Software Outsourcing Contracting: What should be in the contract and what should not.
26/5/06 17:55

· By Tom Gilb, tom@gilb.com, www.gilb.com
· Written especially for Norwegian Data Processing Association meeting speech 12th June 2006, Oslo (slides in Norwegian). Basis for a 1 hour talk to a one day conference.

· Introduction:

· This paper takes the point of view of the customer. But I hope the suppliers will be interested in some more competitive and satisfactory ways to offer services to their customers and prospects.

· The major problem for both parties to the contract is how to define things clearly, in spite of the fact that there are many future unknowns.

· The major problem is that far too many outsource relationships are outright failures, or are partial failures.

· So, the major premise of this paper is how to avoid total failure, how to reduce failure, or at least detect failures early, and stop the bleeding.

· The major premise is that we need to define the results we are expecting in quantified and testable ways.

· The second major premise is that we cannot actually do this in the contract. The contract must however serve as a framework for such decisions and agreements, as the work progresses.

· I assume that any contract format, or contract standard, can be used for these ideas. They are a supplement, rather than a change to the contract templates. But, that some of the ideas could be more explicitly treated in public contracting templates.

· What should be in a contract:

· A clear framework for controlling the project.

· The general framework.

· The contract needs to totally avoid fixed commitments, when these are not realistic. The contract needs to define a framework for helping the partners (supplier (s) and customer) to produce useful results for the customer. The framework should be designed to deal with the inevitable risks, and changing priorities.

· The notion of defining results at each delivery cycle.

· Example:

· At the beginning of each cycle the customer will define the primary measurable and testable results they want to achieve, by the end of the cycle.

· The supplier will then suggest the degree of those results that they believe would be possible within given constraints.

· The customer will then agree to this level, or repeat this cycle of setting delivery cycle requirements.

· The notion of defining costs at each delivery cycle.

· On the basis of a mutually agreed measurable results; the supplier will estimate the total costs for their own efforts, and for all other related costs the customer is likely to incur.

· If the estimated costs are acceptable to the customer, they form the basis for invoicing for the cycle.

· The notion of the size of the cycle.

· The contract can put some constraints on the size of the cycle:

· A general policy can be mandated, such as;

· No cycle can plan to consume more than 2% of the calendar time for the major long term deadline for the long term results.

· No cycle can plan to use more than 2% of the long term financial budget, set aside for the long term results.

· The notion of responsibility for the results.

· The contract shall make it clear who parties are responsible for delivering which results. In particular which specific results the supplier is responsible for. Which results they are NOT responsible for. And which results the customer or other stakeholders are responsible for.

· The contract shall be clear about the types of results that are the general responsibility throughout the contract, and how and when specific delivery cycles can assign result responsibility in a more local basis.

· For example:

· 1. All technical system quality levels are the responsibility of the supplier.

· Example: response times, reliability, maintainability.

· 2. All system performance and quality levels, the ones that primarily depend on the customer and their client people, are the responsibility of the customer, assuming the supplier has delivered any defined prerequisite technical system quality levels.

· The notion of responsibility for costs.

· The contract shall make general framework statement about actual costs. It shall also permit local cycle ‘deals’ regarding costs.

· For example:

· The supplier cannot bill the customer for more than 100% more than their estimated costs, even when the results equal or exceed the promised result levels. They must swallow any excess costs themselves, no matter what the reasons.

· Special deals can be made to modify or enhance this general framework in any given cycle. But the general principle of reasonable responsibility for estimated supplier costs will be maintained.

· The notion of learning from results to date, at each cycle.

· The contract will stipulate the allocation of specific time each cycle to analyze results to date, problems, risks, and to change plans, processes, suppliers and anything necessary in order to maintain progress towards necessary results and costs.

· At the extreme this can include shutting down the project, or removing suppliers, when they clearly are incapable of delivering the results expected.

· The Policy of Prioritization.

· The contract should give specific general guidance regarding the method of prioritization of what to do at each cycle.

