
1

University of Southern California
Center for Software EngineeringC S E

USC

Barry Boehm, USC

CSEET 2006 Keynote Address
April 19, 2006

Educating Students in Value-Based
Design and Development

04/19/06 ©USC-CSE 2

University of Southern California
Center for Software EngineeringC S E

USC

Outline
• Value-based software engineering (VBSE)

motivation and definitions
• Initial VBSE theory (with Apurva Jain)

– Software process implications
– Application to case study

• Incorporating VBSE into SE courses
– SE management and economics
– SE team project course

• Conclusions and references

2

04/19/06 ©USC-CSE 3

University of Southern California
Center for Software EngineeringC S E

USC

Software Testing Business Case

• Vendor proposition
– Our test data generator will cut your test costs in half
– We’ll provide it to you for 30% of your test costs
– After you run all your tests for 50% of your original cost,

you are 20% ahead
• Any concerns with vendor proposition?

04/19/06 ©USC-CSE 4

University of Southern California
Center for Software EngineeringC S E

USC

Software Testing Business Case
• Vendor proposition

– Our test data generator will cut your test costs in half
– We’ll provide it to you for 30% of your test costs
– After you run all your tests for 50% of your original cost,

you are 20% ahead
• Any concerns with vendor proposition?

– Test data generator is value-neutral*
– Every test case, defect is equally important
– Usually, 20% of test cases cover 80% of business case

* As are most current software engineering techniques

3

04/19/06 ©USC-CSE 5

University of Southern California
Center for Software EngineeringC S E

USC

20% of Features Provide 80% of Value:
Focus Testing on These (Bullock, 2000)

% of
Value
for

Correct
Customer

Billing

Customer Type

100

80

60

40

20

5 10 15

Automated test
generation tool

- all tests have equal value

04/19/06 ©USC-CSE 6

University of Southern California
Center for Software EngineeringC S E

USC

Value-Based Testing Provides More Net Value

Net
Value

NV

60

40

20

0

-20

20 40 10060 80

-40

(100, 20)

Percent of tests run

Test Data Generator

Value-Based Testing(30, 58)

0100100+2010080100

….….….….….….….

549440-10405040

588830-15304530

557520-20204020

405010-25103510

000-300300

NVValueCostNVValueCost

Value-Based TestingTest Data Generator% Tests

4

04/19/06 ©USC-CSE 7

University of Southern California
Center for Software EngineeringC S E

USC

Motivation for Value-Based SE
• Current SE methods are basically value-neutral

– Every requirement, use case, object, test case, and defect is
equally important

– Object oriented development is a logic exercise
– “Earned Value” Systems don’t track business value
– Separation of concerns: SE’s job is to turn requirements into

verified code
– Ethical concerns separated from daily practices

• Value – neutral SE methods are increasingly risky
– Software decisions increasingly drive system value
– Corporate adaptability to change achieved via software

decisions
– System value-domain problems are the chief sources of

software project failures

04/19/06 ©USC-CSE 8

University of Southern California
Center for Software EngineeringC S E

USC

The “Separation of Concerns” Legacy

• “The notion of ‘user’ cannot be precisely defined, and
therefore has no place in CS or SE.”

- Edsger Dijkstra, ICSE 4, 1979

• “Analysis and allocation of the system requirements is
not the responsibility of the SE group but is a
prerequisite for their work”

- Mark Paulk at al., SEI Software CMM* v.1.1, 1993

*Capability Maturity Model

5

04/19/06 ©USC-CSE 9

University of Southern California
Center for Software EngineeringC S E

USC

Resulting Project Social Structure

SOFTWARE

MGMT.

AERO. ELEC. G & C

MFG.

COMM PAYLOAD

I wonder when
they'll give us our
requirements?

04/19/06 ©USC-CSE 10

University of Southern California
Center for Software EngineeringC S E

USC

20% of Fires Cause 80% of Property Loss:
Focus Fire Dispatching on These?

100

80

60

40

20

% of
Property

Loss

% of Fires
20 40 60 80 100

6

04/19/06 ©USC-CSE 11

University of Southern California
Center for Software EngineeringC S E

USC

Penumbra Negotiation Example:
Fire Dispatching System

• Dispatch to minimize value of property loss
– Neglect safety, least-advantaged property owners

• English-only dispatcher service
– Neglect least-advantaged immigrants

• Minimal recordkeeping
– Reduced accountability

• Tight budget; design for nominal case
– Neglect reliability, safety, crisis performance

04/19/06 ©USC-CSE 12

University of Southern California
Center for Software EngineeringC S E

USC

Why Software Projects Fail

7

04/19/06 ©USC-CSE 13

University of Southern California
Center for Software EngineeringC S E

USC

Outline
• Value-based software engineering (VBSE)

motivation and definitions
• Initial VBSE theory (with Apurva Jain)

– Software process implications
– Application to case study

• Incorporating VBSE into SE courses
– SE management and economics
– SE team project course

• Conclusions and references

04/19/06 ©USC-CSE 14

University of Southern California
Center for Software EngineeringC S E

USC

Initial VBSE Theory: 4+1
- with Apurva Jain

• Engine: Theory W (stakeholder win-win): What values are
important?
– Enterprise Success Theorem
– Theory of Justice
– Win-Win Equilibrium and Negotiation

• Four Supporting Theories
– Utility Theory: How important are the values?

