ENGINEERING/MANAGEMENT

Competitive Engineering is a revolutionary project
management method, proven by organizations worldwide

Competitive Engineering documents Tom Gilb’s unique, ground-breaking
approach to communicating management objectives and systems engineering
requirements, clearly and unambiguously.

Competitive Engineering is a revelation for anyone involved in management
and risk control. Already used by thousands of managers and systems
engineers around the world, this is a handbook for initiating, controlling and
delivering complex projects on time and within budget. Competitive
Engineering copes explicitly with the rapidly changing environment that is a
reality for most of us today.

Elegant, comprehensive and accessible, the Competitive Engineering
methodology provides a practical set of tools and techniques that enable
readers to effectively design, manage and deliver results in any complex
organization — in engineering, industry, systems engineering, software, IT, the
service sector and beyond.

BENEFITS OF COMPETITIVE ENGINEERING

® Used and proven by many organizations including HP, Intel,
CitiGroup, IBM, Nokia and the US Department of Defense

® Detailed, practical and innovative coverage of key subjects
incdluding requirements specification, design evaluation, specification
quality control and evolutionary project management

® A complete, proven and meaningful ‘end-to-end’ process for
specifying, evaluating, managing and delivering high quality solutions

@ Rich in detail and comprehensive in scope, with thought-
provoking ideas on every page

COMPETITIVE ENGINEERING ENCOMPASSES
® Requirements specification
® Design engineering (including design specification and evaluation)
@ Evolutionary project management
® Project metrics
® Risk management
® Priority management
® Specification quality control
® Change control
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FOREWORD

Competition is the strongest force shaping today’s product develop-
ment landscape. The race to create customer and end user value is
intense. In addition, companies large and small face ever-increasing
product complexity, pressure to reduce time to market and increase
productivity, and unprecedented challenges from globalization.

Competitive Engineering contains powerful tools to apply to these
problems. At the same time, the tools are both practical and simple —
a rare combination. Over the last decade, I personally have applied
these tools in a variety of settings in software development and more
general product development, on projects of various sizes. Thousands
of students have been through training and workshops I have authored
that contain Planguage, Evo, Specification Quality Control and other
facets of Competitive Engineering. The vast majority of students
immediately recognize their value and go on to use these beneficially
on projects. Competitive Engineering is based on decades of practical
experience, feedback and improvement, and it shows. This stuff
works.

To be effective over a wide range of problems, a method or tool must
possess many qualities: flexibility, scalability, portability and learn-
ability, to name a few. The methods and tools found in Competitive
Engineering are up to the challenge. They are designed to be tailored to
local culture and practices. The central ideas are so fundamental that
they apply to a huge range of project types and sizes. And, while they
are rich enough that they require serious study to master, they can be
learned and used effectively by almost anyone; I have taught them to
people in product development, service delivery, manufacturing, site
construction, information technology, eBusiness, quality, marketing
and management.

You may encounter some resistance when first proposing or teaching
these concepts; I have, and still do from time to time. Don’t be
discouraged. These are often revolutionary concepts in relation to a
group’s existing practices. Keep in mind that it is not necessary to use
everything you find in Competitive Engineering right from the start.
Instead, use Competitive Engineering to create Competitive Engineering,
Start using Evo to improve things in small steps based on what is most
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viii Foreword
valuable in your environment. Use Planguage to document stake-
holder needs, success criteria and the like. Before you know it, you
will have made significant progress. It all feels remarkably natural once

you get going.

Erik Simmons

Intel Corporation

Requirements Engineering Practice Lead
Corporate Quality Network
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ENDORSEMENTS

When I was a young engineer, I thought all system problems were
merely a matter of applying clever technological solutions. “If we had
better technology,” I thought, “we’d be able to get this problem
solved quickly.”

After more than 30 years in the IT and systems world, I now know
better. Creating, building, and delivering high quality computer-based
systems, on-time and within budget not only requires solid technol-
ogy, but also a meaningful process, effective project management,
comprehensive risk control, and broad-based communication between
all constituencies at all levels of the project. In fact, it is the last item in
this list that is probably most important (and the most difficult to
achieve). Projects fail because communication fails.

System and software engineers and their customers need a consistent
mechanism for communicating the purpose of the system, the con-
straints that must be addressed, the design and implementation stra-
tegies that are to be applied, the risks to be managed, and the measures
of quality that are relevant and meaningful. But how do we achieve a
consistent mechanism for communication and how do we use this to
better manage and implement complex systems?

In this book, Tom Gilb provides us with answers that are both elegant
and comprehensive. He describes the Planguage method — “a practical
set of ideas, to help you get better control over all forms of planning,
design, engineering, and project management.”

To be honest, those of us who are industry veterans have heard this
before. Literally dozens of methods (and books) have made similar
claims and then failed to deliver. Why then, should we believe that
Planguage is any different? There are many reasons.

Gilb has designed an evolutionary approach that will allow you to
define system requirements clearly and unambiguously. More impor-
tantly, he provides a bridge that enables you to describe the resultant
solution, design a high quality implementation, and then analyze how
the proposed solution impacts business objectives. In addition, he
stresses quantitative evaluation, so that progress toward the competi-
tive goals of your system can be evaluated competitively. Planguage
enhances communication — at the specification level, at the design
level, at the project level, and at the process level. Projects succeed
when communication succeeds, and Planguage leads to successful
communication.
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X Endorsements

As Tom himself admits, this book is not a light read. Competitive

Engineering provides thought-provoking ideas on almost every page,

is rich in detail, and comprehensive in scope. It provides guidance for

every system engineering activity and a thorough description of every

aspect of Planguage. You’ll have to spend time with Gilb’s ideas, but

once you understand and apply them, your ability to engineer com-
plex systems will be greatly enhanced.

Roger S. Pressman, Ph.D.

President, R.S. Pressman & Associates, Inc.

e-mail: pressman@rspa.com

Competitive Engineering stakes out unusual ground in engineering lit-
erature. The ground it takes is doubly unusual for a systems engineering
book. Competitive Engineering works to provide pragmatic and directly
applicable methods to fundamental design problems that cross applica-
tion domains. Where many books provide procedural methods that
apply only to particular problems, Competitive Engineering seeks to be
general and to be applicable to many forms of complex systems. Where
many books take on abstract or theoretical aspects of system develop-
ment, Competitive Engineering provides specific, directly applicable
techniques. And where many books address only narrow business mod-
els, such as contracted development, Competitive Engineering applies to a
range of evolutionary and competitive developments.

Tom Gilb clearly intends for the book to be taken as a whole.
Planguage provides a documented and uniform set of concepts and
terms that a team can use to organize development efforts from simple
to complex. As Tom explains, the book can be viewed as a compre-
hensive handbook to managing the development of complex systems.
Its background is particularly strong for information systems, but it
also applies to many other types of systems.

However, systems engineers should rightly be interested in this book
even if they have no intention of adopting Planguage in its entirety.
Competitive Engineering contains many other important nuggets, in
consequence of the unique ground it has staked out, that are impor-
tant to systems engineering even removed from full adoption of
Planguage. A few examples are the sections on Scales of Measure,
Impact Estimation, and Evolutionary Project Management.

One of the intellectual foundations of systems engineering is decision
theory. Decision theory rests on our ability to discover a proper set of
attributes on which to measure the goodness or worth of a system, to
quantify relative to those attributes, to evaluate the consequences of
design choices relative to those attributes and to make decisions based
on those attributes. Competitive Engineering adds a rich set of heur-
istics and methods to the notoriously difficult problem of discovering
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good sets of attributes, quantifying performance on complex attributes
and communicating the consequences of design choices relative to
those attributes. The approach in Competitive Engineering is strongly
pragmatic, while also being theoretically grounded. A user who has
committed to Planguage can take the approach as a whole and find
strong guidance for fully implementing it. A user who has not adopted
Planguage as a whole can also benefit, because he or she will discover
that the Scales of Measure and Impact Estimation concepts are solidly
grounded and can be lifted and transferred into other development
ontologies and other decision theory methods. The ‘lift-and-carry’
into other methods will benefit from the strong heuristics and well-
thought-out communication methods presented in the book.

In a similar way, Competitive Engineerings take on Evolutionary
Project Management is highly useful on its own. Virtually all soft-
ware-intensive systems today are developed in an evolutionary way,
even when we don’t plan to. While the importance and basic mechan-
isms of evolutionary development are well known, the community is
in need of wider sets of guidelines and alternatives for actual imple-
mentation. It is in this area that Competitive Engineering delivers
important new material.

Systems engineers should find Competitive Engineering widely useful,
with or without the additional framework provided by Planguage.
Even without adopting Planguage as a whole there are numerous
important principles and techniques that can benefit any system
project. And those who dip in looking for solutions to one problem
or another may come to appreciate the full framework of Planguage.

Dr Mark W. Maier

Distinguished Engineer at The Aerospace Corporation and Chair of
the INCOSE Systems Architecture Working Group. Co-author of
The Art of Systems Architecting, Second Edition (CRC Press).
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PREFACE

Background to writing Competitive Engineering

It has been sixteen years since Principles of Software Engineering
Management (Tom Gilb, 1988, Addison-Wesley) was published.
Since then I have continued to develop Planguage and many
changes have been introduced. So, my main intention in writing
Competitive Engineering (CE) is to document the current
basic definition of Planguage (that is, the language and its
methods).

In practice, the discipline of writing this book has also caused
considerable improvement in the consistency of ideas and the quality
of the explanation. Hopefully, readers will forgive me that the
style of this book is deliberately ‘less chatty’ than Principles of
Software Engineering Management. The aim is to provide a funda-
mental systems engineering handbook, which is more directly
concerned with providing practical guidance on how to use
Planguage.

In large part, CE is based around the Glossary of Planguage. The
Glossary gives additional rigor to the book, as it has been applied to
the entire text, including the Glossary itself.

Major influences on Planguage

The dominating influences behind the creation of Planguage
include:

e The works of Deming, Juran, Crosby, Jevons (7he Principles of
Science, Dover Edition, 1960, originally published 1875), Boehm,
Weinberg, Lord Kelvin, Keeney, Koen and Peters. See also the
Bibliography and the citations in this book.

* My work with rea/ engineers and managers in the industrial world;
who want and need these ideas. It is amazing to me to see
how each new piece of work, or consulting, directly results
in evolutionary improvements to the theory and practice of
Planguage.
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Preface xiii

My many professional friends, clients and students, who appreciate,
encourage, comment and discuss Planguage and share with me their
ideas, case studies, papers and books.

See http://zapatopi.net/Kelvin/quotes.html, which reads: *‘In phys-
ical science the first essential step in the direction of learning any
subject is to find principles of numerical reckoning and practicable
methods for measuring some quality connected with it. | often say
that when you can measure what you are speaking about, and
express it in numbers, you know something about it; but when you
cannot measure it, when you cannot express it in numbers, your
knowledge is of a meagre and unsatisfactory kind; it may be the
beginning of knowledge, but you have scarcely in your thoughts
advanced fo the state of Science, whatever the matter may be.”

Lord Kelvin

How to use this book

I do not expect readers to adopt everything in this book. Adoption
must evolve based on feedback from real use.

Only generalized processes and rules are given in this book, and so it is
quite likely that they will need to be tailored to your organization. In any
case, some of the rules and processes in this book are rather too long for
everyday use. This is because explanatory text has been included. If you
intend to use any of these rule sets, then some editing is required to
produce a shorter ‘working’ version for Specification Quality Control
(SQQ) purposes. (You can always make reference from your shortened
version to other text for more background information.)

You are at liberty to adopt and adapt any of the CE ideas to your
needs.

Some book conventions

Terminology: I decided to use the following as the main terms' in
Planguage:

* ‘Requirement specification’ and ‘requirement engineering’ rather
than ‘requirements specification’ and ‘requirements engineering’,

respectively.

' The alternative terms are declared as synonyms.
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Xiv Preface

* ‘Function’ as an adjective, rather than ‘functional’ (so Planguage
uses ‘function requirement’ and ‘function specification’).

e I retained ‘systems engineering’ as it is such a widely used term (even
though I do feel it needs to be ‘systems’ engineering’ with an
apostrophel!).

e ‘Resource’ has been used as a main collective attribute term, rather
than ‘cost’. This was a difficult decision because ‘resource’ in the USA
tends to only mean ‘staff’. Planguage usage is wider: ‘resource’
includes all committed money, staff, time and any other assets.

Formatting of dates: To avoid the text ‘ageing’, most of the dates have
been declared as user-defined terms, such as ‘Next Year.” In practice,
users should use more precise dates, such as ‘December 15, 2004, or
‘Initial Delivery plus 3 Months’.

In many examples within the book, the use of the “Version” parameter,
and other administrative parameters, have simply been omitted to
reduce complexity of the examples.

Planguage Glossary: Approximately 180 concepts have been formally
defined, exemplified and annotated in the CE Glossary. The other 75
per cent of defined Planguage concepts are and will be in the complete
glossary on the web. They are selected from over 640 defined Plan-
guage concepts. The complete and updated Planguage concept glos-
sary will be found at www.gilb.com. At the beginning of each chapter
are listed the key glossary concepts.

