The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis

Signature of

RAPID AND FLEXIBLE PRODUCT
DEVELOPMENT: AN ANALYSIS OF SOFTWARE
PROJECTS AT HEWLETT PACKARD AND
AGILENT

by
Sharma Upadhyayula

M.S., Computer Engineering
University of South Carolina, 1991

Submitted to the System Design and Management Program in Partial Fulfillment
of the Requirements for the Degree of

Master of Science in Engineering and Management

at the
Massachusetts Institute of Technology

January 2001

O Sharma Upadhyayula. All rights reserved.

document in whole or in part.

AULNOT oot R RS R AR AR AR AR AR AR R AR R

(O=1 411 {T<To [o

AcCepted BY....oovvvirsnesissiiine

AcCepted BY....ovvvvviersnes i

System Design and Management Program
December 13, 2000

Michael A. Cusumano
Sloan Management Review Distinguished Professor of Management

Thesis Supervisor

Stephen C. Graves
Abraham Siegel Professor of Management
LFM/SDM Co-Director

Paul A. Lagace
Professor of Aeronautics & Astronautics and Engineering Systems
LFM/SDM Co-Director

RAPID AND FLEXIBLE PRODUCT DEVELOPMENT:
AN ANALYSIS OF SOFTWARE PROJECTS AT
HEWLETT PACKARD AND AGILENT

by Sharma Upadhyayula

Submitted to the System Design and Management Program on January 05, 2001 in Partial
Fulfillment of the Requirements for the Degree of

Master of Science in Engineering and Management

Abstract

Before companies started competing on Internet time, most companies involved in software
product development carried out the different phases of the product development sequentialy. If,
during the later stages of product development (ex: coding), the company came across new
information or the user needs changed then these changes would be incorporated into the next
version of the product otherwise risk shipping the product late. Rapid innovation in the
technological areas and the Internet has created very dynamic environment in all walks of life. In
this environment, the user needs are changing very rapidly resulting in new challenges for the
companies and its product development managers. They have to respond to the changing needs
of the users very quickly either with rapid product rel eases and/or incorporating the changesinto
product under development. To achieve this, companies need a product devel opment strategy
that allows them to incorporate changes at any stage in the product development without affecting
their time-to-market.

Thisthesis focuses on strategies for rapid and flexible software product development. This
research will study systematically the range of approaches that producers of software and
hardware use for product devel opment.

Thesis Supervisor: Michagl A. Cusumano
Sloan Management Review Distinguished Professor of Management

Acknowledgements

Many people have contributed to this research project and the creation of thisthesis. | am very
grateful to all the people who made it possible.

First and foremost, | would like to thank my advisor, Prof. Michagl Cusumano for letting me be
part of the research team. His guidance and insightful perspective on software product
development and data analysis has been great help and very educationa for me. He always
managed to make time, to discuss the project and provide any help to enable me to carry out the
research, in spite of his extremely busy schedule. | also would like to thank him and Center for
Innovation of Product Development (CIPD) for providing me with full research assistantship for
Fall 2000 semester.

| have been very fortunate to have Prof. Chris Kemerer (Katz Graduate School of Business,
University of Pittsburgh) and Prof. Alan MacCormack (Harvard Business Schoal), on the
research team. Their active participation and guidance in analyzing the data was instrumental in

the timely completion of thisthesis.

| would like to thank Bill Crandall and Guy Cox (Process Consulting Group, Hewlett Packard).
Without their support this research project would not have materidized. | would also like to
thank all the project teams within Hewlett Packard and Agilent, who took time out of their busy
schedules, to participate in this research and this thesis would not have reached this stage without
their help.

Lastly, | would like to specially thank my wife Usha and my son Nischay for their support (and

sacrifices) and constant encouragement through out the academic coursework and thesis work.

Table of Contents

Chapter 1 TNTroQUCTIONc.ovvievevccec ettt 10
8\ 0T Y7o T P 10
1 ISting methodologies and techniques common t0 Sof tware product developmen

11

\/: 11

2.2 lterative (Evolution) Methodoloqgy: 12

1.2.3 Synch and Sabilize technique: 13

Chapter 2: Research M ethodology 15

21 Questionnaire DeVE ODMENE:ocuiiiiiiiiiicee e 15

22 Data COECHION: ... se e 16

23 Variables (Context, Process and OULCOME):ccueeueerueeieeeeeieeeeieeseeeesieeee e 17

.3.1 Some of the contexts variables available fromtheresearch data: 18
.3.2 Some of the process variables available fromtheresearch data: 18|

P 3.3 Some of the outcome variables available fromtheresearch data: 20

[GeneriC project JesCrPioN (SIZE, COMPIEXITY EIC):..uourrrrersrrersesrssereensnsssnsaeeesnnes 21

a AnalySs 27

Ll vaﬂfhpqq and adaia analva s 2/

32 Impact Of Market and Technical Feedback 28

2.1 Hvoothesis 1. 28

2 2 HYDOINESI S 2 28

B.2.3 HYPOtheSIS 3. ...0iiiiiiiiiiiiiiiiiieiiiie i 28

B.2.4 HYPOINESIS 4 ...ttt et te e e e e e s seeeeasssnneeasannneeesssnnseeeessnns 29

B.2.5 HYPOINESIS 5 ...ttt e e e ereeeereeeans 29

B.2.6 Data Analysis to evaluate impact of market and technical feedback............... 30

2.0 ENIUVITY ANAIYSIS, ..ttt r e e s se e neesneeeneesnneenseas 41

[B.2.8 Observations based on the data analysis for market and technical feedback: 44

3 Tmpact of Separate DevElopmENt SUD-CYCIES. ... a5

I THYPOINESS B iy

B32 H\/nnfh': VA 45

34 Flexibility in Project ACHVItIESccueieeiieseeiireseessessessessi s, 54
AL HYPOthESIS B .. 54
E 4.2 Data analysis to evaluate flexibility in project activities.................... 55 |
B3 ENSITIVITY ANAIYSIS ..o ooioiiceeeeeeeeeseeseeeseensessssesessesessssessseseasesessssesesennsases 63 |
4.4 Observations based on the data analysisfor variables to evaluate flexibility in
DFOJECT ACTIVITIES:ecveeveceeecreereeeesseesseeseesseessesseesseesesssesseessesssesseessessenssenssesseessennees o4
‘Sl, |mpa(‘r Oor C.ode Kalise [}e)
30 THynOIReS ST e
B 5.2 Data analysis to evaluate impact of code reuse 66
ent Svnchronization 69

B.6.2 HYPOINESIS L1 ...ttt e e e esreeeneeens 70

B.6.3 Data analysis to evaluate impact of frequent synchronization........................ 71
0.4 SENSITIVITY ANAIYSIS: ...ttt ettt r e sae e seesseeseeesneeeneesneeenneas 5
3/ Impact of Design and COO8 REVIBWS ..ot /6
B 7. L HYPONESIS 12, oo 76
377 Hypomness 13, 1
nand code reviens. {3
38 Impact of simple compile and link test vs regression testing 83
B.8.1 HYPOtNESIS 14 ... 83 |
B.8.2 Data analyses to evaluate Impact of simple compile and link test vs. regression
LS e T ppppp 84
.8.3 Observations based on the data analysis for impact of simple compile and link
RN I Lo =< T 85
J9 Relalive emphasis of developersiesting vs. QA staff fesfing code....................... 86
SR I = OOl A= T < T OO 86
2T, i
1.9 2 1)313 analva s ior Kelafiyve pm_nhaqq Of devel npprq 1eqing vs _OA STt fesiing |
Code 87
9.4 Sengitivity Apalvsis: 90
B3.9.5 Observations based on analysis of developers and QA testingcode: ... 91
B.10.1 HYPOtNESIS 170 .., 92
B.10.2 HYDOINESIS 18vviiiieeiieieeiie e eeeeeeeeeeeeeeeeeaesseneeeessssnneessesneeesssssseeeesanns 92
B.10.3 HYPOINESIS 19: ...ttt e et eeeneeeebeeesreeeereeenns 92
B.10.4 Data analysis for relative emphasis of component testing vs. integration |
ESHING VS, SYSIEMIESING......v oo omsoesresnssr s omsesoesssrssnssnsnssnsonsseseseesnnsnnns i, 93
I Y T i V=S E 22 O 98
S B2 1Y 0T 1 7= LS SO PR 98
Aalra anAa yqq or mpar‘ (6] 1NAa apiiizarion aAse Y
4. Conclugons 104
jl Current state of proiect practices: 104

5 Areasfor i ncI usion in the survey instrument (addition for future surveys). 108
Appendix-A One Way ANOVA (Analysis Of Variance) Reports.............ccc............ 110
ApPendix B —SUrVEY INSIFUMENTcccvveiuieiiieciieeeieece ettt eevee e eneas 129

[IRETEIONCES ...ttt ettt eeer e eeeeeneeeeeens 142

List of Tables

_q]’)IF‘ 2-1 I)PQ(‘I"IDI’IVP SANSICSTor Confext Varianles 21
[ahle 2-2 - Breakdown of Sample by Software [vpe 22
[able 2-3 - Proiects Grouned by Usage 22
[able 2-4 - Projects Grouped by Proiect Tvpe 22
[able 2-5 - Descriptive Statigticsfor Process Variables 23
Table 2-6 - Descriptive Statisticsfor Process Variablesooeeeveviiiiciiiiiiiiiiie 23
Table 2-7 - Descriptive Statisticsfor Process Variables.......couveeiiiieeeiiiiiie i 24
Table 2-8 - Summary of BUild FreqUeNCY.........c.uuoiiiiiiiiiieeeeeeee e 24
Table 2-9 - Projects grouped by whether Regression Testswere performed or not 24
Table 2-10 - Projects grouped by whether Design Review wasdoneor not 25 |
able 2-11 - Projects grouped by whether Code Review wasdone or NOt........ccoceeeerenenannnns 20
able 2-12 - Descriptive Statisticstor Outcome Varlables..........cooovvvviiiiiiiiiiiiiiis 29

able s>-1 - Market and | echnical Feedback Correaron 1 ab

Table 3-3 - Summary of hypotheses on impact of market and technical feedback 44
Jable 3-4 - Correlation Table For Separate Development Sub-CycleS.....uuuevviviceveenennnnnnnn. 46
Table 3-5- Corredation Table For Separate Development Sub-Cycles—without the outliers
for number of sub-cycles, productivity and architectural efort............cc.ccovvennee. ol
able 3-6 Summary of hypotheses on the impact ot separ ate development sub-cycles........ 53
€3-7 - corrgation €For Variablesto Evaluate Flexibility in Project Activities...
WMMHW 11 PT O] ect Acuvites —
ithout the outlier for Produciiviiy |
Table 3-9 Summary of hypothesis on flexibility in project activities.............ccccvvvvveeeveeenne... 64
Table 3-10 - Correlation Table For Code REUSE M EASUNES........uuvvvvvrveeerereeereeeereerreererereeeees 66
Table 3-11 Summary of hypothesison impact Of COUE FEUSE......uu.viiiiieieeeeneeiiiiieeeeeeenniereas 69
Table 3-12 - Correlation Table For Frequent Synchronization Measure..............c.cccveeeenns 71|
Table 3-13 - Corrdation Table For Frequent Synchronization Measure— without the outlier

O PTOTUCTIVITY cvovovmosesvesmesssssmesmssssnsseseesnesmesssesnessesmsessesessmssesmesmsmsnesmsresesnesessniees 75

able 3-15 - Corraation 1ahle Far Desgn and Code Review Measure T4

Table 3-16 Summary of hvpotheses on impact of desian and codereview 32
'I able3-17- Correlation Table For R ron Teﬁt Measure ...
LA Io TR —— 85
[able 3-19- Correlation Table For Developersand QA testing Code..........c.coocvveeiiiinennnn. 87 |
Table 3-20 - Corrdation e For Developersan ing Code Measure—withoutthe |
m\/ 90

able 3-24- Correlallon Table For Final Product Stablllzatlon Phase 99

[Table 3-25 Summary of hypotheses on impact of final product stabilization phase.......... 103 |

Table of Figures

FpOre =T - Sequental (Warerall Merhndology 1

00 '|nal featuresmolemented mtheflnal oroduct (aII Dromm“q\

Figure 3-2 - scatter plot of % final product functionality implemented in first syssem |
ntegration vs. % origina features implemented in the final product (all projects)..31

Higure 3-3 — scatter plot of % final product functionality implemented in first beta vs. % |
priginal featuresimplemented in the final product (all projects) ... 32

igure 3-4 - % final product functionality implemented in first prototype Vs. Bugginess

frigure 3-8 - % final product functionality implemented in first system integration vs. %]
Echedule estimation error (Al PrOJECES)o.veeeeeeeeeeeeeeeeeeeeeeeeeeereeseveeeerereeserens 36 |
igure 3-9 - % final product functionality implemented in first betavs. % schedule

Loure 3-12 - 04 Hnal product tunctionality implemented at Tirst hetavs, customer |

atisfaction perception rating (all projects) 39 |

productivity (all Projects)ceeeeeeeiiiiiiiiiiiseie s,
Figure 3-15 % final product functionality implemented at first beta vs. productivity (al

Igure 3-16 - % final product functionality implemented at first beta vs. schedule
Udget perrormance perception rating (without outlier 1IN productivity)...........c.eeeee.

ProdUCT (il Projects) 47

Hi 23-19 - Number of sub-cvclesvs. productivity (all projects) 48

Kigure 3-21 Archltecture Effort Vs. bugginess (all projects)cooeeeeeevveeeeeeeeeaann 50

Kigure 3-22 - Architecture Effort Vs. productivity (all projects).........ccoeuvvvivivveeiiennnnn.. 50

Figure 3-23 - Number of sub-cyclesvs. productivity - without the outliers for number of |
bub-cycles, productivity and architectural effort..............cccceeveveeeviveeerinirererrnee 52 |

Figure 3-24 - Architecture Effort V's. % schedul e estimation error - without the outliers |
or number of sub-cycles, productivity and architectural erfort

Figure 3-25 - % alapsed time 1TOm project Start Tl 1ast maj or requirements change vs. %
TOINal Teares implementen 10 e 1nal Proouct (ol projecis) o
ELg ‘_;-49;1-__55:_._-‘53_9_&_a_L-A_.._-:_sL-A_-__A!.u_-‘-u-_te;_A-uu:
Do originagl features implemented in the final prod all proje 6
FFigure 3-27 - % elapsed time from project 3 ast maior code addition % origing
eatures implemented in the final product (all projects) 57

fFigure 3- 28 % &l apsed tlmefrom project start till last major requirements change vs.

igure 3-29 - % dapsed time from project start till ast major functional spec change vs. |

U e e G T T) T — 59
igure 3-30 - % elapsed time from project start till last major code addition vs. bugginess |

ure 3-35 % code reuse vs. % orlgl nal features implemented in the final product (all

Lo v, 67
Figure 3-36 - % code reuse vs. % schedule estimation error (all projects)............c.......... 68
Higure 3-37 - Build Frequency VS. DUGQINESS (@] PTOJECLS) ovvwrrororsror e srsorssesnesnninens 72 |

[Figure 3-38 - Build Frequency V's. customer satisfaction perception rating (all proj ects) 72 |

Higure 3-39 - Build Frequency Vs. % schedule estimation error (all projects) 73

e 2-40) - BUlld Erequen DroaucivITy (Al projec
- 3-41- n%/\l dnng or-not vs._ 9% Orl g oAt LIresS ylementec =
-ngfmdurt (all proiects) 79
i . , . :
s
figure 3-44 - Code Review done or not vs. Bugainess (all Projects) ... 81 |
[_Hiqure 3-45 - Code Review done or not vs. % schedule estimation error (all projects) ... 82
g_igure 3-46 - Running Regression Test or not Vs. Bugginess (all projects) 85
igure 3-47 - % of total testing time devel opers tested their own code vs. bugginess (all
PrOJECIS) ..ot 838]
Figure 3-45 - % of total testing time developers tested their own code vs. productivity (all |
T OO B8]
Figure 3-29 - Tedlng elform vs. DUgJINeSS (all profecls) 89

i figure 3-51 - % of total testing time spent in component testing vs. Buaainess (all

br0| ects) 94 |

Higure 3-52 - % of total testing time spent in integration testing vs. bugginess (all |
ST T 94 |
Figure 3-53 - % of total testing time spent in integration testing V's. Schedule Estimation

fgure 3-54 - % of 10 INg time spent 1N System testing Vs. BUQQINESS (all projects
[90 |
erception rati na (all projects) o6

brror (all oromctq\
Figure 3-57 - % project duration spent in stablllzatl on phase vs. % Original features |

mplemented in fina

igure 3-58 - % project duration spent in stabilization phase vs. % fina product |

uNCtionality 1N FIrSt PrOLOLYPE.......ccveereeeieeeieieeeceeeie et eteese et e et eeeeeneenes 101 |
Igure 3-59 - % project duration spent in stabilization phase vs. % final product |

uncti onallty n TII'St SYSIEM INTEGIALIONeeveeeeeeieerreeeereeeeesssnnrrreereeeesesssnnnrnreeeeeens

Chapter 1: Introduction

1.1 Motivation:

Technologies, competitor moves, and user needs change so quickly that companies can no longer
plan specificaly what they will do and then proceed through long sequential product-
development cycles. One approach is an iterative process that combines preliminary design goals
and some design details with continual feedback from users as well as outside partners during
development. Simultaneoudy, designers attempt to build and integrate components and
prototypes as the project moves forward. Companies can aso try to influence the direction toward
which their products evolve by controlling architectures of their product platforms and by
working with producers of complementary products. Many firms, however, have been slow to
adopt the more iterative processes to product development. One reason may be that it is difficult
to control such a process and know when to stop iterating. As aresult, the outcomes and dates are
less predictable than a sequential process, and thereislikely to be less waste and rework in a
sequential process. There are also few detailed case studies or statistically documented studies on

how to manage an iterative development process effectively.

This research will study systematically the range of approaches that producers of software and
hardware for personal computers and, especially, Internet applications use for strategic planning

and product development.

Benefits:

New and deeper understanding of how firms can structure and manage iterative and cooperative

approaches to product development in rapidly changing markets

Define when an incremental approach to product development, as opposed to a more sequential

approach, is useful aswell as difficult to introduce.

» Description of current s’'w development processes

» Description of evolutionary development process

» Strategies

10

1.2 Existing methodologies and techniques common to softwar e product development

1.2.1 Sequential (Waterfall) M ethodology:

One of the software product devel opment methodol ogies that was popular in the 70s and 80sis
the sequential (waterfall) methodology. The typical sequential (waterfall) product devel opment

process consists of requirements phase, detailed design phase, module coding and testing phase,

Requirements
Phase

Detailed Design
Phase

Module Coding
and Testing Phase

Integration
Testing Phase

System Product
Testing Phase Release

Figure 1-1 - Sequential (Waterfall) M ethodology

integration testing phase and system testing phasel*:I as shown in figure 1-1.

“Sequential approach to software development may require very long periods of time because
they schedule work in sequence, not in parallel. Managers may also find it difficult to assess
progress accurately because they tend to schedule major testing very late-often too late in the
devel opment cycle?’ﬂSequential approach has been shown to be extremely effective in stable

environments but its effectiveness has been questioned in uncertain and dynamic environments®.

! Michael A. Cusumano and Richard W. Selby, Microsoft Secrets, Free Press 1995, p 192
2 Michael A. Cusumano and Richard W. Selby, Microsoft Secrets, Free Press 1995, p 262
3 Alan MacCormack, Roberto Verganti, and Marco lansiti, “ Developing Products on “Internet Time”: The
Anatomy of a Flexible Development Process’, Harvard Business School Working paper 99-118, 1999, p 4

11

1.2.2 Iterative (Evolution) M ethodology:

The challenge for product teamsin uncertain and dynamic environments is that user needs for
many types of software are so difficult to understand that it is nearly impossible or unwiseto try
to design the system compl etely in advance, especially as hardware improvements and customer
desires are constantly and quickly evolvi ngE.l In the iterative approach, the product devel opment
cycleisdivided into sub-cycles with each sub-cycle consisting of design, develop, build, test and

release activities.

This methodology emphasizes the ability to respond to new information from market (customer)
and technical (engineering) feedback for aslong as possible during a development cycle®—The
iterative (evolutionary) approach to product devel opment is favored because companies usually
build better productsif they have the flexibility to change specifications and designs, get and
incorporate market (customer) and technical (engineering) feedback, and continually test

Market (Customer) and Technical (Engineering)
feedback

LT

Specification | |

Design | | . |

Develop | | | |

Integration ‘ ‘ ‘ ‘ ‘ ‘
(Build/Test)

Release ‘ ‘ ‘ ‘ ‘ ‘

Final Product Stabilization Phase

source: Alan MacCormack, Roberto Verganti, Marco lansiti, and Bo Kemp,
"Product Development Performance In Internet Software", Harvard Business
School, September 1997, p 6

Figure 1-2 - Iterative (Evolutionary) M ethodology

* Michael A. Cusumano and Richard W. Selby, Microsoft Secrets, Free Press 1995, p 14
® Alan MacCormack, Roberto Verganti, and Marco lansiti, “ Developing Products on “Internet Time”: The
Anatomy of a Flexible Development Process’, Harvard Business School Working paper 99-118, 1999, p 6

12

components as the products are evolving. The product teams also ship preliminary versions of
their products, incrementally adding features or functionality over time in different product

rel eases’,

1.2.3 Synch and Stabilize technique:

Many product teams, in addition to the above-mentioned iterative (evolutionary) approach, also
put pieces of their products together frequently. Thisis useful to determine what works and what
does not, without waiting until the end of the proj ectLIFi gure 1-3 provides an overview of synch-

and-stabilize devel opment approach.

® Michael A. Cusumano and Richard W. Selby, Microsoft Secrets, Free Press 1995, p 14-15
"Michael A. Cusumano and Richard W. Selby, Microsoft Secrets, Free Press 1995, p 15

13

Planning Phase: Define product vision, specification and
schedule.

*Vision Statement: Product and program management use
extensive customer input to identify and prioritize product
features.

* Specification Document: Based on vision statement, program
management and development group define feature functionality,
architectural issues, and component interdependencies.

* Schedule and Feature Team Formation: Based on
specification document, program management coordinates and
arranges feature teams that each contain approximately 1
program manager, 3-8 developers, and 3-8 testers (who work in
parallel 1:1 with developers)

Development Phase: Feature development in 3 or 4 sequential
subprojects that each results in a milestone release.

Program managers coordinate evolution of specification.
Developers design, code and debug. Testers pair up with
developers for continuous testing.

* Subproject I: Firs 1/3 of features: Most critical features and
shared components..

* Subproject Il: Second 1/3 of features.

* Subproject lll: Final 1/3 of features: Least critical features

Stabilization Phase: Comprehensive internal and external
testing, final product stabilization, and ship..

Program managers coordinate OEMs and ISVs and monitor
customer feedback. Developers perform final debugging and
code stabilization. Testers recreate and isolate errors.

* Internal Testing: Thorough testing of complete product within
the company.

* External Testingl: Thorough testing of complete product
outside the company by "beta" sites such as OEMs, ISVs, and
end-users.

* Release Preparationl: Prepare final release of "golden master"
diskettes and documentation for manufacturing.

source: Michael A. Cusumano and Richard W. Selby, Microsoft Secrets,
Free Press 1995, p 194

Figure 1-3 - Overview of Synch-and-Stabilize Development Approach

14

Chapter 2: Research M ethodology

2.1 Questionnair e Development:

A questionnaire was devel oped and used to allow systematic collection of data. The team
involved in developing the questionnaire consisted of members from the academic community
and industry members (from Hewlett Packard), along with the author. The academic community
members are: Prof. Michael A. Cusumano (MIT Sloan School of Management) who isthe thesis
advisor to the author, Prof. Chris F. Kemerer (Katz Graduate School of Business, University of
Pittsburgh), Prof. Alan MacCormack (Harvard Business School). The industry members from
Hewlett Packard are Bill Crandall and Guy Cox. Both Bill Crandall and Guy Cox represented
Process Consulting Group (PCG) within Hewlett Packard.

The objective of the questionnaire was to capture all pertaining information about a software

development project that would provide us with:

» Will provide the ability to benchmark devel opment practices, at Hewlett Packard and
Agilent initially and subsequently (in future work) at alarger cross-section of companies
globaly.

» Helpsinidentifying variables, which contribute most to performance providing insights

into approaches for rapid and flexible software product devel opment.

Iterative (evolutionary) process was used to design and devel op the questionnaire. The
guestionnaire consists of two parts. Part 1 of the questionnaire was focused on project description
and environment, size of the project (with respect to development budget, devel opment effort,
project schedule and lines of code), origins of the software code (code from previous version,
other products, off-the-shelf code, new code devel oped by the team), project team roles
composition, design and devel opment process, testing and debugging process, relative emphasis
on different types of testing during the project, interaction with customers (a customer can be
internal or externd).