– Multi-attribute utility; Maslow need hierarchy
– Decision Theory: How do values determine decisions?

– Investment theory; game theory; statistical decision theory
– Dependency Theory: How do dependencies affect value

realization?
– Results chains; value chains; cost/schedule/performance

tradeoffs
– Control Theory: How to monitor and control value realization

– Feedback control; adaptive control; spiral risk control

8

04/19/06 ©USC-CSE 15

University of Southern California
Center for Software EngineeringC S E

USC

Theory W: Enterprise Success Theorem
– And informal proof

Theorem: Your enterprise will succeed
if and only if

it makes winners of your success-critical stakeholders

• Proof of “if”:
Everyone that counts is a winner.
Nobody significant is left to complain.

• Proof of “only if”:
Nobody wants to lose.
Prospective losers will refuse to participate, or will
counterattack.
The usual result is lose-lose.

04/19/06 ©USC-CSE 16

University of Southern California
Center for Software EngineeringC S E

USC

Theory W: WinWin Achievement Theorem

Making winners of your success-critical
stakeholders requires:

i. Identifying all of the success-critical
stakeholders (SCSs).

ii. Understanding how the SCSs want to win.
iii. Having the SCSs negotiate a win-win set of

product and process plans.
iv. Controlling progress toward SCS win-win

realization, including adaptation to change.

9

04/19/06 ©USC-CSE 17

University of Southern California
Center for Software EngineeringC S E

USC

VBSE Theory 4+1 Structure

Utility Theory

Theory W:
SCS Win-Win

Decision Theory

Dependency
Theory

Control Theory

How do dependencies
affect value realization?

How to adapt to change and
control value realization?

How do values determine
decision choices?

How important are the
values?

What values are important?
How is success assured?

04/19/06 ©USC-CSE 18

University of Southern California
Center for Software EngineeringC S E

USC

Initial VBSE Theory: 4+1 Process
– With a great deal of concurrency and backtracking

Utility Theory

Theory W:
SCS Win-Win

Decision Theory

Dependency
Theory

Control Theory

6a, 7c. State measurement,
prediction, correction;
Milestone synchronization

5a. Investment analysis,
Risk analysis

1. Protagonist goals
3a. Solution exploration
7. Risk, opportunity, change
management

5a, 7b. Prototyping

2a. Results Chains
3b, 5a, 7b. Cost/schedule/
performance tradeoffs

2. Identify SCSs

3b, 7a. Solution Analysis

5a, 7b. Option, solution
development & analysis

4. SCS expectations
management

3. SCS Value
 Propositions
(Win conditions)

SCS: Success-Critical Stakeholder

6, 7c. Refine, Execute,
Monitor & Control Plans

5. SCS Win-Win
Negotiation

10

04/19/06 ©USC-CSE 19

University of Southern California
Center for Software EngineeringC S E

USC

Example Project: Sierra Mountainbikes

– Based on what would have worked on a
similar project

• Quality leader in specialty area
• Competitively priced
• Major problems with order processing

– Delivery delays and mistakes
– Poor synchronization of order entry,

confirmation, fulfillment
– Disorganized responses to problem

situations
– Excess costs; low distributor satisfaction

04/19/06 ©USC-CSE 20

University of Southern California
Center for Software EngineeringC S E

USC

Order Processing Project Goals
Goals: Improve profits, market share,

customer satisfaction via improved order
processing

Questions: Current state? Root causes of
problems? Keys to improvement?

Metrics: Balanced Scorecard of benefits
realized, proxies
– Customer satisfaction ratings; key elements

(ITV: in-transit visibility)
– Overhead cost reduction
– Actual vs. expected benefit and cost flows, ROI

11

04/19/06 ©USC-CSE 21

University of Southern California
Center for Software EngineeringC S E

USC

Initial VBSE Theory: 4+1 Process, Steps 1 and 2
– With a great deal of concurrency and backtracking

Utility Theory

Theory W:
SCS Win-Win

Decision Theory

Dependency
Theory

Control Theory

1. Protagonist goals

2a. Results Chains 2. Identify SCSs

SCS: Success-Critical Stakeholder

04/19/06 ©USC-CSE 22

University of Southern California
Center for Software EngineeringC S E

USC

Frequent Protagonist Classes

Protagonist Class Goals Authority Ideas Resources

Leader with Goals, Baseline Agenda X X X X

Leader with Goals, Open Agenda X X X

Entrepreneur with Goals, Baseline
Agenda X X X

Entrepreneur with Goals, Open Agenda X X

Inventor with Goals, Ideas X X

Consortium with Shared Goals X (X) (X)

•Sierra Moutainbikes: Susan Swanson, new CEO
– Bicycle champion, MBA, 15 years’ experience

– Leads with goals, open agenda

12

04/19/06 ©USC-CSE 23

University of Southern California
Center for Software EngineeringC S E

USC

DMR/BRA* Results Chain

INITIATIVE OUTCOME
OUTCOME

Implement a new order
entry system

ASSUMPTION

Contribution Contribution

Order to delivery time is
an important buying criterion

Reduce time to process
order

Reduced order processing cycle
(intermediate outcome)

Increased sales

Reduce time to deliver product
*DMR Consulting Group’s Benefits Realization Approach