The reader is well advised to consult the Glossary when trying to make
sense of the text. In fact, it might be a good idea for the reader to scan
through the entire Glossary, stopping at interesting concepts and
getting a sense of the types of concepts I have defined.

I often think that the main lasting contribution of this book lies in the
Glossary itself. It is not that I imagine the entire world standardizing
on these terms! Rather, that I hope this Glossary might be quite useful
in helping to develop improved standard systems engineering con-
cepts. I do not doubt that we can all make these concept definitions
even better. However, the reader can be assured that all the concept
definitions were arrived at after considerable struggle and due con-
sideration of many points of view and needs! Not least was the struggle
to make them internally consistent.

At the very least, I hope that the Glossary helps the reader to be sure
of what the text is saying. I also hope that a study of the Glossary
will give the student an excellent grounding in systems engineering
concepts.

Tom Gilb, Kolbotn, Norway
Email: Tom@Gilb.com
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INTRODUCTION

Competitive Engineering (CE) is about technological management, risk
control, and breakthrough improvement in complex business systems,
projects and processes. It is systems engineering, with application to all
forms of planning, requirement specification, design and project
management. It also applies to management of organizations, both top
management and technical management. ‘Competitive Engineering’
is hopefully the end result of using this book’s ideas.

What is in Competitive Engineering?

CE is taught using ‘Planguage.”' Planguage consists of a new industrial
systems engineering language for communicating systems engineering
and management specifications, and a set of methods providing advice
on best practices. ‘Planguage’ is central to CE and permeates all
themes of this book.

The Planguage Specification Language is used to describe all the
requirements, designs and plans for a system.

The main Planguage Methods are as follows:

* Requirement Specification: used to capture all the different
requirement types. Emphasis is placed on specifying competitive
performance and resource attributes quantitatively.

* Impact Estimation: used to evaluate designs against the require-
ments. It is also used during project implementation to track pro-
gress towards meeting the requirements.

* Specification Quality Control: used at any stage of a project to
check the adherence of any plan, contract, bid or technical specifi-
cation to best practice specification standards.

* Evolutionary Project Management: used to plan and monitor
implementation of the selected designs.

The reader will, hopefully, find that these are all very practical and

innovative methods, compared with current practice and literature.

' The word ‘Planguage’ is derived from a combination of ‘plan’ and ‘language.’ It is
pronounced like ‘language’ with the initial ‘p’ pronounced as in ‘plan.’
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How was Competitive Engineering developed?

The Planguage language and methods have gradually emerged from
my practical experience, since 1960, as a teacher and consultant to
industry. Since the early 1980s, earlier versions of the central Plan-
guage elements have been adopted both by pilot projects and/or
corporate-wide in several of my client multinationals including HP,
IBM, Intel, Philips, Nokia, Ericsson and Douglas Aircraft (now
Boeing). The interest and practical acceptance has encouraged me to
expand and refine the definition of the language well beyond my
earlier books and papers.

In the past, my public courses, books and articles have explained
Planguage, under a variety of names and in terms of its various
subsets, exclusively for software engineering purposes. However, since
the early 1980s, Planguage has been used in top management and
various systems engineering disciplines. This book has been written to
reflect that fact. The aim is that this book is useful for any ‘systems
engineering’ or ‘systems engineering management’ purpose.

What is special about Planguage?

Planguage integrates all the basic systems engineering disciplines from
requirement specification to product delivery. It has at its core the aim
of delivering the stakeholder-critical values. It makes the technical
strategies clearly subordinate to the required results. It gives us a
detailed set of ways to express our ideas for a system, including very
many useful glossary-defined concepts, such as: objective, strategy,
design and risk.

Planguage provides a common language for all the different disciplines
to communicate with each other. It enables interdisciplinary groups to
work as real teams towards well-documented common purposes.

Planguage is designed for adaptation and tailoring to your own
specific projects, organizations and cultures.

Planguage lays the groundwork for systematic learning organizations
and continuous work process improvement. It is based on the funda-
mental principles of feedback, of ‘Plan-Do-Study-Act’ cycles of activ-
ity as taught by W. Edwards Deming (Deming 1993) and Joseph
Juran (Juran 1974). These are probably the most powerful weapons
we have for improving productivity and economics. It is also oriented
towards the ideas of Philip B. Crosby on defect prevention and ‘clear
measurable requirements’ (Crosby 1996).
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Introduction Xix

Planguage gives us tools to tackle large and complex systems in a more
systematic way than current common practice. Used propetly, it
should reduce the high risk of waste, delay and failure, which has
plagued all large-scale modern projects and ‘high-tech’ disciplines for
decades. We have plenty of good, intelligent and well-intentioned
people; now they, hopefully, have a useful tool for better understand-
ing and management of the fast-moving, complex and ‘not-yet-experi-
enced’ world, which seems to be our current daily working
environment.

CE’s practical ideas are already proven in practice internationally in
electronics engineering, telecommunications engineering, aircraft
engineering, top management, marketing, information technology
and industrial software engineering projects. Once they are imbedded
in corporate practice, they stay there. Once the individual knows and
uses these ideas, they are irreversibly sold on the practicality and
usefulness of these methods.

Planguage should be viewed as a powerful way to develop and
implement strategies that will help your projects to deliver the
required competitive resulfs.

How to use Competitive Engineering

This is not a book to be read quickly and forgotten. Some CE chapters
could expand to book length to fully explain their concepts. Indeed,
this is the first in a series of related books, some of which are already
written in draft form.”

This book is more like a dictionary or a handbook. It is intended to
be a unifying standard. It should serve, for years, as the basis of
your professional development (as it has for me and for my clients).
Study it as needed. Try out the ideas in practice. Study more
detailed literature. Translate it into your organization’s local dialect.
Use it to make rapid progress towards putting in place additional
teaching and improved standards for your engineering and manage-
ment methods.

% See www.Gilb.com for initial draft samples.
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Structure of Competitive Engineering

The key contents of Competitive Engineering are as follows:

Chapter 1: Planguage Basics and Process Control: This chapter
explains why Planguage is necessary and introduces the structure of
the Planguage language and methods.

Chapter 2: Introduction to Requirement: This chapter outlines the
fundamentals of requirement specification: the framework for set-
ting targets and constraints.

Chapter 3: Functions: This chapter describes functions and func-
tion requirements.

Chapter 4: Performance: This chapter describes the basics of how
to specify performance attributes quantitatively.

Chapter 5: Scales of Measure: This chapter discusses finding and
defining appropriate scales of measure.

Chapter 6: Resources, Budgets and Costs: This chapter outlines
how to specify the resource requirements.

Chapter 7: Design Ideas and Design Engineering: This chapter
describes how to find and specify design ideas. It also outlines the
Design Engineering process.

Chapter 8: Specification Quality Control: This chapter gives an
overview of the Specification Quality Control method (also known
as ‘Inspection’), which measures specification quality against your
own tailored specification standards.

Chapter 9: Impact Estimation: This chapter describes the Impact
Estimation method, which is used to evaluate quantitatively the
impact of design ideas on your performance and resource require-
ments, and can also be used to track quantitatively project progress
towards critical objectives.

Chapter 10: Evolutionary Project Management: This chapter gives
an overview of Evolutionary Project Management. It gives you the
basic concepts of evolutionary delivery and discusses how you
identify evolutionary steps.

Glossary: The glossary in the book has over 180 concepts. It provides
detailed reference definitions, supporting the text in the chapters (only
the main concepts could be fitted into this book, the additonal con-
cepts can be found in the complete glossary at heep://www.Gilb.com/).

Format of Competitive Engineering

The format of each chapter is the same:

Section 1: Introduction: Each chapter has an introduction that puts
the chapter in context.
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* Section 2: Practical Example: Each chapter has a simple example
that aims to introduce the subject area of the chapter.

e Section 3: Language Core: Fach chapter has the basic new Plan-
guage concepts described.

¢ Section 4: Rules: Each chapter (apart from Chapter 8, Specification
Quality Control) includes some rules, which can be used as a
specification standard for the chapter’s subject.

* Section 5: Process Description: Each chapter has a process defini-
tion that corresponds to the subject of the chapter.

e Section 6: Principle: Each chapter has 10 principles, which are
intended (in a light-hearted manner) to highlight and remind you
of the key ideas discussed within the chapter.

* Section 7: Additional Ideas: Each chapter discusses some advanced
ideas to try to give you some insights beyond the basic ideas
described in the chapter.

* Section 8: Further Example/Case Study: Each chapter contains a
more detailed example. Real case studies or practical examples from
the author’s first-hand experience are used.

* Section 9: Diagrams/Icons: Each chapter has diagrams providing
graphical ideas for presenting the chapter content. Specifically, the
icon language supporting Planguage is shown.

e Section 10: Summary: Fach chapter is summarized in the last
section.

A friendly warning

This book is intentionally written in a very condensed style. Don’t get
discouraged if you have to slow down to understand it, or if you have
to reread parts. It is ‘useful ideas per hour’ which count, not ‘pages
turned per hour’.
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Planguage Basics and Process Control 3

Introduction: Why We Need a Different
‘Systems Engineering’ Approach

As the rate of technological change has ‘heated up,” I am sure we have
all seen that, increasingly, nobody ‘knows all the answers.” Previously
we could rely on comparatively stable environments (technology,
workforce, experienced people, politics and economics). People knew
how to solve problems because they had solved similar ones before. In
addition, the concept of learning by apprenticeship was valid; ‘mas-
ters’ could pass on their wisdom over a time span of years.

Things are currently moving so fast that it is dangerous to assume
there is any first-hand knowledge of the technology we are going to
use, or of the markets we are going to sell to. Even the organizational
and social structures that we are targeting are constantly changing.
Authors such as Tom Peters have long since clearly documented these
trends and threats (Peters 1992).

So we have to find out ‘what works now’ by means of practice, not theory.
We need to develop things in a different way. We have to learn and to
change, faster than the competition.

The fundamental concepts needed now in systems engineering
include:

Learning through Rapid Feedback

Feedback is the single most powerful concept for successful projects.
Methods that use feedback are successful. Those that do not, seem to
fail. Feedback helps you get better control of your project, by provid-
ing facts about how things are working in practice. Of course, the
presumption is that the feedback is early enough to do some good.

This is the main need: rapid feedback.

Dynamic Adaptability

Projects have to be able to respond to feedback and also to be able
to keep pace weekly or monthly with changing business or organi-
zational requirements. Projects must continuously monitor the rele-
vance of their current work. Then they must modify their
requirements and strategies accordingly. Any product or organiza-
tional system should be continuously evolving or it dies. Coping
with external change during projects and adapting to it during
projects is now the norm, not the exception. Stability would be
nice, but we can’t have it!
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‘Then’ ‘Now’ Feb Mar

May

Figure 1.1
Our requirements are changing faster due to external changes.

Capturing the Requirements

It is true of any system that there are several Critical Success Factors.
They include both performance requirements (such as serviceability,
reliability, portability and usability) and limited resource requirements
(such as people, time and money). Projects often fail to specify these
critical requirements adequately:

¢ not al/ the critical success factors are identified

* no target numeric values for survival and success are stated

e variations in targeted requirements for differing times and differing
places, are not addressed:

o the effect of peak loads, or system growth, on the required levels,
is not taken into account

o the concept of very different attribute levels, being required by
different parts of the system, or by different stakeholders, is not
considered

* no practical ways to measure the results delivered to stakeholders are
specified alongside the requirement specification.

The result is that our ability to manage successful value delivery is
destroyed from the outset. It is impossible to engineer designs to meet
non-specified or ambiguous requirements. It also is impossible to
track changes for such ill-specified requirements.

Focus on Results

The primary systems engineering task is to design and deliver the best
technical and organizational solutions, in order to satisfy the stake-
holders’ requirements, at a competitive cost. Projects must ensure that
their focus is on delivering critical and profitable results. Albert
Einstein is quoted as saying: “Perfection of means and confusion of
ends seem to characterize our age.”" Unfortunately, this still appears
true today. It is the delivery of the required results from a system that

' Calaprice, Alice [Editor]. 2000. The Expanded Quotable Einstein. Princeton Univer-
sity Press. ISBN 0-691-07021-0.
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counts. The process used and the technology selected are mere tools in
the service of the results.

Interdisciplinary Communication

Clear communication amongst the different stakeholder groups is
essential. Common problems include:

¢ ambiguity, due to specification that lacks precise detail

e critical specifications being ‘lost” in overwhelming detail

e technical specification being unintelligible to the management, who
reviews it

¢ inadequate tracking of specification credibility: its source, status and
authorization level.

Leadership and Motivation

Clear vision makes a huge difference. Clear vision gives a common
focus for logical decision-making. When people understand the over-
all direction, they tend to make good Joca/ decisions. Only the critical
few decisions need to be made at the top. It is important for all team
members to be able immediately to channel their energies in a true
common team direction.

Receptiveness to Organizational Change

It is also important for system engineers to know that their organiza-
tional culture really supports improvement in systems engineering
methods. In other words, that people are actively encouraged to look
for improvements and to try out new solutions. Positive motivation
can be everything! It is not a case of demanding improvement, more a
case of supporting and rewarding people who seek it.

