
November 2013

issue 16
Refactoring



Page 37 Agile Record – www.agilerecord.com

Agile Architecture Engineering:

Dynamic Incremental Design Selection and Validation

by Tom Gilb & Kai Gilb

Agile project management offers us a whole new method for 
approaching architecture and design engineering, of both IT 
systems and software.

Agile is iterative (cyclical, repetitive), and incremental (cumu-
lating stakeholder value delivery), and evolutionary (learning 
from experience, and changing plans). This means we have 
very useful opportunities to manage systems and software 
architecture, and design, better.

Figure 1

Architecture and design is complex, and we really know very 
little about the impact on values and costs of most of our 
initial design suggestions. They need to be considered as 
mere hypotheses – to be proven or disproven. The outcome 
is only roughly understood in advance, and our scope for es-
timation error is intolerably wide (at least in terms of order of 
magnitude) [8].

Agile offers a useful practical solution. But most Agile cul-
tures, as taught and practiced today (Agile Manifesto, Scrum, 
XP for example) do not take a position on the measurement 
and management of architecture and design. But some ear-
lier Agile methods, such as Evo (1970–2013 [3, 6, 10]) and 
Cleanroom (1970–1980s [1, 2, 6]), have long since exploited 
the architecture management opportunity inherent in cyclical 
incremental evolutionary system delivery to successfully man-
age the architecture and design itself.

Harlan Mills, IBM Federal Systems Division, comments on 
the ability of the Evolutionary “Cleanroom” method to control 
projects perfectly: “LAMPS software was a four-year project of 
over 200 person-years of effort … in 45 incremental deliveries. 
There were few late or overrun deliveries in that decade, and 
none at all in the past four years” – Harlan Mills, in 1980 [1].

His colleague in the “Cleanroom” method, one of the first 
“Agile” methods, Robert Quinnan, comments on the “dynamic 
design-to-cost” aspects: “The method consists of developing 
a design, estimating its cost, and ensuring that the design is 
cost-effective.” (p. 473, [2])

He goes on to describe a design iteration process that tries 
to meet cost targets either through redesign or by sacrificing 
“planned capability”. When a satisfactory design at cost target 
is achieved for a single increment, the “development of each 
increment can proceed concurrently with the program design 
of the others”.

“Design is an iterative process in which each design level is a 
refinement of the previous level.”

But they iterate through a series of increments, thus reducing 
the complexity of the task and increasing the probability of 
learning from experience, won as each increment develops and 
as the true cost of the increment becomes a fact.

“When the development and test of an increment are com-
plete, an estimate to complete the remaining increments is 
computed” (Quinnan, [2]).

The “developers” in the current Agile culture are not going to do 
anything about this. The just want to “code”. The responsible 
architects, such as IT Architects, are going to have to figure 
out how to exploit Agile for their purposes.

The first stage of this is to recognize that architecture (the 
overall discipline of managing a system development through 
design) and design (which includes specialist disciplines such 
as Human Interfaces Design, Security Engineering, Perfor-
mance Engineering, and other such disciplines supervised by 
the overall architect) need to be conducted as an engineering 
discipline. Not as art or poetry.

“Engineering” means managing a numeric set of objectives 
and constraints, which are our architecture requirements. 
Engineering then implies managing the corresponding numeric 
attributes of all design and architecture (defined as the things 
we do to achieve our performance and quality requirements, 
within our resource constraints).

Column



Page 38 Agile Record – www.agilerecord.com

One interesting side-effect of managing architecture as an 
engineering discipline, is that we not only get control over 
performance and quality aspects of the system, but we simul-
taneously get far better control over our budget and deadline 
[1,2, 6, 8], as Cleanroom experience proved long ago.

Technical Prerequisites

In order to do this, (and several groups have done it for decades, 
so this is not idle speculation, but observation of known meth-
ods!) we need to learn and practice the following architecture 
engineering disciplines:

1. Quantification of all critical quality aspects (security, 
maintainability, usability etc.) [9].

2. Design of suitably cheap processes for measuring at 
least leading indicators, then better final indicators, 
of the incremental delivery of technical qualities (like 
degrees of security or usability) and then of their intended 
knock-on effects to a higher level of stakeholder inter-
est (e. g. stakeholder perceptions such as “saving time”, 
“feeling confident”).

3. Ability to decompose [10, 11] our larger high-level archi-
tecture ideas into smaller implementable components (so 
we can get earlier delivery of their value).

4. Ability to test design-component hypotheses in a safe, 
but realistic, way before confidently scaling up, once they 
are working as required.

5. Contracts for outsourcing that envision, allow for, and as-
sist our ability to do all the above engineering and explo-
ration; with the ability to be agile and exchange what does 
not work for that which does! The real heart of agility [7].