04/19/06 ©USC-CSE 24

University of Southern California
Center for Software EngineeringC S E

USC

Expanded Order Processing System Benefits Chain

New order-entry
system

New order fulfillment
system

New order fulfillment
processes,

outreach, training

Improved supplier
coordination

Less time, fewer
errors in order

processing

Increased
customer

satisfaction,
decreased

operations costs

Increased profits,
growth

New order-entry
processes,

outreach, training

Faster order-entry steps, errors

Safety, fairness
 inputs

Faster,
better
order
entry

system

Interoperability
inputs

On-time assembly

Increased
sales,

profitability,
customer

satisfaction

Less time,
fewer

errors per
order
entry

system

Distributors, retailers,
customers

SuppliersSales personnel,
distributors

Developers

 Assumptions
 - Increasing market size
 - Continuing consumer satisfaction with product
 - Relatively stable e-commerce infrastructure
 - Continued high staff performance

13

04/19/06 ©USC-CSE 25

University of Southern California
Center for Software EngineeringC S E

USC

Initial VBSE Theory: 4+1 Process, Steps 3 and 4
– With a great deal of concurrency and backtracking

Utility Theory

Theory W:
SCS Win-Win

Decision Theory

Dependency
Theory

Control Theory

1. Protagonist goals

2a. Results Chains
3b. Cost/schedule/
performance tradeoffs

2. Identify SCSs

3b. Solution Analysis
4. SCS expectations
management

3. SCS Value
 Propositions
(Win conditions)

SCS: Success-Critical Stakeholder

04/19/06 ©USC-CSE 26

University of Southern California
Center for Software EngineeringC S E

USC

The Model-Clash Spider Web: Master Net
- Stakeholder value propositions (win conditions)

14

04/19/06 ©USC-CSE 27

University of Southern California
Center for Software EngineeringC S E

USC

EasyWinWin OnLine Negotiation Steps

04/19/06 ©USC-CSE 28

University of Southern California
Center for Software EngineeringC S E

USC

Red cells indicate lack of Red cells indicate lack of
consensus. consensus.
Oral discussion of cell Oral discussion of cell
graph reveals unshared graph reveals unshared
information, unnoticed information, unnoticed
assumptions, hidden assumptions, hidden
issues, constraints, etc.issues, constraints, etc.

15

04/19/06 ©USC-CSE 29

University of Southern California
Center for Software EngineeringC S E

USC

Initial VBSE Theory: 4+1 Process, Step 5
– With a great deal of concurrency and backtracking

Utility Theory

Theory W:
SCS Win-Win

Decision Theory

Dependency
Theory

Control Theory

5a. Investment analysis,
Risk analysis

1. Protagonist goals
3a. Solution exploration

5a. Prototyping

2a. Results Chains
3b, 5a. Cost/schedule/
performance tradeoffs

2. Identify SCSs

3b. Solution Analysis

5a. Option, solution
development & analysis

4. SCS expectations
management

3. SCS Value
 Propositions
(Win conditions)

SCS: Success-Critical Stakeholder

5. SCS Win-Win
Negotiation

04/19/06 ©USC-CSE 30

University of Southern California
Center for Software EngineeringC S E

USC

Project Strategy and Partnerships

• Partner with eServices, Inc. for order processing and
fulfillment system
– Profit sharing using jointly-developed business case

• Partner with key distributors to provide user feedback
– Evaluate prototypes, beta-test early versions, provide

satisfaction ratings
• Incremental development using MBASE/RUP anchor points

– Life Cycle Objectives; Architecture (LCO; LCA)
– Core Capability Drivethrough (CCD)
– Initial; Full Operational Capability (IOC; FOC)

• Architect for later supply chain extensions

16

04/19/06 ©USC-CSE 31

University of Southern California
Center for Software EngineeringC S E

USC

Business Case Analysis
• Estimate costs and schedules

– COCOMO II and/or alternative for software
– PRICE H or alternative for hardware
– COSYSMO for systems engineering

• Estimate financial benefits
– Increased profits
– Reduced operating costs

• Compute Return on Investment
– ROI = (Benefits – Costs) / Costs
– Normalized to present value

• Identify quantitative metrics for other goals
– Customer satisfaction ratings

• Ease of use; In-transit visibility; overall
– Late delivery percentage

04/19/06 ©USC-CSE 32

University of Southern California
Center for Software EngineeringC S E

USC

7600Annual O&M; Old System

3800Annual Oper. & Maintenance

600040012/31/2005FOC Deployed

56004009/30/2005FOC Beta

52007007/31/2005Full Oper. Cap’y CCD

45005003/31/2005Responsive IOC

400050012/31/2004Developed IOC

350021009/30/2004Initial Oper. Capability: HW

14003509/30/2004Initial Oper. Capability: SW

10506507/31/2004Core Capability Drivethrough

4002803/31/2004Life Cycle Architecture

1201201/31/2004Life Cycle Objectives

001/1/2004Inception Readiness

Cumulative Budget ($K)Budget ($K)Due DateMilestone

Order Processing System Schedules and Budgets

17

04/19/06 ©USC-CSE 33

University of Southern California
Center for Software EngineeringC S E

USC

Order Processing System: Expected Benefits
and Business Case

New System
 Current System

Financial Customers

Date
 M

ar
ke

t S
iz

e
($

M
)

