle reports, getting customer feedback, replanning). One should also note the difference between
backroom cycles and frontroom cycles. Frontroom cycles involve delivery of the product to customers or
users, while backroom cycles are all the internal tasks that involve only the team itself.26 Hence, it is
often beneficial to have varying lengths for backroom and frontroom cycles. For instance, when attaining
customer feedback is costly a group might set its backroom cycle length to 2 weeks and its frontroom
cycle length to 4 weeks.

Next, the group should determine their sequencing strategy. “Sequencing” refers to the order in which
you decide to develop the features of the product. Some of the most common strategies for sequencing
include:

• Pick highest impact features first
• Let customer select
• Fulfill most important requirements first
• Show some visible progress first
• Show insight into areas of greatest risk first

25 Michael Cusumano and Richard Selby, Microsoft Secrets, Free Press, 1995, p. 271.

26 Tom Gilb, Evo: The Evolutionary Project Managers Handbook, (currently in publication, see http://result-
planning.com), p.52.

 Page 32

• Do step necessary for coordination with other teams first

It is recommended for groups to pick a strategy to determine a default ordering, yet still maintain the
freedom to revise the strategy during the cycles.27

A chunking strategy is the next task to complete. “Chunking” is the discipline of breaking down
development into small, discrete mini-projects. It is a difficult skill and requires decent architectural
ability, as well as good project planning skills.28 Also, object oriented projects using Fusion or a similar
process should find that there are synergies with evolutionary projects because of the method of
decomposition that it provides.

Defining a rapid decision making process is another key task. Decisions occur more frequently in
evolutionary projects. They most commonly involve what to do in the upcoming cycle based on what
progress has been made so far. Hence, it is important to explicitly decide up front how decisions will be
made during the cycles. If a team typically takes longer than its cycle length to make decisions that stick,
some problems may occur and hence the team should work hard to improve its decision making process.29

Two Evo-specific roles are usually assigned for evolutionary projects. The Technical Manager is
involved heavily and planning and keeping track of progress. At HP, the Project Manager usually takes
this role. The User Liaison is responsible for collection of user feedback and keeping users happy so that
they will continue to give feedback throughout the project. Marketing personnel are excellent for this
role. It is also often beneficial to have a separate liaison for internal and external users.30

Next, a cycle template is a good idea to create. Some events should occur regularly in the cycle, such as
builds, code freezes, and shipments to users. Thus, for the efficient planning of each cycle’s tasks, one
should start with a cycle template.31

27 Source: PGC experts.

28 Elaine May, “Dividing a Project”, Hewlett Packard (unpublished)

29 Source: PGC experts.

30 May and Zimmer, p. 7; One project in past project matrix also suggested that such roles were needed.

31 May and Zimmer, p. 6.

 Page 33

M T W Th F
• final test of last

week’s build
• source code

frozen

• “ship” last
week’s build

• design and start
to implement
new features

• source code open

• incremental build
overnight

• • weekend build
from scratch

M T W Th F
 • all user feedback

collected
• functionality

freeze
• incremental build

overnight

• test new
functionality

• determine
changes for
next release

• test new
functionality

• weekend build
from scratch

Figure 8: Example cycle template

(Note that this template is for illustrative purposes. Most groups use more detailed tables that also list task
owners and estimated time to complete task.)

Lastly, the group must create a detailed plan for the initial cycles. Approaches vary, but many groups
have found it best to create detailed plans for the first 5 cycles or so. 32 The disadvantage to planning the
rest of the cycles up front is that the plans are very dynamic, and are likely to change if items take longer
or shorter than expected. However, it is usually best to plan ahead for more than one cycle in the future,
so that dependencies can be seen between current and upcoming tasks. As the project progresses, the
team should get a better feel for how many cycles in advance they would like to plan.

5.3 Phase III: Fly Missions

The team is finally ready to embark on the missions that will ultimately create the finished product. Since
every cycle is a mission, teams can concentrate on the current mission and the immediate deliverables for
that mission.

Takeoff and land frequently--design, develop, integrate, and test incrementally
✔ Include in each cycle, if appropriate:

1) update requirements and architecture
2) get user feedback on previous cycle’s delivery
3) design
4) implement
5) unit test
6) integrate (build)
7) test integrated system
8) check-in
9) measure progress
10) re-plan

Each mission should result in an executable product that can be analyzed by a user (or expert) and tested
for quality. This shouldn't imply that each team member needs to accomplish something monumental
each cycle, but nonetheless something. Usually, developers will be responsible for steps 3-8. Project
managers, technical leads, or appointed individuals should handle steps 1, 2, 9 and 10.