Part 2 of the questionnaire was focused on various project activities (requirements phase,
architectural and functional design phase, detailed design and development phase, and integration
and system testing phase), product development methodol ogies (sequential (waterfall), iterative

(evolutionary) and synch-and-stabilize approach), project performance metrics (financial

15

performance, market performance, schedule performance, budget performance and software

quality).

2.2 Data collection:

In order to facilitate an efficient data collection process, the author created a website which would
allow the project team representatives to view the questionnaire and answer the questions. M.I.T
through its CWIS group provides its students the ability to create forms based questionnaire and
host it on web.mit.edu. After the project team representatives submit responses to the questions,
the information isreceived as email. M.1.T's CWIS group also provides perl script, which
prepares the information received as email into tab-delimited records for inclusion into a database
or spreadsheet.

A more efficient process could be implemented by storing the responses directly in a database
after the project team representatives submit responses to the questions. The infrastructure
provided by M.I.T’s Web Communications Services (WCS) group did not allow database support
for the forms at the time the research was carried out. In future research work where thereisa
potential for large number of responses, database support for the forms (questionnaire) should be
considered, if the infrastructure allowed.

Initial approach of the author was to import the data received into Microsoft Access® database.
The reason for this approach was to provide, the academic and industry members of the research
team, reports on the cases that were received. Due to the large number of variables being used to
collect the data, the author quickly ran into issues while designing report(s) to display data for
each caseinitsentirety. The author, realizing that using Access database may not provide
various statistical analysis methods that could be used to analyze the data collected, imported all
the datainto SPSS® 10.0 application package.

The author used the SPSS® application to run all the statistical analysis except for a brief period
of time where another statistical analysis package, Data Desk® 6.0 was used. The author started
using Data Desk® because of certain usability features but realized that certain statistical
information (like significance level) for some analysis was not being provided. This drawback
led the author back to using the SPSS® package.

The industry members of the research team were instrumental in contacting various project team

representatives to participate in the research. The goal of the research team, at the beginning of

16

the research project, wasto collect datafrom 40 projects. Theinitial expectation of the research
team was that the data collection would not be a problem since both industry members, Bill
Crandall and Guy Cox, were part of Hewlett Packard and knew and/or had contacts for large
number of projects. Asthe data collection process went live, the research team realized that the
data collection process was hot going as expected. To spread the word and motivate potential
respondents (project team representatives) of the questionnaire, Prof. Michagl A. Cusumano and
Prof. Alan MacCormack spoke at Hewlett Packard and Agilent internal seminars on software
product development. In addition to the above actions, by the research team, Bill Crandall aso
provided $50 gift certificates (towards purchases at Amazon.com) to project team representatives

who participated in the research.

At the end of the data collection process, the research team received surveys for 27 projects. For
the data analysis, the author used 26 project surveys for the sample. The one project that was not
included in the data analysisisavery small project. The duration of this project was 1-week.
The project duration was too small to study various project activities. The smallest project that

was considered for data analysis in the sample was 4 months long.

After the data was collected and initial analysis was performed, the research team realized that
some additional information was required in the areas % of original featuresimplemented in the
final product, bugs reported by the customer in the first 12 months after the product launch and
project performance ratings (customer satisfaction rating, schedule and budget performance
rating) as perceived by the project team members. Of the 26 projects in the sample, we received
responses from 22 project teams for the additional questionnaire.

2.3 Variables (Context, Process and Outcome):

Project Outcome

Project Context Project Process

v

For analysis, we studied the relation between several process variables and the outcome variables.

17

2.3.1 Some of the contexts variables available from the research data:

+ Type of Software developed:
- Systems software
- Application software

- Embedded software

» Software developed for:

- External customers

- Interna customers

* New product development or extension of current product functionality

- <50% of code reuse from a previous project is assumed to be new product

* Projectsize:

Lines of code (LOC)

Project duration

Project budget

Effort in person years

Team Composition:

- Development resources

- Testing resources

2.3.2 Some of the process variables available from the research data:

e User Orientation

18

- How early were the prototypes (with respect to functionality)
- How early were the system integrations (with respect to functionality)
- How early were the betas (with respect to functionality)
Number of Sub-cycles
Freguency of synchronization (Build frequency)
Reviews:
- Designreviews
- Codereviews
Build validation
- Simple compile and link tests Vs. Regression tests
Testing and debugging
- Time spent by developersin testing Vs. Time spent by QA or testing staff
Relative Emphasis of testing in a project

- 9% Of total testing time spent in Component testing, % of total testing time spent
in Integration testing, % of total testing time spent in System testing

Testing Effort
Aver ageTestingresour ces/(averageDevel opment + avgTestingresour ces)
Flexibility of the process/project:
- How lateinto the project schedule were the requirements changing?

- How lateinto the project schedule was the team changing the design?

19

- How lateinto the project was the team able to add new code?

* Length of thefirst sub-cycle (which is elapsed time from project start to first system
integration) — indication of time taken to implement the core/important functionality

(similar to what Tom Gilb has in the evolutionary approach — Juicy bitsfirst principle)

» Architecture Effort:
Architecturalresour ces/(devel opment + testingresour ces)

Amount of Code Reuse

2.3.3 Some of the outcome variables available from the resear ch data:

* Productivity (LOC per person day): productivity is defined as new lines of code
developed per person day. To calculate this, total person years was used which includes

project managers, arch, developers, testers etc.

NewLinesOfCode/(Total PersonYears* 250)

e 9 Schedule estimation error: is defined as

(actual projectdurtion — estimatedpr oj ectduration) * 100/ actual projectduration

* Bugginess (Average number of bugs per million Lines of code reported per month during

the first 12 months after the system launch)

(Number OfBugsr eportedByCustomer * 1000000) /(Number OfMonths* NewLinesOfCode)
» Customer satisfaction Perception Rating: This variable is customer satisfaction rating as

perceived by the project team.

» Schedule and Budget performance Perception Rating: This variableis schedule and

budget performance rating as perceived by the project team.

» Financid return Perception Rating: This variableis ameasure of financia return from

the project as perceived by the project team.

20

A 5-point scale was used to measure customer satisfaction perception rating, schedule and budget
performance perception rating and financial return perception rating, where 1= significantly

below expectations, 2=below, 3=met expectations, 4=above, 5=significantly above expectations.

2.4 Generic project description (size, complexity etc):

This section summarizes the data of projects used in the sample. Table 2-1 summarizes the raw
datafor some of the context variables. The table shows the size of the projectsin terms of actual
lines of code, new code devel oped for the project, project duration and project development and

testing resources.

Variable Count Mean Median [StdDev [Min Max
Actual LOC 26] 671306] 160000| 1.66E+06 1320| 8.50E+06
Log(Actual LOC) 26] 5.1819| 5.20327| 0.868566| 3.12057| 6.92942
New Code 26] 368342 57369| 1.32E+06 255(6.80E+06
Log(New Code) 26] 4.69759| 4.75859| 0.93063| 2.40654| 6.83251
Total Development +

Testing Resources 25| 11.612 6] 14.2048 2 55
Total resources (in

person Years) 26| 27.4192 9.5] 39.5967 0.2 160
Project Duration 26] 18.7692 145 11.0247 4 45

Table 2-1 - Descriptive Statisticsfor Context Variables

Table 2-2 summarizes the various types of software in the sample. The different types of
software in the sample are application software, system software, embedded software and other

(projects with a combination of application, system and/or embedded software).

21

Software Type Count

Application 8
System 6
Embedded 5
Other 7

Table 2-2 - Breakdown of Sample by Software Type

Table 2-3 shows the sampl e breakdown or grouping by customer i.e., internal customer (use) and
external customer (use).

Group Count
External Use 18
Internal Use 8

Table 2-3 - Projects Grouped by Usage

Another variable used for grouping the projects is based on whether it isa new product or a
product extension. A product extension is defined, as a project with percentage of code reuse

from a previous project is greater than 50%. The grouping is showed in table 2-4.

Group Count
New Product 18
Product Extensions 8

Table 2-4 - Projects Grouped by Project Type

22

Tables 2-5, 2-6, 2-7 provide descriptives for various process variables. The datafor some of the

process variables are derived (or calculated) from the raw data provided by the project teams.

Variable Count Mean Median StdDev Min Max
Requirements Phase

(months) 26| 7.69231 5.5 7.13733 0 24
Design Phase (months) 26| 10.9615 7.5 8.90609 0 33
Development Phase

(months) 26| 11.1538 8| 8.66576 2 30
Integration Phase

(months) 26| 6.88462 5.5 7.33936 1 37
Stabilization Phase

(months) 26| 2.40385 2 2.8285 0 13
Number of Betas 26| 2.61538 2| 2.46701 0 10
Architectural Effort 25| 0.295969 0.2| 0.276657 0.02 1
% code reuse 26| 0.603077 0.625| 0.246021 0 0.9

Table 2-5 - Descriptive Statisticsfor Process Variables

Variable Count Mean Median StdDev Min Max
Dewvelopers testing their
code (as % of total

testing time) 26| 0.529615 0.5| 0.302793 0.07 1
QA staff testing code
(as % of total testing

time) 24| 0.490833 0.5| 0.278223 0 0.93
Component Testing (%

of total testing time) 26| 0.313462 0.25| 0.232189 0 0.85
Integration Testing (%

of total testing time) 25 0.266 0.2| 0.153921 0 0.6
System Testing (% of

total testing time) 26| 0.426923 0.4| 0.239262 0.1 1
Testing Effort 25| 0.252893 0.225| 0.145212 0 0.5

Table 2-6 - Descriptive Statisticsfor Process Variables

23

Variable Count Mean Median [StdDev |Min Max

% of Elapsed time at

first prototype 24| 33.8989| 25.8333] 22.9054| 4.54545| 83.3333
% of Elapsed time at

first system integration 26| 58.5214| 59.7222| 17.1573 25| 93.3333
% of Elapsed time at

first beta 19| 77.8108] 81.8182 17.2383| 30.4348| 102.778
% of functionality in first

prototype 24| 37.4167 36.5| 25.2499 0 90
% of functionality at first

system integration 24| 63.0417 63.5] 20.6976 15 100
% of functionality in first

beta 25 91.8 95| 7.04746 80 100

Table 2-7 - Descriptive Statisticsfor Process Variables

Table 2-8 provides a grouping of projects based on their build frequency. The other category
includes projects with weekly, bi-weekly and monthly build frequency. Table 2-9 summarizes
projects that have performed regression tests after devel opers checked changed or new code into
the project build. Table 2-10 provides a breakdown of projects, which performed design reviews,
and the projects that did not perform design review. Table 2-11 provides a breakdown of

projects, which performed code reviews, and the projects that did not perform code review.

Group Count
Daily Build 11
Other 15

Table2-8 - Summary of Build Frequency

Group Count
Regression Tests Performed 17
Regression Tests Not Performed 9

Table 2-9 - Projects grouped by whether Regression Testswer e performed or not

24

Group Count
Desigh Review Done 22
Desigh Review Not Done 4

Table 2-10 - Projects grouped by whether Design Review was done or not

Group Count
Code Review Done 14
Code Review Not Done 12

Table 2-11 - Projects grouped by whether Code Review was done or not

% schedul e estimation error are derived variables.

Table 2-12 provides descriptives for some of the outcome variables. Bugginess, productivity and

Variable Count Mean Median StdDev Min Max

% of original features

implemented in the final

product 22| 82.0455 90| 19.2984 40 100
Schedule and Budget

Performance Perception

Rating 22 2.5 2| 0.859125 1 4
Customer Satisfaction

Perception Rating 22 3.5 3.5 0.672593 2 5
Financial Return

Perception Rating 20 3.55 3| 0.998683 1 5
Bugginess 21| 464.755 12.5 2032.2 0 9333.33
Productivity 26| 548.512|] 99.0933[2204.64 0.96] 11333.3
% Schedule Estimation

Error 26 73.932] 40.6593| 86.2291 0 340

Table 2-12 - Descriptive Statisticsfor Outcome Variables

Since the sample set contained several types of projects, to evaluate the significance of the mean

with respect to the mean of the various groupings of the project, an analysis of variance

(ANOVA) was performed. Analysis of variance was performed for the following process

variables;

* % Functionality in first prototype

* 9% Functionality in first system integration

* 9% Functionality in first beta

25

* 9% Elapsed timetill last major requirements change

* 9% Elapsed timetill last major functional specification change

* 9% Elapsed timetill last major code addition

e Architectural effort

e 09 Codereuse

* 9% Total testing time devel opers spent testing their own code

* % Total testing time QA staff spent testing code

* 9% Total testing time spent in component testing

* 9% Total testing time spent in integration testing

* 9% Total testing time spent in system testing

The ANOVA was performed for the above process variables under three separate groupings and
they are:

e Software Use (Internal Use Vs. Externa Use)

» Software Type (Application S/\W, System S/W, Embedded S/'W and Others —
combination of application, system and embedded software)

« New Products Vs. Product Extensions

Based on the ANOV A reports, it appears that in all cases (except % Code Reuse) the process
variables are independent of how the projects are grouped. Appendix-A containsthe ANOVA

reports for the above-mentioned variables under the project groupings mentioned earlier.

26

Chapter 3: Data Analysis

3.1 Hypothesis and data analysis;

Since the process variables were independent of project groupings, in the data analysis to evaluate
various hypotheses, the data for the entire sample set was used as one group. Most of the
hypothesis constructs relationship between process variables and outcome variables. The one
exception isthe ‘ percentage code reuse’ variable. As part of the data analysis, Spearman Rank
Correlation analysis was performed to evaluate the hypotheses. The hypotheses and analysisis
focused on incremental (evolutionary) feature development, frequent synchronization and testing.

To address the above-mentioned topics, detailed analysis was performed in the following areas:

Incremental (evolutionary) feature development:

» Market (customer/user) feedback. The feedback is based on the final product
functionality available in the product. Thisis evaluated at two key milestones, which are
the first prototype and first betaf 1

» Technical feedback. Thisisthe feedback provided by the engineers (devel opment and
build). The feedback is based on the final product functionality available in the product.
Thisis evaluated at first system integration milestone®.

* Impact of separate devel opment sub-cycles.
e Hexibility in project activities.
» Codereuse.

Freguent synchronization:

» Freguent synchronization.

8 Alan MacCormack, Roberto Verganti, and Marco lansiti, “ Developing Products on “Internet Time”: The
Anatomy of a Flexible Development Process’, Harvard Business School Working paper 99-118, 1999, pp
14-15
® Alan MacCormack, Roberto Verganti, and Marco lansiti, “ Developing Products on “Internet Time”: The
Anatomy of a Flexible Development Process’, Harvard Business School Working paper 99-118, 1999, pp
14-15

27

Testing:

» Design and Code reviews.

e Testing (simple compile and link V's. regression tests).

* Impact of developersand QA staff testing code.

* Relative emphasis of testing (component testing, integration testing, system testing).

* Impact of Fina stabilization phase.

3.2 Impact Of Market and Technical Feedback

3.2.1 Hypothesis 1:

Obtaining market (first prototype and first beta) and technical (first system integration) feedback
early in the project, with respect to functionality, allows the team to incorporate more feature
changes based on the market and technical feedback. Thusthe project is more flexible. This
resultsin:

e Increased feature evolution

* |ncreased customer satisfaction

3.2.2 Hypothesis 2:

Incorporating more market and technical feedback, increases the schedule estimation error (the
obvious tradeoff is that as less feedback isincorporated, the schedule estimation error

decreases).

3.2.3 Hypothesis 3:

As projects obtain technical feedback early in the project, the bugginess of the product will
decrease.

28

3.2.4 Hypothesis 4:

As projects obtain early market feedback, the bugginess could increase as the team makes

changes to incorporate the market feedback.

3.2.5 Hypothesis 5:

As projects obtain feedback early in the project, the productivity improves since it reduces

potential rework (because the amount of functionality implemented is less).

The process variables used to evaluate market and technical feedbacks are:

» 9% Functionality implemented in first prototype

* 9% Functionality implemented at first system integration

* 9% Functionality implemented in first beta

The outcome variables used to evaluate the impact of market and technical feedbacks are:

* 9% Original featuresimplemented in the final product

» Productivity

* 9 Schedule estimation error

* Customer satisfaction perception rating

29

3.2.6 Data Analysisto evaluate impact of market and technical feedback

% final
Schedule % final product
% Original and Budget | Customer product functionalit % final
Features | Bugginess | % Schedule Perf. satisfaction |functionality | yin first product
implemen (per mil Estimation perception | perception in first system functionality
ted LOC) Error Productivity rating rating prototype |integration | in first beta
% Original Features Conelation Coefficient 1.000 297 -.225 -.284 272 -.049 .223 .348 .674*
implemented Sig. (2-tailed) . 204 327 212 233 834 .345 .133 .001
N 21 20 21 21 21 21 20 20 20
Bugginess (permil Comelation Coefficient 297 1.000 -.022 -.056 222 .305 6724 134 .363
Loc) Sig. (2-tailed) .204 . 927 .816 .348 191 .002 .583 127
N 20 20 20 20 20 20 19 19 19
% Schedule Conelation Coefficient -.225 -.022 1.000 .191 -.198 -.052 -.025 .039 -471*
Estimation Error Sig. (2-tailed) 327 927 .361 .390 .822 .908 .859 .020
N 21 20 25 25 21 21 23 23 24
Productivity Corelation Coefficient -.284 -.056 .191 1.000 -.385 -.135 -.266 -.080 -.260
Sig. (2-tailed) 212 .816 .361 . .085 561 221 716 220
N 21 20 25 25 21 21 23 23 24
Schedule and Cormelation Coefficient 272 222 -.198 -.385 1.000 .032 191 128 429
Budget Perf. Sig. (2-tailed) 233 .348 .390 .085 . .891 420 .590 .059
perception rating 21 20 21 21 21 21 20 20 20
Customer Cormelation Coefficient -.049 .305 -.052 -.135 .032 1.000 .288 -.537* -.194
satisfaction Sig. (2-tailed) 834 191 822 561 891 . 218 .015 414
perception rating 21 20 21 21 21 21 20 20 20
%final product Corelation Coefficient 223 672 -.025 -.266 .191 .288 1.000 476* .482*
functionality infirst sig. (2-tailed) .345 .002 908 221 420 218 . .022 .020
prototy pe N 20 19 23 23 20 20 23 23 23
%final product Cormelation Coefficient .348 134 .039 -.080 128 -.537* 476 1.000 499*
functionality infirst sig. (2-tailed) 133 583 .859 716 590 .015 .022 . .015
system integration 20 19 23 23 20 20 23 23 23
%final product Cormelation Coefficient .674* .363 - 471 -.260 429 -.194 .482* .499* 1.000
functionality infirst sig. (2-tailed) .001 127 .020 220 .059 414 .020 .015 .
beta N 20 19 24 24 20 20 23 23 24

**. Conelation is significant at the .01 level (2-tailed).

*. Conelation is significant at the .05 level (2-tailed).

Table3-1- Market and Technical Feedback Correlation Table

110

% COriginal Features implemented in Final Prd

30

100 «

60 «

40 4

(]

60

80

% Final Product Functionality in First Prototype

100

Figure 3-1- scatter plot of % final product functionality implemented in fir st
prototypevs. % original featuresimplemented in the final product (all projects)

30

Correlation between % functionality implemented in first prototype and % original features
implemented in the final product: 0.223. The correlation between these two variablesis not
statistically significant. Theidea of having an early prototype, with respect to functionality, isto
obtain and be able to incorporate customer/user feedback into the product. The lack of
statistically significant correlation could be because the project teams may have implemented the
market feedback in the project (with respect to functionality) and therefore final product
functionality might be different than the original features that the product team started with.
Potentially, the correlation may be significant if the projects completed the prototype later in the
project (with respect to functionality) i.e. potentialy implementing more original functionality
before releasing the prototype.

110
kel
=
2 1004 o o .
I v °
£ o o
LL
c 90 * o o o o o
< 80 - o
S -
E o
()
o 70+
=
[%2]
O 60+ o
=
@
EL’ 50 ¢ = o o
©
£
S 401 o
=
o
s 30 - - - - .
0 20 40 60 80 100 120

% Final Product Functionality in First System Integration

Figure 3-2 - scatter plot of % final product functionality
implemented in first system integration vs. % original features
implemented in the final product (all projects)

Correlation between % functionality implemented in first system integration and % original
features implemented in the final product: 0.348. The correlation between these two variablesis
statistically not significant. . Theidea of having early system integration, with respect to
functionality, is to obtain and be able to incorporate technical (engineering) feedback into the
product. The lack of statistically significant correlation could be because the project teams may
have incorporated the technical feedback and therefore final product functionality might be

31

different than the original features that the product team started with. Potentialy, the correlation
may be significant if the projects integrated the system later in the project (with respect to
functionality) i.e. potentially implementing more original functionality before integrating the
system.

110
e
& 1004 5 -
3 g
£ 5
(TR
c 90 4 o o o
e}
Q
c 80«
(4]
E o
(5}
S 704
£
[%2]
o 604
3
o
$ 504
T
£
D 404
2
o)
X 30 _ _ _
70 80 90 100 110

% Final Product functionality in First Beta

Figure 3-3 — scatter plot of % final product functionality implemented in first beta vs. %
original featuresimplemented in thefinal product (all projects)

Correlation between % functionality implemented in first beta and % original features
implemented in the final product: 0.674. The Correlation between the two variablesis
statistically significant at the 0.01 level (two-tailed). The correlation is significant because the
first betais released late in the project with respect to functionality.

32

100

80 1

60 4

40

20 o

Bugginess

0

0 20 40 60 80 100
% Final product functionality implemented in First Prototype

Figure 3-4 - % final product functionality implemented in first prototype Vs. Bugginess (all projects)

Correlation between % final product functionality implemented in first prototype and bugginess:
0.672. The Correlation between the two variablesis statistically significant at the 0.01 level (two-
tailled). Asmore functionality isimplemented in thefirst prototype it becomes difficult for the
project team to incorporate market feedback and if the project team does incorporate the market
feedback, then the team potential has created an environment to introduce more bugs due to the

rework.

33

100
80 4 o
60
404

204 5

Bugginess

0

— =l
0 20 40 60 80 100 120

% Final Product Functionality in First System Int.

Figure 3-5 - % final product functionality implemented in first system integration Vs. Bugginess (all projects)

Correlation between % fina product functionality implemented in first system integration and
bugginess: 0.134. The correlation between these two variablesis statistically not significant. The
possible reason for lack of statistically significant correlation between these two variables could
be because bugginessis a measure of bugs reported by the end user and since the end user seesa
system which has been integrated. The corrdation potentially could be significant if based on the
issues faced by the project team to integrate the system and the team ends up changing the
functionality already implemented to resolve the integration issues. This situation could

potentially lead to more bugs in the product due to the rework.

100

801

60 o

404

0

Bugginess

Figure 3-6 - % final product functionality implemented in first beta vs. Bugginess (all projects)

Correlation between % final product functionality implemented in first beta and bugginess: 0.363.
The correlation between these two variables is statistically not significant. The correlationis
potentially statistically not significant because the first beta, for the projects, is released late in the
project with respect to functionality. Thismay result in the project team not implementing the

market feedback and if there is no rework then the team has possibly avoided opportunities to

introduce bugs due to rework.

20 o

g
90

% Final Product Functionality in First Beta

35

80

6014

40 4

204 o o

% Schedule Estimation Error

[¢]

0 20 40 60 80 100

% Final Product Functionality in First Prototype

Figure 3-7 - % final product functionality implemented in first prototypevs. % schedule estimation error
(all projects)
Correlation between % final product functionality implemented in first prototype and % schedule
estimation error: -0.025. The correlation between these two variables is statistically not
significant. To better understand why this correlation is statistically not significant, it would be
helpful to understand the feature changes, due to customer feedback that were implemented
compared to the original product functionality that the team started with.

80

601

40 4

20 4

% Schedule Estimation Error

0

0 20 40 60 80 100 120
% Final Product Functionality in First System Integration
Figure 3-8 - % final product functionality implemented in first system
integration vs. % schedule estimation error (all projects)
Correlation between % final product functionality implemented in first system integration and %
schedule estimation error: 0.039. The correlation between these two variables is statistically not

36

significant. One possible reason that this correlation is not statistically significant could be that

the product did not require any rework, irrespective of the functionality implemented at the time

of first system integration.

% Schedule Estimation Error

80

60 4

40 4

20 o

0

% Final Product functionality implemented in First Beta

110

Figure 3-9 - % final product functionality implemented in first
beta vs. % schedule estimation error (all projects)

Correlation between % fina product functionality implemented in first beta and % schedule
estimation error: -0.471. The Correlation between the two variablesis statistically significant at
the 0.05 level (two-tailed). The possible reason for the correlation to be significant could be that

as the team implements more functionality in first beta, the team probably will belessinclined to

incorporate customer feedback thereby reducing schedul e estimation error.