M
ar

ke
t S

ha
re

 %

Sa
le

s

Pr
of

its

M
ar

ke
t S

ha
re

 %

Sa
le

s

Pr
of

its

C
os

t S
av

in
gs

C
ha

ng
e

in
 P

ro
fit

s

C
um

. C
ha

ng
e

in
 P

ro
fit

s

C
um

. C
os

t

R
O

I

La
te

 D
el

iv
er

y
%

C
us

to
m

er
 S

at
is

fa
ct

io
n

(0
-5

)

In
-T

ra
ns

it
Vi

si
bi

lit
y

(0
-5

)

Ea
se

 o
f U

se
 (0

-5
)

12/31/03 360 20 72 7 20 72 7 0 0 0 0 0 12.4 1.7 1.0 1.8
12/31/04 400 20 80 8 20 80 8 0 0 0 4 -1 11.4 3.0 2.5 3.0
12/31/05 440 20 88 9 22 97 10 2.2 3.2 3.2 6 -.47 7.0 4.0 3.5 4.0
12/31/06 480 20 96 10 25 120 13 3.2 6.2 9.4 6.5 .45 4.0 4.3 4.0 4.3
12/31/07 520 20 104 11 28 146 16 4.0 9.0 18.4 7 1.63 3.0 4.5 4.3 4.5

12/31/08 560 20 112 12 30 168 19 4.4 11.4 29.8 7.5 2.97 2.5 4.6 4.6 4.6

04/19/06 ©USC-CSE 34

University of Southern California
Center for Software EngineeringC S E

USC

Initial VBSE Theory: 4+1 Process, Steps 6 and 7
– With a great deal of concurrency and backtracking

Utility Theory

Theory W:
SCS Win-Win

Decision Theory

Dependency
Theory

Control Theory

6a, 7c. State measurement,
prediction, correction;
Milestone synchronization

5a. Investment analysis,
Risk analysis

1. Protagonist goals
3a. Solution exploration
7. Risk, opportunity, change
management

5a, 7b. Prototyping

2a. Results Chains
3b, 5a, 7b. Cost/schedule/
performance tradeoffs 2. Identify SCSs

3b, 7a. Solution Analysis

5a, 7b. Option, solution
development & analysis

4. SCS expectations
management

3. SCS Value
 Propositions
(Win conditions)

SCS: Success-Critical Stakeholder

6, 7c. Refine, Execute,
Monitor & Control Plans

5. SCS Win-Win
Negotiation

18

04/19/06 ©USC-CSE 35

University of Southern California
Center for Software EngineeringC S E

USC

Value-Based Expected/Actual Outcome Tracking Capability

Milestone
 Sc

he
du

le

C
os

t (
$K

)

O
p’

l C
os

t S
av

in
gs

M
ar

ke
t S

ha
re

 %

A
nn

ua
l S

al
es

 ($
M

)

A
nn

ua
l P

ro
fit

s
($

M
)

C
um

. P
ro

fit
s

R
O

I

La
te

 D
el

iv
er

y
%

C
us

to
m

er
 S

at
is

fa
ct

io
n

IT
V

Ea
se

 o
f U

se

R
is

ks
/O

pp
or

tu
ni

tie
s

3/31/04 400 20 72 7.0 12.4 1.7 1.0 1.8
Life Cycle Architecture

3/31/04 427 20 72 7.0 12.4 1.7 1.0 1.8
Increased COTS ITV risk,
fallback identified.

7/31/04 1050

7/20/04 1096 2.4* 1.0* 2.7*Core Capability
Demo (CCD)

Using COTS ITV fallback; new
HW competitor; renegotiating
HW.

9/30/04 1400 Software Initial
Op’l Capability (IOC) 9/30/04 1532 2.7* 1.4* 2.8*

9/30/04 3500
Hardware IOC

10/11/04 3432
$200K savings from
renegotiated HW.

12/31/04 4000 20 80 8.0 0.0 -1.0 11.4 3.0 2.5 3.0
Deployed IOC

12/20/04 4041 22 88 8.6 0.6 -.85 10.8 2.8 1.6 3.2
New COTS ITV source
identified, being prototyped.

3/31/05 4500 300 9.0 3.5 3.0 3.5
Responsive IOC

3/30/05 4604 324 7.4 3.3 1.6 3.8

7/31/05 5200 1000 3.5* 2.5* 3.8*Full Op’l Capability
CCD 7/28/05 5328 946

New COTS ITV source initially
integrated.

9/30/05 5600 1700 3.8* 3.1* 4.1*Full Op’l Capability
Beta 9/30/05 5689 1851

12/31/05 6000 2200 22 106 12.2 3.2 -.47 7.0 4.0 3.5 4.0

12/20/05 5977 2483 24 115 13.5 5.1 -.15 4.8 4.1 3.3 4.2 Full Op’l Capability
Deployed Release 2.1

6/30/06 6250

04/19/06 ©USC-CSE 36

University of Southern California
Center for Software EngineeringC S E

USC

Outline
• Value-based software engineering (VBSE)

motivation and definitions
• Initial VBSE theory (with Apurva Jain)

– Software process implications
– Application to case study

• Incorporating VBSE into SE courses
– SE management and economics (CS 510)
– SE team project course (CS 577)

• Conclusions and references

19

04/19/06 ©USC-CSE 37

University of Southern California
Center for Software EngineeringC S E

USC

Comparison of CS 510 and CS 577a

• COCOMO II Extensions
• Microeconomics

– Decision Theory
• Agile and Rapid

Development
• People Management
• 2 Midterms, Final

• VBSE Framework
• MBASE
• WinWin Spiral

– Risk Management
•Planning & Control

– COCOMO II
• Business Case

Analysis

• S/W - System
Architecting

• Operational Concept &
Rqts. Definition

– WinWin System
– Prototyping

• OO Analysis & Design
– Rational Rose

•Team Project
(DEN: IV&V)

CS 510 CS 577a
• VBSE Theory, Practice

04/19/06 ©USC-CSE 38

University of Southern California
Center for Software EngineeringC S E

USC

Requirements,
Architecture

Design,
Code

Test,
Implement,
Maintain

Computer Science CS Focus
User Applications
Economics
People

“ Software Engineering:” The disciplines which distinguish the coding of
a computer program from the development of a software product.