The Agile Architecture Engineering Process [10, 
13]

The Architecture Engineering process using “Planguage” as a 
planning language, or any other way to express qualities quanti-
tatively, goes like this. I use a week to get through these initial 
plans, before diving into cycles of delivering real value from the 
implementation of architecture components [5].

1. Quantify the top few critical performance and quality 
objectives for the system. This means a defined scale of 
measure and at least one level of performance expected 
in the future. The agenda is that the project will be done, 
and successful, when these levels of requirements have 
been reached. Day 1.

2. List and define in some detail (maybe a page each of ten 
major architecture ideas) [3, the CE book, Design Chapter 
template for detail] the major architecture components. 
These should be the set of ideas you believe will enable 
you to reach the critical requirement levels in the first 
step above. Day 2.

3. Rate the expected effectiveness of each architecture 
component on all critical objectives, as well as on criti-
cal resources such as money and time. Use an Impact 

Estimation Table [14]. One rating is to estimate the % 
effectiveness expected by the deadline. (100 % means we 
reach numeric goals on time). Day 3.

4. Using the information in the Impact Estimation Table, 
find subsets of the architecture that are estimated to 
give very high value (performance and quality require-
ments level) in relation to resources used [15]. The most 
efficient designs. Schedule these for early value-delivery 
cycles [10]. Day 4. Day 5 is presentation to management.

5. Evaluate results (feedback from delivery cycles, on 
measures of value and costs). Decide what you need in 
order to improve or learn. Plan the next steps, with a view 
to maximizing fast progress towards your requirements 
levels.

Stakeholders

Values

Solutions

DecomposeDevelop

Deliver

Develop
Develop the packages
that deliver the value.

Measure

Learn

Figure 2. The Evo Cycle [16] – an extension of the Shewhart/Deming 
“Plan Do Study Act” cycle of SPC methods. Developed by Kai Gilb.

In Summary: we can engineer the architecture in incrementally. 
We get earlier results and better results, as a result [4].

References

[1] Mills, H. 1980. “The management of software engi-
neering: part 1: principles of software engineering”, 
IBM Systems Journal 19, issue 4 (Dec.): 414–420. 
Reprinted 1999 in IBM Systems Journal, Volume 38, 
Numbers 2 and 3. 
A nice sample, in slides, of how Cleanroom reaches 
the highest military and space performance and quality 
levels “always on time and under budget”: 
http://www.gilb.com/dl602, “Architecture Prioritization”, 
Oct 2013. See ref. [6] for source of Mills and Quinnan.

[2] Robert E. Quinnan, “Software Engineering Management 
Practices”, IBM Systems Journal, Vol. 19, No. 4, 1980, 
pp. 466–77. 
A nice example in slides for Oct 9 2013 1.5 hour talk 
at London “Software Architect” conference.: 
http://www.gilb.com/dl602 “Architecture Prioritization” 
Oct 2013. Quinnan goes into detail on his dynamic 
design to cost practice within Cleanroom. See ref. [6] 
for source of Mills and Quinnan.

[3] Gilb, T. 2005. Competitive engineering: A handbook for 
systems engineering, requirements engineering, and 
software engineering, using planguage. Oxford: Elsevier 
Butterworth-Heinemann. Free digital copy for first 50 
Agile Record readers who email me with a request 

http://www.gilb.com//dl602
http://www.gilb.com//dl602


Page 39 Agile Record – www.agilerecord.com

within one week after publication of this paper. After 
that, see 9 and 10 below.

[4] Gilb: “What’s Wrong with Software Architecture”. 
Keynote Software Architect Conference, London 10 Oct 
2013. http://www.gilb.com/dl603 
Slides in PDF: http://vimeo.com/28763240

[5] “Confirmit” Company Cases (use of Evo). Johansen, 
T., and Gilb, T. 2005. From waterfall to evolutionary 
development (Evo): How we rapidly created faster, more 
user-friendly, and more productive software products for 
a competitive multi-national market. Available at: http://
www.gilb.com/tiki-download_file.php?fileId=32.

And: The Green Week: engineering the technical debt 
reduction in the Evo Agile Environment by Confirmit. 
http://www.gilb.com/dl575 
A Gilb’s Mythodology column published in May 2013 in 
Agile Record No. 14, www.agilerecord.com. This paper 
highlights a case of reengineering a legacy system to 
give reduced technical debt, using Evo, in a small Nor-
wegian international market software package house.

[6] Gilb, T. 1988. Principles of software engineering man-
agement. Boston: Addison-Wesley. See http://www.
gilb.com/tiki-list_file_gallery.php?galleryId=15. “Some 
deeper and broader perspectives on evolutionary deliv-
ery and related technology”, chapter 15 of the book.