37

55
504
454
404 o © o o o
354
3.0 -7
254

204

Customer Satisfaction Perception Rating

15

0 20) 60 80 100
% Final Product Functionality in First Prototype

Figure 3-10 - % final product functionality implemented in first prototype vs. customer satisfaction
per ception rating (all projects)

Correlation between % final product functionality implemented in first prototype and customer
satisfaction perception rating: 0.288. The corrédation between these two variables is statistically
not significant. Even though this correlation is statistically not significant, it isavery interesting
correlationi.e. asthe % final product functionality implemented in first prototypeisincreasing so
does the customer satisfaction perception rating. The basic idea of iterative (evolutionary)
approach isthe ability to obtain and incorporate customer feedback as the customer needs evolve.
Since mgjority of the projects that are part of the sample are hardware dependent, it might be
necessary to implement more functionality in first prototype to demonstrate the concepts to the

customers. This could potentially lead to higher customer satisfaction perception rating.

38

55
5.0+ o

4594~

404 o ‘*\\\‘D o o o o
354
304 o oo oo \n\\aﬂ\\
254

20+ o

Customer Satisfaction Perception Rating

15

0 20 40 60 80 100 120
% Final Product Functionality implemented in First System Int.

Figure 3-11 - % final product functionality implemented at first system Integration Vs. customer
satisfaction perception rating (all projects)

Correlation between % fina product functionality implemented at first system integration and
customer satisfaction perception rating: -0.537. The Correlation between the two variablesis
statistically significant at the 0.05 level (two-tailed).

5.5

504 o

451

4.0+ o o o o o

354

3.0 o o o o

254

20+ o

Customer Satisfaction Perception Rating

15

70 80 90 100 110

% Final Product Functionality in First Beta

Figure 3-12 - % final product functionality implemented at first beta
VS. customer satisfaction perception rating (all projects)

Correlation between % final product functionality implemented at first beta and customer
satisfaction perception rating: -0.194. The correlation between these two variablesis statistically

39

not significant. The correlation between these two variables is negative and as more functionality

isimplemented in the first betait becomes less likely that the project team would incorporate the

customer feedback from the beta resulting in a product with unmet customer needs.

Productivity

12000
100004
80004
60004
4000 %

2000 §

0

——

0

g
20

40

60

80—

% Final Product Functionality in First Prototype

100

Figure 3-13 - % final product functionality implemented at first prototype vs. productivity (all

proj ects)

Correlation between % final product functionality implemented at first prototype and
productivity: -0.266. The correlation between these two variablesis statistically not significant.

The correlation suggests that as the % final product functionality implemented at first prototypeis

increasing the productivity of the project team is decreasing. This could be due to more rework

as aresult of customer feedback on the functionality that was implemented.

12000

100001

8000 4

6000 4

4000 4

2000 o

Productivity

o

g

g B cg o0 on

60

80

100

120

% Final Product Functionality in First System Integration
Figure 3-14 - % final product tunctionality implemented at tirst system integration vs. productivity
(all projects)

40

Correlation between % fina product functionality implemented at first system integration and
productivity: -0.080. The correlation between these two variablesis statistically not significant.
The two variables have very little correlation and this may be due to smooth system integration or

no major system integration issues that require rework.

12000

100004

80004

6000 %

40004

2000 «

Productivity

. —_—
0 v - ;

0 —
70 80 90 100 110

% Final Product Functionality in First Beta

Figure 3-15 - % final product functionality implemented at first beta vs. productivity (all projects)

Correlation between % final product functionality implemented at first beta and productivity: -
0.260. The correlation between these two variablesis statistically not significant. As can be seen
from the sample data the first beta was released | ate in the project, with respect to functionality
and the project teams may not bein a position to incorporate any significant customer feedback
resulting in no or very little rework. As the team does not spend any time doing rework, the team
can incorporate remaining functionality resulting in new code. Since productivity is being
measured as afunction of total lines of code, the above mentioned scenario might result in higher
productivity.

3.2.7 Sensitivity Analyss:

In our data analysis to evaluate hypothesis 1 through hypothesis 5, there are some instances where
some outlier cases were observed. In order to study the effect of these outlier cases on the
analysis, sensitivity analysis was performed. The correlation analysis was performed again with
the data after filtering out the outlier case(s). The following correlation table (Table 3-2) contains
the analysis without the outlier case(s). The scatter graph (Figure 3-16) following thetableis
provided for the variables with statistically significant correlation.

41

% final

Schedule % final product
% Original and Budget | Customer product functionalit % final
Features | Bugginess | % Schedule Perf. satisfaction |functionality | yin first product

implemen (per mil Estimation perception | perception in first system functionality
ted LOC) Error Productivity rating rating prototype | integration | in first beta

% Original Features Correlation Coefficient 1.000 275 -.250 -.255 .301 -071 .194 .373 .639%1
implemented Sig. (2-tailed) . 255 .288 277 197 767 425 116 .003
N 20 19 20 20 20 20 19 19 19
Bugginess (permil Correlation Coefficient 275 1.000 -.032 .039 .278 .245 .664* .198 .357
LOC) Sig. (2-tailed) .255 . .898 .875 249 311 .003 432 .146
N 19 19 19 19 19 19 18 18 18

% Schedule Correlation Coefficient -.250 -.032 1.000 226 -.190 -.060 -.055 .022 -.493*
Estimation Etrror Sig. (2-tailed) .288 .898 .287 423 .802 .809 .923 .017
N 20 19 24 24 20 20 22 22 23
Productivity Correlation Coefficient -.255 .039 .226 1.000 -.496* -.071 -.202 -124 -.234
Sig. (2-tailed) 277 .875 .287 . .026 765 .367 .583 .283
N 20 19 24 24 20 20 22 22 23

Schedule and Correlation Coefficient .301 278 -.190 -.496* 1.000 .072 247 112 464
Budget Perf. Sig. (2-tailed) 197 249 423 .026 . 762 .308 .647 .046
perception rating 20 19 20 20 20 20 19 19 19
Customer Correlation Coefficient -.071 .245 -.060 -.071 .072 1.000 .255 -.545*% -222
satisfaction Sig. (2-tailed) 767 311 802 765 762 . 292 .016 .361
perception rating 20 19 20 20 20 20 19 19 19
%final product Correlation Coefficient 194 .664*4 -.055 -.202 .247 .255 1.000 .518* .491*
functionality in first sig. (2-tailed) 425 .003 .809 .367 .308 292 . .013 .020
prototy pe N 19 18 22 22 19 19 22 22 22
%final product Correlation Coefficient .373 .198 .022 -124 112 -.545% .518* 1.000 .521*
functionality in first sig. (2-tailed) 116 432 923 583 647 .016 .013 . .013
system integration 19 18 22 22 19 19 22 22 22
%final product Correlation Coefficient .639* .357 -.493* -.234 .464* -.222 .491* .521* 1.000
functionality in first sig. (2-tailed) .003 146 .017 283 .046 .361 .020 .013 .
beta N 19 18 23 23 19 19 22 22 23

**. Correlation is significant at the .01 level (2-tailed).

*. Correlation is significant at the .05 level (2-tailed).

Table 3-2 - Market and Technical Feedback Correation Table—without the outlier in
productivity

42

Schedule & Budget Perf. Perception Rating

45

4.0+

351

3014

254

204

154

104

70 80 90

% Final Product Functionality in First Beta

100

110

Figure 3-16 - % final product functionality implemented at first beta vs. schedule & budget
perfor mance per ception rating (without outlier in productivity)

Correlation between % final product functionality implemented at first beta and schedule &

budget performance perception rating: 0.464. The Correlation between the two variablesis

statistically significant at the 0.05 level (two-tailed). As has been mentioned earlier, even without
the outlier if the % final product functionality implemented at first betais high then that resultsin

smaller schedule estimation error or better schedul e performance perception rating.

43

3.2.8 Observations based on the data analysisfor market and technical feedback:

Hypothesis Summary of hypothesis Observations
Number
1 Obtaining early market and technical feedback Increased feature evolution is
resultsin increased feature evolution and statistically significant with
customer satisfaction. functionality in first beta.
Early technical feedback and
customer satisfaction
perception rating are
significantly correlated.
2 Incorporating more market and technical Schedule estimation error is
feedback increases schedule estimation error. statistically significant with %
of functionality in final
product at first beta.
3 Obtaining early technical feedback reduces The relation between these
bugginess two variablesis statistically
not significant.
4 Bugginess increases as project teamsimplement | Bugginessis statistically
early market feedback significant with functionality
in first prototype.
5 Productivity increases due to reduced rework as | The relation between these

project teams obtain early feedback

two variablesis statistically

not significant.

Table 3-3 - Summary of hypotheses on impact of market and technical feedback

* Theanaysisvalidates our hypothesis that as the projects obtain feedback early in the

project (with respect to functionality), thereis more feature evolution. As can be seen

from the analysis, asthe % final product functionality at key milestones (first prototype,

system integration and first beta) increases, so does the % of original features
implemented in the final product, making it more inflexible and reducing the ability to
incorporate market and technical feedback

For customer satisfaction perception rating, it can be seen that our hypothesisis
validated. Ascan be seen from the analysis, as the % fina product functionality in first
system integration increases, the customer satisfaction perception rating decreases. This
could be because the customer has |ess influence in the features that will be availablein

thefinal product.

From the analysis we observe that there is very little correlation of % functionality at first
prototype and system integration with schedule estimation error. Our hypothesis holds
true for % functionality in first beta, as the functionality is increasing, schedule

estimation error is decreasing.

3.3 Impact of Separate Development Sub-Cycles

3.3.1 Hypothesis 6:

Dividing the development phase of the project into separate devel opment sub-cycles that built
and tested a subset of the final product functionality, allows the team to be:

More flexible (increased feature evol ution)

Deliver ahigh quality product

Improves the productivity of the team (section 14.12 The productivity of evolutionary

delivery, Principles Of Software Engineering Management, Tom Gilb, 1988).

3.3.2 Hypothesis 7:

A high level architectural specification (without implementation details) provides for more

flexible product development while detailed architectural specification (ot of rules) tend to create

arigid environment (chapter 4, page 244 - Microsoft Secrets, Michael Cusumano and Richard
Selby, 1998).

The process variables used to eval uate the impact of separate devel opment sub-cycles are:

45

* Number of sub-cycles

e Architecture effort

The outcome variables used to eval uate the impact of separate devel opment sub-cycles are:

* 9% Original featuresimplemented in the final product

* Bugginess

e Productivity

3.3.3 Data Analysisto evaluate the impact of separ ate development sub-cycles

Schedule
% Original and Budget | Customer
Features | Bugginess | % Schedule Perf. satisfaction
implemen (per mil Estimation perception perception Number Of | Architectura
ted LOC) Error Productivity rating rating Subcycles | Effort

% Original Corelation Coefficient 1.000 .297 -.225 -.284 272 -.049 -.165 A475*
Features Sig. (2-tailed) . .204 .327 212 .233 .834 476 .029
implemented 21 20 21 21 21 21 21 21
Bugginess (per Corelation Coefficient .297 1.000 -.022 -.056 222 .305 -119 .068
mil LOC) Sig. (2-tailed) 204 . .927 .816 .348 191 .618 775
N 20 20 20 20 20 20 20 20

% Schedule Conelation Coefficient -.225 -.022 1.000 191 -.198 -.052 -.028 .233
Estimation Error sijg, (2-tailed) 327 927 361 .390 822 .895 .263
N 21 20 25 25 21 21 25 25

Productivity Cormelation Coefficient -.284 -.056 191 1.000 -.385 -.135 .334 -.227
Sig. (2-tailed) 212 .816 .361 . .085 .561 .103 .276

N 21 20 25 25 21 21 25 25

Schedule and Corelation Coefficient 272 222 -.198 -.385 1.000 .032 -.094 .199
BudgetPerf. gig. (2-tailed) .233 .348 .390 .085 . 891 .685 .388
perception rating 21 20 21 21 21 21 21 21
Customer Corelation Coefficient -.049 .305 -.052 -.135 .032 1.000 .047 .033
satisfacion sjg. (2-tailed) .834 191 822 561 .891 . 839 889
perception rating 21 20 21 21 21 21 21 21
Number Of Corelation Coefficient -.165 -.119 -.028 .334 -.094 .047 1.000 -.408*
Subcycles Sig. (2-tailed) 476 .618 .895 .103 .685 .839 . .043
N 21 20 25 25 21 21 25 25

Architectural Corelation Coefficient 475*% .068 .233 -227 .199 .033 -.408* 1.000
Effort Sig. (2-tailed) .029 775 .263 .276 .388 .889 .043 .
N 21 20 25 25 21 21 25 25

*. Comelation is significant at the .05 level (2-tailed).

Table3-4 - Correlation Table For Separate Development Sub-Cycles

46

110
1004 oo o

940 o
ol
70 4
60 4 .

504 O . .

40 4

30

% Original Features Implemented in Final Prd

0 10 20 Y r
Number Of Sub-Cycles

Figure 3-17 - Number of Sub-cyclesVs. % original featuresimplemented in the final product (all
proj ects)

Correlation between number of sub-cycles and % original features implemented in the final
product: -0.165. The correlation between these two variablesis statistically not significant. %
Original featuresimplemented in the final product could mean that either the project team has not
implemented all the functionality due to schedule constraints or the project team may have
incorporated feature changes as aresult of customer and technical feedback. Further information
about the type and/or amount of changesincorporated in the product would be helpful in
understanding this relation better.

47

100

60 4

40 4

20 4 e

Bugginess
m

0 10 20 30 40
Number Of Sub-Cycles

Figure 3-18 - Number of sub-cyclesvs. bugginess (all projects)

Correlation between number of sub-cycles and bugginess: -0.119. The correlation between these
two variablesis statistically not significant. One of the possible reasons that we see a negative
correlation between these two variables could be that as the project teams divide their project
development cycle into more sub-cycles, it provides them with the opportunity to discover bugs
and correct them as they test the new code at the end of each sub-cycle. This could be areason

why the end user is encountering low number of bugs after the final product release.

12000
10000
8000 «
6000 =
4000 «

2000 «

o
oldsg) -
(0] 10 20 30 40

Productivity

a.—
8

Number Of Sub-Cycles

Figure 3-19 - Number of sub-cyclesvs. productivity (all projects)

Correlation between number of sub-cycles and productivity: 0.334. The correlation between
these two variablesis statistically not significant. As can be seen from the scatter plot in figure 3-

19, thereisan outlier case. Sengitivity analysis was performed by filtering out the outlier case

48

and it is seen that the correlation becomes statistically significant, as shown later in this section
(figure 3-23).

110
100 «
90qc o o

80 o ///,/a////
704 ”
60 o
50 40

40 4 o

30
0.0 2 4 .6 .8 1.0 12

% Original Features Implemented in Final Prd

Architectural Effort

Figure 3-20 - Architecture Effort vs. % original featuresimplemented in thefinal product (all
proj ects)

Correlation between architecture effort and % original features implemented in the final product:
0.475. The Correlation between these two variablesis statistically significant at the 0.05 level
(two-tailed). One of the reasons for this correlation could be that as the project team spends more
effort in creating detailed architecture based on the original specifications, thus creating more
rules on how the product will be implemented. This potentially leaves little room for the project
team to incorporate customer feedback; therefore the team would end up implementing more of
the original features.

49

100

80 1

60 4

40 4

20 o

0

Bugginess

0.0

Architectural Effort

2

1.0

12

Figure 3-21 - Architecture Effort Vs. bugginess (all projects)

Correlation between architecture effort and bugginess: 0.068. The correlation between these two

variablesis statistically not significant. The positive correlation could be because of rework by

the project team after spending alot off effort on architecture, which may create an environment

of inflexibility asfar asincorporating market feedback into the product. By trying to rework the

implementation based on market feedback, with lot off implementation rules (due to detailed

architecture) could result in increased bugs.

12000

100004

80004

60004

40004

2000 §

le—

Productivity

o

0 00 ooy B

0.0

Architectural Effort

2

Figure 3-22 - Architecture Effort Vs. productivity (all projects)

Correlation between architecture effort and productivity: -0.227. The correlation between these
two variablesis statistically not significant. One of the reasons that could be influencing this
relation isthe fact that if the project team spends lot off effort on architecture effort then they
could have designed clean interfaces between modul es reducing the need for lot off new code
required for the modules to interact with each other. This has adirect bearing on the productivity

sinceit is measured in terms of lines of code.

3.3.4 Sensitivity Analyss:;

In our data analysis to evaluate hypothesis 6 and hypothesis 7, there are some instances where
some outlier cases were observed for number of sub-cycles, productivity and architectural effort
variables. In order to study the effect of these outlier cases on the analysis, sensitivity analysis
was performed. The corrdation analysis was performed again with the data after filtering out the
outlier case(s). Thefollowing correlation table (Table 3-4) contains the analysis without the
outlier case(s). The scatter graphs (Figure 3-23 and Figure 3-24) following the table are provided
for the variables with statistically significant correlation.

Schedule
% Original and Budget Customer
Features | Bugginess | % Schedule Perf. satisfaction
implemen (per mil Estimation perception perception Number Of | Architectura
ted LOC) Error Productivity rating rating Subcycles | Effort
% Original Correlation Coefficient 1.000 .340 -.234 -.002 .310 -.182 -.152 .390
Features Sig. (2-tailed) . 198 .365 1992 226 .486 561 122
implemented N 17 16 17 17 17 17 17 17
Bugginess (per Correlation Coefficient .340 1.000 .038 .057 1133 .000 -.175 .161
mil LOC) Sig. (2-tailed) .198 . .888 .833 622 1.000 516 551
N 16 16 16 16 16 16 16 16
% Schedule Correlation Coefficient -.234 .038 1.000 .250 -.164 -.067 -.200 .444*
Estimation Error gig. (2-tailed) .365 .888 . 275 .529 799 .385 .044
N 17 16 21 21 17 17 21 21
Productivity Correlation Coefficient -.002 .057 .250 1.000 -.478 -.033 .448* -.141
Sig. (2-tailed) .992 .833 275 . .052 .900 .041 .543
N 17 16 21 21 17 17 21 21
Schedule and Correlation Coefficient .310 133 -.164 -.478 1.000 -.105 -.071 .260
Budget Perf. Sig. (2-tailed) 226 622 529 .052 . .688 .787 .313
perception rating 17 16 17 17 17 17 17 17
Customer Correlation Coefficient -.182 .000 -.067 -.033 -.105 1.000 -.051 .154
satisfaction Sig. (2-tailed) 486 1.000 799 900 .688 . 845 554
perception rating 17 16 17 17 17 17 17 17
Number Of Correlation Coefficient -.152 -.175 -.200 .448* -.071 -.051 1.000 -.287
Subcycles Sig. (2-tailed) 561 516 .385 041 787 .845 . .206
N 17 16 21 21 17 17 21 21
Architectural Correlation Coefficient .390 161 444> -.141 .260 .154 -.287 1.000
Effort Sig. (2-tailed) 122 551 .044 543 313 .554 .206 .
N 17 16 21 21 17 17 21 21

*. Correlation is significant at the .05 level (2-tailed).

Table 3-5- Correlation Table For Separate Development Sub-Cycles—without the outliersfor
number of sub-cycles, productivity and architectural effort

51

700

600 1

500 1

400 4

300 o

200 o

1004 , ° ¢

Productivity

0 10 20 30
Number Of Sub-Cycles

Figure 3-23 - Number of sub-cyclesvs. productivity - without the outliersfor number of sub-cycles,
productivity and architectural effort

Correlation between number of sub-cycles and productivity: 0.448. The Correlation between
these two variablesis statistically significant at the 0.05 level (two-tailed). This essentially
validates our hypothesis.

80

60 1

.
5 _
= o -
LICJ 40 o R - 5
S .
@)
IS o
£ B B
L(:J" 204 "o ° o
2 o
e}
@
< o =}
[8}
%)
L 0 ;
0.0 1 2 3 4 5 6 7

Architectural Effort

Figure 3-24 - Architecture Effort Vs. % schedule estimation error - without the outliersfor number
of sub-cycles, productivity and architectural effort

52

Correlation between architecture effort and % schedule estimation error: 0.444. The Correlation
between these two variablesis statistically significant at the 0.05 level (two-tailed). This seems
to be an interesting correlation and one of the possible reasons isthat if the project team spends
too much effort in creating a detailed architecture thus creating lot off rules on how to implement
the product. By creating a detailed architecture instead of high-level architecture the product
team may have to rework the detailed architecture and the product implementation as they obtain
customer feedback. Thisin turn could further delay the product launch thusincreasing the

schedul e estimation error.

3.3.5 Observations based on the data analysisfor separ ate development sub-cycles:

Hypothesis Summary of hypothesis Observations
Number
6 Dividing the development phase into sub-cycles | The correlation between sub-

alows the team to be more flexible, deliver high | cycles and various outcome

quality product and improve the productivity. variablesis statisticaly not
significant.
7 High-level architecture specification provides The relation between
for more flexible product development measured | architectural effort and % of
in terms of feature evolution. features implemented in final
product is statistically
significant.

Table 3-6 Summary of hypotheses on the impact of separ ate development sub-cycles

* Fromthe analysis we observe that as the architecture effort isincreasing so is the % of

original features implemented in the final product. This validates our hypothesis.

53

3.4 Flexibility in Project Activities

3.4.1 Hypothesis 8:

Evolutionary development also allows great flexibility in project activities. This alows the
project team to work in uncertain environment with requirements changes, design changes and
consequently implement new features (add new code) very late in the product development cycle.

Aswe mentioned earlier, flexible projects have high feature evolution.

The process variables that are used to measure the flexibility in project activities are:

» 9% Elapsed project duration till the last major requirement changes

* 9% Elapsed project duration till the last major functiona design changes

* 9% Elapsed project duration till the last major code addition for new features (excluding

any bug fixes)

Some of the outcome variables that we will study in relation to the process variables are:

* 9% Original featuresimplemented in the final product

* Bugginess

» Productivity

3.4.2 Data analysis to evaluate flexibility in project activities

% Elapsed

Schedule % Elapsed | prjduration | % Elapsed
% Original and Budget | Customer |prjduration till last prj duration

Features | Bugginess | % Schedule Perf. satisfaction till last majorfunc till last
implemen (per mil Estimation perception | perception | majorreq spec major code

ted LOC) Error Productivity rating rating change change addtn.
% Original Features Correlation Coefficient 1.000 297 -.225 -.284 272 -.049 -.547* -.439 -.254
implemented Sig. (2-tailed) . 204 327 212 233 .834 .012 .060 .266
N 21 20 21 21 21 21 20 19 21
Bugginess (per mil Correlation Coefficient 297 1.000 -.022 -.056 222 .305 -.068 175 .157
LOC) Sig. (2-tailed) 204 . 927 .816 .348 191 .783 487 .510
N 20 20 20 20 20 20 19 18 20
% Schedule Correlation Coefficient -.225 -.022 1.000 191 -.198 -.052 127 -.038 .322
Edtimation Error Sig. (2-tailed) 327 927 361 .390 822 .553 .864 117
N 21 20 25 25 21 21 24 23 25
Productivity Correlation Coefficient -.284 -.056 191 1.000 -.385 -.135 -.086 .017 .062
Sig. (2-tailed) 212 816 .361 . .085 561 .690 .937 768
N 21 20 25 25 21 21 24 23 25
Schedule and Budget Correlation Coefficient 272 222 -.198 -.385 1.000 .032 -.162 -.040 .099
Perf. perception Sig. (2-tailed) 233 348 .390 .085 . .891 495 .872 .668
rating N 21 20 21 21 21 21 20 19 21
Customer Correlation Coefficient -.049 .305 -.052 -.135 .032 1.000 .373 113 .259
satisfaction Sig. (2-tailed) 834 191 822 561 .891 . .105 .646 .258
perception rating N 21 20 21 21 21 21 20 19 21
% Elapsed pij Correlation Coefficient -.547* -.068 127 -.086 -.162 .373 1.000 .596*" .135
duration till last major sig. (2-tailed) 012 783 553 .690 495 .105 . .003 .530
req change N 20 19 24 24 20 20 24 23 24
% Elapsed pfj Correlation Coefficient -.439 175 -.038 .017 -.040 113 .596* 1.000 317
duration till last major sjg. (2-tailed) .060 .487 .864 .937 .872 .646 .003 . 141
func spec change N 19 18 23 23 19 19 23 23 23
% Elapsed pij Correlation Coefficient -.254 157 .322 .062 .099 .259 135 .317 1.000
duration till last major sjg. (2-tailed) .266 510 117 768 .668 .258 .530 141 .
code addin. N 21 20 25 25 21 21 24 23 25

*. Correlation is significant at the .05 level (2-tailed).