• Prepare you for software leadership careers through the 2040’s
-Agility , discipline, COTS/OSS, scalable spirals, service-based systems

• Integrate all theses considerations
-Via value-based, model – driven software engineering (VBSE, MBASE)

project experience

Stages
Issues

CS 577 Learning Objectives

20

04/19/06 ©USC-CSE 39

University of Southern California
Center for Software EngineeringC S E

USC

e-Services Projects Overview
•Clients identify prospective projects

–Operational capabilities or feasibility explorations

–Fall: 12 weeks to prototype, analyze, design, plan, validate

–Spring: 12 weeks to develop, test, transition

–MS-level, 5-6 person, CS 577 project course

•Clients, CSE, ISD negotiate workable projects

–Useful results within time constraints

–Operationally supportable as appropriate

•Clients work with teams to define, steer, evaluate projects

–Exercise prototypes, negotiate requirements, review progress

–Mutual learning most critical success factor

04/19/06 ©USC-CSE 40

University of Southern California
Center for Software EngineeringC S E

USC

Stakeholder Win-Win Approach

Stakeholders

•Students,
Employers

•Project clients

•Faculty,
Profession

Win Conditions
•Full range of SW Engr. skills

•Real-client project experience

•Non-outsourceable skills

•Advanced SW tech. experience
•Useful applications

•Advanced SW tech. understanding

•Moderate time requirements

•Educate future SW Engr. leaders

•Better SW Engr. technology

•Applied on real-client projects

21

04/19/06 ©USC-CSE 41

University of Southern California
Center for Software EngineeringC S E

USC

Software Engineering Project Course (CS 577)

• Fall: Develop Life Cycle Architecture Packages
– Ops. Concept, Requirements, Prototype, Architecture, Plan
– Feasibility Rationale, including business case
– Results chain linking project results to desired outcomes
– 20 projects; 120 students; about 20 clients

• Spring: Develop Initial Operational Capability
– 6-10 projects; 30-50 students; 6-10 clients
– Software, personnel, and facilities preparation
– 2-week transition period
– then the student teams disappear

• Tools and techniques: EasyWinWin; Results Chain
Rational Rose, Clear Case; USC COCOMO II; MS
Project; USC MBASE method
– Reworked annually based on student & client feedback

04/19/06 ©USC-CSE 42

University of Southern California
Center for Software EngineeringC S E

USC

(Risk-driven level of detail for each element)

*WWWWWHH: Why, What, When, Who, Where, How, How Much

Milestone Element Life Cycle Objectives (LCO) Life Cycle Architecture (LCA)

Definition of
Operational
Concept

• Top-level system objectives and scope
- System boundary
- Environment parameters and assumptions
- Evolution parameters

• Operational concept
- Operations and maintenance scenarios and parameters
- Organizational life-cycle responsibilities (stakeholders)

• Elaboration of system objectives and
scope of increment

• Elaboration of operational concept by increment

• Top-level functions, interfaces, quality attribute levels,
including:

- Growth vectors and priorities
- Prototypes

• Stakeholders’ concurrence on essentials

• Elaboration of functions, interfaces, quality attributes,
and prototypes by increment
- Identification of TBD’s((to-be-determined items)

• Stakeholders’ concurrence on their priority concerns

• Top-level definition of at least one feasible architecture
- Physical and logical elements and relationships
- Choices of COTS and reusable software elements

• Identification of infeasible architecture options

• Choice of architecture and elaboration by increment
- Physical and logical components, connectors,

configurations, constraints
- COTS, reuse choices
- Domain-architecture and architectural style choices

• Architecture evolution parameters

• Elaboration of WWWWWHH* for Initial Operational
Capability (IOC)
- Partial elaboration, identification of key TBD’s for

later increments

• Assurance of consistency among elements above
• All major risks resolved or covered by risk
management plan

• Identification of life-cycle stakeholders
- Users, customers, developers, maintainers,

interoperators, general public, others
• Identification of life-cycle process model