· For example:

· At each cycle the customer has the right to select the implementation that they estimate will give them the greatest numeric progress towards their long term objectives.

· Measurable Statement of The most critical target improvements intended:

· A set of no more than ten of the most critical business improvement targets that will be delivered or enabled by the contracted system, will be stated in an appendix to the contract, as a statement of purpose.

· The customer has the right to update this and change it at any time for any reason. It serves to inform the suppliers as to the long range objectives of their client. It helps focus the customer on working towards what they have stated there.

· For example:

· Productivity: Ambition: at least 10% increase per year.

· Savings: Ambition: Cost per customer reduced by 50% within 3 years.

· Service: Ambition: reduction by 90% of customer call wait time within 2 years.

· Constraints: clear and unambiguous constraints.

· There needs to be clear statements of all overall constraints in the contract appendix, and allowance for specific cycle constraints as need dictates.

· The point is that estimates of results and costs must be made with knowledge of those constraints.

· Constraints can be of two kinds: scalar constraints – regarding performance and quality levels; and non-scalar constraints such as legal, cultural, contractual requirements.

· What should NOT be in a contract:

· Fixed Prices:
· Contracts should not contain any kind of fixed estimates. These need to be determined step by step. Costs need to be closely related to value delivered cycle by cycle. We have not yet mastered the art of reliable software project costs. The only result of arbitrarily fixing costs will supplier pressure to cut corners somewhere to mutual dissatisfaction.

· Fixed Requirements:
· Contracts should not contain fixed business requirements. Nor should they contain amateur design that is often called ‘requirements’. The business needs to be free to learn what its requirements are, and to change their priorities based on experience with an evolving system, and the demands of the outside world.

· The main consideration in a contract has to be the creation of a relationship with the supplier, as a loyal servant, capable of delivering on short term promises made about results the customer has in fact prioritized.

· Major long term constraints can be stated, but even these need to be the subject of unilateral change by the customer.

· Fixed Deadlines:
· Contract should not contain deadlines for the project, and certainly not similar things like intermediary milestones. These only cause more problems than they solve.

· Of course the business and the organization may very well have real deadlines, such as preparing for a new law or a merger. But these need to be approached by a series of prioritized increments. Each one delivering the highest priority value that can be delivered. By the time the ‘big deadline’ rolls around we should have largely delivered all prioritized requirements.

· Fixed Supplier:
· A contract is necessarily made with one legal entity, the ‘supplier’. But the contract should not unnecessarily bind the customer to the supplier or any sub-suppliers. The only reason to continue the relationship is that it is successful in delivering results.

· Fixed Penalties:
· It is necessary to financially motivate suppliers. But, arbitrarily fixed penalties for lateness, might work against the real objectives of the project. The motivation this paper is suggesting is that the supplier has to deliver a continuous stream of measurable promised results, at or near quoted costs. If the costs far exceed estimates they have to cover the excess themselves. If they fail to deliver measurable results they cannot get paid for even a single increment. If they cannot deliver results they are finished as a supplier. That is a better ‘penalty’.

· What should be decided as the contract is executed, for the next delivery cycle?

· The main measurable results – defined as the contract is executed.

· The need for results is the primary driver for the supplier contract. The actual results needed will necessarily vary in time, even during the contract period. The results needed – thing like savings, productivity and better service or better quality products – will vary in somewhat unpredictable ways. The results needed depend on both external circumstances – markets, competitors, technology, politics – and internal circumstances – such as new managers, critical data about products and markets. You will necessarily have the need to reprioritize the objectives you might have set at the beginning of a contractual period. You cannot give up the right to prioritize and do the best you can in a business, by fixing objectives for results in the initial contract. You need to retain your right to change anything that is in your corporate interest to change, anytime.

· The estimate of supplier costs – as the contract is executed.

· The consequence of this is that there is really, or should not be in my opinion, no fixed basis (results or design) for estimating an overall cost for a long term, large scale project. There is then, consequently, no basis for a lowest bid or lowest bidder in the overall contracting situation.