**. Correlation is significant at the .01 level (2-tailed).

Table3-7- Correlation Table For Variablesto Evaluate Flexibility in Project Activities

55

110
1004 g © o

- oo
90 o ‘\‘a\\ oo m o
804 P

70 4
60 o o

50 4 o o o

40 o o

30

% Original Features implemented in Final Prd

0 20 0 60 80 100 120
% Elapsed Project duration till last major Req change

Figure 3-25 - % elapsed time from project start till last major requirements change vs. % original
featuresimplemented in the final product (all projects)

Correlation between % elapsed time from project start till last magjor req. change and % origina
features implemented in the final product: -0.547. The Correlation between these two variablesis
statistically significant at the 0.05 level (two-tailed). One of the obvious reasons for thisisthat as
the product requirements change late into the project, either due to technological reasons or

customer feedback, there will be significant feature evolution.

110
<
B 10040 o B
] o °
£ E o
L T
T 01 o o oo s
° —
9 T~
£ 804 s ~a__
s)
E a
3] -
5 704 —
E
%]
O 604 o
=]
=
©
S so4 s o
®
£
S 404 o
=
o
L B} B} B} B} B} B}

30 40 50 60 70 80) 100

% Elapsed Project duration till last Major Func Spec., change

Figure 3-26 - % elapsed time from project start till last major functional spec changevs. % original
featuresimplemented in the final product (all projects)

Correlation between % elapsed time from project start till last major functional specification
change and % original featuresimplemented in the final product: -0.439. The correlation

56

between these two variablesis statistically not significant. Just asin the requirements case, if
there are design changes late into the project that could result in changesto the original list of
features that the team started the project with. Alternately, the design could change without
significantly impacting the origina feature list and this may explain why the correlation is
statistically not significant yet the negative correlation tells that there will feature evolution as the

team changes the product design late into the project.

110

100 4 : : D - |

90 4 777777777WWVEL""""""""VVD D

80 « D """""""”mmrmwmmemwmﬂm |
704
60 o
50« D

40 4

% Original Features implemented in Final Prd

30

70 8-0 9-0 160 13.0 120

% Elapsed project duration till last major code addtn.

Figure 3-27 - % elapsed time from project start till last major code addition
vs. % original featuresimplemented in the final product (all projects)

Correlations between % elapsed time from project start till last major code addition and %
original featuresimplemented in the final product: -0.254. The correlation between these two
variablesis statistically not significant. Just asin the requirements and functional specification
cases, if there are major code additions late into the project that could result in changes to the
origina list of features that the team started the project with. Alternately, major code could be
added without significantly impacting the origina featurelist i.e., the features may not be
changing but the team may be delayed and just adding the code for the features on the original list
and this may explain why the correlation is statistically not significant yet the negative correlation
tells that there will be either feature evolution and/or reduction in the features of the product due
to schedule delays as the team adds new code late into the project.

57

100

80 1

60 4

404

20 o

Bugginess

0

0 20) 60 80 100 120
% Elapsed project duration till last major req. change

Figure 3-28 - % elapsed time from project start till last major requirements change vs. bugginess (all
proj ects)

Correlation between % elapsed time from project start till last magjor req. change and bugginess: -
0.068. The correlation between these two variablesis statistically not significant. The ability of
the product team to handle changes late into the project depends on how the team has architected
the various modules within the product. If it isaclean architecture where the changes are
localized to a single modul e then the product team may achieve good product quality (low
number of bugs) even with all the late changes in requirements on the other hand if the
architecture is not clean then all the late changes in requirements may decrease the product

quality (high number of bugs).

58

100

80 10

60 4

40 4

20 o

Bugginess

oL, o

0

a
30 40 50 60 70 80 90 100
% Elapsed project duration till last major func spec change

Figure 3-29 - % elapsed time from project start till last major functional spec change vs. bugginess
(all projects)

Correlation between % elapsed time from project start till last major functional specification
change and bugginess: 0.175. The correlation between these two variablesis statistically not
significant. The ability of the product team to handle changes | ate into the project depends on
how the team has architected the various modules within the product. If it isa clean architecture
where the functional specification changes are localized to afew modules then the product team
may achieve good product quality (low number of bugs) even with al the late changesin the
design on the other hand if the architecture is not clean then all the late changesin design will

decrease the product quality (high number of bugs).

59

100

801

60 4

40 4

20 4

Bugginess
o

70 80 20 100 110 120

% Elapsed project duration till last major code addtn

Figure 3-30 - % elapsed time from project start till last major code addition vs. bugginess (all
proj ects)

Correlations between % elapsed time from project start till last major code addition and
bugginess: 0.157. The correlation between these two variablesis statistically not significant. As
mentioned earlier the ability to handle changes depends on the product architecture. Even with
clean architecture any time the team adds or modifies code there is always an opportunity to

introduce bugs. Thisiswhat the positive correlation between these two variables, istelling us.

60

12000

100001

8000 4

6000 o

4000 4

2000 o

[S
B
B

Productivity

0 20 40 60 80 100 120
% Elapsed prj duration till last major req change

Figure 3-31 - % elapsed time from project start till last major requirements change vs. productivity
(all projects)

Correlation between % elapsed time from project start till last major req. change and productivity:
-0.086. The correlation between these two variables is statistically not significant. The two
variables have very little correlation between them. Productivity is measured as a function of
uncommented lines of code. The total lines of code devel oped can be impacted by variety of
factors when the product requirements are changing late into the project. Some of the factors
could be that the team may find an efficient algorithm to implement functionality based on the
new information, which may reduce the lines of code, required, less feature implementation due

to schedule constraints etc.

61

12000

100004

80004

6000 =

40004

2000 «

Productivity

- 7D_Egrﬂa S o = 5
30 40 50 60 70 80 90 100

% Elapsed prj duration till last major func spec change

Figure 3-32 - % elapsed time from project start till last major functional spec change vs. productivity
(all projects)

Correlation between % elapsed time from project start till last major functional specification
change and productivity: 0.017. The correlation between these two variablesis statistically not
significant. The two variables are barely correlated and the reasons for lack of correlation are
similar to the reasons for lack of correlation between % elapsed time for project start till last

major requirements change and productivity.

62

12000

100004

80004

60004

4000 %

2000 §

o

Productivity

5

0 6‘0 7-0 90 100

% Elapsed prj duration till last major code addtn

Figure 3-33 - % elapsed time from project start till last major code addition vs. productivity (all

proj ects)

Correlations between % elapsed time from project start till last major code addition and

productivity: 0.062. Correlation between these two variablesis statisticaly not significant. The

reasons for lack of correlation are the same as in the previous two cases.

3.4.3 Sensditivity Analysis:

In our data analysis to evaluate hypothesis 8, there are some instances where some outlier cases

were observed for productivity variables. In order to study the effect of these outlier cases on the

analysis, sensitivity analysis was performed. The correlation analysis was performed again with
the data after filtering out the outlier case(s). The following correlation table (Table 3-6) contains

the analysis without the outlier case(s). There are no scatter graphs following the table because

there were no correl ations between process and outcome variables, which were statistically

significant.

63

% Elapsed

Schedule % Elapsed | prjduration | % Elapsed
% Original and Budget | Customer | prj duration till last prj duration

Features | Bugginess | % Schedule Perf. satisfaction till last major func till last
implemen (per mil Estimation perception | perception | majorreq spec major code

ted LOC) Error Productivity rating rating change change addtn.
% Original Features Conelation Coefficient 1.000 275 -.250 -.255 .301 -071 -.565* -419 =272
implemented Sig. (2-tailed) . .255 288 277 197 767 .012 .083 .246
N 20 19 20 20 20 20 19 18 20
Bugginess (per mil Conelation Coefficient 275 1.000 -.032 .039 .278 .245 -.106 .192 114
LoC) Sig. (2-tailed) .255 . .898 .875 .249 311 677 .461 .642
N 19 19 19 19 19 19 18 17 19
% Schedule Estimation Comelation Coefficient -.250 -.032 1.000 226 -.190 -.060 .151 -.022 .320
Error Sig. (2-tailed) .288 .898 .287 423 .802 491 .923 128
N 20 19 24 24 20 20 23 22 24
Productivity Conelation Coefficient -.255 .039 226 1.000 -.496* -071 -.071 -.035 .095
Sig. (2-tailed) 277 .875 .287 . .026 .765 747 877 .658
N 20 19 24 24 20 20 23 22 24
Schedule and Budget ~ Comelation Coefficient .301 .278 -.190 -.496* 1.000 .072 -.156 -.046 .128
Perf. perception rating sjg. (2-tailed) 197 .249 423 .026 . 762 525 .855 .590
N 20 19 20 20 20 20 19 18 20
Customer satisfaction Corelation Coefficient -.071 .245 -.060 -.071 .072 1.000 .373 123 241
perception rating Sig. (2-tailed) 767 311 .802 765 762 . 116 .626 .306
N 20 19 20 20 20 20 19 18 20
% Elapsed pij duration Comelation Coefficient -.565* -.106 151 -071 -.156 373 1.000 .602* 141
till last major req Sig. (2-tailed) 012 677 491 747 525 116 . .003 521
change N 19 18 23 23 19 19 23 22 23
% Elapsed pij duration Comelation Coefficient -.419 192 -.022 -.035 -.046 123 .602* 1.000 .329
till last major func spec sig. (2-tailed) .083 461 923 877 .855 .626 .003 . .135
change N 18 17 22 22 18 18 22 22 22
% Elapsed pjj duration Comelation Coefficient -272 114 .320 .095 128 241 .141 .329 1.000
till last major code Sig. (2-tailed) 246 642 128 .658 590 .306 521 .135 .
addtn. N 20 19 24 24 20 20 23 22 24

*. Comelation is significant at the .05 level (2-tailed).

**. Conelation issignificant at the .01 level (2-tailed).

Table 3-8 - Correlation Table For Variablesto Evaluate Flexibility in Project Activities—
without the outlier for Productivity

3.4.4 Observations based on the data analysisfor variablesto evaluate flexibility in project

activities:
Hypothesis Summary of hypothesis Observations
Number
8 Evolutionary development allows flexibility in Therelation between

product development allowing the project team | flexibility in requirements

to make requirements, functional changes and change and % of origina
add code for new features late into the project. featuresin fina product is

statistically significant.

Table 3-9 Summary of hypothesison flexibility in project activities

e Thefirst hypothesisin thisareais validated by the analysis. From the analysis we observe
that as the % of elapsed time (for requirements change, functional design change, and
code addition) increases, the % of original features implemented in the final product is

decreasing significantly. This essentially is because more feedback is being incorporated.

3.5 Impact of Code Reuse

3.5.1 Hypothesis 9:

More code reuse results in:

* Reduced product bugginess

* Reduced feature evolution due to potential inflexibility introduced due to existing code

(I.e. code being reused)

* Reduces schedule estimation error.

The process variable that is used to track the code reuseis:

* 9% New code developed by the team

Some of the outcome variables that we will study to understand the impact of code reuse are:

* Bugginess

e 9% Of original featuresimplemented in the final product

e 9 Schedule estimation error

65

3.5.2 Data analysis to evaluate impact of code reuse

Schedule
% Original and Budget | Customer
Features | Bugginess | % Schedule Perf. satisfaction
implemen (per mil Estimation perception | perception % Code
ted LOC) Error Productivity. rating rating Reuse
% Original Correlation Coefficient 1.000 297 -225 -.284 272 -.049 .245
Features Sig. (2-tailed) . .204 .327 .212 .233 .834 .285
implemented N 21 20 21 21 21 21 21
Bugginess (per Correlation Coefficient 297 1.000 -.022 -.056 222 .305 .168
mil LOC) Sig. (2-tailed) .204 . .927 816 .348 191 .480
N 20 20 20 20 20 20 20
% Schedule Correlation Coefficient -.225 -.022 1.000 191 -.198 -.052 .034
Estimation Eror sig. (2-tailed) .327 .927 361 .390 .822 .870
N 21 20 25 25 21 21 25
Productivity Correlation Coefficient -.284 -.056 191 1.000 -.385 -.135 -.069
Sig. (2-tailed) 212 .816 .361 . .085 .561 .743
N 21 20 25 25 21 21 25
Schedule and Correlation Coefficient 272 222 -.198 -.385 1.000 .032 -.251
Budget Perf. Sig. (2-tailed) 233 .348 .390 .085 . .891 272
perception rating 21 20 21 21 21 21 21
Customer Correlation Coefficient -.049 .305 -.052 -.135 .032 1.000 .096
satisfaction Sig. (2-tailed) 834 191 822 561 891 . 678
perception rating 21 20 21 21 21 21 21
% Code Reuse Correlation Coefficient 245 .168 .034 -.069 -.251 .096 1.000
Sig. (2-tailed) .285 .480 .870 .743 .272 .678 .
N 21 20 25 25 21 21 25

Table 3-10 - Correlation Table For Code Reuse M easures

66

100

801 B
60 1
404 °

20 4 7”””””””m”””””””””” D

Bugginess
o

0 2 . .
0.0 2 a 6 8 10

% Code Reuse

Figure 3-34 - % code reuse vs. Bugginess (all projects)

Correlation between % code reuse and Bugginess: 0.168. Correlation between these two
variablesis statistically not significant. One of the reasons for the positive correlation could be
because the team members may not be completely familiar with code being reused or the
assumptions made while devel oping the previous code resulting in increased bugs reported by the
customer.

110

100 o D D |
1 o) D
80 4 . D

70 .

60 o D

50 o o D |

40 4 o

30 - - - -
0.0 2 4 .6 .8 1.0

% Original Features implemented in Final Prd

% Code Reuse

Figure 3-35- % codereusevs. % original featuresimplemented in the final product (all projects)

67

Correlation between % code reuse and % original featuresimplemented in the final product:
0.245. The correlation between these two variablesis statistically not significant. Thereisa
positive correlation between these two variables indicating that more % of original features would
be implemented as the % code reuse increases. When a project team reuses code, they essentialy
are reusing functionality that has aready been implemented and this leaves little flexibility for the

team to incorporate customer feedback without changing the code being reused.

80

60 1

404

20 o

% Schedule Estimation Error

0

00 2 4 8 8 10

% Code Reuse

Figure 3-36 - % codereusevs. % schedule estimation error (all projects)

Correlation between % code reuse and % schedule estimation error: 0.034. The correlation
between these two variablesis statistically not significant. Typically one would expect with more
% code reuse, the schedule estimation error would be less since part of the code is aready
implemented. On the flip side, as mentioned earlier, if the project team members are not familiar
with the code being reused or the assumptions made while devel oping the previous code, then the
project team may face quality issues which might impact the schedules and increase the %

schedul e estimation error.

68

Observations based on the data analysis for impact of code reuse:

Hypothesis Summary of hypothesis Observations
Number
9 More code reuse results in reduced bugginess, The correlation, between the

reduced feature evolution and reduced schedule | process and outcome variables
estimation error. being used to measure the
impact of codereuse, is

statistically not significant.

Table 3-11 Summary of hypothesis on impact of code reuse

There are no significant observations made since the data analysis did not yield any statisticaly

significant correlation between process and outcome variables.

3.6 Impact of Freguent Synchronization

3.6.1 Hypothesis 10:

“Doing daily (frequent) builds gives rapid feedback to the project team about how the product is
progressing. This makes sure that the basic functions of the evolving product are working
correctly most of thetime” (chapter 5, pages 268-269 - Microsoft Secrets, Michael Cusumano
and Richard Selby, 1998). Thisresultsin:

» Higher productivity
* Higher customer satisfaction

* Bugginess could be lower. An aternate hypothesisis that frequent synchronization will
eliminate any system integration surprises but does not necessarily mean that it reduces

bugginessin individual components.

69

3.6.2 Hypothesis 11:

“Knowing where the team is, with respect to the project, makes the overall product devel opment
process more visible and predictable” (chapter 5, page 276 — Microsoft Secrets, Michael
Cusumano and Richard Selby, 1998). Thisresultsin:

¢ Reduced schedule estimation error

The process variable that was used to measure the frequency of synchronizationiis:

» Build frequency (daily or other —weekly, biweekly, monthly etc.)

» +Some of the outcome variables that we will study to understand the impact of frequent
synchronization approach:

e Productivity

* Bugginess

* 9% Origina featuresimplemented

e 09 Schedule estimation error

70

3.6.3 Data analysis to evaluate impact of frequent synchronization

Schedule

% Original and Budget | Customer Build
Features Bugginess | % Schedule Perf. satisfaction | Frequency
implemen (per mil Estimation perception perception | (Daily - 1;
ted LOC) Error Productivity rating rating Other - 0)
% Original Features Correlation Coefficient 1.000 297 -.225 -.284 .272 -.049 -127
implemented Sig. (2-tailed) . .204 .327 212 .233 .834 .584
N 21 20 21 21 21 21 21
Bugginess (permil Correlation Coefficient 297 1.000 -.022 -.056 .222 .305 .000
LOC) Sig. (2-tailed) 204 . .927 .816 .348 191 1.000
N 20 20 20 20 20 20 20
% Schedule Correlation Coefficient -.225 -.022 1.000 191 -198 -.052 -.142
Estimation Error Sig. (2-tailed) .327 .927 .361 .390 .822 499
N 21 20 25 25 21 21 25
Productivity Correlation Coefficient -.284 -.056 191 1.000 -.385 -.135 .102
Sig. (2-tailed) 212 .816 .361 . .085 .561 .628
N 21 20 25 25 21 21 25
Schedule and Correlation Coefficient 272 222 -.198 -.385 1.000 .032 -.135
Budget Perf. Sig. (2-tailed) .233 .348 .390 .085 . .891 559
perception rating 21 20 21 21 21 21 21
Customer Correlation Coefficient -.049 .305 -.052 -.135 .032 1.000 .194
satisfaction Sig. (2-tailed) .834 191 .822 561 891 . .399
perception rating 21 20 21 21 21 21 21
Build Frequency Correlation Coefficient -127 .000 -.142 .102 -.135 .194 1.000
(Daily - 1; Other -0) sig. (2-tailed) .584 1.000 .499 .628 .559 .399 .
N 21 20 25 25 21 21 25

Table 3-12 - Correlation Table For Frequent Synchronization Measure

71

100

80 1

60 4

40 4

208 - a —

Bugginess

0
0.0 2 4 .6 .8 1.0 12

Build Frequency

Figure 3-37 - Build Frequency Vs. bugginess (all projects)

Correlations between build frequency and bugginess: 0. The correlation between these two
variablesis statistically not significant. The reason that these two variables are not correlated is
probably because bugs as reported by the customer may not be the right parameter to evaluate.
The parameter that should be used is the number of bugs found during the sub-cycles. This piece

of data has not been captured in the questionnaire and should be obtained in future research.

55

50¢

4519

4.0«

354

30¢

254

204

Customer Satisfaction Perception Rating

15 - - - - -
0.0 2 4 6 .8 1.0 12

Build Frequency

Figure 3-38 - Build Frequency Vs. customer satisfaction perception rating (all projects)

72

Correlations between build frequency and customer satisfaction perception rating: 0.194. The

correlation between these two variablesis statistically not significant. Frequent synchronization

might have provided the project team with opportunities to resolve any issues found during the

product development and synchronization process resulting in a higher customer satisfaction

perception rating.

% Schedule Estimation Error

-20

80

60 1

40;

20 4

0.

0 2

Build Frequency

l.-O 12

Figure 3-39 - Build Frequency vs. % schedule estimation error (all projects)

Correlations between build frequency and % schedule estimation error: -0.142. The correlation

between these two variablesis statistically not significant. The reason for negative correlation

between these two variables could be because frequent synchronization might have provided the

project team with opportunities to resolve any issues found during the product development and

synchronization process early enough in the project thus reducing schedul e estimation error.

73

Productivity

12000

100004

80004

6000 =

40004

2000 «

Build Frequency

Figure 3-40 - Build Frequency vs. productivity (all projects)

Correlations between build frequency and productivity: 0.102. The correlation between these two

variablesis statistically not significant. The correlation between these two variablesis positive

indicating that the frequent synchronization improves productivity. The potentia reason could be

that frequent synchronization would flush out any implementation issues or bugs immediately

when new code isintegrated into the product. This reduces the possibility of ateam member

continuing to extend the problematic area with new code, which at the end of the project might

require more time to fix reducing the time available for the team to implement new features.

74

3.6.4 Sensditivity Analysis:

In our data analysis to evaluate hypothesis 10 and hypothesis 11, there are some instances where
some outlier cases were observed for productivity variables. In order to study the effect of these
outlier cases on the analysis, sensitivity analysis was performed. The correlation analysis was
performed again with the data after filtering out the outlier case(s). The following correlation
table (Table 3-9) contains the analysis without the outlier case(s). There are no scatter graphs
following the table because there were no correl ations between process and outcome variabl es,

which were gtatistically significant.

Schedule

% Original and Budget | Customer Build
Features | Bugginess | % Schedule Perf. satisfaction | Frequency
implemen (per mil Estimation perception | perception | (Daily-1;
ted LOC) Error Productivity rating rating Other - 0)
% Original Correlation Coefficient 1.000 275 -.250 -.255 .301 -071 -.138
Features Sig. (2-tailed) . .255 .288 277 197 767 .561
implemented N 20 19 20 20 20 20 20
Bugginess (permil Correlation Coefficient 275 1.000 -.032 .039 .278 .245 -.062
LOC) Sig. (2-tailed) .255 . .898 .875 249 311 .801
N 19 19 19 19 19 19 19
% Schedule Correlation Coefficient -.250 -.032 1.000 .226 -.190 -.060 -141
Estimation Error Sig. (2-tailed) .288 .898 .287 423 .802 512
N 20 19 24 24 20 20 24
Productivity Correlation Coefficient -.255 .039 226 1.000 -.496* -071 171
Sig. (2-tailed) 277 .875 .287 . .026 .765 425
N 20 19 24 24 20 20 24
Schedule and Correlation Coefficient .301 278 -.190 -.496* 1.000 .072 -.099
Budget Perf. Sig. (2-tailed) 197 249 .423 .026 . 762 679
perception rating 20 19 20 20 20 20 20
Customer Correlation Coefficient -.071 .245 -.060 -.071 .072 1.000 171
satisfaction Sig. (2-tailed) 767 311 .802 .765 762 . 472
perception rating 20 19 20 20 20 20 20
Build Frequency Correlation Coefficient -.138 -.062 -.141 171 -.099 171 1.000
(Daily - 1; Other -0) ' sig. (2-tailed) 561 .801 512 425 679 AT2 .
N 20 19 24 24 20 20 24

*. Correlation is significant at the .05 level (2-tailed).

for productivity

75

Table 3-13 - Corrdation Table For Frequent Synchronization M easur e —without the outlier

3.6.5 Observations based on the data analysis for impact of frequent synchronization:

Hypothesis Summary of hypothesis Observations
Number
10 Doing daily (frequent) builds gives rapid The correlation, between the
feedback to the project team about how the process and outcome variables
product is progressing being used to measure the

impact of frequent builds, is

statistically not significant

11 Knowing wheretheteam is, with respect tothe | The correlation, between build
project, makes the overall product development | frequency and schedule
process more visible and predictable. estimation error, is statistically

not significant.

Table 3-14 Summary of hypotheses on impact of frequent synchronization

There are no significant observations made about the hypotheses since the data analysis did not
yield any statistically significant correlation between process and outcome variables. A possible
reason why there are no significant observations regarding frequency of synchronizationsis that
there isinsufficient variance between building daily and building weekly or monthly, as opposed
to atraditional waterfall method where projects build the whole system only in the final
integration phase.

3.7 Impact of Design and Code Reviews

3.7.1 Hypothesis 12:

“Design reviews identify any consistency problems earlier than the later testing activities that
require arunning product” (chapter 5, page 303 — Microsoft Secrets, Michael Cusumano and
Richard Selby, 1998). With the pressure of short development cycles and uncertain

environments, it isnot clear if it is better to spend more time up front doing more reviews and

design work or to devise better ways of checking for the problems | ater.

76

e Thiscould result in more feature evolution due to design changes for incorporating
changing requirements and/or market and technical feedback.

* Asdesign reviews are done to reduce consistency problems, this potentially has neutral or

positive impact on bugginess (1.e. reduce bugginess).

» Design reviews potentially could create an opportunity to introduce more delay.

3.7.2 Hypothesis 13:

Code review helpsin early detection of bugs
» Reducing the bugginess of the product

* Reducing schedule estimation error since it takes lot more time to track and fix bugs at a

late stage in the product development cycle. Alternately, reviews introduce opportunity
for more delay.