- Top-level stages, increments
• Top-level WWWWWHH* by stage

• Assurance of consistency among elements above
- via analysis, measurement, prototyping, simulation, etc.
- Business case analysis for requirements, feasible

architectures

Definition of System
Requirements

Definition of System
and Software
Architecture

Definition of Life-
Cycle Plan

Feasibility
Rationale

System Prototype(s) • Exercise key usage scenarios
• Resolve critical risks

• Exercise range of usage scenarios
• Resolve major outstanding risks

Win Win Spiral Anchor Points

22

04/19/06 ©USC-CSE 43

University of Southern California
Center for Software EngineeringC S E

USC

MBASE Model Integration: LCO Stage
Domain Model

WinWin
Taxonomy

Basic Concept
of Operation

Frequent
Risks

Stakeholders,
Primary win conditions

WinWin
Negotiation

Model

IKIWISI Model,
Prototypes,

Properties Models

Environment
Models

WinWin Agreements, Shared Vision

Viable
Architecture

Options

Updated Concept
of Operation

Life Cycle Plan
elements

Outstanding
LCO risks

Requirements
Description

LCO Rationale

Life Cycle Objectives (LCO) Package

Anchor Point
Model

determinesidentifiesidentifies
determines

situates exercise exercise focus
use of

focus
use of determines

guides
determination of validate

inputs for

provides

initialize adopt identify identify

update update

achieveiterate to feasibility, consistency
determines exit
criteria for validates readiness of

i
n
i
t
i
a
l
i
z
e
s

04/19/06 ©USC-CSE 44

University of Southern California
Center for Software EngineeringC S E

USC

S&C Subdomain (General)

1, 3, 4, 5,
6, 7, 8, 9,
10, 11, 12,
13, 14, 15,
20, 31, 32,
35, 36, 37,
39

Type of
Application

Simple Block Diagram Examples
(project nos.)

Deveoper
Simplifiers

Developer
Complicators

Multimedia
Archive

• Use standard
query languages

• Use standard or
COTS search
engine

• Uniform media
formats

• Natural language
processing

• Automated
cataloging or
indexing

• Digitizing large
archives

• Digitizing
complex or fragile
artifacts

• Automated
annotation/descrip
tion/ or meanings
to digital assets

• Integration of
legacy systems

MM asset
info

Catalog

MM
Archive

query

MM assetupdate

query update
notification

• Rapid access to
large Archives

• Access to
heterogeneous
media collections

23

04/19/06 ©USC-CSE 45

University of Southern California
Center for Software EngineeringC S E

USC

S&C Subdomain (Specialized to Project)

04/19/06 ©USC-CSE 46

University of Southern California
Center for Software EngineeringC S E

USC

A Relational Database Management System may not be most
suited for archival of multi-media assets.
A Relational Database Management System may have a high
initial cost, high implementation, and high administration cost
(requires specialized knowledge skills)

Generic
Use Standard COTS
Specific
Use a standard Relational Database Management System
(RDBMS) that supports storing multi-media assets

May not be as effective for "discovering" assets in the archive:
users must know what they're looking for, in order to search for it

Generic
Use Standard Query Languages
Specific
Organize catalog and archive relationally so that queries will be
limited to standard search formats,: match exactly by value on any
of the fields with or without using boolean combinations (AND,
OR, NOT, etc...), or using pattern matching (SQL LIKE keyword)

This means that we may have to convert existing digital assets or
digitize the original media, which may be costly.
A unique file format limits the user base to those who have
viewers for that particular file format
The chosen file format may not be the most efficient for the
various types of media (in terms of compression rates, quality,
etc...)

Generic
Uniform Media Formats
Specific
All video clips are stored using an open file format for video/audio
(e.g., MPEG). All film stills are stored using an open image file
format (e.g., JPEG). The inverse complicator is to store film clips
using streaming video technologies

Risks and Trade-offsSimplifiers

S&C Developer-Side Simplifiers

24

04/19/06 ©USC-CSE 47

University of Southern California
Center for Software EngineeringC S E

USC

Team Structure
• Six-person teams

– Each artifact should have a lead producer and a co-producer

• Project Manager generally the lead for Feasibility
Rationale
1. Ensures consistency among the team members’ artifacts (and

documents this in the Rationale).
2. Leads the team’s development of plans for achieving the project

results, and ensures that project performance tracks the plans.
Teams formed by Wednesday, Sept. 7
– Web questionnaires should help in team formation

• Start forming teams now!
– What are your skills? What roles would you prefer?
– What skills does your team need? Who does them?
– What projects does your team prefer?

04/19/06 ©USC-CSE 48

University of Southern California
Center for Software EngineeringC S E

USC

Major Class Project Milestones

September 7 -- All teams formed
September 16 -- Initial Shared Vision, Scenarios
September 26 -- Easy WinWin Results,

Prototypes
October 10 -- LCO Drafts on Web Site
October 17- 21 -- LCO Architecture Reviews
October 24 -- LCO Package Due
November 21 -- LCA Drafts on Web Site
Nov.28 – Dec.2 -- LCA Architecture Reviews
December 5 -- LCA Package Due
December 7 -- Individual Critiques Due

25

04/19/06 ©USC-CSE 49

University of Southern California
Center for Software EngineeringC S E

USC
Cognitive Demands Analysis

Project Tasks Risk Management Skills
- Skill-building activities

• Select projects;
 form teams

• Project risk identification
• Staffing risk assessment and resolution

- Readings, lectures, homework,
 case study, guidelines

• Plan early phases • Schedule/budget risk assessment, planning
• Risk–driven processes (spiral, MBASE)

- Readings, lectures, homework,
 guidelines, planning and
 estimating tools

• Achieve stakeholders’ shared vision • Simplifier/complicator analysis
• Prototyping as buying information to reduce risk

- Readings, lectures, homework,
 prototype, WinWin tool

• Formulate, validate concept
 of operation

• Risk-driven level of detail
 - Readings, lecture, guidelines, project

• Manage to plans • Risk monitoring and control
 - Readings, lecture, guidelines, project