Continuous Process Improvement

The quality guru, W. Edwards Deming considered that: “Eternal
process improvement, the Plan-Do-Study-Act (PDSA) cycle, is
necessary as long as you are in competition.” Having best-practice
systems engineering standards in place, measuring conformance to
them and continually trying to improve them is necessary if you are
to compete well.

The only thing that should not change is a great change process.
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Practical Strategies for Systems Engineering

Planguage” (the specification language and methods described in this
book) aims to support all the above concepts with practical ideas and
methods; it has numerous practical strategies for projects to adopt.

In-built in all these Planguage strategies is risk management. Handling
of risk is fundamental to Planguage. I do not believe that risk manage-
ment should be a separate discipline. We can deal with risks better when
we do so in every detailed specification and plan, and in every systems

Practical Strategies for Risk Management

1. Quantify requirements: All critical performance and resource
requirements must be identified and quantified numerically.

2. Maximize profit, not minimize risk: Focus on achieving the max-
imum benefits within budget and timescales rather than on attempting
to eliminate all risk.

3. Design out unacceptable risk: Unacceptable risk needs to be
‘designed out’ of the system consciously at all stages, at all levels in
all areas, for example, architecture, purchasing, contracting, devel-
opment, maintenance and human factors. This means selecting
lower-risk options.

4. Design in redundancy: When planning and implementing projects,
conscious backup redundancy for outmaneuvering risks is a neces-
sary cost.

5. Monitor reality: Early, frequent and measurable feedback from rea-
lity must be planned into your development and maintenance pro-
cesses, to identify and assess risks before they become dangerous.

6. Reduce risk exposure: The total level of risk exposure at any one time
should be consciously reduced to between 2% and 5% of total budget.

7. Communicate about risk: There must be no unexpected risks. If
people have followed guidelines, and are open about what work they
have done, then others will have the opportunity to fight risks construc-
tively. Where there are risks, then share that information.

8. Reuse what you learn about risk: Standards, and other forms of
work process guidance, must capture and assist good practice. They
must be subject to continuous process improvement.

9. Delegate personal responsibility for risk: People must be given
personal responsibility in their sector for identification and mitigation
of risks.

10. Contract out risk: Make vendors contractually responsible for risks.
They will give you better advice and services as a result.

Figure 1.2
Practical strategies for risk management.

% Pronounced like ‘language’ with a ‘p’ as in ‘plan.’
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implementation process. Figure 1.2 gives a list of strategies for risk
management. All these strategies can be found in some aspect of
Planguage.

1.2 Practical Example: Twelve Tough Questions

Here are some probing questions for controlling risk. They are power-
ful tools, which will help you in your everyday work. I call them the
‘Twelve Tough Questions’ — see the next page.

These “Twelve Tough Questions’ will help you find out ‘what people
really know.” They will help you find out how strong a foundation
their opinions and recommendations are based on. From the answers
to these questions — or maybe the Jack of answers — you can see risks;
and what needs to be done to reduce them. Try asking these questions
when you next review a proposal, or at your next decision-making
meeting. You will probably see the power of them immediately. Get
your management to ask these questions.

Copy this next page (permission granted as long as you include copyright).
Carry it with you to your next meeting or frame it on your wall. Use it to
arrest fuzzy thinking in your company and client documents.
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Twelve Tough Questions

1. Numbers
Why isn't the improvement quantified?

2. Risk
What is the degree of risk or uncertainty and why?

3. Doubt
Are you sure? If not, why not?

4. Source
Where did you get that information? How can | check it out?

5. Impact
How does your idea affect my goals and budgets, measurably?

6. All critical factors
Did we forget anything critical to survival?

7. Evidence
How do you know it works that way? Did it ‘ever'?

8. Enough
Have we got a complete solution? Are all requirements satisfied?

9. Profitability first
Are we planning to do the ‘profitable things' first?

10. Commitment
Who is responsible for failure, or successe

11. Proof
How can we be sure the plan is working, during the project,
early?

12. No cure, no pay
Is it ‘no cure, no pay' in a confract? Why not?e

© Tom Gilb 2000-5
A full paper on this is available at www.Gilb.com
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1.3 Language Core: Planguage Basics and
Process Control

Planguage consists of a specification language and a corresponding
set of process descriptions (or methods). The Planguage language
terms are used together with the Planguage processes for specifica-
tion, analysis, design (also called planning, engineering, architecture
or problem-solving) and management of processes, projects or
organizations.

Planguage Specification Language

The specification language (usually called simply ‘Planguage’) is used
to specify requirements, designs and project plans. Planguage consists
of the following elements:

¢ A set of defined concepts. The Planguage Glossary contains the
master definition of concepts as used within Planguage (Examples
of concepts: objective, goal and function).

e A set of defined parameters and grammar. The Glossary also
contains the set of defined Planguage parameters (Examples of
parameters: Scale and Meter) used for specification.

The grammar consists of Planguage syntax rules. These syntax rules
are given in this book by example, rather than being formally stated.
The aim is to show ‘best known practice’ of how the Planguage
parameters should be specified to be useful. Note the examples
given are only ‘reasonable examples,” the reader should feel free to
add to them, to improve them and to tailor them.

¢ A set of icons. Each icon is used for graphical representation of a
specific Planguage concept and/or parameter. Icons may either be
keyed in on a keyboard, or drawn. For example, <fuzzy angle
brackets> are used to indicate a ‘poor’ definition in need of improve-
ment and, the icon, < >, is in the Glossary under ‘Fuzzy’

Relevant subsets of the Planguage language are introduced throughout
the book in the Language Core section of the chapters. More formal
definitions can also be found in the Glossary.

Planguage Process Descriptions

The Planguage process descriptions (or methods) provide recom-
mended best practice for carrying out certain tasks. The reader
should consider these defined processes as useful ‘starter kits’, but
should plan to extend, improve and tailor them to their needs,
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purposes and experiences. The set of Planguage process descriptions
is as follows:

* Requirement Specification (RS). (See Chapter 2 and sub-processes in
Chapters 3, 4, 5 and 6)

¢ Design Engineering (DE). Design Engineering is concerned with
identifying, selecting and sequencing delivery of design ideas (see
Chapter 7)

¢ Specification Quality Control (SQC). SQC is used for evaluating
the quality of any technical document and, for identifying and
preventing defects (see Chapter 8)

¢ Impact Estimation (IE). IE is used for evaluating designs and
monitoring the impact of results on the goals and budgets. It plays
a central role in Design Engineering (see Chapter 9)

¢ Evolutionary Project Management (EVO, also known as Evo). Evo
is used to deliver results in a series of high-value (highest value/best
benefit to cost ratio delivered earliest), small (say, less than 2% of
total project development time) evolutionary steps (see Chapter 10).

Note:

1. SQC measures the degree to which a specification follows its specifica-
tion rules. It directly measures the “loyalty to engineering standards.’

2. Impact Estimation and Evolutionary Project Management measure
the power of the design ideas in the marketplace.

The process descriptions for the above methods can be found in the
Process Description section of the relevant chapters.

Standards

As Tom Peters pointed out in Liberation Management (Peters 1992),
the only remaining reason for having a very large organization is to
share ‘know-how’ about best practices. Standards are an important
form of sharing such know-how. (Other examples would be patents,
market knowledge and specific customer knowledge.)

Standards can be termed “Work Process Standards.” They can be
usefully classified into specific types of guidance as follows:

¢ Policies

¢ Rules

e Process descriptions

¢ Forms and document formats

¢ Defined concepts (such as found in the Planguage Glossary)
e Language conventions (such as Planguage grammar)

e Work rates (such as ‘checking rate’)

¢ Others.
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Figure 1.3

Diagram of the components of Planguage. Even more detailed, and more correct (as a
consequence of being able fo use the feedback from practical experience and, from any
information being up to date) specification of the requirements and design ideas is likely to
occur within the frequent development cycles. Detailed explanation of the Evo result

cycles can be found in Chapter 10 (and in the glossary).

For specific examples, see Sections 1.4, ‘Rules’ and 1.5, ‘Process

Description.’

Standards can be generic, or can be tailored to specific tasks (for
example, to contracting, testing, writing and installation) and tailored
to specific stakeholder environments (for example, sub-supplier,

novice, top management and customer).
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Standards must be brief and non-bureaucratic. 1 favor, as a basic
rule, limiting standards to one-page in length. I have found that my
clients stick to a one-page format, finding it very practical. When
there is only one page, detail cannot overwhelm people. For exam-
ple, only the 20 to 25 or so ‘most important’ standards ideas can fit
on a page (to be adopted, new standards must force bad ones ‘off
the page’).

Standards must change as experience dictates. The owners of the
standards must update the standards specification when better prac-
tices are discovered, so that new knowledge is shared and is rapidly put
into use. People should be taught and motivated to use the standards,
unless they can justify otherwise.

Rules

Rules are standards that provide specific guidance to follow when
carrying out a process. They are also used in Specification Quality
Control (SQC) to define and detect major defects in a specification.
Individual rules should justify their presence in standards by the
potential resource savings that can be expected from using them.

Process Descriptions

Process descriptions (or methods) are standards that describe the
best practice for carrying out work tasks. The process format used
for Planguage process descriptions consists of three basic elements:

¢ Entry Conditions — to determine whether it is wise to start the
procedure

¢ Procedure — specifying for a task what work needs to be done and
how best to do it

¢ Exit Conditions — to help determine if the work is ‘truly finished’.

Entry Conditions

It is not good enough to allow employees to simply plunge into a work
process and ‘just do it.” The conditions must be right for success, not
ripe for failure. Entry conditions are a list of what an organization has
learned are the necessary prerequisites for avoiding wasted time and,
for avoiding the failure of a specific work process.

Before beginning any procedure, its entry conditions must be checked.
If the entry conditions are not met, then starting the procedure is high
risk. It is likely to be better to remove the negative conditions before
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proceeding. Entry conditions should be built on experience of what is

high risk and high cost.

Procedure

A procedure is a sequenced list of instructions, describing how to carry
out the task. It documents the current recommended best practice.

ExAmPLE  P3: For each design idea, estimate its numeric impact on the Scale of all the
attributes.
P4: Continue identifying/specifying or refining design ideas until the specified safety
margin is reached.

Exit Conditions

Exit Conditions are used to evaluate if the task is reliably and eco-
nomically completed. They specify the safe and economic conditions
for exit from a process to a ‘next’ process. Exit conditions are also built
on experience from previous releases to the next work process.

Input
Documents
including
Rules

v

J'y
Entry Exit
Conditions Procedure Conditions
1 1 Oth
Other > er
Processes > \ + } + i * "] Processes
A A
Entry Task Exit
Process » Process » Process
IE! IT! IX'
Output
Documents
Figure 1.4

Diagram of a simple process showing its sub-processes and its relationship to other pro-
cesses and documents. The input documents for each process include the rules, the entry
conditions, the procedure and the exit conditions. The diagram also shows how the ‘ETX’
concept for a process is derived. A rectangle is the symbol for a ‘written document.” A
rectangle with arrow is a ‘process’ symbol. An example of such a process could be
‘Requirement Specification.’
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Table 1.1 Description of some of the main generic Planguage parameters, concepts and icons.
Basic Planguage Parameters, Concepts and Icons

Concept or Meaning Used for Note also

Parameter

Planguage A term that is part of Structuring Glossary contains a set

Term Planguage. specifications. of Planguage terms.

User-Defined A term defined by users.  Identifying ‘local’ It should be short and

Term user terms. descriptive.

Type: Type or category of a Declaring the Planguage Type can be implicitly
term. category of a user- or explicitly declared.

defined term.

Tag: An identifier for a Providing a unique Hierarchical tags can be
Planguage term or a ‘local’ reference to a used. These can be used
user-defined term. term. in full (very explanatory)

or abbreviated depending
on context.

Gist: A rough, informal, brief ~ Getting consensus Usually not a precise,
description or summary. initially. Summarizing detailed or complete

finally. definition. For a scalar
parameter, ‘Ambition’
can be used to express
the ambition level.

Description: A description. Explaining terms. Level of explanation

detail should match the
context.

Definition: A definition, usually Defining terms. Synonyms are ‘Defined’
expressing the and ‘Defined As.’
relationship to other
user-defined terms.

Version: A date stamp. A time Identifying a specific For example: ‘Version:
stamp can optionally be  instance of a October 7, 2004 10:20.’
added. specification.

Stakeholder: Any person or Understanding who has  Usually a set of several
organizational group to be consulted or different stakeholders is
with an interest in, or considered when identified.
ability to affect, the specifying requirements.
system or its
environment.

Authority: The stakeholder or role  Identifying where the The authority has the
responsible for power resides. power to determine and
determining status and change a specification.
enforcing use. Also to control its

availability.

Owner: The stakeholder or role  Identifying the The owner usually is

responsible for the
overall specification
itself.

specification owner.

responsible for the
updating of a
specification.

Continued
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Table 1.1 Continued
Basic Planguage Parameters, Concepts and Icons

Concept or Meaning Used for Note also

Parameter

Readership: The stakeholder(s) or Identifying the A synonym is ‘Intended
role(s) who will or specification user(s) Readership.” A parameter
might use the or audience level to such as ‘Specification
specification. communicate to. User’ or ‘Process User’

could be used instead.