The process variables that are used to track design/code review are:

Design review done or not

Number of design reviews

Code review done or not

Number of people reviewing the code

Some of the outcome variables that were study to understand the impact of design and code

reviews are:
* 9% Of original featuresimplemented in the final product
* Bugginess

e Schedule estimation error

77

3.7.3 Data analysis to evaluate the impact of design and code reviews

Schedule
% Original and Budget | Customer Design Code Number of
Features | Bugginess | % Schedule Perf. satisfaction Review Number of Review People
implemen (per mil Estimation perception perception | (Yes-1; No Design (Yes-1; reviewing
ted LOC) Error Productivity rating rating -0) Reviews No -0) code

% Original Correlation Coefficient 1.000 297 -.225 -.284 272 -.049 -.182 -101 -.303 -.243
Features Sig. (2-tailed) . .204 .327 212 .233 .834 429 .662 .182 .288
implemented 21 20 21 21 21 21 21 21 21 21
Bugginess (per Correlation Coefficient 297 1.000 -.022 -.056 222 .305 -.499* -.358 -410 -.338
mil LOC) Sig. (2-tailed) .204 . .927 816 .348 191 .025 121 .073 144
N 20 20 20 20 20 20 20 20 20 20

% Schedule Correlation Coefficient -.225 -.022 1.000 .191 -.198 -.052 .091 .082 123 .168
Estimation Error Sig. (2-tailed) .327 927 .361 .390 .822 .666 .696 .558 421
N 21 20 25 25 21 21 25 25 25 25

Productivity Correlation Coefficient -.284 -.056 191 1.000 -.385 -135 -.242 -.144 -.123 -.167
Sig. (2-tailed) .212 .816 .361 . .085 .561 244 494 .558 .426

N 21 20 25 25 21 21 25 25 25 25

Schedule and Correlation Coefficient .272 222 -.198 -.385 1.000 .032 .249 .362 -.184 -.118
BudgetPerf. sig. (2-tailed) 233 .348 .390 .085 . 891 276 107 425 610
perception rating 21 20 21 21 21 21 21 21 21 21
Customer Correlation Coefficient -.049 .305 -.052 -.135 .032 1.000 .100 -.023 -.027 .005
satisfaction sig. (2-tailed) 834 191 .822 561 891 . 667 1920 .908 983
perception rating 21 20 21 21 21 21 21 21 21 21
Design Review Correlation Coefficient -182 -.499*% .091 -.242 .249 .100 1.000 .666™ .053 .130
(Yes-1;No-0) sig. (2-tailed) .429 .025 .666 244 276 667 . .000 .802 .535
N 21 20 25 25 21 21 25 25 25 25

Number of Correlation Coefficient -.101 -.358 .082 -.144 .362 -.023 .666*1 1.000 -070 -.064
Design Reviews sig. (2-tailed) .662 121 .696 494 107 920 .000 . .738 761
N 21 20 25 25 21 21 25 25 25 25
Code Review Correlation Coefficient -.303 -.410 123 -.123 -.184 -.027 .053 -.070 1.000 .925*
(Yes-1;No-0) sjg. (2-tailed) .182 .073 .558 558 425 .908 .802 .738 . .000
N 21 20 25 25 21 21 25 25 25 25

Number of Correlation Coefficient -.243 -.338 .168 -.167 -.118 .005 .130 -.064 .925* 1.000
People reviewing - sig. (2-tailed) .288 144 421 426 610 .983 535 761 .000 .
code N 21 20 25 25 21 21 25 25 25 25

*. Correlation is significant at the .05 level (2-tailed).

**. Correlation issignificant at the .01 level (2-tailed).

Table 3-15 - Correlation Table For Design and Code Review Measure

78

110
B
& 100 & o
[il
£ o
i
< 90 4
° _—
Q -—
£ 804 —
Q
E a
]
5 704
E
0
L 604
=]
=2
©
L s04
©
£
D 4014
=
(e}
X 30 _ _ _ _ _
0.0 2 4 .6 .8 1.0 12

Design Review

Figure 3-41- Design Review doneor not vs. % Original Featuresimplemented in final product (all
proj ects)

Correlation between Design review done(1) or not (0) and % original featuresimplemented in
final product: -0.182. The correlation between these two variables is statistically not significant.
The negative correlation could be because design review might provide technical feedback to the

team, which may result in changing some of the features from the original list.

100

80 ¢

60 4

40 4

20 o

Bugginess

0
0.0 2 4 .6 .8 1.0 12

Design Review

Figure 3-42 - Design Review done or not Vs. Bugginess (all projects)

Correlation between Design review and Bugginess: -0.499. The Correlation between these two
variablesis statistically significant at the 0.01 level (two-tailed). This validates our hypothesis

79

and the reason for this negative correlation is because design reviews will provide technical
(engineering) feedback to the team and prevent potential situations, well into the project, where
the project team discovers the engineering issues and has to change their implementation possibly

leading to more bugs.

80

60 4

404 g

20 4 a
o

% Schedule Estimation Error

-20
0.0 2 4 .6 .8 1.0 12

Design Review

Figure 3-43 - Design review vs. % schedule estimation error (all projects)

Correlation between Design review and % schedule estimation error: 0.091. The correlation
between these two variables is statistically not significant. The correlation is practically non-
existent between these two variables. There could be other factors affecting the schedule, for

example severa of our cases have hardware dependencies.

80

100

80 4 o

60 4

40 4

20 4

0
0.0 2 4 .6 .8 1.0 12

Bugginess

Code Review

Figure 3-44 - Code Review done or not vs. Bugginess (all projects)

Correlation between Code review and Bugginess: -0.410. The correlation between these two
variablesis statistically not significant. The reason for this negative correlation is because code
reviews will provide technical (engineering) feedback to the team (ex: potential logical errorsin
an algorithm or possible constraints with a particular implementation and prevent potential
situations, well into the project, where the project team discovers the engineering issues and has

to change their implementation possibly leading to more bugs.

81

80

60 1

404

20 &

% Schedule Estimation Error

0

00 2 4 k3 8 10

Code Review

12

Figure 3-45 - Code Review done or not vs. % schedule estimation error (all projects)

Corrdation between Code review and % schedul e estimation error: 0.123. The correlation

between these two variablesis statistically not significant. Depending on when the code reviews

are done and what types of issues are found i.e., if the code reviews find incorrect

implementations that require rework then it impacts the project schedule, increasing schedule

estimation error.

3.7.4 Observations based on the data analysisfor impact of Design and Code review:

Hypothesis Summary of hypothesis Observations
Number
12 Design reviews identify any consistency The correlation between
problems earlier than the later testing activities | design review and bugginess
that require arunning product is statistically significant.
13 Code review helpsin early detection of bugs. The correlation between code

review and bugginessis
statistically not significant.

Table 3-16 Summary of hypotheses on impact of design and code review

82

» Analysis shows that having design reviews reduces the bugginess of the product

validating our hypothesis.

3.8 Impact of simple compile and link test vs. regression testing

3.8.1 Hypothesis 14:

“PRINCIPLE: Continuously test the product as you build it”. Too many software producers
emphasi ze product testing primarily at the end of the devel opment cycle, when fixing bugs can be
extraordinary difficult and time-consuming (chapter 5, pages 294-295 — Microsoft Secrets,
Michael Cusumano and Richard Selby, 1998). Running regression tests, each time developers

check changed or new code into the project build, improves product quality.

The process variable that was used to track the regression testing is:

* Regression test done or ssimple compile and link test done.

The outcome variable that we will study to understand the impact of regression testing is:

* Bugginess

83

3.8.2 Data analyses to evaluate Impact of smple compile and link test vs. regression testing

Schedule

% Original and Budget | Customer Regress

Features | Bugginess | % Schedule Perf. satisfaction | on Test

implemen (per mil Estimation perception perception (Yes-1;

ted LOC) Error Productivity rating rating No - 0)

% Original Conmelation Coefficient 1.000 297 -.225 -.284 272 -.049 -.152
Features Sig. (2-tailed) . 204 327 212 1233 834 511
implemented N 21 20 21 21 21 21 21
Bugginess (per Cormelation Coefficient .297 1.000 -.022 -.056 222 .305 -.531*
mil LOC) Sig. (2-tailed) .204 . 927 .816 .348 191 .016
N 20 20 20 20 20 20 20

% Schedule Conelation Coefficient -.225 -.022 1.000 191 -.198 -.052 -.066
Egtimation Error sig, (2-tailed) .327 .927 . .361 .390 .822 756
N 21 20 25 25 21 21 25

Productivity Cormelation Coefficient -.284 -.056 1091 1.000 -.385 -.135 -.107
Sig. (2-tailed) 212 .816 .361 . .085 .561 611
N 21 20 25 25 21 21 25

Schedule and Conelation Coefficient 272 222 -.198 -.385 1.000 .032 -.253
Budget Perf. Sig. (2-tailed) 233 .348 .390 .085 . .891 .269
perception rating 21 20 21 21 21 21 21
Customer Corelation Coefficient -.049 .305 -.052 -.135 .032 1.000 .157
satisfaction Sig. (2-tailed) 834 191 822 561 .891 . .497
perception rating 21 20 21 21 21 21 21
Regresson Test Cormelation Coefficient -.152 -531* -.066 -.107 -.253 157 1.000
(Yes-1; No - 0) Sig. (2-tailed) 511 016 756 611 .269 497 .
N 21 20 25 25 21 21 25

*. Conelation is significant at the .05 level (2-tailed).

Table 3-17- Correlation Table For Regression Test Measure

100

80 ¢

60 4

20—

20 4

Bugginess

0

0.0 2 4 6 8

Regression Test

1.0 12

Figure 3-46 - Running Regression Test or not Vs. Bugginess (all projects)

Correlation between Running Regression Test (1) or not (0) and Bugginess: -0.531. The
Correlation between these two variables is statistically significant at the 0.05 level (two-tailed)

3.8.3 Observations based on the data analysisfor impact of simple compile and link test vs.

r egr ession testing:

Hypothesis Summary of hypothesis Observations
Number
14 Running regression tests, each time developers | The correlation between

check changed or new code into the project

build, improves product quality.

regression tests and bugginess

is statistically significant.

Table 3-18 Summary of hypothesis on impact of smple compileand link test vs. regression

testing

» Analysisvalidates our hypothesis that projects running regression test reduces the

bugginess of the product. Aswe seefrom the analysis, for projects running regression

test the number of bugs reported by customers is dropping.

85

3.9 Relative emphasis of developer stesting vs. QA staff testing code

3.9.1 Hypothesis 15:

Knowledge of the code and product features help in testing the product. When developers, with
intimate knowledge of the code and features, spend more time testing their code, the product

bugginess decreases but the productivity also decreases.

3.9.2 Hypothesis 16:

Astesting effort increases, the bugginess of the product decreases.

The process variables that are used to track the time spent by developers and QA staff testing the
code are:

* 9% Of total testing time devel opers tested their own code

» 9% Of total testing time separate QA staff tested code.

» Testing effort

Some of the outcome variables that were used to understand the impact of time spent by

developers and QA testing code are:

* Bugginess

e Productivity

86

3.9.3 Data analysisfor Relative emphasis of developer stesting vs. QA staff testing code

% of total
Schedule testing
% Original and Budget | Customer | time dev. % of total
Features | Bugginess | % Schedule Perf. satisfaction tested testing time
implemen (per mil Estimation perception | perception | their own QA tested Testing
ted LOC) Error Productivity rating rating code code Effort

% Original Correlation Coefficient 1.000 297 -.225 -.284 272 -.049 -.044 .107 291
Features Sig. (2-tailed) . 204 327 212 233 834 .850 .645 .200
implemented N 21 20 21 21 21 21 21 21 21
Bugginess (per Correlation Coefficient 297 1.000 -.022 -.056 222 .305 -.462* .375 -.029
mil LOC) Sig. (2-tailed) .204 . 927 816 .348 191 .040 .103 .904

N 20 20 20 20 20 20 20 20 20
% Schedule Correlation Coefficient -.225 -.022 1.000 191 -.198 -.052 -.012 -.053 .072
Estimation Error gjg. (2-tailed) 327 927 361 .390 822 .955 .801 733

N 21 20 25 25 21 21 25 25 25
Productivity Correlation Coefficient -.284 -.056 191 1.000 -.385 -.135 -.134 .105 114

Sig. (2-tailed) 212 .816 .361 . .085 561 525 .616 .587

N 21 20 25 25 21 21 25 25 25
Schedule and Correlation Coefficient 272 222 -.198 -.385 1.000 .032 -.088 141 -.049
Budget Perf. - Sig. (2-tailed) 233 348 390 085 . 891 704 543 834
perception rating 21 20 21 21 21 21 21 21 21
Customer Correlation Coefficient -.049 .305 -.052 -.135 .032 1.000 -116 .040 -.433*
satistaction Sig. (2-tailed) 834 191 822 561 891 . .615 .864 .050
perception rating 21 20 21 21 21 21 21 21 21
% of total teting Correlation Coefficient -.044 -.462* -.012 -.134 -.088 -.116 1.000 -.961* -.328
time dev. tested Sig. (2-tailed) .850 .040 .955 525 704 615 . .000 .109
theirown code 21 20 25 25 21 21 25 25 25
% of total testing Correlation Coefficient .107 .375 -.053 .105 141 .040 -.961* 1.000 .299
time QA tested Sig. (2-tailed) .645 .103 .801 .616 .543 .864 .000 . .147
code N 21 20 25 25 21 21 25 25 25
Testing Effort Correlation Coefficient 291 -.029 .072 114 -.049 -.433* -.328 .299 1.000

Sig. (2-tailed) .200 .904 .733 .587 .834 .050 .109 147 .

N 21 20 25 25 21 21 25 25 25

*. Correlation is significant at the .05 level (2-tailed).

**. Correlation is significant at the .01 level (2-tailed).

Table 3-19- Correlation Table For Developersand QA testing Code

87

Bugginess

100

801

60 4

40 4

20 4

0

o
0 20 40 60 80 100

% total testing time developers tested their own code

120

Figure 3-47 - % of total testing time developer stested their own code vs. bugginess (all projects)

Correlation between % of total testing time devel opers tested their own code and bugginess: -
0.462. The Correlation between the two variablesis statistically significant at the 0.05 level (two-

tailed). The reasoning for thisis explained in hypothesis 15.

Productivity

12000

100001

8000 4

6000 4

4000 4

2000 o

o
T

0 20 40 6-0 80 100

% of total testing time developers tested their own code

120

Figure 3-48 - % of total testing time developer stested their own code vs. productivity (all projects)

Correlation between % of total testing time devel opers tested their own code and productivity:
-0.134. The correlation between these two variables is statistically not significant. The

correlation between these two variablesis negative implying that asthe % of total testing time
developers tested their own code increased, the productivity decreased. The correlation between

88

these two variablesis not significant even after the outlier productivity case was filtered out. One
reason could be because the productivity is afunction of lines of code and there are many other

factors that might impact the lines of code written for a product.

100

80 ¢

60 4

40

20 o

Bugginess
o

Testing Effort

Figure 3-49 - Testing effort vs. bugginess (all projects)

Correlation between testing effort and bugginess: -0.029. The correlation between these two

variablesis statistically not significant. Even though the correlation is negative, it isvery small.

55

504 o
o
£
=]
9] o
& 4.5
c
S
g 40¢_ mmo
©
o
o
d 359
c
k)
B 3.04 o o o o
et
Rl
=
& 254
—
£
S 2014
1]
!
O 15

0.0 1 2 3 4 5 6

Testing Effort

Figure 3-50 - Testing effort vs. customer satisfaction perception rating (all projects)

Correlation between testing effort and customer satisfaction perception rating: -0.433. The
Correlation between these two variables is statistically significant at the 0.05 level (two-tailed).

89

This correlation is not significant when the outlier for productivity is removed as seen from table
3-13.

3.9.4 Sensitivity Analyss:;

In our data analysis to evaluate hypothesis 15 and hypothesis 16, there are some instances where
some outlier cases were observed for productivity variables. In order to study the effect of these
outlier cases on the analysis, sensitivity analysis was performed. The correlation analysis was
performed again with the data after filtering out the outlier case(s). The following correlation
table (Table 3-13) contains the analysis without the outlier case(s). There are no scatter graphs
following the table because there are no correl ations between process and outcome variables,

which were statistically significant.

% of total
Schedule testing
% Original and Budget | Customer | time dev. % of total
Features | Bugginess | % Schedule Perf. satisfaction tested tegting time
implemen (per mil Estimation perception perception | their own QA tested Testing
ted LOC) Error Productivity rating rating code code Effort
% Original Features Correlation Coefficient 1.000 275 -.250 -.255 .301 -071 -.027 .086 .348
implemented Sig. (2-tailed) . .255 .288 277 197 767 912 718 .133
N 20 19 20 20 20 20 20 20 20
Bugginess (permil Correlation Coefficient 275 1.000 -.032 .039 .278 .245 -.456* .380 .071
LoC) Sig. (2-tailed) .255 . .898 875 .249 311 .050 .108 774
N 19 19 19 19 19 19 19 19 19
% Schedule Correlation Coefficient -.250 -.032 1.000 .226 -.190 -.060 .006 -.067 .083
Estimation Error Sig. (2-tailed) .288 .898 . .287 423 .802 .978 754 701
N 20 19 24 24 20 20 24 24 24
Productivity Correlation Coefficient -.255 .039 226 1.000 -.496* -.071 -.168 .130 .011
Sig. (2-tailed) 277 .875 .287 . .026 .765 432 .544 .960
N 20 19 24 24 20 20 24 24 24
Schedule and Correlation Coefficient .301 .278 -.190 -.496* 1.000 .072 -.097 .140 -.108
Budget Perf. Sig. (2-tailed) 197 249 423 026 . 762 683 556 .649
perception rating 20 19 20 20 20 20 20 20 20
Customer Correlation Coefficient -.071 .245 -.060 -071 .072 1.000 -.106 .038 -.409
satisfaction Sig. (2-tailed) 767 311 802 765 762 . .658 .875 .073
perception rating 20 19 20 20 20 20 20 20 20
% of total testing Correlation Coefficient -.027 -.456* .006 -.168 -.097 -.106 1.000 -.965* -.387
time dev. tested Sig. (2-tailed) 912 .050 978 432 .683 .658 . .000 .061
their own code N 20 19 24 24 20 20 24 24 24
% of total testing Correlation Coefficient .086 .380 -.067 .130 .140 .038 -.965*4 1.000 .346
time QA tested code sig. (2-ailed) 718 .108 754 544 556 875 .000 . .098
N 20 19 24 24 20 20 24 24 24
Testing Effort Correlation Coefficient .348 .071 .083 .011 -.108 -.409 -.387 .346 1.000
Sig. (2-tailed) .133 774 .701 .960 .649 .073 .061 .098 .
N 20 19 24 24 20 20 24 24 24

*. Correlation is significant at the .05 level (2-tailed).
**. Correlation is significant at the .01 level (2-tailed).

Table 3-20 - Correlation Table For Developers and QA testing Code M easure—without the
outlier for productivity

90

3.9.5 Observations based on analysis of developers and QA testing code:

Hypothesis Summary of hypothesis Observations
Number
15 When devel opers, with intimate knowledge of The correlation between % of

the code and features, spend more time testing
their code, the product bugginess decreases but

the productivity also decreases.

total testing time developers
tested their own code and
bugginessis statistically

significant.

The correlation between % of
total testing time developers
tested their own code and
productivity is statistically not

significant.

16

Astesting effort increases, the bugginess of the

product decreases.

The correlation between
testing effort and bugginessis
statistically not significant.

Table 3-21 Summary of hypotheses on impact of developersand QA staff testing code

» Analysisvalidates our hypothesis that when devel opers spend more time testing their

own code then the product bugginess is decreased but affects the productivity.

91

3.10 Relative emphasis of component testing vs. integr ation testing vs. system testing

3.10.1 Hypothesis 17:

More emphasis on component testing (% of total testing time spent in component testing) reduces
product bugginess (but does not necessarily mean there would be no issues with system

integration).

3.10.2 Hypothesis 18:

More emphasis on integration testing (% of total testing time spent in integrating testing) reduces
product bugginess and reduces schedule estimation error due to less integration issues at the end
of the product development cycle. Alternately, if the team is spending increased amount of time
in integrating testing, it could be because the team may be facing integration issues thus affecting

the project schedule and increasing the schedule estimation error.

3.10.3 Hypothesis 19:

More emphasis on system testing may find and help resolve bugs that would not be apparent in

component testing leading to improved customer satisfaction.

The process variables that are used to track the emphasis of testing are:

* 9% Of total testing time spent in component testing

» 9% Of total testing time spent in integration testing

* 9% Of total testing time spent testing the compl ete system.

Some of the outcome variables that we will study to understand the impact of different emphasis

of testing are:

* Bugginess

e Schedule estimation error

* Customer satisfaction perception rating

92

3.10.4 Data analysisfor relative emphasis of component testing vs. integr ation testing vs.

system testing

% of total | % of total

Schedule % of total testing testing

% Original and Budget | Customer | testing time | time spent time

Features | Bugginess | % Schedule Perf. satisfaction spent on spent on

implemen (per mil Estimation perception perception testing integration system

ted LOC) Error Productivity rating rating components testing testing
% Original Features Comelation Coefficient 1.000 .297 -.225 -.284 272 -.049 .011 -211 .220
implemented Sig. (2-tailed) . .204 .327 212 .233 .834 .964 .358 .337
N 21 20 21 21 21 21 21 21 21
Bugginess (per mil Conelation Coefficient 297 1.000 -.022 -.056 222 .305 -.381 -.230 428
LOC) Sig. (2-tailed) 204 . .927 .816 .348 191 .098 .329 .060
N 20 20 20 20 20 20 20 20 20
% Schedule Corelation Coefficient -.225 -.022 1.000 .191 -.198 -.052 -.082 .414* -.200
Estimation Error Sig. (2-tailed) .327 927 .361 .390 .822 .696 .040 .338
N 21 20 25 25 21 21 25 25 25
Productivity Conelation Coefficient -.284 -.056 .191 1.000 -.385 -.135 -.155 179 .003
Sig. (2-tailed) 212 .816 .361 . .085 .561 .459 .392 .987
N 21 20 25 25 21 21 25 25 25
Schedule and Conelation Coefficient 272 222 -.198 -.385 1.000 .032 -.286 .016 .338
Budget Perf. Sig. (2-tailed) 233 348 390 .085 . 891 .209 .945 134
perception rating 21 20 21 21 21 21 21 21 21
Customer Corelation Coefficient -.049 .305 -.052 -.135 .032 1.000 -131 -.253 222
satisfaction Sig. (2-tailed) 834 191 822 561 .891 . 572 .268 .333
perception rating 21 20 21 21 21 21 21 21 21

% of total testing Conelation Coefficient .011 -.381 -.082 -.155 -.286 -131 1.000 -.206 -.810*4

time spent testing Sig. (2-tailed) 964 .098 696 459 209 572 . 322 .000
components N 21 20 25 25 21 21 25 25 25
% of total testing Conelation Coefficient -211 -.230 414 179 .016 -.253 -.206 1.000 -.279
Fime Sp?m on Sig. (2-tailed) .358 .329 .040 .392 .945 .268 .322 . 177
integrationtesting 21 20 25 25 21 21 25 25 25
% of total testing Conelation Coefficient .220 428 -.200 .003 .338 222 -.810* -.279 1.000
time 339”1_0” Sig. (2-tailed) .337 .060 .338 .987 134 .333 .000 177 .
ystem testing N 21 20 25 25 21 21 25 25 25

*. Corelation is significant at the .05 level (2-tailed).

**. Comelation issignificant at the .01 level (2-tailed).

Table 3-22 - Correlation Table For Emphasis of Testing

93

Bugginess

100

80 4 o

60 4

40 §

20 4 .

oo

0 o

0 20 40 60

% of total testing time spent testing components

80

100

Figure 3-51 - % of total testing time spent in component testing vs. Bugginess (all projects)

Correlation between % of total testing time spent in component testing and Bugginess: -0.381.

The correlation between these two variables is statistically not significant. The negative

correlation impliesthat if the team spends more % of total testing time in component testing, the

bugginess of the product decreases which seemsto be logical since the team would be spending

considerable time testing each component.

Bugginess

100

80 ¢

60 o

404

20 4

0 10 20 30 40 50

% of total testing time spent on integration testing

60

70

Figure 3-52 - % of total testing time spent in integration testing vs. bugginess (all projects)

94

Correlation between % of total testing time spent in integration testing and bugginess: -0.230.
The correlation between these two variables is statistically not significant.