· In my opinion contracts should be won by demonstration of ability to deliver results at specified costs, incrementally. There is no real reason why several competing suppliers cannot simultaneously be serving one customer, demonstrating their capability. Let the most productive (value to cost delivered) supplier succeed, let others be dropped quickly!

· It is notoriously difficult to estimate software project costs in any case. NASA reported frequent 100% to 200% software cost overruns for example. So even a ‘low bid’ is almost certainly a dangerous illusion.

· The costs must be estimated on a step by step basis. They can then be controlled on a step by step basis. The costs can then be related to the perceived, and later measured, value delivered – on a step by step basis. This will give better control over real profitability of the total investment.

· By doing a series of small step (week or month) cost estimates, and getting immediate feedback on the real costs; your project team will quickly become expert on real cost estimation, without dangerous illusions.

· By prioritizing low cost and high value steps early in the project, you will squeeze out unprofitable elements of the project in practice!

· You do not need a fixed price estimate because of your fixed budget! The small steps should work within your budget framework. They should use a small percentage of the budget (2% is fine) at a step. You can then see early and often how you are eating up your budget, and what value you are getting for your budget.

· The customer responsibilities – as the contract is executed.

· The customer is responsible for

· making decisions on the defined and measurable results they want on the next cycle.

· Testing the evolving system realistically to ascertain the degree to which the results have

· actually been delivered,

· and have been maintained beyond initial delivery

· Determining at each cycle what they are willing to pay for the results.

· Carrying out any training, motivation, organizational changes, hardware and software acquisitions, and any other actions necessary for the supplier work to produce the results projected.

· The financial responsibility – as the contract is executed.

· The customer is responsible for paying when the results are testably delivered.

· The supplier is responsible for any costs exceeding the customer responsibility. For example ‘100% more than the supplier estimate’ limit.

· The framework contract should make the supplier responsible for any unannounced and unaccepted side effects of their solutions. This would include the need for temporary solutions, overtime payments, extra hardware, debugging. Perhaps even some (perhaps limited responsibility, but enough to motivate them) responsibility for the consequences of bugs, design faults, and failure to actually meet specified constraints – such as testability or maintainability quality levels.?

· The deadline – as the contract is executed.

· The short-term deadlines (one week to one month cycles) take care of themselves. If things are late, everyone is painfully aware of it and the supplier should not be able to claim payment at all, no matter what the reason.

· One useful approach is ‘time boxing’. That means that we judge the degree of results after a fixed period of time (a week or more). The time box is the deadline for the short term cycles.

· For long-term deadlines, one or many quarters of a year ahead, the best way to manage that is to focus on getting the most deadline-critical things completely done in the earliest steps. That way, when the big deadline arrives, all essentials are in order, and the less essential, the less valuable things, may not be completed. But there is no reason for panic or even fines.

· The local cycle constraints – as the contract is executed.

· Early deliver on a step by step basis does NOT mean ‘quick and dirty’ delivery.

· Certain operational quality levels of performance and quality need to be set and maintained for each step.

· For example response time and reliability.

· Certain conditional constraints need to be met in addition.

· For example legality, and confidentiality.

· These constraints need to be spelled out clearly either generally for all cycles, or exceptionally for specific cycles, so that the supplier understands they are part of the agreement.

· The premise is that each incremental delivery is absolutely suited for real operational use. Anything less would give us a false picture of costs and time needed to make things operational.

· Being operational means able to deliver real value for money – and is the major point of the whole contract.

· 10 Principles of Software Contracting.

· 1. You can contract to control some unknowns, if you do so at a higher level of perception – the top level of results.

· 2. Many result and cost unknowns need to be agreed gradually as you progress the work; but you can set the framework for those unknowns, to become better known later, in the main contract.

· 3. You cannot and should not attempt to fix massive technical detail of requirements and design in the main contract.

· 4. Quality Requirements must be specified quantitatively and testably.

· 5. Quality requirements can either be defined as constraints or as targets you will pay for.