Status: The approval level of Identifying which For example: ‘Status:
the specification. version of the Draft.” See glossary for

specification is being additional terms to express
used. approval level.

Quality The quality level of the Stating the For example: ‘Quality

Level: specification in relation estimated defect Level: 3 remaining major
to its rules. density in a defects/page.’

specification.

Qualifier: A qualifier adds more States the conditions ~ The keyed icon for

[...] specific detail to the applying to a Qualifier is ‘[ ]’ as in
specification regarding specification for it to ‘[Qualifier Condition 1,
time, place and event be valid: the [time, Qualifier Condition 2,
conditions, [when, place, event] ... Qualifier Condition
where, if]. conditions. n].” The [...] icon is

used far more than the
parameter, Qualifier.

Source: Where exactly a given Used to enable The icon for source is ‘<-.

<- specification or part of readers to quickly Usually the icon is used in
it, originated. and accurately check specifications, rather than

specifications at their  the term ‘Source’.
origin.

Assumption:  Any assumption that Risk Analysis Other more precise
should be checked to parameters should be
see if it is still applies used if possible, for
and/or is still correct. example, Dependency,

Risk.

Note: “...” Any additional Used to provide Any notes are only
comments or notes, additional commentary and are not
which are relevant. information likely to  critical to a specification.

help readers. ‘Comment:’ could be
used as an alternative.

Fuzzy Identifies a term as Alerting the reader The keyed icon for fuzzy

<> currently defective and and author that the is ‘<imprecise word>’.
in need of improvement  term is not The ‘<>’ icon is always

trustworthy yet or used.
lacks detail.

Set Identifies a group of Explicitly shows that ~ The context explains why

Parentheses terms, linked in some a set of terms is the terms are a set.

{...} way, forming a set or a being specified. Usually, all terms are of

list.

the same Type.
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1.4 Rules: Generic Rules for Technical and
Management Specification

ExAMPLE

ExAamPLE

Versio

Status:

Here are some very basic generic rules, for any type of specification.
You will find that in spite of their ‘obviousness’ and simplicity, they
are quite powerful. Most of my clients use some variation of these
‘by choice’.

Tag: Rules.GS.

Version: October 7, 2004.
Owner: TG.

Status: Draft.

Note: These rules are rather lengthy, as additional explanatory text is
present. Readers should abbreviate as appropriate.

R1:’ Tag: Specifications must each have a unique identification tag,

R2: Version: Specifications must each have a unique version identifier.
By default, use the date (and maybe also, time), as the version
identifier.

n: October 7, 2004 09:00.

R3: Unique: Specifications shall exist as one official ‘master’ version
only. Then they shall be re-used, by cross-referencing, using their
identity tag. Duplication (‘copy and paste’) should be strongly dis-
couraged.

R4: Owner: The person or group responsible for authorizing a speci-
fication should be stated (‘Authority’ would be an alternative or
supplementary parameter, though it is a different concept!).

R5: Status: The status for using a specification should be given.
SQC Exited.

R6: Quality Level: All specifications shall explicitly indicate their
current quality level, preferably in terms of the measure of ‘number
of remaining major defects/page’ against the relevant official standard

which applies.

3 The number is a rule tag (or identification, if you like) and the word after the colon is
an equivalent alternative tag for referencing the rule. The following references are
possible Rules.GS.R1, Rules.GS.Tag, Standards.Rules.GS.Tag and other combinations.
The dot indicates that what follows is part of a set of things named by the term
preceding the dot. For example, GS is part of a set of things called Rules.
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Quality Level: Less than 1 remaining major defect/page.

Quality Level: Undetermined.

ABCI:

R7: Gist: Where appropriate, specifications should be briefly sum-
marized by a Gist statement. For performance requirements, ‘Ambi-
tion’ is a preferred alternative.

R8: Type: The type of every concept within specifications should be
clear. It should be explicitly specified after every new parameter tag
declaration unless the type will be immediately obvious to the
intended readership.

Type: Function.

R9: Clear: Specifications should be ‘clear enough to test’ and ‘unam-
biguous to their intended readers.’

R10: Simple: Complex specifications should be decomposed into a set
of elementary, tagged specifications.

R11: Fuzzy: When any element of a specification is unclear then it
shall be marked, for later clarification, by <fuzzy angle brackets>.

R12: Comment: Any text which is secondary to a specification,
and where no defect in it could result in a costly problem later,
must be clearly identified. It can be written in izalic text statements,
or headed by suitable warning (such as Note, Rationale or
Comment), or written in “quotes,” and/or moved to footnotes.
Non-commentary specification shall be in plain text. [talic can be
used for emphasis of single terms in non-commentary statements.
Readers should be able visually, at a glance without decoding
the contents, to distinguish between ‘critical’ and ‘non-critical’
specification.

R13: Source: Specification statements shall contain information
about their source of origin. Use the ‘<-” icon and state the source
person and the date, or the source document with detailed statement
reference.

R14: Assumptions: All known assumptions (and any relevant
source(s) of any assumptions) should be explicitly stated.

The Assumption’ Planguage parameter can be used for this purpose. But
there are also a number of alternative ways, such as {Risk, Source,
Impacts, Depends On, Comment, Authority, [Qualifiers], If}. In fact,

any reasonable device, suitable for the purpose, will do.
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R15: Risks: You must specify any factors, which constitute known or
potential risks. You must identify risks explicitly.

There are a wide variety of devices for doing so, including the explicit
Planguage statement: Risks.”

ExAMmPLE Goal [Market Y]: 60%.
Risks: Market Y will have more competition than now.
2
Standards: List of .
Rules.GS Stakeholders Standards: D??'g'.‘
Rules.RS and Rules.GS Specifications
§ Changes to Requirement Rules.DS [Current]
Rules.FR Statement of N e
! Requirements Specification Rules.IE and
Rules.SR Requirements (Feedback) N
Rules.SD or Requirement [Updated] and relevant Evolutionary
and relevant Specification Proge;s cPIan
Process Descriptions [Current] Descriptions [Current]
A 4 A 4 \ 4 A 4 A

Requirement Specification

Specify Requirements
Process.RS

Process.FR
Process.PR
Process.SD
Process.RR

Notes:
Iteration of the processes has been allowed for by including existing specifications as potential inputs. Qualifying
square brackets have been used around descriptive words, which are added to assist understanding. The aim is
to show how the rules and process descriptions discussed in this book fit together. This diagram shows
procedure steps P1 and P2 of the Generic Project process (Process.GP). These same processes are used
during Manage Evolutionary Project (Process.GP.P3) — that is during Evolutionary Project Management — in
order to update the requirements, the ideas and the Evo plan (see Figure 1.6).

v

Requirement
Specification
[Updated]

Design Engineering

Determine Design: {Analyze Requirements,
Find & Specify Design Ideas,
Evaluate Design Ideas (Impact Estimation),
Select Design Ideas & Produce Evo Plan}

Process.DE
¢ Process.IE
e Others
Design
Specifications
Changes to [Updated]
Requirements and
(Feedback) Evolutionary
Plan
[Updated]

The abbreviations used in this figure (and in the rest of the CE book) are as follows:

GP
GS
RS
FR
SR
PR
SD

Generic Project

Generic Specification
Requirement Specification
Function Requirements
Scalar Requirements
Performance Requirements

Scale Definition

Figure 1.5
An overview of the Planguage-defined requirement and design processes.

RR
DS
DE
IE
EVO
SM
DC

Resource Requirements

Design Specification

Design Engineering

Impact Estimation

Evolutionary Project Management
Strategic Management

Delivery Cycle
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Standards:

Rules.GS Rules.SD
Rules.RS Rules.DS
Rules.FR Rules.IE
Rules.SR Rules.EVO

and any relevant
Process Descriptions

Requirement
Specification
[Initial],
Design
Specifications
[Initial] and
Evolutionary Plan
[Initial]

v v

Evolutionary Project Management

Manage Evolutionary Project Process EVO
Do e Process.RS

A e Process.FR
Perform e Process.PR

.Flan Result |29 « Process.SD
Cycle ; o Process.RR

e Process.DE

e Process.IE
Act Feedback e Process.SM
Results e Process.DC
\- Others

Requirement

Specification
[Updated], Proi
. T roject
Design Specifications Report

[Updated] and
Evolutionary Plan
[Updated]

Figure 1.6
An overview of the defined Planguage process, which supports Evolutionary Project
Management, Process.GP.P3 or in more detail, Process.EVO in Chapter 10.

1.5 Process Description: Generic Project

Process: Generic Project
Tag: Process.GP.

Version: October 7, 2004.
Owner: TG.

Status: Draft.
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Gist: A process specification giving an overview of the entire Plan-
guage process for a project.

Entry Conditions

El: The Generic Entry Conditions apply (see separate specification for
Generic Entry Conditions below).

The raw requirements should have been gathered. The known sources
of requirements should be identified and listed. These include:

e all the critical stakeholders
e all the currently identified requirements with detailed sources (use

<-" and, state who or which document) and any justification for
these requirements (use the Rationale parameter).

Procedure

P1: Specify Requirements [Initial]: Specify the initial top-level
requirements (see Chapters 2, 3, 4, 5 and 6 as appropriate).

P2: Determine Design [Initial]:

P2.1: Analyze the Requirement: Consider the stakeholder value and
the delivery order for the requirements. Identify any constraints and
any conflicts. Establish the scope for the system design.

P2.2: Find and Specify Design Ideas: Identify and specify the initial
top-level design ideas to meet the requirements (see Chapter 7).

P2.3: Evaluate Design Ideas: Estimate the impacts of all the design
ideas on all the requirements (see Chapters 7 and 9).

Re-do P1 to P2.3, until a reasonable balance between requirements
and costs is obtained.

P2.4: Select Design Ideas and Produce Evo Plan: Produce an initial
overview, long-term evolutionary plan of the sequence of Evo steps.
That is, a plan for starting early delivery of required results by imple-
menting the design ideas in a series of small result cycles. Each result
cycle using, say 2% of total project time. (7hat is, each result cycle is an
Evo step. Note, an Evo step contains one or more design ideas.)

Determine the sequence of step delivery of the potential Evo steps. Do
this by calculating for each potential step, the performance to cost
ratio, or ideally you would use the ‘stakeholder view’ of the value to
cost ratio (the value being the benefits the stakeholders consider they
will obtain from the system improvements). Ideally, sequencing
should be in order of descending ratios, but consideration needs to
be given to any associated dependencies (see Chapters 7 and 10). Note
this plan will be modified, within the result cycles, using the feedback
provided by the results of implementing the design ideas (see below).
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P3: Manage Evolutionary Project: Iterate Plan-Do-Study-Act
(PDSA) evolutionary result cycles until the exit conditions (below)
are met. Each result cycle implements the next Evo step and provides
Jfeedback to modify the design, and maybe, to adjust requirements to more
realistic levels (within each result cycle, the processes Specify Requirements
and Determine Design are reiterated to carry out any more detailed work
required as part of the implementation of the Evo step, and to cater for any
changes required as a result of the feedback), (see Chapter 10, ‘Evolu-
tionary Project Management’).

Note: When using Evo, as long as the Evo result cycles are delivering ro the
planned levels, the need for initial management review is considerably
decreased (if not eliminated) as the resource commitment for each delivery
step is only abour 2% of the project total.

Exit Conditions

X1: The Generic Exit Conditions apply (see separate specification for
Generic Exit Conditions below).

X2: Cease doing Evo steps (P3) when either the stakeholder require-
ments are met, or resource budgets are exhausted. In other words, stop
when the performance requirements are met at planned levels, or
when resources (budgets) are ‘used up’ at their planned levels.

Generic Entry and Exit Process and Conditions

Here is a process that can be used as a generic entry process or a
generic exit process. The benefit of having one master generic process
is that it is easier to review and update.

Process: Generic Entry or Generic Exit
Tag: Process.GE.E or Process. GE.X.
Version: October 7, 2004.

Owner: Systems Engineering Process Owner.
Status: Draft.

Gist: A generic process description that applies by default to all entry
and exit processes.

Procedure
P1: Check all the conditions that apply.

P2: Note which conditions cannot be met.
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P3: Decide if we can or must ignore specific failed conditions
(waver).

P4: Attempt to correct, or help others to correct, any failed conditions
in need of correction.

P5: Report status of the process in writing.

P6: Help management understand the reasons for and the risks of
ignoring the problem of any failed or waved conditions.

P7: If management insists on overriding your advice, make sure
the responsible manager, after being informed of the risks, is
documented as overriding the formal process intentionally. (Make
sure we know who to blame later and then they take the respon-
sibility.)

P8: For exit only: Ensure any process improvement suggestions have
been submitted to the relevant process owners.

P9: Allow exit/entry when all conditions are either met or
waived.

Note: To simplify matters, no entry or exit conditions have been specified
for this process!

Generic Entry Conditions

Scope: For systems engineering, all specification entry processes.
Owner: Systems Engineering Process Owner.

User: Specification Author [Default User: SQC Team Leader].

E1: All logically necessary input information for complete and correct
specification is available to the specification author. This includes
up-to-date documentation regarding specification standards.

E2: All input documents have successfully exited from their own
quality control process.

