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Agile Architecture Engineering:

Dynamic Incremental Design Selection and Validation

by Tom Gilb & Kai Gilb

Agile project management offers us a whole new method for 
approaching architecture and design engineering, of both IT 
systems and software.

Agile is iterative (cyclical, repetitive), and incremental (cumu-
lating stakeholder value delivery), and evolutionary (learning 
from experience, and changing plans). This means we have 
very useful opportunities to manage systems and software 
architecture, and design, better.

Figure 1

Architecture and design is complex, and we really know very 
little about the impact on values and costs of most of our 
initial design suggestions. They need to be considered as 
mere hypotheses – to be proven or disproven. The outcome 
is only roughly understood in advance, and our scope for es-
timation error is intolerably wide (at least in terms of order of 
magnitude) [8].

Agile offers a useful practical solution. But most Agile cul-
tures, as taught and practiced today (Agile Manifesto, Scrum, 
XP for example) do not take a position on the measurement 
and management of architecture and design. But some ear-
lier Agile methods, such as Evo (1970–2013 [3, 6, 10]) and 
Cleanroom (1970–1980s [1, 2, 6]), have long since exploited 
the architecture management opportunity inherent in cyclical 
incremental evolutionary system delivery to successfully man-
age the architecture and design itself.

Harlan Mills, IBM Federal Systems Division, comments on 
the ability of the Evolutionary “Cleanroom” method to control 
projects perfectly: “LAMPS software was a four-year project of 
over 200 person-years of effort … in 45 incremental deliveries. 
There were few late or overrun deliveries in that decade, and 
none at all in the past four years” – Harlan Mills, in 1980 [1].

His colleague in the “Cleanroom” method, one of the first 
“Agile” methods, Robert Quinnan, comments on the “dynamic 
design-to-cost” aspects: “The method consists of developing 
a design, estimating its cost, and ensuring that the design is 
cost-effective.” (p. 473, [2])

He goes on to describe a design iteration process that tries 
to meet cost targets either through redesign or by sacrificing 
“planned capability”. When a satisfactory design at cost target 
is achieved for a single increment, the “development of each 
increment can proceed concurrently with the program design 
of the others”.

“Design is an iterative process in which each design level is a 
refinement of the previous level.”

But they iterate through a series of increments, thus reducing 
the complexity of the task and increasing the probability of 
learning from experience, won as each increment develops and 
as the true cost of the increment becomes a fact.

“When the development and test of an increment are com-
plete, an estimate to complete the remaining increments is 
computed” (Quinnan, [2]).

The “developers” in the current Agile culture are not going to do 
anything about this. The just want to “code”. The responsible 
architects, such as IT Architects, are going to have to figure 
out how to exploit Agile for their purposes.

The first stage of this is to recognize that architecture (the 
overall discipline of managing a system development through 
design) and design (which includes specialist disciplines such 
as Human Interfaces Design, Security Engineering, Perfor-
mance Engineering, and other such disciplines supervised by 
the overall architect) need to be conducted as an engineering 
discipline. Not as art or poetry.

“Engineering” means managing a numeric set of objectives 
and constraints, which are our architecture requirements. 
Engineering then implies managing the corresponding numeric 
attributes of all design and architecture (defined as the things 
we do to achieve our performance and quality requirements, 
within our resource constraints).
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One interesting side-effect of managing architecture as an 
engineering discipline, is that we not only get control over 
performance and quality aspects of the system, but we simul-
taneously get far better control over our budget and deadline 
[1,2, 6, 8], as Cleanroom experience proved long ago.

Technical Prerequisites

In order to do this, (and several groups have done it for decades, 
so this is not idle speculation, but observation of known meth-
ods!) we need to learn and practice the following architecture 
engineering disciplines:

1. Quantification of all critical quality aspects (security, 
maintainability, usability etc.) [9].

2. Design of suitably cheap processes for measuring at 
least leading indicators, then better final indicators, 
of the incremental delivery of technical qualities (like 
degrees of security or usability) and then of their intended 
knock-on effects to a higher level of stakeholder inter-
est (e. g. stakeholder perceptions such as “saving time”, 
“feeling confident”).

3. Ability to decompose [10, 11] our larger high-level archi-
tecture ideas into smaller implementable components (so 
we can get earlier delivery of their value).

4. Ability to test design-component hypotheses in a safe, 
but realistic, way before confidently scaling up, once they 
are working as required.

5. Contracts for outsourcing that envision, allow for, and as-
sist our ability to do all the above engineering and explo-
ration; with the ability to be agile and exchange what does 
not work for that which does! The real heart of agility [7].

The Agile Architecture Engineering Process [10, 
13]

The Architecture Engineering process using “Planguage” as a 
planning language, or any other way to express qualities quanti-
tatively, goes like this. I use a week to get through these initial 
plans, before diving into cycles of delivering real value from the 
implementation of architecture components [5].

1. Quantify the top few critical performance and quality 
objectives for the system. This means a defined scale of 
measure and at least one level of performance expected 
in the future. The agenda is that the project will be done, 
and successful, when these levels of requirements have 
been reached. Day 1.

2. List and define in some detail (maybe a page each of ten 
major architecture ideas) [3, the CE book, Design Chapter 
template for detail] the major architecture components. 
These should be the set of ideas you believe will enable 
you to reach the critical requirement levels in the first 
step above. Day 2.

3. Rate the expected effectiveness of each architecture 
component on all critical objectives, as well as on criti-
cal resources such as money and time. Use an Impact 

Estimation Table [14]. One rating is to estimate the % 
effectiveness expected by the deadline. (100 % means we 
reach numeric goals on time). Day 3.

4. Using the information in the Impact Estimation Table, 
find subsets of the architecture that are estimated to 
give very high value (performance and quality require-
ments level) in relation to resources used [15]. The most 
efficient designs. Schedule these for early value-delivery 
cycles [10]. Day 4. Day 5 is presentation to management.

5. Evaluate results (feedback from delivery cycles, on 
measures of value and costs). Decide what you need in 
order to improve or learn. Plan the next steps, with a view 
to maximizing fast progress towards your requirements 
levels.
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Figure 2. The Evo Cycle [16] – an extension of the Shewhart/Deming 
“Plan Do Study Act” cycle of SPC methods. Developed by Kai Gilb.

In Summary: we can engineer the architecture in incrementally. 
We get earlier results and better results, as a result [4].
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