· 6. Performance requirements include all quality requirements: you must define, somewhere, all performance requirements, and all constraints.

· 7. You need to define all types of constraints in a clear and testable manner; constraints must be integrated into the requirements. This is the necessary framework for determining priorities and costs.

· 8. You should try to contract for results, as far as it is in the power of the supplier to provide those results. But one step at a time.

· 9. You need to clearly define what the supplier is not responsible for, and cannot be responsible for; and to understand your own distinct systems engineering responsibility for results.

· 10. You need to have a contract framework for managing useful results in frequent cycles, as a clear subset of the corporate results you need to reach; the corporate results themselves must also be quantified, and their progress tracked measurably on an ongoing basis.

· Conclusions:

· Software contracts should be primarily an intelligent framework.

· The details of business results, costs, and cumulative tracking of progress towards long-term business objectives, should be determined during each short term cycle.

· Suppliers should be heavily motivated to deliver useful measurable priority improvements to the customer and their stakeholders.

· References:

· 1. Gilb: No Cure No pay

· available at Gilb Downloads Gilb.com

· slides available at Roots site, 2005, http://roots.dnd.no/modules.php?op=modload&name=Downloads&file=index&req=viewdownload&cid=19
· (actually the download did not work well May 24 and needs to be checked)

· 2. [CE] Gilb05: Gilb, Tom, Competitive Engineering, A Handbook For Systems Engineering, Requirements Engineering, and Software Engineering Using Planguage, ISBN 0750665076, 2005, Publisher: Elsevier Butterworth-Heinemann.

Author Bio

· Tom has been an independent consultant, teacher and author, since 1960. He mainly works with multinational clients; helping improve their organizations, and their systems engineering methods.

· Tom’s latest book is ‘Competitive Engineering: A Handbook For Systems Engineering, Requirements Engineering, and Software Engineering Using Planguage’ (Summer 2005).

· Other books are ‘Software Inspection’ (with Dorothy Graham, 1993), and ‘Principles of Software Engineering Management’ (1988). His ‘Software Metrics’ book (1976, Out of Print) has been cited as the initial foundation of what is now CMMI Level 4.

· Tom’s key interests include business metrics, evolutionary delivery, and further development of his planning language, ‘Planguage’. He is a member of INCOSE and is an active member of the Norwegian chapter NORSEC. He participates in the INCOSE Requirements Working Group, and the Risk Management Group.

·

· Email: Tom@Gilb.com

· URL: http://www.Gilb.com
· FASTPRIS SOM METODE FOR Å KONTROLLERE KOSTNADER

· ESTIMATER

· Målprisen skal fastlegges ut fra en kalkyle, men, nåhar både

· kapittel 16 og forelesningen den 23. april fortalt oss at estimering

· er vanskelig. Påhvilket grunnlag gjør leverandørene disse

· estimeringene, og hvordan er det mulig for kundene åforvisse

· seg om at estimatet er fornuftig? Eller fastsettes målprisen ved

· <- COMPUTAS SLIDES

· RISIKOHÅNDTERING

· Usikkerhetsanalyse er viktig. Hvilke momenter bidrar mest

· til usikkerhetene? Stor usikkerhet skal medføre høyere

· målpris. Hvor stort påslag kan det dreie seg om? Regnes

· påslaget i prosent, eller angis det absolutt?

· Svar: Prosent, typisk 15% som malen fra DND indikerer,

· men usikkerhetsmatrisen blir typisk ikke kvantifisert over

· til påslaget. Matrisen brukes mest kvalitativt

· Long term maintenance

· Et levert system skal ikke bare fungere i henhold til

· kravspesifikasjonen –det skal ogsåvære vedlikeholdbart slik at

· det lett kan tilpasses endrede krav og ønsker i ettertid. Er PS2000

· noe bedre enn andre standard-kontrakter med tanke påintensiver

· for åsikre god vedlikeholdbarhet?

· Svar:Iterativiteti seg selv bidrar til åfremme

· vedlikeholdbarheten.