Note: This usually implies between 0.2 and 1 maximum remaining major
defect(s)/page (A page is 300 words of non-commentary text). ‘Remaining
major defects’ is explained in Chapter 8, Specification Quality Control.”

E3: The specification author is adequately trained or, assisted by a
qualified person.

E4: The specification author agrees that they are ready to successfully
carry out the specification work.

E5: There is appropriate approval, including funding, for the specifi-
cation process to proceed.
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Generic Exit Conditions

Scope: For systems engineering, all specification exit processes.
Owner: Systems Engineering Process Owner.

User: Specification Author [Default User: SQC Team Leader].

X1: The specification author claims to have followed the specified
process description standard.

X2: The specification author claims to have followed all generic and
specific rules, which apply.

X3: Relevant SQC has been carried out and the quality level of each
output specification meets its stated SQC criteria. By default, the quality
level for any specification is that no more than 0.2 major defects/page”
may remain. (A page is 300 words of non-commentary text.)

Note, for some processes, there will be an explicit statement on SQC
criteria, which overrides this generic exit condition.

X4: As an additional optional measure, a cursory check of the speci-
fication by the author’s supervisor shows that there is reasonable
compliance with applicable rules. In practice, no major defects should
be found when a relevant sample (size and content) of the specifica-
tion is SQC checked for 15 minutes.

X5: Any process improvement suggestions identified have been sub-
mitted to the relevant process owners.

1.6 Principles: Generic Project

Principles are reachings, which you can use as guides to sensible action.
Here is a set of fundamental principles:

1. The Principle of ‘Controlling Risk’
There is lots of uncertainty and risk of deviation from plans in any
project.
You cannot eliminate risk. But, you can document it, plan and
design for it, accept it, measure it and reduce it to acceptable levels.
You may want to avoid risk, but it doesn’t want to avoid you.

2. The Principle of ‘Storage of Wisdom’
If your people are not a// experienced or geniuses,
You need to store their hard-earned wisdom in your defined process.

4 A maximum of 0.2 remaining major defects/page is a very high standard. Beginners
should try for about 2.0 and work towards better levels.
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Capture wisdom for reuse,
Fail to write it, that’s abuse!

3. The Principle of ‘Experienced Geniuses’
If you do have any experienced geniuses, don’t just let zhem save
projects;
They should share #heir wisdom with colleagues, on how to avoid
failures.
Those who learn the hard way,
Should share their easy way.

4. The Principle of ‘Grass Roots Experience’
Your grass roots people will £rnow what is wrong with your work
standards,
So let them suggest improvements, every day.
The soldier who has the boot on knows where it pinches.

5. The Principle of ‘Short and Sweet’
Keep your standards short and sweet,
A single page will do the feat.
Brevity is the soul of wit,
All essentials, a page do fit.

6. The Principle of ‘Don’t Refuse to Reuse’
Reuse good specifications, and don’t repeat them,
Once said suffices, no repetitious vices.
Write once, use many.

7. The Principle of ‘High Standards’
Have high standards for your work process entry, to save yourself
grief,
Have high standards for your work process exit, to your friends’
great relief.
Note work standard conditions for success,
Respect them; even in duress.

8. The Principle of ‘Quality In, From the Beginning’
Quality needs to be designed into processes and products,
Cleaning up bad work is a loser, but cleaning early is better than late.
A stitch in time still saves nine,
But an ounce of prevention is still worth a pound of cure.

9. The Principle of ‘No Simpler’
The optimum guidance lies somewhere between anarchy,
And too much bureaucracy.
Things should be as simple as possible,
But no simpler.’

> “Physics/theories/things should be as simple as possible, but no simpler”. Reputed

quote of Albert Einstein. Nobody seems able to prove he actually said it, but it is
acknowledged to be in his spirit. Calaprice, Alice [Editor]. 2000. The Expanded
Quotable Einstein. Princeton University Press. ISBN 0-691-07021-0.
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10. The Principle of ‘Intelligent Insubordination’
A work process ‘standard’ isn’t a law, just good advice,
Ignore it, if you've better ‘words from the wise’.
Rules were made to be broken wisely.

1.7 Additional Ideas

Continuous Process Improvement

Conventional ways of getting control over systems engineering projects
include:

e resource allocation adjustment (time, people, talent, money,
sponsorship)

¢ ambition level adjustment (performance to fit within budgets)

e shift of responsibility (outsourcing, purchasing, contracting,
democratization)

¢ priority management (sacrificing some things to get others, tradeoffs).

There is a less-understood addition to these ideas: process control. It is
to get control over results by getting control over the work processes
producing the results. In concept, this is Statistical Process Control
with its famous Plan-Do-Study-Act (PDSA) cycle as taught by She-
whart, Deming and Juran (Deming 1986).

‘Process control’ is sufficiently well known within manufacturing.
However, surprisingly, it has not become conventional practice within
systems engineering. There are two main areas where its use is lacking.

First, process control is rarely exploited in the area of project
management. This is in spite of there being ‘software’ literature,
which documents good experience with process control since the

Check that Check that
defined defined
Entry Conditions Carry out Exit Conditions
are met defined Procedure are met

A
Do
A ]
Entry Exit
Process Plan Study Process
Act

Figure 1.7
A simplified PDSA process cycle diagram as a basis for work process control, consisting of
an entry process, a procedure and an exit process.
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1970s: for example by Harlan Mills ac IBM (Mills 1980), references
such as (Gilb 1988) and, even military IT standards within
the USA (such as MIL-STD-498 in 1994) (see Larman and Basili,
2003, for historical overview.) The problem is that this ‘software’
documentation is little known, having simply not been adequately
recognized in mainstream project management literature. (In fact,
there appears to be almost no reference at all to evolutionary project
delivery and process control. The Waterfall method unfortunately
dominates, according to my informal bookshop surveys and speak-
ing with professional project management people.)

Secondly, the PDSA cycle concept is also underutilized in systema-
tic process improvement. Use of numeric feedback for control is
often not understood and not practiced. This is, however, being
addressed in emerging standards for systems engineering and in US
DoD ‘Mandatory Guidelines’ (DoD  Evolutionary Acquisition
1998).

The key concept is that if a well-defined process is followed, then
the process output performance levels will be a consistent and
predictable result of that process. If attempts are then made to
change the process, we can assume that systematically changed
performance results (hopefully, better levels and lower variability)
can safely be attributed to the process change, not chance. Unfor-
tunately this powerful concept is frequently ignored. The false
dogma is often spread that defined repeatable processes lead to
quality. (In fact, this is only the initial stage of achieving a stable
process, which is then ready for process change, as the prior
stability enables proof of the cause-and-effect of the change.)

It is important that work process standards be the vehicle for
continuous, systematic work process practice improvement (productivity
improvement). They must not remain static, when there is better
know-how. They must not stand in the way of improvement. They
must lead the way and teach the way. They must be easily changed
and frequently changed to incorporate better ideas quickly, and easily
adapted to suit changing circumstances or tailoring for local circum-
stances. The actual usage of work process standards must be mea-
sured, motivated and taught by using Specification Quality Control
(8QC) sampling. SQC measures specification conformance to
two classes of work process standards: official rules and exit/entry
conditions.

Normally no more than one significant deviation (one major defect/
page) from the specification rules should be allowed. Yet without
SQC, 100 or more major defects/page will be your fate. This may
seem astounding to people who have not measured it, but this, in my
experience, is the norm in most organizations throughout the world.
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Why Process Control?

- Use of Best Practice - Rapid Dissemination of Changes

- Reuse of Ideas ~ Ability to detect any ‘Bad!’
Process Changes
- Predictable Output from  _ process Measurement and
Stable Process Benchmarks

Not just *having a Process’, but using it as ‘a vehicle for Change'.

Continuous work process improvement for a large organization can
involve making changes to company standards and practices at the rate
of 1,000 ideas implemented per year — as documented at IBM,
Research Triangle Park (Mays 1995) and IBM Rochester (Minnesota)
Laboratories (IBMS] 1994). This process change rate seems to result
in annual productivity increases of about 40%, as recorded for exam-
ple at Raytheon Defense Electronics over several years (Dion 1993;
Haley etal. 1995; see also Section 1.8 below; over the years studied, a
total productivity increase of 270% was reported).

Calculating the effect of detected defects, if uncorrected, on the timescales of a project
At a major U.S. multinational in October 1999, eight managers did a sample SQC
on an 82-page system requirement specification. The only rules used were, ‘clear,
unambiguous, no design specifications in the requirements.” They found about 60
major defects/page.

Assumptions: My SQC experience has determined that:

¢ only about one third of the defects that are really there will be found by staff
inexperienced in using SQC at the first pass

* cach defect will result in ‘an order of magnitude’ extra work to fix when found
downstream.

It is also assumed that there are 200 days per year and 8 hours per work-day (1600
hours/year).

Using these assumptions, it can be calculated that the project will incur 82 (number of
pages) X 60 (number of defects/page), x 3 (as only a third effective in finding
defects), X 10 (number of hours/defect) additional hours correcting defects = 147,600
hours or approximately 92 person years.

We can assume the probability of a major defect actually resulting in an average
10 hour delay is about 25%-35%. So at 25% we would lose 36,900 hours.

For a project with 10 programming staff, this meant roughly two years’ delay.

We later that afternoon were told that the project using this ‘approved’ specification
was actually at least one year late, probably 2 years late. This had in fact been
predicted fairly accurately by our analysis, before we were told the reality!

In such an environment, simply continuing to fix specification defects as they are detected
is not the sensible option. Continuous process improvement needs to be used to drive down
the number of defects being injected into the specifications.

See also Chapter 8 and the Glossary for further detail on Specification
Quality Control (SQC) and the Defect Prevention Process (DPP).
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1.8 Further Example/Case Study: Continuous
Process Improvement at Raytheon

This Raytheon case study outines how measurable process
improvement can be brought about using Specification Quality Con-
trol (SQC) and Continuous Process Improvement. Within Raytheon’s
Equipment Division, software process improvements have yielded:

¢ a7.70 US dollars return on every dollar invested

e a greater than two-fold (2.7 %) increase in productivity

e as measured by the Software Engineering Institute (SEI) Capability
Maturity Model (CMM), an evolution from Level 1 (Inital)
through Level 2 (Repeatable) to Level 3 (Defined) process maturity
(and later beyond that).

More detail can be found in Raymond Dion’s account of the software
process changes within Raytheon (Dion 1993; Haley etal. 1995).

Background

Raytheon, a diversified, international, technology-based company, is
one of the 100 largest corporations in the US. The Equipment
Division is one of eight divisions, and 11 major operating subsidiaries
within Raytheon, with annual sales that comprise about 13% of the
corporation’s $9.1 billion annual sales. In early 1988, many Software
Systems Laboratory (SSL) projects were delivered late and over bud-
get. That year, the SSL rated itself at CMM Level 1 (Initial), using the
SEI capability-assessment questionnaire.

Aim

As a result, in mid-1988, the Equipment Division started a process-
improvement initiative within the SSL. Within the initiative, four
working groups directed the major activities: Policy and Procedures,
Training, Tools and Methods, and Process Database (metrics). The
initiative’s fundamental aim was the continuous improvement of the
development and management process. Their strategy was to use a

three-phase cycle of stabilization, control and change in accordance

with the (PDSA) principles of W. Edwards Deming and Joseph Juran.

Financing the Improvements

Discretionary funding (overhead, independent research and develop-
ment, and reinvested profit) was the chosen solution. However, in
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order to convince management to persevere, this approach required
two important ingredients. First, there had to be some short-term
benefit to ongoing projects and, second, there had to be a meaningful
quantification of what the benefit was.

Measuring the Effects

In launching the initiative, they had to consider how individual small
improvements, implemented more or less in parallel, would interact to
produce a net loss or gain. They decided it would be easier to measure
the overall effect of change on the ‘bottom line’.

Calculating Savings

Raytheon used Philip Crosby’s approach (Crosby 1996) to analyze a
database of 15 projects. The analysis, indicated that they had eliminated
about $15.8 million in rework costs through the end of 1992 (four and a
half years). (Hewlett Packard, using this author’s SQC methods,
reported similar results (Grady and Van Slack 1994)). The Raytheon
appraisal costs (a term meaning cost of auditing, testing, reviews and
inspections) had increased by 5%. The increased rigor with which they
conducted design and code inspections (SQC), accounts for some of this
increase, but most of the Raytheon result is due to a 30% decrease in
total project cost, which has pushed up appraisal cost proportionally.

Early delivery of one Raytheon project was reported to have given
them a $10 million bonus from their customer. It was considered
entirely due to the initiative. There were several other tangible benefits
from the initiative. The saving in rework costs was only one of them.

N N W
o o O

Defects per Thousands
of Instructions
o

10t
5
0 } } } } } } }
88 89 90 91 92 93 94 95
Years

Another benefit from the effort: overall product quality, measured by software defect
density, improved by about 3 to 1, from 1988 to 1995 at Raytheon (Haley etal. 1995).
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1.9 Diagrams/Icons

Planguage
L Generic
Specification Language Work |
‘Planguage’ Process
Generic . Descriptions|  Planguage
Version Generic (RS, DE, IE, as
including Process EVO & SQC) presented
Templates Language and in this book
Rules
Project
U A4 \4
ser- 1| Specific Project Specific
22?2]? Specification Project Work I
User Language | Specific Process Project
Metrics Process Descriptions Specific
&User Language (including Version
Variables Rules)
Project
Input
Specifications
- . 1l
Specific Project .
Work Process Project
Process

v

Specific
Product
Specifications

Figure 1.9

I. At the top of the diagram, the two main, generic components of Planguage, the
specification language and the process descriptions are shown. (These two compo-
nents correspond to the version of Planguage presented in this book.)