• Develop, validate LCO* package • Risk assessment and prioritization
- Readings, lecture, guidelines, project

• LCO Architecture Review • Risk-driven review process
• Review of top-N project risks

-Readings, lecture, case studies, review

04/19/06 ©USC-CSE 50

University of Southern California
Center for Software EngineeringC S E

USC

ROI Analysis Example (Part I)
Inception and Elaboration Time Invested (CS577a)
Meetings with Full Team & Individual Members (10% time for 12 weeks) 48 Hours
Email time (1.5% time for 12 weeks) 7 Hours
Architecture Review Board(s) 6 Hours
Total (Inception and Elaboration Time) 61 Hours
Construction and Transition Time Invested (CS577b)
Meetings with Full Team & Individual Members (7% time for 12 weeks) 34 Hours
Email time (1% time for 12 weeks) 5 Hours
Architecture Review Board(s) 6 Hours
Transition Setup (rough estimate) 10 Hours
Total (Construction/Transition Time) 54 Hours
Semester Maintenance
Maintenance Time (disk cleanup @ 2.5% time for 16 week semester) 16 Hours
Work w/maintenance team personnel on updates (1/5 Inception/Elaboration time) 12 Hours
Total (Semester Maintenance Time) 28 Hours

From Data Mining the Library Catalogue’s LCA

26

04/19/06 ©USC-CSE 51

University of Southern California
Center for Software EngineeringC S E

USC

ROI Example (Part II)
Using the previous numbers as the Investment Costs, and calculating hours saved for one
person as the time it takes to review an original sized report compared to a SURG filtered
report of 1/3 the original Unicorn size (See Section 2.1.5.1), the Return On Investment for
this project is shown in the table and chart below:

From Data Mining the Library Catalogue’s LCA

1/3 Year Semesters Fall '98 Spr '99 Sum'99 Fall'99 Spr'00 Sum'00
Hours Time Saved Per Month (1 person
- Using 1/3 report size reduction) 5 19 19 19 19

Reports per Semester 19 78 78 78 78

Time Saved In Hours 19 78 78 78 78

Cumulative Hours 19 97 175 252 330

Time Invested in Hours 61 54 28 28 28 28

Cumulative Hours 61 116 144 172 200 229

Return On Investment 0.17 0.67 1.01 1.26 1.44

04/19/06 ©USC-CSE 52

University of Southern California
Center for Software EngineeringC S E

USC

Jan. 18- Feb. 14: Work with teams:
–Rebaseline prototype, prioritize requirements
–Plan for CS 577b specifics, including transition strategy, key risk items
–Participate in ARB review

Feb 15 - Apr 11: Scheduled Weekly Meetings with Teams to:
–Discuss status and plans
–Provide access to key transition people for strategy and readiness
discussions

Mar 8 - 27: Core Capability Drivethroughs
Apr 13 - Apr 14: Project Transition Readiness ARB Reviews
Apr 15: Installation and Transition

–Install Product
–Execute Transition Plan

May 1 - 2: Release Readiness Review for Initial Operational Capability
May 3: Client Evaluations

Spring Schedule (2006)

27

04/19/06 ©USC-CSE 53

University of Southern California
Center for Software EngineeringC S E

USC

Value-Based Review Process (II)

Negotiation

Meeting

Developers

Customers

Users

Other stakeholders

Priorities of
system

capabilities

Artifacts-oriented
checklist

Criticalities of
issues

General Value-
based checklist

Domain Expert

Priority

High Medi
um Low

Critic
ality

High

Medi
um

Low

1

2

3

4

5

optio
nal

6

optio
nal

optio
nal

Reviewing
Artifacts

Number indicates the usual ordering of
review*

* May be more cost-effective to review
highly-coupled mixed-priority artifacts.

04/19/06 ©USC-CSE 54

University of Southern California
Center for Software EngineeringC S E

USC

Value-Based Checklist (I) <General Value-Based Checklist>

•Missing FRD evidence of mitigation strategies
for low-probability, low-impact risks

•Missing FRD evidence of mitigation strategies for
low-probability high-impact or high-probability,
low-impact risks: unlikely disasters, off-line
service delays, missing but easily-available
information

•Missing FRD evidence of critical capability feasibility: high-priority
features, levels of service, budgets and schedules
•Critical risks in top-10 risk checklist: personnel, budgets and
schedules, requirements, COTS, architecture, technology

Risk

•Non-misleading lack of conformance with
document formatting standards, method and
tool conventions, optional or low-impact
operational standards

•Lack of conformance with medium-criticality
operational standards, external interfaces
•Misleading lack of conformance with document
formatting standards, method and tool
conventions

•Lack of conformance with critical operational standards, external
interfaces

Conformance

•Non-misleading, easily deferrable, low-impact
ambiguities: GUI details, report details, error
messages, help messages, grammatical errors

•Vaguely defined medium-criticality capabilities,
test criteria
•Medium-criticality misleading ambiguities

•Vaguely defined critical dependability capabilities: fault tolerance,
graceful degradation, interoperability, safety, security, survivability
•Critical misleading ambiguities: stakeholder intent, acceptance
criteria, critical user decision support, terminology

Ambiguity

•Easily-deferrable, low-impact inconsistencies
or inexplicit traceability: GUI details, report
details, error messages, help messages,
grammatical errors