[7] Agile Contracting for Results The Next Level of Agile Proj-
ect Management: Gilb’s Mythodology Column Agilere-
cord No. 15, August 2013, www.agilerecord.com. 
http://www.gilb.com/dl581

[8] Estimation Paper: Estimation: A Paradigm Shift Toward 
Dynamic Design-to-Cost and Radical Management. SQP 
VOL. 13, NO. 2/© 2011, ASQ. http://www.gilb.com/
dl460

[9] CE book. Chapter 5: Scales of Measure: 
http://www.gilb.com/tiki-download_file.php?fileId=26

[10] CE Book. Chapter 10: Evolutionary Project Management: 
http://www.gilb.com/tiki-download_file.php?fileId=77 
Evo Standard 2012 for DB, Non-Confidential 
http://www.gilb.com/tiki-download_file.php?fileId=487

[11] Gilb, T. 2010b. The 111111 or Unity Method for 
Decomposition, presented at the 2010 Smidig (Agile) 
Conference, Oslo. Available at: http://www.gilb.com/
tiki-download_file.php?fileId=350

[12] Agile Contracting for Results The Next Level of Agile 
Project Management: Gilb’s Mythodology Column Agile-
record August 2013 
http://www.gilb.com/dl581

[13] Evo standards Feasibility Study paper. “Project Startup” 
for agile architecture. http://www.gilb.com/dl568 
Our column in Agile Record No. 13, www.agilerecord.
com, as published 7 March 2013

[14] Impact Estimation Tables: Understanding Complex Tech-
nology Quantitatively. http://www.gilb.com/dl23

[15] On Decomposition. See ref. 11 above and: Decomposi-
tion of Projects: How to Design Small Incremental Steps 
http://www.gilb.com/dl41

[16] See gilb.com for a dynamic version of the Evo cycle 
and for more explanation. http://www.gilb.com/
Site+Content+Overview ɵ

Tom Gilb and Kai Gilb

Tom Gilb and Kai Gilb have, together with many 

professional friends and clients, personally de-

veloped the agile methods they teach. The meth-

ods have been developed over five decades of 

practice all over the world in both small companies 

and projects, as well as in the largest companies 

and projects. Their website www.gilb.com/downloads offers free 

papers, slides, and cases about agile and other subjects.

There are many organisations, and individuals, who use some or 

all of their methods. IBM and HP were two early corporate-wide 

adopters (1980, 1988). Recently (2012) over 15,000 engineers 

at Intel have voluntarily adopted the Planguage requirements 

specification methods; in addition to practicing to a lesser extent 

Evo, Spec QC and other Gilb methods. Many other multinationals 

are in various phases of adopting and practicing the Gilb methods. 

Many smaller companies also use the methods.

Tom Gilb

Tom is the author of nine published books, and hundreds of pa-

pers on agile and related subjects. His latest book ‘Competitive 

Engineering’ (CE) is a detailed handbook on the standards for the 

‘Evo’ (Evolutionary) Agile Method, and also for Agile Spec QC. The 

CE book also, uniquely in the agile community, defines an Agile 

Planning Language, called ‘Planguage’ for Quality Value Delivery 

Management. His 1988 book, Principles of Software Engineering 

Management (now in 20th Printing) is the publicly acknowledged 

source of inspiration from leaders in the agile community (Beck, 

Highsmith, and many more), regarding iterative and incremental 

development methods. Research (Larman, Southampton Univer-

sity) has determined that Tom was the earliest published source 

campaigning for agile methods (Evo) for IT and Software. His first 

20-sprint agile (Evo) incremental value delivery project was done 

in 1960, in Oslo. Tom has guest lectured at universities all over 

UK, Europe, China, India, USA, Korea – and has been a keynote 

speaker at dozens of technical conferences internationally.

Twitter: @imtomgilb

Kai Gilb

Kai Gilb has partnered with Tom in developing these ideas, holding 

courses and practicing them with clients since 1992. He coa-

ches managers and product owners, writes papers, develops the 

courses, and is writing his own book, ‘Evo – Evolutionary Project 

Management & Product Development.’ Tom & Kai work well as a 

team; they approach the art of teaching their common methods 

somewhat differently. Consequently the students benefit from 

two different styles.

> about the authors

http://www.gilb.com/dl603
http://www.gilb.com/dl575
http://www.gilb.com/tiki-list_file_gallery.php?galleryId=15
http://www.gilb.com/tiki-list_file_gallery.php?galleryId=15
http://www.gilb.com//dl581
http://www.gilb.com/dl460
http://www.gilb.com/dl460
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com//tiki-download_file.php?fileId=77
http://www.gilb.com/tiki-download_file.php?fileId=487
http://www.gilb.com/tiki-download_file.php?fileId=350
http://www.gilb.com/tiki-download_file.php?fileId=350
http://www.gilb.com//dl581
http://www.gilb.com/dl568
http://www.gilb.com/dl23
http://www.gilb.com/dl41
http://www.gilb.com//Site+Content+Overview
http://www.gilb.com//Site+Content+Overview
http://www.gilb.com/downloads
https://twitter.com/imtomgilb