Il. In the middle of the diagram, the specific version of Planguage (the project specifica-
tion language and project process descriptions) selected for use by a project is shown.
This specific version will have been tailored by the project. In addition, a project will
have user-defined data. The user-defined data will always be unique to a project. It
comprises the user-defined terms, actual numeric values (user metrics) and any user-
assigned, non-numeric variables of the project specifications.

lll. The bottom of the diagram is a generic model of a project process. It shows how the
various components of the project specific version of Planguage (and the product
data) map onto the project process.
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Some Basic Planguage Icons

Document or Specification

A rectangle

Process

A rectangle with an upwards pointing
arrow on its left hand side.
The arrow reminds us of the cyclical nature of processes.

Plan-Do-Study-Act Process Cycle

The four sides of the process icon symbolically represent the Shewhart
process-cycle definition of ‘Plan-Do-Study-Act’.

The process input/output axis is vertical and the process control axis is
horizontal.® Specifications and other input materials are diagrammed as
entering from the north and exiting from the south. Previous processes
are connected from the west and subsequent processes are entered from
the east. These conventions are independent of the PDSA activities,
since one can enter and exit to and from any of these four process task
types. (That is, you can step on and off the cycle at any point.)

Do

Plan Study

Act

¢ The traditional view as shown by Deming is a circle form with four arrows. I have
chosen the rectangle as it is easier to generate and has other nice properties. I hasten to
point out that Deming taught that it did not matter where in the cycle one entered a
PDSA process, nor where one exited, though he was not so concerned with exit, as he
viewed the cycle as an eternal process-control cycle, as long as there were competitive
pressures to improve things. I believe this is true and, so, I hope my choice of
representation does not inhibit the reader from entering and exiting processes wherever
convenient or realistic (P, D, S or A).
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Corporate Quality Policy

1. Quantify
Critical Success
Factors

7. Evaluate
Specification
Quality

2. Evaluate Risk

Quality
Policy

6. Ensure
Continuous
Work Process
Improvement

3. Assess
Change Impact

4. Ensure
Change Control

5. Perform
Evolutionary
Project Management

Figure 1.10
Example of a corporate policy standard.

Notes Supporting the Example of a Corporate Policy
Standard

1. Quantify Critical Success Factors:
All critical success factors (function, performance and resource)
for any activity (planning, systems engineering and manage-
ment) shall be expressed clearly, unambiguously, measurably
and testably at all stages of consideration: presentation, evalua-
fion, construction and validation.

2. Evaluate Risk:
In any planning or systems engineering work we shall explicitly
document all notion of suspected or possible elements of risk or
uncertainty, so nobody reading it can be in the least doubt as to
the state of our certainty and knowledge.

3. Assess Change Impact - To Exercise Control over Multiple
Dimensions of Performance and Budget:
All design ideas (strategies, system components, processes or
other devices) shall be evaluated with regard to their effects on
all the critical objectives and budgets. Initially, this should be by
estimates, which are based on facts and experience. On deliv-
ery, the design ideas shall then be evaluated by actual measure-
ments taken as early and as frequently as possible.
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4. Ensure Change Control - Configuration Management and
Traceability:
All statements of objectives, budgets, design ideas, and esti-
mates and measures of the impact of design ideas on objectives
and budgets shall be captured with explicit detailed information
as to their sources, so that detailed change control is made
effective and efficient.

5. Perform Evolutionary Project Management:

All projects whether concerning organizational issues or product
development, shall be confrolled by a Plan-Do-Study-Act pro-
cess control cycle. They shall have small increments of cost and
time (in the 2% to 5% range normally) before afttempting to
deliver useful customer increments of function and/or perfor-
mance improvement (atf least some sort of field trial). Where
there is any choice of incremental step content we shall choose
the increment which gives the greatest quantified impacts in
total on all critical customer or project objectives, with least
resource expenditure.

6. Ensure Continuous Work Process Improvement:

Practical priority will be given to measurable continuous
improvement of all work processes in systems engineering, man-
agement and other company activities. Plans for type and
degree of improvement will be budgeted; and progress towards
improvement objectives will be measured. The ambition level will
be world-class levels and to be the leader in any area. As a
practical matter all employees are expected to participate in
analysis of current defects found by quality control (for example,
specification quality contfrol (SQC) and test) and to spend effort
improving the current work environment to eliminate 50% of the
current defects every year over the next few years.

7. Evaluate Specification Quality:

Alldocuments, capable of producing a significant impact on our
performance levels, must be evaluated using the best available
quality control process. These documents must meet an appro-
priately high quality standard (that is a low numeric value for the
‘maximum possible remaining major defects/page’ as specified
in our written standards and policies) before being released to
any internal or external customer for serious use. The ultimate
release level shall be state of the art (between 0.3 and 3.0
remaining major defects/page).

1.10 Summary: Planguage Basics and Process
Control

This chapter has provided an introduction to Planguage and, hope-
fully, set the rest of the book in context. The main Planguage concepts
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introduced in this chapter have been processes and continuous process
improvement through use of process standards. Many examples of
process standards will be found throughout this book. They aim to
provide practical, step-by-step advice on how to implement Plan-

guage.

Planguage is not a prescription of how I feel you should do things. It is
a framework for you to discover how you best can do things yourself.
Planguage is open for change from any source, at any time, for any
good reason. It is intended to be totally in tune with the need for
continuous improvement of all competitive systems and processes.

If Planguage doesn’t save time and effort and improve quality, it fails.
Don’t use it! Please do not misunderstand Planguage as if it is an
‘imposition of a lot of bureaucratic detail.” I hate bureaucracy as much
as you do! But I hate failure even more. So, I am willing to use the
Planguage disciplines; I find that they pay off and make my profes-
sional life easier and more successful. (Note: The Planguage methods
actually work in most problem-solving situations; they can even be
used in your personal life too!)

Planguage is concerned with gesting control over things. If you want to
be more in control of your work, Planguage has many practical
techniques to help you. It takes some learning. It takes some work to
implement. 1t takes time to change the culture around you.

In fact, human culture changes can be frustratingly slow; they can take
years! But if you don’t start this evolutionary process now, this week,
this project, then the problems will get worse, not better. Can you
afford to ignore the evidence from several major corporations, such as
Raytheon, that continuously improved best practice standards can
lead to substantial improvements in your team productivity annually
over the next few years?
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2.1 Introduction to Requirements Specification

Peter Morris, having studied numerous projects in the US and UK
covering the period from 1940 to 1990, identifies that one of the
major causes of project problems is that our current management and
engineering culture consistently fails sufficiently to articulate require-
ments or cope with change in them (Morris 1994).

More recently, in 2001, having conducted a thorough review of the
recent systems engineering industry literature, Ralph Young con-
cludes that the causes of project failure are ineffective practices for
handling requirements. He estimates the necessary improvements in
such practices could be financed by approximately one third of the
current total cost of project failures. Additional gains would be that
customer satisfaction and the quality of results would also improve
(Young 2001).

You probably feel that you need to ask more probing questions about
the project requirements that you are working on. You are likely,
unfortunately, to be able safely to assume that nobody in your senior
management and none of your customers has a well-developed sense
of exactly what requirements they really want or need. They may all
have the dangerous i//usion that they do. However, they are unlikely to
have a clear enough requirement specification. Nor are they likely to
have requirement ideas which are ‘shared precisely’ by all their col-
leagues and the other stakeholders.

Definition of Requirements

Requirements give information to the system designers and to a wide
range of stakeholders. They state what the stakeholders want the
system to achieve.

Requirements can be classified intfo ‘requirement types’ as follows:

0. Vision: at the highest level, the future direction for a system.

1. Function Requirements: what a system has to ‘do’: the essence
of a system, its mission and fundamental functionality.

2. Perfformance Requirements: the performance levels that the sta-
keholders want — their objectives. How good? These can be
further classified as:

* Qualities: how well the system performs, for example: usability,
availability and customer satisfaction.

* Resource Savings: the required improvement in resource util-
ization: relative economic and other resource savings com-
pared to defined benchmarks. These are known simply as
‘Savings.’
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* Workload Capacities: how much the system performs. In other
words, the required capacity of the system processes. For
example, system peak processing volumes, speeds of execu-
fion and data storage capacity.

3. Resource Requirements: the levels of resources that stakeholders
plan to expend to develop and operate a system. Resources have
to be balanced against the stakeholders’ perceived values gained
from the system functions and the system performance levels.

4. Design Constraints: these are any design ideas that must be
included in the system design.

5. Condition Constraints: these are any additional constraints fo those
imposed by the function requirements, the performance require-
ments, the resource requirements and the design constraints. Con-
dition constraints are often used to capture system-level constraints
(for example, ‘the system must be legal in Europe’).

From the viewpoint of understanding ‘competitiveness’, ‘levels of
achievement’ and ‘associated risk,” the performance requirements
are by far the most interesting requirements. Yet, traditionally, too
much attention has been given to specification of function require-
ments and resource requirements (such as financial budgets, deadlines
and headcounts). We need a more balanced requirement specification
that includes all targets and all constraints. They all need to be equally
clear and equally capable of being tested.

Key Issues for Requirements

Here are some key issues to consider when using or specifying
requirements:

Identifying the critical stakeholders

Failing to identify the critical set of stakeholders is a common problem.
The stakeholders for a system are anyone affected by the system or
who can impact the system. This includes system users, maintainers,
financiers, managers, developers, critics and others. If you fail to
consult and analyze the critical stakeholders, then your requirements
will risk being dangerously incomplete. By definition this will threaten
the existence of your system, or at least its profitability.

Hint: Consider the entire lifecycle (including retirement or replacement)
of a system or product when looking for stakeholders. Identify different
categories of stakeholder (for example, internal and external (including the
more remote) stakeholders).

(Use the Authority, Source and Stakeholder parameters to specify the
stakeholders.)
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Separating ends and means

It is important to distinguish ‘ends’ (requirements) from ‘means.’
‘Means’ are the design ideas we choose: the architecture, technology,
strategies and other synonyms (They are whatever is needed to achieve
the requirements).

It is common to find design ideas included within requirement
specifications. I call them ‘false requirements’. Only if the design idea
is an intentional, conscious design constraint should it be in a require-
ment specification.

All “false requirements’ should be removed from requirement specifi-
cations. They should then be investigated; to see if they reveal other
hidden additional requirements, which ought to be included (see he
example in Section 2.8. See also Chapter 3, which discusses separation of
Sfunctions from design ideas).

Identifying the key requirements

You must try to identify the stakeholder requirements which are either
‘vital’ (system threatening) or ‘profitable’ or ‘highest risk’ for your
system. Key requirements have the greatest impact on your most
critical stakeholder values and system costs. You do not need (that
is, are not economically obliged) to seriously consider implementing
any other stakeholder needs than these.

Hints: Look for areas with potentially high development or operational
costs. Ask the stakeholders for their opinions on their most crucial
requirements.

Note: The concept of identification of the few key requirements (I often use
the concept Top Ten) does not mean that they will not need to be
decomposed into more elementary requirements (see below, Handling
Complex Requirements).

Remember, for many projects, even delivering a single top objec-
tive on time and to financial budget, would be an advance on their
current experiences!

Quantifying success and failure

Requirements need to be understood in terms of success and failure
levels. You must ensure you have quantified numeric values specified
for each of your performance and resource attributes. Knowledge of all
the targets (‘what we aim for’) and constraints (‘the limits we need to
respect’) is vital for both system design and project management. You
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need to understand exactly what level of achievement is expected and
then design towards it. Specifically:

e Success: You also need to know when you have met your required
levels of requirements. Reaching each single planned level is ‘partial’
success. Your project is a complete ‘success’ when all success levels
are met, for all performance goals, within all budgets. (Success levels
are targets specified using Goal and Budget parameters.)

¢ Failure: You need to specify the attribute levels that you have to
reach in order to avoid some type of stakeholder failure (such as ‘fail
to get desired market share’). (These are constraints stated using Fail
parameters. They are not as critical as the Survival constraints).

e Survival: You need to determine and specify the numeric limits
which would classify your project as a total failure; so all stake-
holders know the minimum survival requirements (7hese are con-
straints expressed using Survival parameters). These become your
highest priority requirements, as they are key to your project’s
continued existence. Survival is a higher priority than success!

¢ Potential: It is also useful to keep a record of desired, but uncom-
mitted and unbudgeted, requirements. Knowing these, even when
you cannot deliver them immediately, is key to being the first one to
deliver them when it does become possible. (These are specified using
the parameters, Stretch — a deliberate engineering challenge set for the
system engineers — and Wish — an expression of the levels which

stakeholders ‘dream of )
See Chapters 4, 5 and 6, which describe how to quantify performance

requirements and resource requirements using the Scale, Goal or Budget

(success), Fail (failure), Survival (survival), Stretch (challenge) and Wish

(dream) parameters.