32 Redwood Firmware found this effective.

Repeat

 Page 34

Teams often decide to operate some of these tasks every other cycle or every few cycles. Gathering user
feedback, for example, is sometimes costly and some groups decide to gather less often. These are
critical decisions that should be decided in part by looking back at the explicit goals for the project.

Teams are highly encouraged to both integrate and test in each cycle. In general, new code will be easier
to integrate while it is written, as opposed to after it becomes a major subsystem. This implies that it is
best to integrate early. Also, testing is much better done sooner rather than later, since new bugs will be
easier to attribute with the new code.33

Evolve requirements and architecture
✔ Modify requirements as appropriate, upon analysis of user feedback

✔ Develop logical architecture - detailed component structure, interaction diagrams,
interface definitions

✔ Develop code architecture - partition code into files

If user feedback is analyzed as a part of the process, requirements should be updated upon analysis of the
feedback.34 The software architecture within components should also be hammered out whenever the
new components are created. Intra-component architecture consists of both logical architecture and code
architecture.

Logical architecture includes both static and dynamic views. The static view defines the interface, while
the dynamic view shows the protocol for using the interface over time.35

Keep your eye out the window--get user feedback early and often
✔ Get feedback not just on bugs, but also on usefulness of existing features, desired

features, look and feel, etc.

✔ Identify users that would benefit from early use, really use product, and/or give useful
feedback

✔ Use “surrogate customers” if no access to real ones, or experts if getting feedback on
quantitative measures

✔ Prioritize feedback and make changes when appropriate

User feedback is very important for certain products and less important for others. If the team decides to
incorporate user feedback into the process, much care must be taken in identification of Evo users and
managing the feedback process. Users that do not have an incentive to use the product are difficult to
count on. Also, if the team does not incorporate a suggestion without explanation, users may become
frustrated.36

33 Past project data says that several projects adopted Evo to avoid problems with late integration, implying that they
had been burned by it in the past.

34 Interview with Tom Gilb, 8/1/98.

35 Deep Freeze saved this portion of the architecture for creation during the cycles, which worked well for them.

36 May and Zimmer, p. 8.

 Page 35

Using the marketing and sales teams for feedback is usually a good practice. They will often be more
engaged than external customers will. Also, since they are usually more directly responsible for customer
satisfaction than the development team, involvement in the process can help them achieve that goal.
Ideally, marketing personnel can both act as an internal user and be a liaison to external users.37

There are several things to keep in mind in order to keep the users engaged. By giving them timely
response to feedback, they will feel that their comments are being addressed. Also, when the team
decides not to implement a suggestion, they should let the users know the rationale. If not, the users may
get easily frustrated. Lastly, the team should share the development plan, as appropriate, so that the users
will know what changes are coming, and how the team is responding to the feedback.

Build frequently
✔ Build code base as often as your resources allow

✔ Prevent breakage

Since the executable must stay "live" throughout the whole development phase, it is important to build the
code base frequently. The more frequent the builds, the sooner new code can be tested and utilized, and
the sooner that faulty check-ins will be spotted. 38 Teams may want to discourage breakage of the build
via cultural incentives, such as requiring the guilty party to own the build process, or to pay a small fine.

Ideally, the team should completely automate the build process. Often, the cheapest resource a team has
is overnight machine time. If not already utilized, this machine time should be used to build and test the
code in order to prevent new errors from entering the code. If the resources are available, a nightly build
is best. Regression testing should be automated, so that the code can also be easily tested at every build.

37 Redwood Firmware and Deep Freeze could’ve benefited from feedback from their marketing and sales teams.

38 Redwood Firmware built only every two weeks and believed that they could’ve benefited from more frequent
builds.

 Page 36

Debrief after each mission
✔ Identify what worked and what needs to be improved in terms of product, process, plan,

and people

✔ Reassess progress towards target

✔ Reassess risks

✔ Implement course corrections

Since results are visible after every mission, schedule changes and design changes are more frequent with
the Evo process than with others. Teams should prepare to replan at the end of every mission. Also, in
the spirit of continuous improvement, analysis of how things went in the current mission can lead to
greater success in the next mission. After the last mission of the project, the team should similarly debrief
about how well the process worked and how they can improve it.39

It’s best to think of problems not in terms of what is wrong or broken, but how great the opportunity for
improvement is. Improvements should also be rewarded. Creating a culture of continuous improvement
in the group is important.