•Medium-criticality shortfalls in traceability, inter-
artifact inconsistencies, evidence of
consistency/feasibility in FRD

•Critical elements in OCD, SSRD, SSAD, LCP not traceable to each
other
•Critical inter-artifact inconsistencies: priorities, assumptions,
input/output, preconditions/post-conditions
•Missing evidence of critical consistency/feasibility assurance in
FRD

Consistency/
Feasibility

•Easily-deferrable, low-impact missing
elements: straightforward error messages,
help messages, GUI details doable via GUI
builder, project task sequence details

•Medium-criticality missing elements, processes
and tools: maintenance and diagnostic support;
user help
•Medium-criticality exceptions and off-nominal
conditions; smaller tasks (review, client demos),
missing desired growth capabilities, workload
characterization

•Critical missing elements: backup/ recovery, external interfaces,
success-critical stakeholders; critical exception handling, missing
priorities
•Critical missing processes and tools; planning and preparation for
major downstream tasks (development, integration, test, transition)
•Critical missing project assumptions (client responsiveness, COTS
adequacy, needed resources)

Completeness

Low-Criticality IssuesMedium-Criticality IssuesHigh-Criticality Issues

28

04/19/06 ©USC-CSE 55

University of Southern California
Center for Software EngineeringC S E

USC

1080.007Average Cost
Effectiveness of
Problems

610.023Average of Problems
per hour

1050.004Average Cost
Effectiveness of
Concerns

550.026Average of Concerns
per hour

890.012Average Impact of
Problems

510.056Average of Problems

650.049Average Impact of
Concerns

340.202Average of Concerns

% Gr A higherP-valueBy Impact% Gr A higherP-valueBy Number

• Group A: 15 IV&V personnel using VBR procedures and checklists

• Group B 13 IV&V personnel using previous value-neutral checklists
– Significantly higher numbers of trivial typo and grammar faults

ExperimentExperiment

Value-Based Reading (VBR) Experiment
— Keun Lee, ISESE 2005

04/19/06 ©USC-CSE 56

University of Southern California
Center for Software EngineeringC S E

USC

2005-06: Finished Transition Readiness Reviews

• On-schedule with satisfied customers
– Physics education support (USC)
– Data mining PubMed results (USC, UCLA)
– USC football recruiting database (USC)
– Web-based XML editing (USC)
– Intelligent, diff-ing CodeCount (Aerospace, NGC)
– Code Count product line with XML (Aerospace, NGC)
– Rule-based editor for science data (JPL)
– eBay notification system (Klappholz)
– Template-based code generator (Sophoi)

29

04/19/06 ©USC-CSE 57

University of Southern California
Center for Software EngineeringC S E

USC

Conclusions
• Current SE methods are basically value-

neutral
• Value-neutral SE methods are increasingly

risky
• VBSE agenda making progress, but major

challenges remain
– Evolving VBSE theory
– Creating VB counterparts for value-neutral SE

methods
• VBSE helps student team projects succeed

04/19/06 ©USC-CSE 58

University of Southern California
Center for Software EngineeringC S E

USC

C. Baldwin & K. Clark, Design Rules: The Power of Modularity, MIT Press, 1999.

S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, and P. Gruenbacher (eds.), Value-Based
Software Engineering, Springer, 2005.
B. Boehm, “Value-Based Software Engineering,” ACM Software Engineering Notes,
March 2003.
B. Boehm, C. Abts, A.W. Brown, S. Chulani, B. Clark, E. Horowitz, R. Madachy, D.
Reifer, and B. Steece, Software Cost Estimation with COCOMO II, Prentice Hall, 2000.
B. Boehm and L. Huang, “Value-Based Software Engineering: A Case Study,
Computer, March 2003, pp. 33-41.

B. Boehm & K. Sullivan, “Software Economics: A Roadmap,” The Future of Software
Economics, A. Finkelstein (ed.), ACM Press, 2000.
B. Boehm and R. Turner, Balancing Agility and Discipline: A Guide for the Perplexed,
Addison Wesley, 2003 (to appear).
B. Boehm, L. Huang, A. Jain. R. Madachy, “ The ROI of Software Dependability: The
iDAVE Model”, IEEE Software Special Issue on Return on Investment, May/June 2004.
M. Denne and J. Cleland-Huang, Software by Numbers, Prentice Hall, 2004.

References - I

30

04/19/06 ©USC-CSE 59

University of Southern California
Center for Software EngineeringC S E

USC

S. Faulk, D. Harmon, and D. Raffo, “Value-Based Software Engineering (VBSE): A
Value-Driven Approach to Product-Line Engineering,” Proceedings, First Intl.
Conf. On SW Product Line Engineering, August 2000.

R. Kaplan & D. Norton, The Balanced Scorecard: Translating Strategy into Action,
Harvard Business School Press, 1996.

D. Reifer, Making the Software Business Case, Addison Wesley, 2002.

K. Sullivan, Y. Cai, B. Hallen, and W. Griswold, “The Structure and Value of
Modularity in Software Design,” Proceedings, ESEC/FSE, 2001, ACM Press, pp.
99-108.

J. Thorp and DMR, The Information Paradox, McGraw Hill, 1998.

S. Tockey, Return on Software, Addison Wesley, 2004.

Economics-Driven Software Engineering Research (EDSER) web site:
www.edser.org

MBASE web site : sunset.usc.edu/research/MBASE

References - II