Understanding the past and the future - benchmarks and
state-of-the-art

You need to understand the context of your requirements. What are
the current ‘benchmark’ performance levels of your existing system
and competitors’ systems?

Hint: There is always some existing system to usefully benchmark!

Are your plans ambitious enough? Are they state-of-the-art? How do
they measure up to your known competitors? How do they fit with
current trends in technology? You need to know these factors to
understand the level of risk involved and the likely costs. State-of-
the-art implies doing something nobody else has yet achieved. This
means that costs and success are both uncertain. Don’t let that stop
you! However, do plan to control this situation rigorously.
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See Chapter 4, which describes how to express benchmarks, trends and
state-of-the-art levels using the Past, Trend and Record parameters.

Considering the timescales for delivery of requirements

To assess whether your requirements include adequately specified
‘time conditions’ (dates), you should ask questions, such as: How
early are the stakeholders going to receive some benefits from this
system? Are the requirements specified for the short term needs only?
Are unrealistically long investment timescales set?

Most importantly, you should plan the early delivery of some require-
ments to some stakeholders. There ought to be a steady stream of
value delivery throughout the project life.

Hint: Analyzing the requirements of the different stakeholders is one way
to identify the opportunities for early deliverables. (See also Chapter 10 on
Evolutionary Project Management.)

One client ‘delivered’” a mobile telecommunications ‘base station’ eight months
‘early’ to its system installers (an internal stakeholder), who were scheduled to install
it ‘for real’, later, in Japan. The installers immediately discovered many serious
installation problems, which would have delayed installation. The development
project (another internal stakeholder) then had eight months to fix these problems
and, not surprisingly, the ultimate system was successfully installed on time (Erics-
son, Case Study, 1992, ‘On Succeeding’, Internal Publication) (Jarkvik etal. 1994).

Avoiding the ‘ambiguity trap’

Beware requirements that are so ‘general’ that there is no clear idea of
exactly what is required. Everyone can agree to them! For example,
‘increase security,” ‘make the system more user-friendly’ and ‘provide a
competitive edge.’

The problems due to vague requirements will inevitably arise later,
because everyone’s interpretation of what the ‘general’ terms actually
mean is different. The lack of precise definitdion means that the differ-
ences of opinion are not confronted at an early stage, during specifica-
tion, and the differences are unspecified. No one has really agreed to the
exact requirements and nobody is doing anything about it.

All too often, projects deliberately allow ambiguous specifications to
be used, without clarification and agreement. There is the ‘illusion of
progress being made.” The requirements are ‘complete and agreed’; we

think?

This problem of ‘ambiguous requirements’ has to be tackled both by
communication and by action. Clarifying all the key requirements, as
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discussed above, helps. However, as a means to get the ‘right’ require-
ments, clarification is no substitute for evolutionary delivery (see
Chapter 10). Frequent and early delivery steps allow stakeholder feed-
back and correction of bad (vague or irrelevant) requirements and
designs. The relevance of the project work to your organization has to
be checked: early, measurably and frequently.

Handling complex requirements

Ambiguity (‘different interpretations are possible’) is one trap. But an
entirely different trap exists in losing control of a project because you
are operating with o0 few detailed requirements. The degree of detail
you will need to specify is dependent on the size and criticality of what
you are trying to control, as well as on the degree of risk you are
willing to accept.

It is a balancing act. You must keep your attention firmly rooted on
the few critical (key) requirements, while ensuring there is adequate
background detail to permit you sufficient control. You can do this by
specifying a set of complex requirements (the “Top Ten’) and, then
splitting each of them into their more detailed ‘elementary’ compon-
ents. You then can create any number of useful system views (such as
‘Risks’, ‘Bottlenecks’ and ‘Progress’) with appropriate detail for your
project management purposes.

Don’t get overwhelmed by the system detail. Capture it. But, always
remember to ensure the focus is on your stakeholders’ critical
requirements.

Allowing requirements to evolve

Real requirements change. There is no way you can stop them! As you
run a project or deliver to initial stakeholders, you will get new insights
into which requirements are actually useful. Stakeholders, too, will learn
from their early experiences using a new system, what they really want.
Business requirements will also inevitably change over time, in response
to both the internal and external business environments.

For all these reasons, requirements must be allowed ro evolve during a
project, and during the system lifetime. You are not obliged to
implement any changes to the system instantly. You can do so at the
‘right’ time. But, it is essential to keep the specification of requirements
realistic and up to date. They must reflect current reality. You should
not freeze the requirement specification! You can always choose to
design, or build or test from a given version of the requirements,
temporarily ignoring any updates.
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For contractual and other sound reasons, you should always ensure
that you document the evolution of requirements (for example, by
using automated requirement specification tools that track changed
versions).

You need also to build a web of relationships between requirements,
designs, stakeholders and project plans. This will make it safer to
evolve and changg, as you will be better able to identify any potentially
damaging side effects and to recognize the most competitive change
possibilities. (Planguage offers a wealth of devices for making require-
ment relationships explicit. For example, by using qualifiers and par-
ameters, such as Authority, Source, Dependency and Impacts.)

2.2 Practical Example: What is ‘Flexibility
Improvement’?

Analyzing a requirement

You are told that a change is proposed to ‘improve flexibility’ within an
organization. The stated aim is that it will help you be more competitive
by enabling ‘faster tailored product releases.” You are not quite sure what
this means. You decide to analyze and challenge the statement.

You first give the subject ‘improve flexibility’ an identity. Call it any
name you like. For simplicity (and to show we are addressing the
specified concerns), let’s call it ‘Flexibility.’

This could be written as:

Tag: Flexibility.

However, we usually drop the explicit use of “Tag’. So it (initially)
looks like this:

Flexibility:

To which you could add any relevant information that comes with the
idea, or which can be gained by asking key people a few simple
questions. For example:

Type: Quality Requirement.

Gist: To improve flexibility of product releases to the market <-
Marketing Director.

Authority: Marketing Director request.

Rationale: Supports “Time to Market'.

Note: The ‘Gist’ parameter is used to capture a short description of a
tagged concept.
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Then you can try to write down approximately what you think
Flexibility means. Then get others to write down what zhey think
it means. Try to get a group to agree to some appro-
ximate definition. Write an agreed brief description for the
‘improvement ambition level.” The description might come out

like this:

Flexibility:
Ambition: Substantial improvement in the ease with which we can
change products and markets <- Requirement Owner: Jane.

Note: ‘Ambition’ is an alternative parameter to use instead of ‘Gist’ for a
quality targer (goal). Ambition’ should express the level of ambition in

words.

Now, from this, the function requirements can be identified as being to
‘Modify Product’ and to ‘Switch Market.” These are the functions,
which we specifically intend to make ‘flexible’. (See also Chapter 3,
Function Requirements.”)

We can express these ideas in Planguage as follows:

Type: Function Requirement: {Modify Product, Switch Market}.
Modify Product -> Flexibility.
Switch Market: Supports: Flexibility.

Note: The two formats of the Supports’ concept are illustrated. The ->is
a keyed icon format.(It is also used as an icon for Impacts.)

Further work can be carried out to establish the precise ‘Flex-
ibility’ requirements. For example, are completely new products
envisaged or is it just the existing products? Are the target
markets already established? It is likely that the critical stake-
holders already have ideas about where effort is to be directed. Is
there a specific current problem or is this a longer term, more
global aim?

Next, you can add a statement regarding which of the higher level
objectives would probably be impacted, in interesting ways, by
improved Flexibility. For example:

Flexibility:

Ambition: Substantial improvement in the ease with which we can
change products and markets <- Requirement Owner: Jane.
Supports: Performance: {Time to Market, Market Share, Customer
Brand Perception, Product Upgradeability} <- JBG assertion.

Note: ‘<-’is the Source’ keyed icon. You should use it to document where
any information comes from. ...}’ is a convenient way to signal a set of
things that belong together in some way.



//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D - 35 - [35-80/46] 29.6.2005
12:37PM

Introduction to Requirements 45

Also any impacted cost requirements should be identified. For example:

Is Supported By: Cost: {Architecture Development Costs, Research
Costs}.

Each of these impacted requirements might be considered for expan-
sion into a set of lower level requirements. For example, the quality
requirement, Product Upgradeability (mentioned above) could be
expanded as follows:

Product Upgradeability:
Type: Complex Quality Requirement.
Consists Of:

{Key Upgradeability:
Gist: Improve delivery of <upgrades> meeting <customer> <key
requirements>>,

Acquisition Upgradeability:
Gist: Increase new product acquisition with aim to supply
<customer> <key requirements>,

Customer Installability:
Gist: Improve ability of <customers> to install the <upgrades>, other? }.

Note: words in fuzzy angle brackets (< >) denote words thar we feel
require additional definition.

This is a simple identification of the various factors, which make up
Product Upgradeability. If we agree on them, they can be worked on,
to become more specific. The aim is that at some stage, each of these
requirements is specified with clear numeric targets that define it more
precisely than just using words.

Decomposition of Requirements

It may well be the case that each requirement needs to be
expanded into a further set of requirements. These, in turn, may
also need expanding resulting in a whole hierarchy of require-
ments.

At some stage, you identify the requirements that you do not
wish to decompose, or you are simply not able to decompose,
because they are the lowest levels of the hierarchy. Requirements
at the lowest level of a hierarchy are termed ‘elementary require-
ments.” Note: that it is not necessary to identify all the elemen-
tary requirements. It is a question of finding the set of
requirements, elementary and complex, that best suits your cur-
rent purposes.
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ExAMPLE

Scalar Requirements

If the requirement concept can be described by ‘words implying
measurement’ (for example ‘improve, ‘better,” ‘equal to’ and
‘reduce’), then that requirement is clearly definable in terms of
‘degrees of goodness.” Once you have identified such a ‘scalar’ require-
ment, the next stage is to improve the definition by quantifying it.
You need to find (maybe create) a scale of measure that expresses a
unit of measurement for the requirement. Use a ‘Scale’ parameter to
specify your scale of measure.

If you identify several complementary scales of measure, for a single
requirement, then you actually have a ‘complex requirement, and you
should consider specifying its set of elementary requirements in detail
(that is, each elementary requirement has its own Tag and Scale).
Note, the set of elementary Scales is the variable ‘idea’ that describes
the complex requirement. The scales of measure within a set don’t
‘add up’. They don’t have to.

Using your chosen scale of measure, you can try to represent the
current and past levels of performance (the benchmarks) and the
desired future states (the performance targets). You do this by defining
some specific numeric levels. (See Chapters 4 and 5 for further
explanation.)

Cost to Upgrade Products:

Type: Savings Requirement.

Scale: Total cost, in % of annual profit, needed to develop <new products>.

Past [Last Year]: 4%. “Current level, a benchmark.”

Goal [Next Year]: 3% <- Technical Director: JG. “Future desire, a target level.”

Defining a scale of measure and using it to specify two points (Past and Goal) to describe
the degree of improvement in ‘Cost to Upgrade Products.” Note: 1. That although this
involves a resource — it is actually setting an organizational performance requirement (an
objective) that we need to specifically plan to achieve (by finding relevant strategies).
2. The [...] brackers (qualifiers) are helping to define ‘when’

You don’t have to worry about the exact truth about requirements if it
is not easily available. It never is! But each specification step you take
should make things somewhat clearer (even if it is only to help make
other major defects in the requirements clearer). You should always be
totally honest about your uncertainty and about your sources of
information. If it seems worthwhile, you can always get more detailed
and be more exact at a later stage.

Hint: Discussing your scales of measure with your stakeholders might be
helpful.
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You may be surprised about our definition of ‘Flexibility,” but it
means exactly what we define it to mean. The tag, ‘Flexibility’ is just
an arbitrary reference to the definition (the tag is a ‘symbol’, like all
our human words). If you don’t like the tag, change it. How does
‘Product Development’ strike you? You can even have multiple syno-
nym tags for any concept, if that helps you communicate better with
different specification readers. Use what works for you!

2.3 Language Core: System Attributes and
Requirement Specification Types

Figure 2.1
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t t
i Design i
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The basic system attributes describing a system.

System Attributes

There are several main Planguage specification types that we need in
order to describe a system. Let’s now look at the definition of these
terms before considering how to specify requirements.

System

A system can be described by its set of function attributes, perform-
ance attributes, resource attributes and design attributes. All these
attributes are can be qualified by conditions, which describe the time,
place and event(s) under which the attributes exist.

Atftribute

An attribute is a characteristic of a system. Any specific system can be
described by a set of past, present and desired future attributes.

There are several different types of attribute. These include:

 Function attributes defining what a system does (mapping to the
processes).
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* Performance attributes defining how well or how much a system
performs (such as usability, availability and response time). How
good or how effective it is.

* Resource attributes defining whatr quantity of resources a system

requires, or what costs are incurred (such as development costs,
operational costs and human effort).
Resources are our necessary and potential fuels, and costs are the
experienced or planned expenditures (‘budgets’) of these limited
resources. Resources are a broad category of effort, time, data,
materials and money.

¢ Design attributes, defining the system architecture for a system.