Lastly, it’s important not to procrastinate replanning. If schedule adjustments are neglected, the schedule
soon becomes meaningless. Better to expend the effort sooner, than to spend double the effort later.40

39 Bistro had not debriefed about Evo in recent years, which led to their engineers not understanding the philosophy
of the process.

40 Past project data lists two projects that experienced this problem.

 Page 37

6 General conclusions

6.1 Process preparation

Initial preparation is required before the cycling can begin. One of the primary concerns that the
PGC consultants usually have of their customers is that they are not doing “enough process” to be
successful. Specifically, with Evo, since there are dozens of new things to learn, teams often concentrate
on a few of them, and may leave some important things out. Many of the tasks that are neglected are the
up-front preparatory activities, such as educating the team on the process philosophy and proper cycle
planning. Hence, it was decided to present the best practices chronologically, to indicate where to
concentrate at a given time in the project. These up-front tasks can actually be separated into two
preparatory phases. In the “attend ground school” phase, teams must educate themselves and make clear
their goals for the process and project. This phase is relatively quick, compared with the next two. Next,
in the “make flight plans”, the team needs to develop the infrastructure for the project. After these two
phases, the team will be finally ready to “fly missions”.

6.2 Process philosophy

Understanding the process philosophy is important. Often, teams follow processes like recipes,
without understanding any of the theory behind the process. In the absence of complex conditions, this
can still produce a reasonable result. For instance, I have no idea why a zucchini makes a chocolate cake
so good, so when I run out of zucchinis, I have no idea which vegetable to substitute. The problem is
more severe with Evo, since the process has many parameters. Without understanding the theory, teams
will not be able to adapt the process to meet their needs. Therefore, the team should spend time in
learning the philosophy behind the process. Since the process affects the entire team, all team members
should be educated as such.

6.3 Team competence

Competent teams are more successful with complex processes. It is somewhat an obvious notion that
teams who are more experienced with software processes will be better able to adopt complex processes.
However, in practice, new teams or new team members attempt to adopt Evolutionary Development
without the proper training. If a team has a large number of inexperienced programmers, the team may
want to consider using Waterfall Development, for its simplicity. Waterfall Development is considered
less complex than Evolutionary Development, which in turn is considered less complex than Spiral
Development. If a team using an evolutionary process hires only a few inexperienced programmers, these
programmers should be “hand-held” through the process, especially when it comes to planning.

6.4 Creating the “right product”

Ownership of “creating the right product” is often neglected in organizations. Traditionally,
marketing has served the function of determining customer needs and product development has served the
function of creating the product based on the specification. Usually, it is a joint effort to define the specs,
based on the needs. Then the project progresses and only when the product fails in the marketplace do we
reexamine the specs to see what went wrong. With today’s technology, we’ve realized the ability to get
customer feedback on a product while a product is still in development. The ability to do this is
especially great in software, because prototyping costs are low. Yet, in many organizations, neither the
marketing team or development team for a product is very interested in shaping the product to meet
customer needs. This is most likely due to the fact that neither team is given the job of making the

 Page 38

product best for the user. Organizations need to determine whom to give this task’s ownership to, and
how to set proper incentives for teams to spend effort on it.

6.5 Motivational implications

Cyclical processes are both encouraging and discouraging. The impact a process has on a team
members’ motivation is a strong influence on whether the group will successfully adopt the process. On
the upside, teams generally enjoy the ability to see the fruits of their labors immediately. On the
downside, however, teams may get frustrated from the additional overhead the process requires. Also,
when using the process for the first time, groups often find themselves continually adjusting their
schedule, which tends to dampen spirits. Frustration over such issues with the process may cause teams
to reject the process or blame unrelated problems on it. To counter the negative feelings about the new
process, managers should educate the team well about the process and assure them that these effects are
somewhat expected, but the overall impact of the process should be positive.