% Schedule Estimation Error

80

60 1

40 o —

20 &

0

0 1-0 20 3-0 4-0 5‘0 6‘0

% of total testing time spent on integration testing

70

Figure 3-53 - % of total testing time spent in integration testing Vs. Schedule Estimation Error (all

proj ects)

Correlation between % of total testing time spent in integration testing and Schedule Estimation
Error: 0.414. The Correlation between these two variablesis statistically significant at the 0.05

level (two-tailed). The reason for the positive correlation between these two variables could be

because the team if the team spends more time in integrating testing could be due to integrating

issues being encountered by the team. The above scenario would impact the project schedule,

increasing schedule estimation error.

Bugginess

100
801
60 4
40 4

0

il
0 20 40 60 80 100

% of total testing time spent on system testing

120

Figure 3-54 - % of total testing time spent in system testing Vs. Bugginess (all projects)

95

Correlation between % of total testing time spent in system testing and Bugginess: 0.428. The
correlation between these two variablesis statistically not significant. The corrdation isavery
interesting one because as the % of total testing spendsin system testing increases the bugginess
isasoincreasing. One would think that the bugginess would go down. The question to consider,
to better understand this relation, is whether the team is spending lesstime in other testing areas
like component testing and integration testing when they spend more time, as % of total testing
time, system testing. If that is the case then one possible explanation for this positive correlation

isthat the bugsin components may not have been completely identified and resolved.

55

5014

4519

404 oo o

354

304 o oo o o

254

204

Customer Satisfaction Perception Rating

15

0 20 pr) 60 80 100 120
% of total testing time spent on system testing

Figure 3-55 - % of total testing time spent in system testing Vs. Customer satisfaction per ception
rating (all projects)

Correlation between % of total testing time spent in system testing and customer satisfaction
perception rating: 0.222. The correlation between these two variables is statistically not
significant. The interesting part about this correlation is that when viewed with the previous case
(figure 3-54), it is puzzling in the sense that a system with increased bugginess seemsto have
high customer satisfaction perception rating. The only explanation that seems to be reasonableis
that the features implemented meet the customer needs and the positive user experience because

of this may be shadowing the inconvenience caused by the bugs.

96

3.10.5 Obser vations based on analysis of Relative Emphasis of Testing:

Hypothesis Summary of hypothesis Observations
Number

17 More emphasis on component testing (% of total | The correlation between % of
testing time spent in component testing) reduces | total testing time spentin
product bugginess. component testing and

bugginessis statistically not
significant.

18 More emphasis on integration testing (% of total | The correlation between % of
testing time spent in integrating testing) reduces | total testing time spentin
product bugginess and reduces schedule integrating testing and
estimation error dueto lessintegration issuesat | bugginessis statistically not
the end of the product development cycle significant.

The correlation between % of
total testing time spent in
integrating testing and
schedule estimation error is
statistically significant.

19 More emphasis on system testing may find and | The correlation between % of

help resolve bugs that would not be apparent in
component testing leading to improved customer
satisfaction.

total testing time spent in
system testing and bugginess
is statistically not significant.

Table 3-23 Summary of hypotheses on impact of relative emphasis of testing

» For integration testing, analysis shows that the % schedul e estimation error isincreasing

with increase in relative emphasis on integration testing. This validates our alternate

hypothesis.

97

3.11 Impact of Final Stabilization Phase

3.11.1 Hypothesis 20:

If the project team has enough time for final product stabilization phase then they have completed

the project on time. Thisresultsin:

* Lower schedule estimation error

3.11.2 Hypothesis 21:

The project team may decide to spend time on final product stabilization versus making late
design changes that incorporate market and technical feedback. This may result in increased % of
original features implemented in the final product. Alternately, if the project teamis
incorporating market and technical feedback then the project team will have less time for final
product stabilization phase

98

3.11.3 Data analysisfor Impact of Final Stabilization Phase

% final
Schedule % Prj % final product

% Original and Budget | Customer Duration product functionalit % final

Features | Bugginess | % Schedule Perf. satisfaction spentin |functionality | yin first product
implemen (per mil Estimation perception perception | stabilizati in first system functionality
ted LOC) Error Productivity rating rating on phase prototype | integration | in first beta
% Original Features Correlation Coefficient 1.000 .236 -.247 -.253 227 -.071 .360 244 .330 .680*
implemented Sig. (2-tailed) . .303 268 255 311 753 .100 .286 144 .001
N 22 21 22 22 22 22 22 21 21 21
Bugginess (per mil Correlation Coefficient .236 1.000 .064 -.160 .323 .348 -.285 575* .151 .183
Loc) Sig. (2-tailed) .303 . 781 489 154 122 210 .008 525 .441
N 21 21 21 21 21 21 21 20 20 20
% Schedule Correlation Coefficient -.247 .064 1.000 114 -111 -.006 -.437* -.037 .063 -.498*
Estimation Error Sig. (2-tailed) .268 .781 578 .623 978 .026 .864 .769 .011
N 22 21 26 26 22 22 26 24 24 25
Productivity Correlation Coefficient -.253 -.160 114 1.000 -.450*% -.178 -.042 -212 -.098 -.138
Sig. (2-tailed) .255 .489 578 . .035 429 .839 321 .648 .510
N 22 21 26 26 22 22 26 24 24 25
Schedule and Budget Correlation Coefficient 227 .323 -111 -.450% 1.000 .096 .051 142 .154 276
Perf. perception rating sjg. (2-tailed) 311 .154 .623 .035 . .670 .822 .540 .506 226
N 22 21 22 22 22 22 22 21 21 21
Customer satisfaction ~ Correlation Coefficient -071 .348 -.006 -.178 .096 1.000 -.458* .260 -.500* -.247
perception rating Sig. (2-tailed) .753 122 .978 429 .670 . .032 .256 .021 .280
N 22 21 22 22 22 22 22 21 21 21
% Prj Duration spent Correlation Coefficient .360 -.285 -437% -.042 .051 -.458* 1.000 .054 .383 .540*
in stabilization phase sjg. (2-tailed) .100 210 026 839 822 032 . .802 .064 .005
N 22 21 26 26 22 22 26 24 24 25
%final product Correlation Coefficient 244 575% -.037 -212 142 .260 .054 1.000 .466* AT2*
functionality infirst sig. (2-tailed) .286 .008 864 321 .540 .256 .802 . 022 .020
prototype N 21 20 24 24 21 21 24 24 24 24
% final product Correlation Coefficient .330 151 .063 -.098 154 -.500% .383 466 1.000 449*%
functionality infirst sig. (2-tailed) 144 525 769 .648 .506 021 .064 .022 . .028
system integration 21 20 24 24 21 21 24 24 24 24
% final product Correlation Coefficient .680* .183 -.498* -.138 276 -.247 .540% 4T72% .449*% 1.000
functionality infirst sig. (2-tailed) .001 441 011 510 .226 .280 .005 .020 .028 .
beta N 21 20 25 25 21 21 25 24 24 25

**. Correlation issignificant at the .01 level (2-tailed).
*. Correlation issignificant at the .05 level (2-tailed).

Table 3-24- Correlation Table For Final Product Stabilization Phase

99

80

60 14

404

20 4 o o

o

% Schedule Estimation Error
o

0

0 10 20 30 40
% Project duration spent in final product stabilization phase

Figure 3-56- % project duration spent in stabilization phase vs. % schedule estimation error (all
proj ects)

Correlation between % project duration spent in stabilization phase and % schedul e estimation
error: -0.437. The Correlation between these two variables is statistically significant at the 0.05
level (two-tailed). Thisvalidates our hypothesis. The reason for the project team to have an
increased % project duration spent in final product stabilization phase could be because the team
would have completed implementation of all the features. Thiswould lead to on time delivery of

the product thus reducing schedul e estimation error.

110
100 + 5)] |
* o ooao o

80 ',, D

70 4
60 ¢
50 & - .

40 o

% Original Features implemented in Final Prd

30

0 10 20 30 40
% Project duration spent in final product stabilization phase

Figure 3-57 - % project duration spent in stabilization phase vs. % Original featuresimplemented in
final product (all projects)

100

Correlation between % project duration spent in stabilization phase and % Original features
implemented in final product: 0.360. The correlation between these two variablesis satitically
not significant. The reason for the correlation is the same as in the previous case.

40

301

20 4

104 5”””””

% Project duration spent in stabilization phase
o
o

0

0 20 40 60 80 100
% Final product functionality in first prototype

Figure 3-58 - % project duration spent in stabilization phase vs. % final product functionality in first
prototype

Correlation between % project duration spent in stabilization phase and % Final product
functionality in first prototype: 0.054. The correlation between these two variablesis statistically

not significant and there seems to be very little correlation.

40

301

204

104 N

% Prj duration spent in final prd stabilization phase
\
\
\

0 //////
0 20 40 60 80 100 120

% Final product functionality in first system Integration

Figure 3-59 - % project duration spent in stabilization phase vs. % final product functionality in first
system integration

101

Correlation between % project duration spent in stabilization phase and % final product
functionality in first system integration: 0.383. Even though the correlation is statistically not
significant but the correlation is stronger than the correlation at the first prototype.

40

301 2

20 4 ,/'

10 o -

% Prj duration spent in final Prd stabilization phase
o
\

70 80 920 160 110

% Final product functionality in first beta

Figure 3-60 - % project duration spent in stabilization phase vs. % final product functionality in first
beta (all projects)

Correlation between % project duration spent in stabilization phase and % final product
functionality in first beta: 0.540. The Correlation between these two variablesis statistically
significant at the 0.01 level (two-tailed). Compared to the previous two cases, the correlation is
stronger and also significant. Based on this observation it appears that the project team should
implement the functionality of the product at a steady rate between the three major milestones.

102

3.11.4 Obser vations based on analysis of Final product stabilization phase variables:

Hypothesis Summary of hypothesis Observations
Number
20 If the project team has enough time for final The correlation between %
product stabilization phase then they have project duration spent in
completed the project ontime. Thisresultsin stabilization phase and %
lower schedule estimation error. schedule estimation error is
statistically significant.
21 The project team may decide to spend time on The correlation between %

final product stabilization versus making late
design changes that incorporate market and
technical feedback. Thismay result in increased
% of original featuresimplemented in the final
product.

project duration spent in
stabilization phase and % fina
product functionality in first
betais statistically significant.

Table 3-25 Summary of hypotheses on impact of final product stabilization phase

* Analysisshowsthat an increase in the duration for fina product stabilization phaseis

decreasing the % schedule estimation error. This validates our hypothesis.

e Our second hypothesisis aso validated which states that as the % of origina features

implemented in the final product increases, so isthe duration for final product

stabilization phase.

103

Chapter 4: Conclusions

4.1 Current state of project practices:

This research has analyzed software projects at Hewlett Packard and Agilent. The current
software product development practices at these firms are very diverse. Some of the projects use
sequential (waterfall) approach while some others are leaning towards iterative (evolutionary)

approach. Based on the data analysis hereisa summary of current state of project practices:

* One of the observations based on the data analysis was that about 50% of the projects did

not have project requirements available at the design start time.

» On average the projects were reusing about 60% of code from various sources including

previous versions of the products. Thisis asignificant amount of code reuse.

* On average the proportion of resources (development + testing) allocated to full time QA
was 25%. This does not include the testing undertaken by the devel opers.

* About 92% of the projects had some sort of prototype. On average thefirst prototypes
had about 37% of final product functionaity implemented. The range of final product
functionality implemented at the first prototypeis 0 to 90%. These prototypes were
completed 33% of the way through the product devel opment cycle and thisranged from 4
to 83%.

* Onaverage at the time of first system integration of the system the team had
implemented about 63% of final product functionality. The range of the final product
functionality implemented at the first system integration is 15 to 100%. The first system
integration, on average, occurred 58% of the way through the product development cycle
and thisranged from 25 to 93%.

* About 73% of the projects had abetarelease. On average the first beta had about 92% of
final product functionality implemented. The range of fina product functionality
implemented at the first betais 80 to 100%. Thefirst beta was released about 78% of the
way through the product development cycle and this ranged from 30 to 100%.

104

In the area of daily builds, 11 projects built daily while the other 15 ranged from weekly
to monthly.

4.2 Practicesfor flexible product development:

There are some commonly used product development approaches in practice, such as sequential

(waterfall) approach, iterative (evolutionary) approach, iterative approach combined with synch-

and-stabilize approach. Based on the data analysis, some of the important factors that influence a

flexible product development strategy are:

With increased competition and constantly changing technological landscape, thereis
increased burden on the project teamsto deliver a product that meets the customer needs
in thefirst try itself. To achieve thisthe project teams should obtain customer feedback
(both feedback on the prototype and feedback on the beta release of the product) early in
the project, with respect to functionality. This provides the project team the opportunity

to incorporate the customer feedback without extensive rework.

The project teams should be aware of the fact that obtaining and incorporating customer
feedback results in feature evolution, which may be significantly different than their
original feature list. Thiswill impact the project schedules. Allowing time, for obtaining
and incorporating customer feedback, in the project scheduleis critical so that the project
team does not find itself in a situation where they have to cut cornersin various project
activities. Asour data analysis shows that incorporating more % of fina product
functionality in the first beta reduces the schedul e estimation error but the tradeoff is that
the project team may not be in a situation to incorporate the customer feedback obtained
during the beta phase. One approach to solve this dilemmawould be to obtain customer
feedback more frequently even before first beta and this could be achieved by utilizing
the iterative (evolutionary) approach. Before the project team adopts the iterative
(evolutionary) approach, they should put in place a process that would help them manage
the feedback process. Another option is for the project teams to release earlier betas or
prototypes.

It has always been a point of discussion asto how much architectural effort should be put
into the product design. From the analysis, the conclusion is that the project team should
put in high-level architecture and quickly move to the implementation. This provides the

105

team with the flexibility to incorporate the customer feedback without being bogged
down by rigid rules devel oped through detailed architecture and design. The team should
keep in mind partition of the architecture if they are interested in incorporating customer
feedback. Clean interfaces between modules could help the team in localizing the
changes to the product implementation when they are incorporating the customer
feedback.

As has been shown by many expertsin the software product development area, our
analysis shows that design reviews help improve the product quality. Intheiterative
(evolutionary) approach one of the areas that the design review could help is evaluating
how the architecture is partitioned and whether the interfaces between various modules
clean and independent. Aswas mentioned earlier, clean interfaces could help the project

team locdize the changes to the product implementation due to customer feedback.

The data analysis shows repeatedly that the project isin good shape, with respect to
project schedule, if the product has higher % of final product functionality implemented
in the product at first betarelease. Aswas mentioned earlier, to reduce the amount of
changes to the product after first beta release due to customer feedback, the project team
should get continuous feedback through out the product development. The basic idea
hereisthat if the project team involves the customer actively through out the product
development cycle, the feature evolution will reduce significantly by first betarelease.
With this approach the project team potentially will be in a situation where they are able
to implement higher % of final product functionality by first beta thus reducing the
schedule estimation error. Thiswill also allow the project team with time for final
product stabilization phase where the project team will have the opportunity to improve
the quality of the product.

The proportion of testing (QA) staff and the development staff should be balanced. The
testing staff should work closely with the devel opment staff right from the beginning of
the product development cycle so that the testing staff is equally knowledgeable about the
product, its design and implementation to carry out an effective testing strategy. This
will potentially reduce the % of total testing time spent by the developersin testing their
own code but at the same time not impact the quality of the product because the testing
staff is equally familiar with the product usage and its design and implementation. This

106

will allow the users to spend more time implementing new features for the product and in

turn have higher productivity.

Having mentioned the various factors affecting a flexible product development strategy, it is
important for the project managers to realize that the strategies for product devel opment will
typically differ based on the type of project being implemented. It isthe project manager’s
responsibility to customize the software devel opment approach to the project at hand. Some of

the factors that should be considered when customizing the development strategy are:

Is the product being developed in a segment with mature technology?

* Arethere any uncertainties in the product requirements that the team has to address as the

product is being devel oped?

* How many sub-cycles should the product development cycle be divided into?

* How early (with respect to functionality) in the project should the project team start
getting customer feedback?

* How often should the various modules in the system be integrated?

* What are the various dependencies that the project has that impact the product

implementation (ex: hardware availahility)?

Addressing these issues will help the project team put in a process and a product devel opment
strategy that would help them develop and deliver products that benefit all stakeholders.

4.3 Limitations of the resear ch:

There are several hypotheses that have not been validated from the data analysis. One of the
reasons for thisis the context or the project environment. For example, in the case of frequent
synchronization we should further evaluate the project context to understand if the outcome of the
data analysisis being impacted by such things as hardware availability and the dynamics
associated with it. Since several projects had dependencies on hardware availability, depending
on how much and when the project team adds new code the team may not be building daily. In

contrast an application software project does not have such hardware dependencies and could be

107

synchronized frequently with daily builds. In the sample only 8 projects are application software
while the remaining 18 have hardware dependencies because they are embedded software or
system (device drivers) software. One way to evaluate al projectsin similar context, for the
projects with hardware dependencies, some additional data should be collected which would
allow the research team to discount the impact of the hardware dependencies on the project
schedule.

4.4 Next Steps.

The current research study was a pilot study. The academic and industry members of the research
team plan to expand this study globally. The study will be performed at various organizations to
further gain better insight into software product development with market and technical

uncertainties and also to further validate the findings from the pilot study.

4.5 Areasfor inclusion in the survey instrument (addition for future surveys):

Architecture:

e Isit modular or monolithic? This has an impact on whether the team has the flexibility to

incorporate feedback easily.

Feature churn:

* What % of original features are implemented in the final product?

* What % of featuresin fina product are new features (not in the original featureslist) or
changes due to market and technical feedback?

Rework:

* Rework due to changesin architecture

* Rework due to technical feedback or technological changes

* Rework due to customer feedback

Group expertise:

108

o Expertisein the functional (domain) area
e Technica expertise
Product quality:
e Number of bugs found during various milestones or sub-cycles
* Reason for bugs
0 Because of rework due to customer feedback
0 Because of rework due to technical feedback
Customer feedback:

* How many numbers of customers were used for obtaining feedback for prototype and
beta releases?

* What % of customer feedback was incorporated in the final product?

* Doesthe project team have a process/infrastructure to keep track of the customer
feedback obtained and incorporated into the product?

109

Appendix-A One Way ANOVA (Analysis Of Variance) Reports

Dependent Variables: % Functionality in First Prototype
% Functionality in First System Integration
% Functionality in First Beta

Independent Variable (Factor): S/'W Use Type (External Use or Internal Use)

Descriptives

% Functionality in First % Functionality in First System
Prototype Integration % Functionality in First Beta
Internal | External Internal | External Internal | External
Use Use Total Use Use Total Use Use Total
N 8 16 24 8 16 24 8 17 25
Mean 33.7500 | 39.2500 | 37.4167 | 70.0000 | 59.5625 | 63.0417 | 90.6250 | 92.3529 | 91.8000
Std. Deviation 26.6927 | 25.1860 | 25.2499 | 15.1186 | 22.6155 | 20.6976 7.2887 7.0882 7.0475
Std. Error 9.4373 | 6.2965 | 5.1541 | 5.3452 | 56539 | 4.2249 | 25769 | 1.7191 | 1.4095
95% Confidence Lower Bound | 11.4343 | 25.8293 | 26.7546 | 57.3606 | 47.5115 | 54.3018 | 84.5315 | 88.7085 | 88.8910
Interval for Mean Upper Bound 56.0657 | 52.6707 | 48.0788 | 82.6394 | 71.6135 | 71.7815 | 96.7185 | 95.9974 | 94.7090
Minimum .00 .00 .00 40.00 15.00 15.00 80.00 80.00 80.00
Maximum 80.00 90.00 90.00 90.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00
Test of Homogeneity of Variances
Levene
Statistic dfl df2 Sig.
% Functionality in First Prototype .007 1 22 .933
% Functionality in First System Int. 1.200 1 22 .285
% Functionality in First Beta .014 1 23 .908
ANOVA
Sum of
Squares df Mean Square F Sig.
% Between (Combined) 161.333 1 161.333 .245 .626
Functionality =~ Groups Linear Term Unweighted 161.333 1 161.333 | 245 | .626
in First :
d
Prototype Weighte 161.333 1 161.333 | 245 | .626
Within Groups 14502.500 22 659.205
Total 14663.833 23
% Between (Combined) 581.021 1 581.021 | 1.379 .253
Functionality ~ Groups Linear Term Unweighted 581.021 1 581.021 | 1.379 .253
in First :
System Weighted 581.021 1 581.021 | 1.379 | .253
Integration —
Within Groups 9271.937 22 421.452
Total 9852.958 23
% Between (Combined) 16.243 1 16.243 .318 .578
Functionality ~ Groups Linear Term Unweighted 16.243 1 16.243 | 318 | .578
in First Beta -
Weighted
9 16.243 1 16.243 318 .578
Within Groups 1175.757 23 51.120
Total 1192.000 24

110

Dependent Variables: % Elapsed timetill Last Major Requirements Change

% Elapsed timetill Last Major Functional Spec., Change

% Elapsed timetill Last Major Code Addition

Independent Variable (Factor): S/'W Use Type (External Use or Internal Use)

Descriptives

% Elapsed time till Last Major % Elapsed time till Last Major % Elapsed time till Last Major
Requirements Change Functional Spec Change Code addition
Internal External Internal External Internal External
Use Use Total Use Use Total Use Use Total
N 8 17 25 8 16 24 8 18 26
Mean 63.3723 | 65.9439 | 65.1210 67.7423 | 69.7947 | 69.1105 94.8790 | 88.8419 | 90.6994
Std. Deviation 29.7896 | 24.2515 | 25.5425 | 18.4421 | 16.5601 | 16.8327 | 11.0357 | 12.8825 | 12.4510
Std. Error 10.5322 5.8819 5.1085 6.5203 4.1400 3.4360 3.9017 3.0364 2.4418
95% Confidence Lower Bound 38.4675 | 53.4750 | 54.5776 52.3243 | 60.9704 | 62.0027 85.6530 | 82.4355 | 85.6704
Interval for Mean Upper Bound 88.2770 | 78.4129 | 75.6644 83.1603 | 78.6189 | 76.2184 | 104.1051 | 95.2482 | 95.7285
Minimum 14.29 7.69 7.69 37.50 30.77 30.77 75.00 59.09 59.09
Maximum 100.00 100.00 100.00 88.89 95.65 95.65 111.11 108.33 111.11
Test of Homogeneity of Variances
Levene
Statistic dfl df2 Sig.
% Elapsed time till Last
=ap 276 1| 23| .05
Major Reqg. Change
% Elapsed time till Last
Major Funcional Spec .108 1 22 .746
Change
% Elapsed time till Last
='ap ! 470 1| 24| 500
Major Code Addition
ANOVA
Sum of
Squares df Mean Square F Sig.
% Elapsed Between (Combined) 35.978 1 35.978 .053 .820
time till Last ~ Groups Linear Term Unweighted 35.978 1 35.978 | .053 | .820
Major Req. Weighted
Change eighte 35.978 1 35978 | 053 | .820
Within Groups 15622.115 23 679.222
Total 15658.093 24
% Elapsed Between (Combined) 22.465 1 22.465 .076 .785
time fill Last Groups Linear Term Unweighted 22.465 1 22465 | 076 | 785
MaJ"T Weighted
Funcional 22.465 1 22.465 .076 .785
Spec _
Change Within Groups 6494.327 22 295.197
Total 6516.793 23
% Elapsed Between (Combined) 201.864 1 201.864 | 1.319 .262
time till Last ~ Groups Linear Term Unweighted 201.864 1 201.864 | 1.319 | .262
Major Code -
Weighted
Addition elghte 201.864 1 201.864 | 1.319 | .262
Within Groups 3673.808 24 153.075
Total 3875.672 25

111

Dependent Variables: Architectural Effort

% Code Reuse

Independent Variable (Factor): S/'W Use Type (External Use or Internal Use)

Descriptives

Architectural Effort % Code Reuse
Internal External Internal External
Use Use Total Use Use Total
N 7 18 25 8 18 26
Mean 3124 .2896 .2960 4625 .6656 .6031
Std. Deviation 2261 .2998 2767 3215 .1817 .2460
Std. Error 8.546E-02 | 7.065E-02 | 5.533E-02 1137 | 4.282E-02 | 4.825E-02
95% Confidence Lower Bound .1033 .1405 .1818 1937 5752 .5037
Interval for Mean — ypper Bound 5215 4387 4102 7313 7559 7024
Minimum .02 .03 .02 .00 .25 .00
Maximum .60 1.00 1.00 .85 .90 .90
Test of Homogeneity of Variances
Levene
Statistic dfl df2 Sig.
Architectural Effort 147 1 23 .705
% Code Reuse 6.828 1 24 .015
ANOVA
Sum of
Squares df Mean Square F Sig.
Architectural Between (Combined) 2.619E-03 1 2.619E-03 .033 .858
Effort Groups Linear Term Unweighted 2.619E-03 1 2.619E-03 | .033 | .858
Weighted 2.619E-03 1| 26196-03 | 033 | .858
Within Groups 1.834 23 7.975E-02
Total 1.837 24
% Code Between (Combined) 228 1 228 | 4.266 .050
Reuse Groups Linear Term Unweighted 228 1 .228 | 4.266 | .050
Weighted 228 1 228 | 4.266 | .050
Within Groups 1.285 24 5.353E-02
Total 1.513 25

112

Dependent Variables: % Total Testing Time Developers Tested Their Code

% Total Testing Time QA Staff Tested Code

Independent Variable (Factor): S/'W Use Type (External Use or Internal Use)

Descriptives

% Total Testing Time Developers | % Total Testing Time QA Staff
tested their own Code tested Code
Internal External Internal | External
Use Use Total Use Use Total
N 8 18 26 8 18 26
Mean 52.7500 53.3333 | 53.1538 42.250 46.667 45.308
Std. Deviation 27.8093 31.7620 | 30.0436 26.709 31.762 29.834
Std. Error 9.8321 7.4864 5.8920 9.443 7.486 5.851
95% Confidence Lower Bound 29.5008 37.5385 41.0190 19.921 30.872 33.258
Interval for Mean ~ ypper Bound 75.9992 69.1282 | 65.2887 64.579 62.462 57.358
Minimum 7.0 10 7.0 .0 .0 .0
Maximum 100 100 100 93 90 93
Test of Homogeneity of Variances
Levene
Statistic dfl df2 Sig.
% Total Testing Time Developers
tested their own Code 1.367 1 24 254
% Total Testing Time QA Staff
tested Code 1.667 1 24 .209
ANOVA
Sum of
Squares df Mean Square F Sig.
% Total Between (Combined) 1.885 1 1.885 .002 .965
Testing Groups Linear Term Unweighted 1.885 1 1.885 | .002 | .965
Time -
Developers Weighted 1.885 1 1885 | .002 | .965
tested their —
own Code Within Groups 22563.500 24 940.146
Total 22565.385 25
% Total Between (Combined) 108.038 1 108.038 117 735
Testing Groups Linear Term Unweighted 108.038 1 108.038 | .117 | .735
Time QA -
Staff tested Weighted 108.038 1 108.038 117 735
Cod
ode Within Groups 22143.500 24 922.646
Total 22251.538 25

113

Dependent Variables: % Total Testing Time Spent in Component Testing

% Total Testing Time Spent in Integration Testing

% Total Testing Time Spent in System Testing

Independent Variable (Factor): S/'W Use Type (External Use or Internal Use)

Descriptives

% Total Testing Time Spent in % Total Testing Time Spent in % Total Testing Time Spent in
Component Testing Integration Testing System Testing
Internal | External Internal | External Internal | External
Use Use Total Use Use Total Use Use Total
N 8 18 26 8 18 26 8 18 26
Mean 31.250 | 31.389 | 31.346 | 26.875 | 25.000 | 25.577 | 40.6250 | 43.6111 | 42.6923
Std. Deviation 27.223 22.083 23.219 16.677 16.088 15.958 | 21.6197 | 25.4261 | 23.9262
Std. Error 9.625 5.205 4.554 5.896 3.792 3.130 7.6437 5.9930 4.6923
95% Confidence Lower Bound 8.491 | 20.407 | 21.968 | 12.933 | 17.000 | 19.131 | 22.5505 | 30.9670 | 33.0283
Interval for Mean ~ Upper Bound 54.009 | 42.371 | 40.724 | 40.817 | 33.000 | 32.022 | 58.6995 | 56.2552 | 52.3563
Minimum 5 .0 .0 .0 .0 .0 15 10 10
Maximum 85 70 85 50 60 60 70 100 100
Test of Homogeneity of Variances
Levene
Statistic dfl df2 Sig.
% Total Testing Time Spent
. g "Ime Sp 241 1| 24| 628
in Component Testing
% Total Testing Time Spent
; >Stng 1Ime S 001 1| 24| 978
in Integration Testing
% Total Testing Time Spent
. g P 063 1| 24| 803
in System Testing
ANOVA
Sum of
Squares df Mean Square F Sig.
% Total Between (Combined) 107 1 107 .000 .989
Testing Groups Linear Term Unweighted .107 1 107 | .000 | .989
Time Spent -
in Weighted 107 1 107 | .000 | .989
Component —
Testing Within Groups 13477.778 24 561.574
Total 13477.885 25
% Total Between (Combined) 19.471 1 19.471 074 788
T_esting Groups Linear Term Unweighted 19.471 1 19.471 074 788
Tlme Spent Weighted
n 19.471 1 19.471 .074 .788
Integration
Testing Within Groups 6346.875 24 264.453
Total 6366.346 25
% Total Between (Combined) 49.386 1 49.386 .083 776
Testing Groups Linear Term Unweighted 49.386 1 49.386 | .083 | .776
Time Spent Weighted
in System 49.386 1 49.386 .083 776
Testing _
Within Groups 14262.153 24 594.256
Total 14311.538 25

114

Dependent Variables: % Functionality in First Prototype

Independent Variable (Factor): Project Type (Application, System, Embedded, Others—
combination of application, system and embedded software)

Descriptives

PFUNCPTY
System Embedded
App S/W S/IW Siw Other Total

N 8 6 4 6 24
Mean 35.6250 | 35.8333 25.0000 | 49.6667 | 37.4167
Std. Deviation 16.3527 | 35.8353 28.8675 | 21.5097 | 25.2499
Std. Error 5.7816 | 14.6297 14.4338 8.7813 5.1541
95% Confidence Lower Bound | 21.9538 | -1.7735 -20.9347 | 27.0936 | 26.7546
Interval for Mean ~ ypper Bound | 49.2962 | 73.4401 70.9347 | 72.2397 | 48.0788
Minimum 10.00 5.00 .00 25.00 .00
Maximum 50.00 90.00 50.00 80.00 90.00

Test of Homogeneity of Variances

PFUNCPTY
Levene
Statistic dfl df2 Sig.
3.089 3 20 .050
ANOVA
PFUNCPTY
Sum of
Squares df Mean Square F Sig.
Between (Combined) 1557.792 3 519.264 792 512
Groups Linear Term Unweighted 321.918 1 321.918 | .491 | .491
Weighted 374.083 1 374.083 571 .459
Deviation 1183.708 2 591.854 .903 421
Within Groups 13106.042 20 655.302
Total 14663.833 23

115

Dependent Variables: % Functionality in First System Integration

Independent Variable (Factor): Project Type (Application, System, Embedded, Others—
combination of application, system and embedded software)

Descriptives

PFUNCSI

System | Embedded

App S/W SIW SIW Others Total
N 8 6 4 6 24
Mean 64.3750 | 60.0000 48.7500 | 73.8333 | 63.0417
Std. Deviation 11.1604 | 30.3315 23.9357 | 14.6754 | 20.6976
Std. Error 3.9458 | 12.3828 11.9678 5.9912 4.2249
95% Confidence Lower Bound | 55.0447 | 28.1690 10.6630 | 58.4325 | 54.3018
Interval for Mean ~upper Bound | 73.7053 | 91.8310 86.8370 | 89.2342 | 71.7815
Minimum 50.00 20.00 15.00 50.00 15.00
Maximum 80.00 100.00 70.00 90.00 100.00
Test of Homogeneity of Variances
PFUNCSI
Levene
Statistic dfl df2 Sig.
2.126 3 20 129
ANOVA

PFUNCSI

Sum of

Squares df Mean Square F Sig.
Between (Combined) 1585.500 3 528.500 | 1.279 .309
Groups Linear Term Unweighted 96.416 1 96.416 | .233 | .634

Weighted 114.083 1 114.083 .276 .605
Deviation 1471.417 2 735.708 | 1.780 194

Within Groups 8267.458 20 413.373
Total 9852.958 23

116

Dependent Variables: % Functionality in First Beta

Independent Variable (Factor): Project Type (Application, System, Embedded, Others—
combination of application, system and embedded software)

Descriptives

PFUNCBTA

System Embedded

App S/IW SIW S/W Others Total
N 8 6 5 6 25
Mean 89.6250 93.3333 92.0000 93.0000 | 91.8000
Std. Deviation 7.1502 7.5277 7.5829 7.2111 7.0475
Std. Error 2.5280 3.0732 3.3912 2.9439 1.4095
95% Confidence Lower Bound 83.6473 85.4335 82.5846 85.4324 | 88.8910
Interval for Mean — Upper Bound | 95.6027 | 101.2332 101.4154 | 100.5676 | 94.7090
Minimum 80.00 80.00 80.00 80.00 80.00
Maximum 100.00 100.00 100.00 100.00 100.00
Test of Homogeneity of Variances
PFUNCBTA
Levene
Statistic dfl df2 Sig.
.004 3 21 | 1.000
ANOVA

PFUNCBTA

Sum of

Squares df Mean Square F Sig.
Between (Combined) 60.792 3 20.264 .376 771
Groups Linear Term Unweighted 25.836 1 25.836 | .480 | .496

Weighted 31.867 1 31.867 .592 .450
Deviation 28.924 2 14.462 .268 767

Within Groups 1131.208 21 53.867
Total 1192.000 24

117

Dependent Variables: % Elapsed Timetill Last Major Requirements Change

% Elapsed Timetill Last Major Functional Spec., Change
Independent Variable (Factor): Project Type (Application, System, Embedded, Others—
combination of application, system and embedded software)

Descriptives

% Elapsed Time At Last Major Req Change % Elapsed Time At Last Major Func. Spec Change
System Embed System Embed
App S/IW SIW ded S/W Other Total App S/W SIW ded S/\W Other Total
N 8 6 5 6 25 7 6 5 6 24
Mean 72.4077 60.0783 | 55.8937 | 68.1375 | 65.1210 | 67.6407 67.6443 | 71.2271 | 70.5278 | 69.1105
Std. Deviation 12.9774 38.1791 19.9150 30.1560 25.5425 16.2126 22.6128 12.5068 18.4111 16.8327
Std. Error 4.5882 15.5866 8.9062 12.3111 5.1085 6.1278 9.2316 5.5932 7.5163 3.4360
95% Confidence Lower Bound 61.5583 20.0118 | 31.1660 | 36.4907 | 54.5776 | 52.6465 43.9136 | 55.6978 | 51.2065 | 62.0027
Interval for Mean ~ ypper Bound 83.2570 | 100.1449 | 80.6214 | 99.7842 | 75.6644 | 82.6349 91.3750 | 86.7564 | 89.8491 | 76.2184
Minimum 58.33 7.69 25.00 14.29 7.69 37.50 30.77 58.33 42.86 30.77
Maximum 95.83 100.00 73.91 100.00 100.00 83.33 95.65 88.89 91.30 95.65

Test of Homogeneity of Variances

Levene
Statistic dfl df2 Sig.
% Elapsed Time At Last Major Req Change 3.933 3 21 .023
% Elapsed Time At Last Major Func Spec Change .338 3 20 .798
ANOVA
Sum of
Squares df Mean Square F Sig.
% Elapsed Between (Combined) 1057.642 3 352.547 .507 .682
Time AtLast ~ Groups Linear Term Unweighted 96.548 1 96.548 | 139 | .713
?;Ar?ggzeq Weighted 137.904 1 137.904 | .198 | .661
Deviation 919.738 2 459.869 | .661 | .527
Within Groups 14600.451 21 695.260
Total 15658.093 24
% Elapsed Between (Combined) 62.472 3 20.824 .065 .978
Time At Last ~ Groups Linear Term _ Unweighted 47.557 1 47557 | 147 | .705
g";g Func Weighted 45.073 1 45.073 | .140 | 713
Change Deviation 17.400 2 8.700 | .027 | .973
Within Groups 6454.320 20 322.716
Total 6516.793 23

118

Dependent Variables: % Elapsed Timetill Last Major Code Addition

Independent Variable (Factor): Project Type (Application, System, Embedded, Others—
combination of application, system and embedded software)

Descriptives

PLSTCDAD

System Embedded

App S/IW S/W S/IW Others Total
N 8 6 5 7 26
Mean 90.0450 | 86.8785 94.7826 91.8060 | 90.6994
Std. Deviation 10.9038 | 11.4170 11.6664 16.6549 | 12.4510
Std. Error 3.8551 4.6610 5.2174 6.2949 2.4418
95% Confidence Lower Bound | 80.9292 | 74.8971 80.2968 76.4028 | 85.6704
Interval for Mean ~Upper Bound | 99.1608 | 98.8599 109.2684 | 107.2092 | 95.7285
Minimum 75.00 73.33 73.91 59.09 59.09
Maximum 108.33 104.35 100.00 111.11 111.11
Test of Homogeneity of Variances
PLSTCDAD
Levene
Statistic dfl df2 Sig.
179 3 22 .910
ANOVA

PLSTCDAD

Sum of

Squares df Mean Square F Sig.
Between (Combined) 182.957 3 60.986 .363 .780
Groups Linear Term Unweighted 62.613 1 62.613 | .373 | .548

Weighted 46.573 1 46.573 277 .604
Deviation 136.384 2 68.192 .406 671

Within Groups 3692.715 22 167.851
Total 3875.672 25

119

Dependent Variables; Architectural Effort

% Code Reuse

Independent Variable (Factor): Project Type (Application, System, Embedded, Others—

combination of application, system and embedded software)

Descriptives

Architectural Effort % Code Reuse
Embe Embe
System | dded System | dded
App SIW S/W S/W Others Total App SIW S/W S/W Others Total
N 7 6 5 7 25 8 6 5 7 26
Mean 1475 .3803 | .2655 .3939 .2960 .6625 .5500 | .5360 .6286 .6031
Std. Deviation 9.358E-02 .3386 | .4126 .2087 .2767 .2167 |7.746E-02 | .3510 .3134 .2460
Std. Error 3.537E-02 .1382 | .1845 |[7.889E-02 [5.533E-02 |7.662E-02 |3.162E-02 | .1570 .1185 |4.825E-02
95% Confidence Lower Bound |6.092E-02 (2.497E-02 |-.2468 .2009 .1818 4813 14687 | .1001 .3387 .5037
Interval for Mean" ypper Bound .2340 7356 | .7778 5870 4102 .8437 6313 | .9719 9184 7024
Minimum .03 .10 .02 .09 .02 .20 .45 .10 .00 .00
Maximum .25 1.00 1.00 .67 1.00 .85 .65 .88 .90 .90
Test of Homogeneity of Variances
Levene
Statistic dfl df2 Sig.
Architectural Effort 2.114 3 21 129
% Code Reuse 2.524 3 22 .084
ANOVA
Sum of
Squares df Mean Square F Sig.
Architectural Between (Combined) .269 3 8.962E-02 | 1.200 334
Effort Groups Linear Term Unweighted 133 1 A33 | 1.778 | .197
Weighted 149 1 149 | 1.996 172
Deviation .120 2 5.993E-02 .803 461
Within Groups 1.568 21 7.467E-02
Total 1.837 24
% Code Between (Combined) 7.220E-02 3 2.407E-02 .367 a77
Reuse Groups Linear Term Unweighted 4.827E-03 1 4.827E-03 | .074 | .789
Weighted 5.667E-03 1 5.667E-03 .087 771
Deviation 6.653E-02 2 3.327E-02 .508 .609
Within Groups 1.441 22 6.550E-02
Total 1.513 25

120

Dependent Variables: % Total Testing Time Developers Tested Their Code
% Total Testing Time QA Staff Tested Code

Independent Variable (Factor): Project Type (Application, System, Embedded, Others—
combination of application, system and embedded software)

Descriptives

% Total Testing Time Developers Test Their Code % Total Testing Time QA Staff Test Code
System Embed System Embed
App S/W S/IW ded S/W | Others Total App S/W S/IW ded S/W | Others Total
N 8 6 5 7 26 8 6 5 7 26
Mean 63.1250 | 62.0000 | 58.0000 | 30.7143 | 53.1538 | 36.875 38.000 | 42.000 | 63.571 | 45.308
Std. Deviation 29.3911 | 39.2683 | 10.9545 | 23.8797 | 30.0436 | 29.391 39.268 10.954 | 28.094 | 29.834
Std. Error 10.3913 16.0312 4.8990 9.0257 5.8920 10.391 16.031 4.899 10.619 5.851
95% Confidence Lower Bound | 38.5534 20.7904 | 44.3983 8.6293 | 41.0190 12.303 -3.210 28.398 37.589 33.258
Interval for Mean ~Upper Bound | 87.6966 | 103.2096 | 71.6017 | 52.7993 | 65.2887 | 61.447 79.210 | 55.602 | 89.554 | 57.358
Minimum 15 7.0 50 10 7.0 .0 .0 30 25 .0
Maximum 100 100 70 75 100 85 93 50 90 93

Test of Homogeneity of Variances

Levene
Statistic dfl df2 Sig.
% Total Testing Time Developers Test Their Code 2.436 3 22 .092
% Total Testing Time QA Staff Test Code 2.678 3 22 .072
ANOVA
Sum of
Squares df Mean Square F Sig.
% Total Between (Combined) 4907.081 3 1635.694 | 2.038 .138
Testing Groups Linear Term Unweighted 3689.788 1 3689.788 | 4.597 | .043
E‘g\‘/‘;opers Weighted 3760.299 1 3760.299 | 4.685 | .042
Test Their Deviation 1146.782 2 573391 | .714 | 501
Code Within Groups 17658.304 22 802.650
Total 22565.385 25
% Total Between (Combined) 3278.949 3 1092.983 | 1.267 .310
Testing Groups Linear Term _ Unweighted 2545.927 1 2545.927 | 2.952 | .100
;'tf:f‘ffgezt Weighted 2586.601 1 2586.601 | 2.999 | .097
Code Deviation 692.348 2 346.174 | .401 | .674
Within Groups 18972.589 22 862.390
Total 22251.538 25

121

Dependent Variables: % Total Testing Time Spent in Component Testing

% Total Testing Time Spent in Integration Testing

Independent Variable (Factor): Project Type (Application, System, Embedded, Others—

combination of application, system and embedded software)

Descriptives

% Total Testing Time Spent in Component

Testing % Total Testing Time Spent in Integration Testing

Embe Embe

App System dded App System dded

S/W S/W S/W Others Total S/W S/W S/W Others Total
N 8 6 5 7 26 8 6 5 7 26
Mean 35.000 | 42.500 | 23.000 | 23.571 | 31.346 | 29.375 | 18.333 | 26.000 | 27.143 | 25.577
Std. Deviation 22,520 | 31.265 | 10.954 | 22.120 | 23.219 | 15.222 | 16.021 | 8.216 | 21.381 | 15.958
Std. Error 7.962 | 12.764 | 4.899 | 8.360 | 4.554 | 5.382 6.540 | 3.674 | 8.081 | 3.130
95% Confidence Lower Bound | 16.173 9.689 | 9.398 | 3.114 | 21.968 | 16.649 1521 | 15.799 | 7.369 | 19.131
Interval for Mean ~Upper Bound | 53.827 | 75.311 | 36.602 | 44.029 | 40.724 | 42.101 | 35.146 | 36.201 | 46.917 | 32.022
Minimum 5 10 10 .0 .0 10 .0 20 .0 .0
Maximum 70 85 40 70 85 50 40 40 60 60
Test of Homogeneity of Variances
Levene
Statistic dfl df2 Sig.
% Total Testing Time Spent in Component Testing 1.896 3 22 .160
% Total Testing Time Spent in Integration Testing 1.719 3 22 192
ANOVA
Sum of
Squares df Mean Square F Sig.

% Total Between (Combined) 1624.670 3 541.557 | 1.005 409
Testing Groups Linear Term Unweighted 1041.594 1 1041594 | 1.933 | .178
iTnlme Spent Weighted 889.525 1 889.525 | 1.651 | .212
Component __ Deviation 735.146 2 367.573 .682 516

Testing Within Groups 11853.214 22 538.782

Total 13477.885 25

% Total Between (Combined) 448.281 3 149.427 .555 .650
Testing Groups Linear Term Unweighted .339 1 339 | .001 | .972
iTn'me Spent Weighted 1.108 1 1108 | 004 | .949
Integration Deviation 447.173 2 223.586 .831 449

Testing Within Groups 5918.065 22 269.003

Total 6366.346 25

122

Dependent Variables: % Total Testing Time Spent in System Testing

Independent Variable (Factor): Project Type (Application, System, Embedded, Others—
combination of application, system and embedded software)

Descriptives

PSYSTST
System Embedded
App S/W SIW SIW Others Total

N 8 6 5 7 26
Mean 35.6250 | 39.1667 51.0000 | 47.8571 | 42.6923
Std. Deviation 22.9031 | 24.5798 11.4018 | 31.8665 | 23.9262
Std. Error 8.0975 | 10.0347 5.0990 | 12.0444 4.6923
95% Confidence Lower Bound | 16.4775 | 13.3717 36.8429 | 18.3855 | 33.0283
Interval for Mean ~uUpper Bound | 54.7725 | 64.9616 65.1571 | 77.3288 | 52.3563
Minimum 10 10 40 10 10
Maximum 70 70 65 100 100

Test of Homogeneity of Variances

PSYSTST
Levene
Statistic dfl df2 Sig.
1.839 3 22 .170
ANOVA
PSYSTST
Sum of
Squares df Mean Square F Sig.
Between (Combined) 1005.973 3 335.324 .554 .651
Groups Linear Term Unweighted 847.971 1 847.971 | 1.402 | .249
Weighted 798.734 1 798.734 | 1.321 .263
Deviation 207.239 2 103.619 171 .844
Within Groups 13305.565 22 604.798
Total 14311.538 25

123

Dependent Variables: % Functionality in First Prototype

% Functionality in First System Integration
% Functionality in First Beta

Independent Variable (Factor): New Project or Product Extension

Descriptives

% Functionality in First System
% Functionality in First Prototype ntegration % Functionality in First Beta
Prd New Prd New Prd New
Extension | Product Total Extension | Product Total Extension | Product Total
N 7 17 24 7 17 24 8 17 25
Mean 37.1429 | 37.5294 | 37.4167 55.8571 | 66.0000 | 63.0417 93.7500 | 90.8824 | 91.8000
Std. Deviation 23.6039 | 26.5991 | 25.2499 24.0862 | 19.1409 | 20.6976 3.4949 | 8.1462 | 7.0475
Std. Error 8.9214 | 6.4512 | 5.1541 9.1037 | 4.6424 | 4.2249 12356 | 1.9757 | 1.4095
95% Confidence Lower Bound 15.3129 | 23.8534 | 26.7546 33.5812 | 56.1586 | 54.3018 90.8282 | 86.6940 | 88.8910
Interval for Mean ~Upper Bound 58.9728 | 51.2054 | 48.0788 78.1331 | 75.8414 | 71.7815 96.6718 | 95.0707 | 94.7090
Minimum 10.00 .00 .00 15.00 20.00 15.00 87.00 80.00 80.00
Maximum 70.00 90.00 90.00 86.00 | 100.00 | 100.00 98.00 | 100.00 | 100.00
Test of Homogeneity of Variances
Levene
Statistic dfl df2 Sig.
% Functionality in First Prototype .014 1 22 .905
% Functionality in First System Integration .376 1 22 .546
% Functionality in First Beta 7.274 1 23 .013
ANOVA
Sum of
Squares df Mean Square F Sig.
% Between (Combined) 741 1 741 .001 974
Functionality ~ Groups Linear Term Unweighted 741 1 741 | .001 | .974
in First ;
Prototype Weighted 741 1 741 .001 974
Within Groups 14663.092 22 666.504
Total 14663.833 23
% Between (Combined) 510.101 1 510.101 | 1.201 .285
Functionality ~ Groups Linear Term Unweighted 510.101 1 510.101 | 1.201 | .285
in First ;
System Weighted 510.101 1 510,101 | 1.201 | .285
Integration —
Within Groups 9342.857 22 424.675
Total 9852.958 23
% Between (Combined) 44,735 1 44,735 .897 .353
Functionality ~ Groups Linear Term Unweighted 44.735 1 44735 | .897 | .353
in First Beta :
Weighted
'9 44.735 1 44.735 .897 .353
Within Groups 1147.265 23 49.881
Total 1192.000 24