 Page 39

7 Recommendations for future research

7.1 Quantitative study

This study was by in large qualitative. Although many past projects that were referenced, mostly
anecdotal advice was gathered from them. Qualitative studies are valuable in that a broad range of ideas
and practices are presented. However, in order to sway developers to adopt practices that require major
modifications in behavior, rigid proof is generally needed. A quantitative study, by gathering statistical
evidence over a larger set of projects, could provide such proof. (However, the major drawbacks of
quantitative studies is that they generally cannot say very much, and they often conclude what many
people are already sure of, anyway.) Future studies should consider evaluating the successfulness of:

• cyclical lifecycle process
• short cycles (2-3 weeks)
• user feedback during development
• high build frequency (~daily)

7.2 Importance of flexible architectures

The case studies presented here attempt to assess the impact of architecture on Evolutionary
Development. However, the flexibility of a given architecture is difficult to measure. When asked how
flexible their architectures were, most architects responded that they tried to make their architectures as
flexible as possible, and not much more information was forwarded. Thus, a more technical analysis of
the architectures is needed. Such a future would require a researcher who is somewhat familiar with the
technical aspect software architecture. Then, the proper questions can be asked which would characterize
different architectures in aspects related to flexibility.

7.3 Tailoring of the model to specific needs (large teams, new markets, etc.)

Perhaps the most asked question in the realm of lifecycle models is, “which model is best for a given
project?” Unfortunately, few companies use more than one model in addition to the Waterfall, so
comparing say, Evolutionary Development and the Spiral model would probably require an industry-wide
study. However, since there are many variations of Evo at HP, the question that comes up is, “what
variation of Evo should I use for a given project?” Since some variations of Evo are essentially other
lifecycle models, the two questions are quite similar.

The later question was the original one to be approached by this thesis. It is feasible to believe that one
variation of the model works best for large teams, another works best for high technology risk, and yet
another works best for products in new markets. We listed about 10 major project attributes and theorized
which variations of the process might fit them best. However, our sample of projects proved too
homogeneous to make any such conclusions. Most of the HP teams that call upon the PGC consultants
for lifecycle assistance are of medium size (8-20 engineers) and are iterations of an existing product.

In retrospect, it would’ve been best to analyze several projects that did not claim to be using Evo. Many
of these projects would likely be following a Waterfall process, or cyclical process similar to Evo. (Often,
groups do not give a name to their lifecycle process.) If a case study was performed for each of the major
project types, much can be learned about how well their current process works for them. Ultimately, it
would be nice to conclude where on the 2x2 matrix a given project should lie.

 Page 40

7.4 Relation to Open Source Software (OSS) method

During the research gathering for this thesis, the famous “Halloween Document” was leaked from
Microsoft and grabbed the attention of many of the PGC consultants. (The document assesses the threat
that the OSS method presents to Microsoft.) Mark Interrante and I discussed how the process might
relate to cyclical lifecycle models, such as Evo.

OSS, in a sense, uses very short cycles, as well as user feedback. Versions of the product change rapidly,
with each user’s check-ins. Also, the developers become the users, since many of them are motivated to
develop in order to make the product easier to use. However, OSS development lacks the drumbeat that
Evo has (or rather, in OSS the drumbeat is more silent).

Since the two processes are similar, perhaps Evo can borrow some techniques from OSS development.
For instance, one of the conclusions of the Microsoft analysis was that OSS projects can be used to create
very high quality software (which is contrary to most people’s suspicions). If the attributes of OSS which
lead to high quality were discerned, perhaps they could be applied to Evo.

On the other hand, OSS is criticized for not allowing rapid time-to-market, which Evo does allow.
Therefore, there might be an ideal process that contains the best of both models. Future research can try
to identify what, if anything from OSS can be applied to Evo to improve it.

 Page 41

Bibliography

Ron Albury and Hans Wald, “The Evolutionary Software Development Process”, SDRC/Metaphase
working paper (unpublished)

Mikio Aoyama, “Concurrent-Development Process Model”, IEEE Software, July 1993, pp. 46-55

Barry Boehm, “A Spiral Model of Software Development and Enhancement”, IEEE Computer, May
1988, pp. 61-72

Todd Cotton, “Evolutionary Fusion, A Customer-Oriented Incremental Life Cycle for Fusion”, HP
Journal, August 1996 Volume 47 Number 2

Michael A. Cusumano and Richard W. Selby, Microsoft Secrets, Free Press, 1995

Michael A. Cusumano and David B. Yoffe, Competing on Internet Time: Lessons from Netscape and its
Battle with Microsoft, Free Press, 1998

Michael A. Cusumano and Richard W. Selby, “How Microsoft Builds Software”, Communications of the
ACM, June 1997, Vol. 40 No. 6, pp. 53-61