124

Dependent Variables: % Elapsed timetill Last Major Requirements Change

% Elapsed timetill Last Major Functional Spec., Change

% Elapsed timetill Last Major Code Addition

Independent Variable (Factor): New Project or Product Extension

Descriptives

% Elapsed Time at Last Major

% Elapsed Time at Last Major

% Elapsed Time at Last Major

Req Change Func Spec Change Code Addition
Prd New Prd New Prd New
Extension | Product Total Extension | Product Total Extension | Product Total
N 8 17 25 8 16 24 8 18 26
Mean 63.7877 | 65.7484 | 65.1210 | 64.2391 | 71.5462 | 69.1105 | 89.7600 | 91.1170 | 90.6994
Std. Deviation 17.5060 | 29.0387 | 25.5425 | 14.4930 | 17.8170 | 16.8327 | 12.3643 | 12.8231 | 12.4510
Std. Error 6.1893 | 7.0429 | 5.1085 5.1241 | 4.4543 | 3.4360 43714 | 3.0224 | 2.4418
95% Confidence Lower Bound 49.1523 | 50.8181 | 54.5776 | 52.1227 | 62.0522 | 62.0027 | 79.4231 | 84.7402 | 85.6704
Interval for Mean ™ Upper Bound 78.4232 | 80.6787 | 75.6644 | 76.3556 | 81.0403 | 76.2184 | 100.0968 | 97.4938 | 95.7285
Minimum 27.78 7.69 7.69 37.50 30.77 30.77 73.91 59.09 59.09
Maximum 85.00 | 100.00 | 100.00 88.89 95.65 95.65 108.33 | 111.11 | 111.11
Test of Homogeneity of Variances
Levene
Statistic dfl df2 Sig.
% Elapsed Time at Last Major Req Change 2.709 1 23 113
% Elapsed Time at Last Major Func Spec Change 1.013 1 22 .325
% Elapsed Time at Last Major Code Addition .004 1 24 .952
ANOVA
Sum of
Squares df Mean Square F Sig.
% Elapsed Between (Combined) 20.912 1 20.912 .031 .862
Time at Last ~ Groups Linear Term Unweighted 20.912 1 20912 | .031 | .862
Major Req Weighted
Change 0 20.912 1 20.912 .031 .862
Within Groups 15637.181 23 679.877
Total 15658.093 24
% Elapsed Between (Combined) 284.767 1 284.767 | 1.005 327
Time atLast ~ Groups Linear Term Unweighted 284.767 1 284.767 | 1.005 | .327
Major Func :
Weighted
Spec elghte 284.767 1 284.767 | 1.005 | .327
Change —
Within Groups 6232.025 22 283.274
Total 6516.793 23
% Elapsed Between (Combined) 10.199 1 10.199 .063 .803
Time at Last ~ Groups Linear Term Unweighted 10.199 1 10.199 | .063 | .803
Major Code :
Weighted
Addition 0 10.199 1 10.199 .063 .803
Within Groups 3865.473 24 161.061
Total 3875.672 25

125

Dependent Variables; Architectural Effort
% Code Reuse

Independent Variable (Factor): New Project or Product Extension

Descriptives

Architectural Effort

% Code Reuse

Prd New Prd New
Extension Product Total Extension Product Total
N 8 17 25 8 18 26
Mean .2268 .3285 .2960 .7600 .5333 .6031
Std. Deviation 1742 3131 2767 .1093 .2595 .2460
Std. Error 6.160E-02 | 7.593E-02 | 5.533E-02 | 3.864E-02 | 6.117E-02 | 4.825E-02
95% Confidence Lower Bound | 8.118E-02 .1675 .1818 .6686 4043 .5037
Interval for Mean — ypper Bound .3725 4895 4102 .8514 6624 7024
Minimum .07 .02 .02 .60 .00 .00
Maximum .50 1.00 1.00 .88 .90 .90
Test of Homogeneity of Variances
Levene
Statistic dfl df2 Sig.
Architectural Effort 2.319 1 23 141
% Code Reuse 3.229 1 24 .085
ANOVA
Sum of
Squares df Mean Square F Sig.
Architectural Between (Combined) 5.622E-02 1 5.622E-02 726 .403
Effort Groups Linear Term Unweighted 5.622E-02 1 5.622E-02 | .726 | .403
Weighted 5.622E-02 1 5.622E-02 | 726 | .403
Within Groups 1.781 23 7.742E-02
Total 1.837 24
% Code Between (Combined) .285 1 .285 | 5.559 .027
Reuse Groups Linear Term Unweighted 285 1 285 | 5559 | .027
Weighted 285 1 285 | 5559 | .027
Within Groups 1.229 24 5.119E-02
Total 1.513 25

126

Dependent Variables: % Total Testing Time Developers Tested Their Code
% Total Testing Time QA Staff Tested Code

Independent Variable (Factor): New Project or Product Extension

Descriptives

% Total Testing Time Developers % Total Testing Time QA Staff
Tested Their Code Tested Code
Prd New Prd New
Extension | Product Total Extension | Product Total
N 8 18 26 8 18 26
Mean 45.2500 | 56.6667 | 53.1538 54.750 41.111 45.308
Std. Deviation 32.7185 | 29.0537 | 30.0436 32.718 28.417 29.834
Std. Error 11.5677 6.8480 5.8920 11.568 6.698 5.851
95% Confidence Lower Bound 17.8967 | 42.2186 | 41.0190 27.397 26.980 33.258
Interval for Mean — Upper Bound 72.6033 | 71.1147 | 65.2887 82.103 | 55242 | 57.358
Minimum 7.0 10 7.0 .0 .0 .0
Maximum 100 100 100 93 90 93
Test of Homogeneity of Variances
Levene
Statistic dfl df2 Sig.
% Total Testing Time Developers Tested Their Code .052 1 24 .822
% Total Testing Time QA Staff Tested Code .138 1 24 714
ANOVA
Sum of
Squares df Mean Square F Sig.

% Total Between (Combined) 721.885 1 721.885 793 .382
Testing Groups Linear Term Unweighted 721.885 1 721.885 | 793 | .382
-I;ItreT\]/ZIOpers Weighted 721.885 1 721.885 | 793 | .382
Tested —
Their Code Within Groups 21843.500 24 910.146

Total 22565.385 25
% Total Between (Combined) 1030.261 1030.261 | 1.165 291
Testing Groups Linear Term Unweighted 1030.261 1 1030.261 | 1.165 | .291
Time QA Weighted
Staff Tested 1030.261 1 1030.261 | 1.165 291
Code

Within Groups 21221.278 24 884.220

Total 22251.538 25

127

Dependent Variables: % Total Testing Time Spent in Component Testing

% Total Testing Time Spent in Integration Testing
% Total Testing Time Spent in System Testing

Independent Variable (Factor): New Project or Product Extension

Descriptives

% Total Testing Time Spent in % Total Testing Time Spent in % Total Testing Time Spent in
Component Testing Integration Testing System Testing
Prd New Prd New Prd New
Extension Product Total Extension Product Total Extension Product Total
N 8 18 26 8 18 26 8 18 26
Mean 30.625 | 31.667 | 31.346 34.375 | 21.667 | 25577 35.0000 | 46.1111 | 42.6923
Std. Deviation 22.903 | 24.010 | 23.219 18.792 | 13.284 | 15.958 17.9284 | 25.8705 | 23.9262
Std. Error 8.097 5.659 4.554 6.644 3.131 3.130 6.3387 | 6.0977 | 4.6923
95% Confidence Lower Bound 11.478 | 19.727 | 21.968 18.665 | 15.061 | 19.131 20.0115 | 33.2460 | 33.0283
Interval for Mean ™ Upper Bound 49.772 | 43.606 | 40.724 50.085 | 28.273 | 32.022 49.9885 | 58.9762 | 52.3563
Minimum 10 0 0 .0 0 0 15 10 10
Maximum 85 70 85 60 50 60 70 100 100
Test of Homogeneity of Variances
Levene
Statistic dfl df2 Sig.
% Total Testing Time Spent in Component Testing 1.597 1 24 .218
% Total Testing Time Spent in Integration Testing 1.793 1 24 193
% Total Testing Time Spent in System Testing 2.146 1 24 .156
ANOVA
Sum of
Squares df Mean Square F Sig.
% Total Between (Combined) 6.010 1 6.010 .011 918
Testing Groups Linear Term Unweighted 6.010 1 6.010 | .011 | .018
Time Spent Weighted
in 9 6.010 1 6.010 .011 918
Component —
Testing Within Groups 13471.875 24 561.328
Total 13477.885 25
% Total Between (Combined) 894.471 1 894471 | 3.923 .059
Testing Groups Linear Term Unweighted 894.471 1 894.471 | 3.923 | .059
_Tlme Spent Weighted
n 894.471 1 894.471 | 3.923 .059
Integration _
Testing Within Groups 5471.875 24 227.995
Total 6366.346 25
% Total Between (Combined) 683.761 1 683.761 | 1.204 .283
Testing Groups Linear Term Unweighted 683.761 1 683.761 | 1.204 | .283
Time Spent Weighted
in System 683.761 1 683.761 | 1.204 .283
Testing
Within Groups 13627.778 24 567.824
Total 14311.538 25

128

Appendix B — Survey I nstrument

SOFTWARE DEVELOPMENT PROCESS STUDY
by
MIT Sloan School of Management
Katz Graduate School of Business, University of Pittsburgh

Harvard Business School

This survey hastwo fundamental objectivesfor the current study of software
development process:

« Toidentify and document best-known methods for increasing performance in
softwar e development, such as speed, flexibility, and quality.

+ Toidentify and understand what types of approachesto softwar e development
work best in different types of projects.

Thisresearch, an industry-academia cooper ative effort, is sponsored by HP’'s Product
Generation Solutionsteam with the goal of under standing how to keep HP and Agilent’s
product generation processes ahead of the curvein the Internet age. Survey resultswill be
published in academic and industry publications, including a master’sthesis. HP and
Agilent will get an early look at theresults. You are being asked to provide information
from a specific softwar e development project.

All project-specific identifying data will be kept confidential by the researchers; only
summary results and project data that cannot be matched to a specific project will be
included in the publications.

Contact | nfor mation:

HP/Agilent Contacts:

+ Bill Crandall, (650) 857-6543 or telnet 857-6543, bill_crandall @hp.com

129

+ Guy Cox, (650) 857-8980 or telnet 857-8980, guy _cox@hp.com

Academic Contacts:

+ Prof. Michael Cusumano (MIT Sloan School of Management), cusumano@mit.edu

« Prof. ChrisF. Kemerer (Katz Graduate School of Business, University of Pittsburgh),
ckemerer@katz.pitt.edu

« Prof. Alan MacCormack (Harvard Business School), amaccormack@hbs.edu

Student Contact: (responsible for maintaining the research questionnaire and data collection)

« Sharma Upadhyayula, supadhy@mit.edu

Some reference material that would be helpful in filling out the Survey:

+ Project resource

» Project data sheets + Project schedules
plans

Project checkpoint

» Projectresuits presentations

Name of the project you are describing in this questionnaire I
(including version number, if any):

Today's date: |

Name of the person filling out this form: |

Y our role on the project (e.g., project manager, lead architect, I
developer, etc.):

Y our email address (in the event that there are questions): |

Y our phone number (in the event that there are questions): |

If you wish to be provided with a summary of the results of this

research, please indicate that here (select one): E vesE no

Part 1

1.1 Project Description and Environment:

130

In this section you will be answering questions about the main software deliverable from the
project.

« A‘project’ hereisthe entire effort devoted toward delivering a specific software deliverable
wher e the activity was separately managed and tracked from other software deliverables.

+ The software deliverable from a project might be a product or a service. In particular, it
might be a new release of a previoudly existing piece of software.

Throughout this survey the focus will generally be on the software project, but some questions will
ask about the software deliverable, the product or service. When questions ask about the product
or service, they arereferring only to the version created by this project.

1.1.1 Into what category (type and primary customer) does the deliverable fall? (check one if
possible. If multiple categories, please check the primary category only)

For example: HP Unix is systems softwar e sold primarily to enterprises. Microsoft Officeis
applications softwar e sold both to enter prises and individuals. Yahoo's search engine
softwarefor itsweb siteis applications software primarily for customer service (i.e. it isnot
primarily sold to enterprisesor individuals). Control softwarefor HP printersis embedded
softwar e sold both to enter prises and individuals. A Cisco router softwar e project would be
embedded software sold primarily to enterprises.

Sold Primarily Sold Primarily Primarily For In-House

Systems Software r r r
Applications Software r r r
Embedded Software r r r

1.1.2 Outline briefly the main functions of the software:

I 2

1.2 Size of the Project:

Budget and Schedule

131

1.2.1 What was the software development budget for the project in dollars ‘7
(please give budget in $M)? M

1.2.2 What was the software development budget for the project in effort ‘7
in Person-years?

1.2.3 What was the original software development schedule (duration in ‘7
calendar months)?

Software

1.2.4 What programming language (e.g. C, C++, HTML, Assembly) was |
the software primarily written in?

1.2.5 Please estimate the size of the ddlivered software in source lines of |
code:

1.2.6 Does this figure include comments? (select one) e =

Yes No

1.2.7 If "yes', estimate percentage of comments here: | %

1.2.8 What was the origin of the software code in the finished release according to the following
categories?

Category Per centage of Code

Off-the-shelf code retained from the previous version of this |
product

Off-the-shelf code from other sources |

New code developed for this product in other project team(s) |
(e.g. core code, components)

New code developed for this product in this project team |

TOTAL 100%

1.3 Project Team Roles Composition:

1.3.1 What was the structure of the software devel opment team?

132

Position Aver age Staff Peak Staff Total staff
(number of (number of Resour ces
people) people) (person-

years)

Project Management (includes project
managers and directors, but not team or
technical leads)

Architecture and Design

Development/Programming

Testing (QA/QE) & Integration

Project Support (e.g., configuration
management, documentation, etc.)

Other: I

I

TOTAL

1.4 Design and Development Process:

Soecifications — Architecture, Functional, and Detailed Design

1.4.1 Did the team have an architectural specification (i.e., adocument that provided a = Yes
high level description of the subsystems and interfaces of the eventual product or service)?
Select one; E No

1.4.2 If "yes," what percentage of the architectural specification ,7
was completed before the team started coding?

1.4.3If "yes," and if the architectural specification was adopted

from a previous project, what percentage of the architectural |
specification was modified before the team started coding?
1.4.4 How long were the architectural specificationsfor this ,7
system or product in terms of pages?
1.4.5 Did the team write a functional specification (i.e., adocument that = Yes
described how features worked but not the underlying structure of the code
or modules)? Select one: E No

133

1.4.6 If "yes," what percentage of the functional specification
was completed before the team started coding?

1.4.7 How long were the functional specifications for this
system or product in terms of pages?

1.4.8 Did the team write a detailed design specification (i.e. a document that
provides the structure of the modules and an outline of agorithmswhere E
needed)? Select one:

1.4.91f "yes," what percentage of the detailed design
specification was completed before the team started coding?

1.4.10 How long were the detailed design specifications for this
system or product in terms of pages?

1]

8

<
B

|

Devel opment

1.4.11 Were there any design reviews done? E v s E N o

1.4.12 If yes, please note approximate dates. (mm/yy) |

Builds

1.4.13 During the development phase, how frequently was the system "built" (i.e., how
often were design changes, including bug fixes, integrated into the code base and then
recompiled, e.g. daily, twice per week, weekly, twice per month, once per month, once at
end of development phase)?

IS 2

1.4.14 How many people typically review another person’s ‘7
code before it can be checked into the system build? People

1.4.15 Was any type of integration or regression test (as

opposed to a simple compile and link test) run each time . C
developers checked changed or new code into the project Yes™ No
build?

1.4.16 If yes, how long did the integration test usually take ,_

to run? ’ ° > ’ Hours

1.4.17 When the product was "built,” how long did it take
(in hours) to get feedback on the performance of the system

using the most comprehensive set of system tests assembled | Days OR | Hours
during the project (whether these were manual or o

134

automated)?

1.5 Testing and Debugging Pr ocess:

151

Responsibility for Testing

Per centage of Total Testing Time

Developerstested their own code

Separate QA or testing staff tested
code

TOTAL

100%

1.5.2 What was the relative emphasis on different types of testing during the project?

Focusof Testing

Per centage of Total Testing Time

Component testing (testing individual
features or blocks of code)

Integration testing (testing several
blocks of code integrated together)

System testing (testing the complete
product)

TOTAL

100%

1.5.3 Approximately what percentage of the test cases run on the product or system were

automated? %

1.6 Interaction with Customer s (A customer can beinternal or external):

1.6.1 Estimate the percentage of the final product functionality which existed in the design at the
followina proiect events (assume the functionalitv in the desian is 0% at the start of the proiect

135

and 100% at the time the product is launched):

Project Event Per centage of Final Product
Functionality

The first prototype shown to customers (even if only a |
mock-up)

The first system integration (even if modules only |
partially complete)

Thefirst betaversion (theinitial full version for external |
customer use)

Part 2

Please consider the following definitions:

Regquirements Planning: Phase that outlines the project goals

Architectural and Functional Design: Phase that outlines the high-level system
design and a functional description of the product

Detailed Design and Development: Phase that covers detailed design, coding, unit-
level testing, and debugging.

| ntegration and System Testing: Phase that integrates and stabilizes modules, and
tests the performance of the whole system.

Development Sub-Cycle: A typical software development cycle consists of " Design” ,
"Develop", "Build", " Test" and " Release”" activities. Some projects might not have
all the five activities for each sub-cycle.

Please consider the following general model of a software development project -- note
that your organization may not track all these steps, or may use sightly different
terminology.

2.1.1 Pleasefill in the dates for the following events on your project in the format
MM/YY.

136

2.1.2 When was the first prototype of any sort shown to customers (e.g. a

mock-up of the user interface)?

2.1.3 How many betaversions, if any, did you release to customers?

2.1.4 If you released a beta version, when was the first beta version
released to customers?

2.1.5 For projects that included hardware devel opment, at which point
during the project did the hardware platform for which the software was
designed become available and stable?

2.1.6 Did you divide the Devel opment phase of the project into separate
devel opment sub-cycles that built and tested a subset of thefina product's B yesES No

functionality?

2.1.7 If "yes," how many separate development sub-cycles were there on

this project?

2.1.8 If "yes", after which sub-cycle was the first alpha released?

137

Activity Number Activity Description Activity Date
1 Project start date |
Requirements specification document first available Ii
2 on
3 Last mgjor change to requirements specification |
4 Architecture design start date |
5 Functional design start date |
Last mgjor change to the functional design Ii
6 specification (e.g. feature complete milestone)
7 Development start date |
Last addition of new code, excluding bug fixes (e.g. |7
8 code compl ete)
9 First system integration test date |
10 Final system test date |
11 System launch date |

I

2.1.91f "yes', after which sub-cycle was thefirst beta released? |

2.1.10 How were the size and deliverables for each development sub-cycle determined?

2.2 Project Performance Metrics:

Financial Performance

2.2.11f you sold your product, please estimate the total dollar revenues that the product generated
in the first 12 months after shipment of the final release, including extra charges for design
changes, if applicable. If your product included charges for hardware, please estimate revenues
solely attributable to the software part of the product (for example, as tracked by your internal
accounting procedures).

Actual market revenues: I OR

If you sold your product in-house at a special transfer price, please estimate what the revenues
generated from the product would have been using market prices.

Estimated market revenues: I

2.2.2 Are the product revenues from: E Hardware + Software OR C Software Only

Mar ket Performance

2.2.3 If you sold the results of your project in the market, please estimate the increase/decrease in
market or user share of your product in the first 12 months after rel ease: I

(Note: if <12 months have passed, note the number of months here: I months)

Schedul e Performance

2.2.4\What was the (A) actual duration of the project: I months

138

2.2.5What was the (B) schedule for the project estimated at the end of the requirements planning
phase I months

Budget Performance

2.2.6 Please provide an answer to either 1 or 2 below.

2.2.7 What was the (A) actua outcome expenditure for the project (in $million): I

2.2.8 What was the (B) budget (in $million) for the project established during the up-front planning

phase:

Quality

Software quality is often thought of as the relative absence of defects, or ‘bugs . Most
organizations have mechanismsin place for testers and customers to report bugs, (e.g. ‘ software
problem reports’). The following questions ask about these bugs in terms of their volume and
timing.

2.2.9 Estimate the approximate peak (maximum) number of ‘bugs open’ (i.e., bugs that were
reported but not yet fixed) and the approximate average number of ‘bugs open’ during the
following periods.

Period Peak Bugs Average Bugs
Open Open

Between the start of coding and the first system
integration

If there was a beta release, please answer 1 and 2 below:

1 Between the first system integration and the first | |
betarelease

2 Between the first beta rel ease and the system | |
launch

If there was no beta release, then please answer 3 below:

3 Between the first system integration and the
system launch

139

If there was a beta release, please answer the following question:

2.2.10 Estimate the proportion of all bugs discovered after the first beta version that came from the
following sources?

Sour ce Per centage of Bugs Found After First
Beta

Bugs found by development engineers |
themselves

Bugs found by QA and test engineers during |
testing activities

Bugs found by customers using the beta release |

TOTAL 100%

Follow on questions used to gather information on % original featuresimplemented and

project performance per ception ratings:

1. What percentage of the features that were implemented in the final product were contained in
the original functional specification?

2. Please indicate the extent to which you perceive the project met expectations in terms of:
e Schedule and budget performance
* Customer satisfaction with the end-product
e Financid returnsfromthe project asawhole

(Answer using a 5-point scale, where 1= Significantly below, 2=Below, 3=Met expectations,
4=Above, 5=Significantly above)

3 (a). Estimate the number of bugs reported by customers (end users) in the first 12 months after

the system was launched:

140

Note: If less than 12 months have passed since the system launch, please note the number of

months here:

141

References

1. Michael A. Cusumano and Richard W. Selby, Microsoft Secrets, Free Press 1995

2. Alan MacCormack, Roberto Verganti, and Marco lansiti, “ Devel oping Products on
“Internet Time”: The Anatomy of a Flexible Development Process’, Harvard Business
School Working paper 99-118, 1999

3. Alan MacCormack, Roberto Verganti, Marco lansiti, and Bo Kemp, “Product
Development Performance In Internet Software”, Harvard Business School, September
1997

4. Michadg A. Cusumano and David B. Y offe, Competing on Internet Time: L essons from
Netscape and its Battle with Microsoft, Free Press, 1998

5. Alan MacCormack and Roberto Verganti, “Managing the Sources Of Uncertainty:
Matching Process and Context in New Product Development”, EIASM Final draft

6. Nancy Staudenmayer and Michael A. Cusumano, “Alternative Designs for Product

Component Integration”, Soan working paper #4021, April 1998

7. Tom Gilb, Principles of Software Engineering Management, Addison Wesley, 1988

8. Michad A. Cusumano and Chris F. Kemerer, “A Quantitative Analysis of U.S. and
Japanese Practice and Performance in Software Development”, Management Science,
November 1990, pp 1384-1406

9. Michad A. Cusumano and Richard W. Selby, “How Microsoft Builds Software”,
Communications of the ACM, June 1997, Vol.40 No.6, pp 53-61

10. lan Sommerville, Software Engineering, 4™ Edition, Addison Wesley, 1992

142

	List of Tables
	Table of Figures
	Chapter 1: Introduction
	1.1 Motivation:
	1.2 Existing methodologies and techniques common to software product development
	1.2.1 Sequential (Waterfall) Methodology:
	1.2.2 Iterative (Evolution) Methodology:
	1.2.3 Synch and Stabilize technique:

	Chapter 2: Research Methodology
	2.1 Questionnaire Development:
	2.2 Data collection:
	2.3 Variables (Context, Process and Outcome):
	2.3.1 Some of the contexts variables available from the research data:
	2.3.2 Some of the process variables available from the research data:
	2.3.3 Some of the outcome variables available from the research data:

	2.4 Generic project description (size, complexity etc):

	Chapter 3: Data Analysis
	3.1 Hypothesis and data analysis:
	3.2 Impact Of Market and Technical Feedback
	3.2.1 Hypothesis 1:
	3.2.2 Hypothesis 2:
	3.2.3 Hypothesis 3:
	3.2.4 Hypothesis 4:
	3.2.5 Hypothesis 5:
	3.2.6 Data Analysis to evaluate impact of market and technical feedback
	3.2.7 Sensitivity Analysis:
	3.2.8 Observations based on the data analysis for market and technical feedback:

	3.3 Impact of Separate Development Sub-Cycles
	3.3.1 Hypothesis 6:
	3.3.2 Hypothesis 7:
	3.3.3 Data Analysis to evaluate the impact of separate development sub-cycles
	3.3.4 Sensitivity Analysis:
	3.3.5 Observations based on the data analysis for separate development sub-cycles:

	3.4 Flexibility in Project Activities
	3.5 Impact of Code Reuse
	3.6 Impact of Frequent Synchronization
	3.7 Impact of Design and Code Reviews
	3.8 Impact of simple compile and link test vs. regression testing
	3.9 Relative emphasis of developers testing vs. QA staff testing code

	Chapter 4: Conclusions
	4.1 Current state of project practices:
	4.2 Practices for flexible product development:
	4.3 Limitations of the research:
	4.4 Next Steps:
	4.5 Areas for inclusion in the survey instrument (addition for future surveys):

	Appendix-A One Way ANOVA (Analysis Of Variance) Reports
	Appendix B – Survey Instrument
	References