Michael A. Cusumano, “How Microsoft Makes Large Teams Work Like Small Teams”, Sloan
Management Review, Fall 1997, pp. 9-19

Kathleen M. Eisenhardt and Shona L. Brown, “Time Pacing: Competing in Markets that Won’t Stand
Still”, Harvard Business Review, March-April 1998, pp. 59-69

Robert G. Fichman and Scott A. Moses, “An Incremental Process for Software Implementation”, Sloan
Management Review, Winter 1999, pp. 39-52

Tom Gilb, Principles of Software Engineering Management, Addison Wesley, 1988

Tom Gilb, Evo: The Evolutionary Project Managers Handbook, (currently in publication, see http://result-
planning.com)

V. Scott Gordon and James M. Bieman, “Reported Effects of Rapid Prototyping on Industrial Software
Quality”, Software Quality Journal, Vol. 2. 93-108, pp. 93-108

D. Greer and D.W. Bustard, “Towards an Evolutionary Software Delivery Strategy based on Soft
Systems and Risk Analysis”, IEEE ?, September 1996, pp. 126-133

Todd Lauinger, “Risk Driven Iterative Development”, Object Magazine, April 199?, pp. 29-34

Alan MacCormack, “Towards a Contingent Model of Product Development: A Comparative Study of
Development Practices”, Source: EIASM 5th International Product Development Management
Conference, Lake Cumo, Italy, May 25-26, 1998, pp. 653-670Marco Iansiti and Alan MacCormack,
“Developing Products on Internet Time”, Harvard Business Review, September-October 1997, pp. 108-
117

 Page 42

Elaine L. May and Barbara A. Zimmer, “The Evolutionary Development Model for Software
Development”, HP Journal, August, 1996, page 39

Elaine May, “Dividing a Project”, Hewlett Packard (unpublished)

Steve McConnell, Rapid Development, Microsoft Press, 1996

Johanna Rothman, “Iterative Software Project Planning and Tracking”, Software Quality, July 1998, pp.
1-8

Nancy Staudenmayer and Michael Cusumano, “Alternative Designs for Product Component Integration”,
Sloan working paper #4016, April 1998 (unpublished)

Roberto Verganti, Alan MacCormack, and Marco Iansiti, “Rapid Learning and Adaptation in Product
Development: An Empirical Study of the Internet Software Industry”, Source: EIASM 5th International
Product Development Management Conference, Lake Cumo, Italy, May 25-26, 1998, pp. 1062-1079

 Page 43

Appendix I: past project matrix description

Rows and columns of the matrix

• Division
• Project name
• Product
• Does organization still exist?
• Division Contact
• PGC Contact
• Date of Project
• Project Status (done, on going, or

cancelled)
• Project Success?
• Evo Success?
• Project size
• Project Focus (SW, FW, HW or system)
• Cycle Size
• # of Cycles Completed
• Variation of Cycle Length

• Evo Value Prop clearly understood?
• Team experience with Evo (1st, 2nd, 3rd

time using?)
• Team used Fusion or SWI Architecture

processes?
• Objective of use of Evo
• Sponsorship and motivation
• How was cycle length determined?
• Use of Customer Feedback
• Factors that occurred during the project
• Chunking Strategy, Sequencing strategy
• Was Entry Criteria identified, satisfied?
• Special Roles
• Barriers to successful Evo adoption
• Key Learnings

Notes on the data

Gray boxes signify unknown data. Most data was collected during 6/98 - 8/98 from SWI account
managers. When an account manager did not remember much data from an Evo project, the
project manager (PM) was contacted in many cases. However, there are many PMs that are no
longer with the same group and some that have left HP, and thus some data could not be
determined.

Both project and process success are somewhat subjective, based on the opinion of either the
account manager or project manager.

Conclusions from aggregate data

• 28 projects included from 1990-1998.

• 12 successful projects, 5 failed projects, 11 currently unknown.

• 9 projects successful at using Evo, 4 projects unsuccessful, 15 projects currently unknown.

• High correlation between Evo success and understanding the Evo value proposition. 11/15
(73%) successful projects understood the Evo value proposition clearly, while 4/6 (66%)
unsuccessful projects didn’t understand it clearly.

• Range of cycle lengths is 1-6 weeks, average of 2-3.

• Range of total number of cycles is 3-65, average of about 10.

 Page 44

Appendix II: full texts of case studies

(See attached sheets)