Note: Very often in this book, the term ‘attribute’ is implied. So ‘performance
attribute,” ‘resource attribute,” function attribute’ and ‘design attribute’
become, for short, performance,” ‘resource,” function’ and design,’ respectively.

Function

A function is an action of a system or system component. Elementary
functions are ‘binary’ in nature: they are either present, or not, in
specifications or in real testable systems.

Each function has a set of associated performance and resource attrib-
utes, which make it useful and competitive in the real world. How-
ever, a ‘pure’ function is ‘whar? a system does, without regard to
either ‘how well?” or ‘how much? (the resulting performance attri-
butes) or ‘what resources? (the resource attributes that will be utilized
or consumed).

Note: My definition of ‘function’ is likely to differ from your current
definition. I specifically separate the four descriptive system attributes
of function, performance, resources and design from each other. My
justification is that this separation enables us to obtain better focus
within the ‘design engineering’ process.

Design engineering needs to be able to satisfy many competing
performance and resource attributes, simultaneously. Separating the
‘multiplicity of concerns’ helps identify all the individual concerns;
and this in turn, helps ensure they are all considered. This leads to
more competitive designs.

If we (mis-)use ‘function’ in an informal manner, to describe ‘designs’
and ‘features’ of a system (which is, unfortunately, common practice),
then we fail to see the essential distinctions amongst a ‘function
requirement,” an ‘optional design’ or, even, a ‘design constraint.’
The result is that the design process is corrupted, and weaker designs
result since the designer has less understanding of the real design
options.
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User Interfacing:

Type: Function.

Gist: All basic user-accessible input and output capabilities within the system.
Note: This does not include the specific system interfaces (the human—computer interface
design ideas), which will be developed during the project, based on field trial feedback.
A simple function specification.

Performance

A performance attribute is a ‘potential effectiveness’ attribute of a
system. It is “how good’ a system is, in objectively measurable terms.

Performance attributes.

e are valued by defined stakeholders

e are always capable of being specified quantitatively

e are variable (along a definable scale of measure)

e can be a complex notion, consisting of many elementary perform-
ance attributes

e can be traded off to some degree, by varying their level, against the
resources and/or the other performance attributes. The relative
priorities of performance attributes are a question of ‘which attri-
butes are more valued’ by the defined stakeholders.

Performance levels only partly determine how effective a specific
version of a system is, for a specific stakeholder’s needs. The practical
stakeholder environment determines the ‘final’ effectiveness that a
performance attribute can contribute to. For example, more system
speed will not always translate into eatlier delivery of specific users’
results. And, increasing the average system reliability will not always
translate into more reliability, from a specific user’s practical point
of view.

Another way to express this is that performance in one component of a
system does not always translate into the same level of performance in
a larger environment. (Compare to the well-known circumstance of
the effectiveness of an engine on an icy road or, for that matter, the
effectiveness of your mind when put into a noisy environment.)

There are three types of performance attribute: quality, resource saving
and workload capacity. These are described as follows:

¢ Quality: A quality attribute describes ‘how well’ a  system
performs. Examples of qualities are availability, usability, cus-
tomer satisfaction, staff development, environmental impact and
innovation.

¢ Resource Saving: A resource saving is a measure of
‘how much’ resource is ‘saved’ compared to some reference or



//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D - 35 - [35-80/46] 29.6.2005
12:37PM

50 Competitive Engineering

ExAMPLE

ExAmPLE

benchmark system. Resource savings are measures of performance,
which describe system costs in relation to alternative costs. They are,
you might say, a way of viewing relative costs for two systems at
once, rather than the absolute costs of one system alone; one system
will be the target system and, the other system will either be a past
benchmark system or a competitor’s system.

This new car has 10% better fuel consumption than the last model.

The cost per transaction for System X [New Version] might be 100 dollars, but the
savings for System X [New Version] might be expressed as ‘50% less cost’ compared
to System X [Last Version], which cost 200 dollars per transaction.

Other examples of resource savings include:

o operational savings of any resource (such as effort, money, time,
materials and space)

o capital investment savings (say, for activities such as for launch,
training, installation and acquisition).

¢ Workload Capacity or Capacity: A workload capacity attribute
describes ‘how much’ a system can do. Workload capacity describes
the potential workload a system can tolerate.

Workload capacity attributes include:

o Throughput capacity: how much work can be done
o Storage capacity: how much information can be contained
o Responsiveness: how fast the system responds.

Resource
A resource is a system ‘input fuel” attribute.
Resource is used as follows:

* to ‘start up’ or get a system going — expending a ‘capital cost’ —
investment

¢ to keep a system functioning (using or expending a resource is an
‘operational cost’)

¢ to bring about change in a system (expending a development or
maintenance cost).

‘Cost’ is the degree of a resource used (a cost benchmark) or planned
to be used (a cost budget or resource budger). For example: time, work-
hours, talented people, investment capital, staff costs, development
costs and operational costs.
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Resource attributes:

e are capable of being specified quantitatively (for example, ‘resource
use limits” and ‘cost plans’)

e are variable (along a definable scale of measure)

e can be a complex notion, consisting of many elementary resource
concepts

e can have complex resource targets specified (there can be specific
resource allocation, using ‘qualifiers’, regarding when, where and
under which events it can be used)

e can be traded off; to some degree, against the performance attributes
and/or the other resource attributes.

Note: Many characteristics of a resource attribute are identical to those of
a performance attribute. The difference is that one is a ‘means’ (resource)
and the other is an ‘end’ (performance).

Design

The design of a system is also an observable system attribute. You can
look at any system and ask, “What is its design?” This knowledge is
useful for the following reasons:

e it explains how to reproduce the system

e it can explain the current performance levels and cost levels

* it can give you insights as to the ease of making specific design changes
or the need to upgrade specific components.

The design of a system can be specified at any number of levels: from
high-level strategies and architecture to low-level, detailed system
components. The precise terminology used is a matter of culture
and taste: a design attribute is anything that impacts the functionality,
performance and/or costs of a system.

In Planguage, a system design is modified by implementing a series of
Evo steps. Each Evo step can have one or more design ideas. A ‘design
idea’ is the primary output of a design process. It is the generic name
for any proposed design strategy, or system component, that we need
to identify, to specify, to analyze and perhaps to implement in order to
address the problem of reaching our stakeholder requirements. More
simply: design ideas are our ‘tools to reach our ends.” It is any idea or
strategy, which possibly contributes to the ‘design solution.’

Requirement Types

Above, we looked at a system (or project) from a descriptive point of
view. This is also the benchmark view of a system, a view that we will
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integrate with the specification of requirements. Below, we shall look
at the same concepts in terms of how to specify what we want in the
future.

Vision

At the highest level, there should be a vision statement for a system. A
vision or vision statement is a specific, long-range, overall category of
requirement. That means it can concern itself with future mission
and/or targets and/or constraints. It is a leadership statement for focus
and motivation. Visions are often defined in broad summary terms.
For example, ‘become world class.” But there is no reason to be so
vague. Great practical visions' are extremely concrete:

“I believe that this nation should commit itself to achieving the goal,
before this decade is out, of landing a man on the moon and returning
him safely to the earth.”

John F. Kennedy.
Delivered before a joint session of Congress, May 25, 1961.>

“I believe thar we must improve the numeric level of all critical product
and service qualities by an order of magnitude by the end of the decade in

. .. 3
order to remain competitive.”

John Young,
CEO Hewlett Packard Company, April 1986.
Known at the ‘10X’ policy.

“We shall go on to the end, we shall fight in France, we shall fight on the
seas and oceans, we shall fight with growing confidence and growing
strength in the air, we shall defend our island, whatever the cost may
be, we shall fight on the beaches, we shall fight on the landing grounds, we
shall fight in the fields and in the streets, we shall fight in the hills; we

shall never surrender.”
Churchill, June 4, 1940.4

A vision will ultimately need to be decomposed into specific require-
ments such as measurable objectives with quantified goals. Using
qualifiers, these requirements can, as necessary, be tied by specification
to specific times, locations, components and events of the system.

! See also the Martin Luther King Jr. vision in the Glossary under Vision.

> FROM http://www.jfklibrary.org/, Special Message to the Congress on Urgent
National Needs, President John F. Kennedy, delivered in person before a joint session
of Congress, May 25, 1961.

> This is the best rendition available in consultation with HP — Tom Gilb.

4 The Oxford Dictionary of Quotations, Third Edition with Corrections 1980. Oxford

University Press.
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Vision [By Next Year, Software Products]: 30,000 hours mean time between failure
<- CEO in last Annual Report.
“30,000 hours mean time between failure for software products by next year.”

EXAMPLE  Vision 2:

Vision [Within Next Three Years, Key Products]: Order of magnitude reliability
improvement <- Technical Director.

“Order of magnitude reliability improvement in our key products within three years.”

Once a vision is in place, specific strategies/design ideas can then be
evaluated against it, as potential solutions.

(See Glossary or Chapter 3, ‘Functions,” for discussion of ‘mission.”’)

Basic Requirement Types

Once you have a vision statement providing the overall direction

for a system, you can start capturing the specific requirements for

change.

There are the following basic requirement types:

(These basic requirement types have been already outlined in the intro-
duction to this chapter; here they are discussed in more detail.)

Resource/Cost
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Performance
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Syst Attribut DeSign
ystem ributes A .
rchitecture
(Present or Past) ( )
I Vision |
c® i c®
° o Resource Requirement Function Performance Requirement= ° o
n n a Requirement Objective n n
s s
4t 4t
e Py
t t
i2 - i 2
i i
°h F_{reasrogic_e Resource Function Function Pe_:_‘forrm?Ece Performance %n
n get= Constraint Target Constraint arget= Constraint n
t Budget L Goal t

' System Requirements
(Future Attributes)

Figure 2.2

Design Constraint \

Mapping of system attributes to requirements.
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1. Function Requirement: what a system has to ‘do.’
Function requirements are the functions that are fundamental to
the system, the marketplace or the contract we have undertaken. In
competitive product areas, the functionality defines ‘the market we
are in,” such as ‘Producing mobile phones.” All our competitors
probably have identical functionality.

Note, ‘functionality’ does not mean design features and quality; it
means pure basic function. The competitive product differentiators
are the performance levels and costs, not function. A function
requirement is a function that is either declared by the stakeholders
to be required, or is formally recognized by all stakeholders as a
Sfundamental function of a system.

Function requirements can provide a framework, rather than sim-
ply stating the precise functions required. A function requirement
could specify some set of functions (for example, ‘All Competitor X
functions’). It could also specify functionality that is not required,
(for example, ‘No Games’).

(See Chaprer 3 describing Functions and Function Requirements.)

2. Performance Requirement: ‘how good’ a system has to be.

A performance requirement is also known as an objective. All
performance requirements are ‘scalar’ (meaning numerically ‘vari-
able’) in nature and must be specified quantitatively. That is, there
should be a defined scale of measure (Scale) and a specification of
the future required numeric levels for success, failure-avoidance
and survival (Goal, Fail and Survival parameters, respectively) with
relevant conditions (#he [time, place, event] qualifiers).

The minimum specification for a ‘performance requirement’ is
that there must be one target (a Goal, Strerch or Wish level) or
one future constraint (a Fail or Survival level). Of course, any
number of useful targets and constraints can be specified.

Finally, benchmark information is needed to complete any
requirement specification. Without such a ‘baseline,” there is no
way to understand the relative (‘improved’) change required. So a
complete performance requirement specification will include at
least one benchmark (a Past, Record or Trend level).

A performance requirement specification can consist of:

* aset of targets (Goal, Stretch and Wish levels) and
¢ a set of constraints (Fail and Survival levels).

and is supported by:
* aset of benchmarks (Past, Record and Trend levels).

Note: As a performance requirement is scalar, all these are scalar
parameters.
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There are three kinds of performance requirement:

¢ quality requirement
* resource saving requirement
¢ workload capacity requirement.

2.1 Quality Requirement
A quality requirement expresses ‘how well’ a system will perform.

Adaptability:

Type: Quality Requirement.

Scale: Time in hours needed to re-configure the defined [Base Configuration] to any
other defined [Target Configuration] using defined [Methods] and defined [Recon-
figuration Staff].

Expert Reconfiguration: Defined As:

{Base Configuration = Novice Setup,

Target Configuration = Expert Setup,

Methods = Selection of Library Reconfiguration Process,

Reconfiguration Staff = Qualified Expert}.

=========================== Benchmarks ==s========================
Past [Expert Reconfiguration, Version 0.3, Asian Market]: < 1 hour.
======================== Performance Targets =======================
Authority [Goals]: Federal Drug Administration.

Goal [Expert Reconfiguration, Deadline = Version 1.0]: < 0.5 hours.

Goal [Expert Reconfiguration, Deadline = Version 2.0]: < 0.1 hours.

Constraints ====================—=——===
Fail [All USA Products]: < 0.7 hours.

Fail [Expert Reconfiguration, Deadline = Version 2.0]: < 0.5 hours.

Survival [Expert Reconfiguration, European Market]: < 1 Working Day.

This quality requirement is a measure of how well a system is designed to adapt to
reconfiguration needs in the future.

Note:

o This is a quality requirement even though it has a Scale that involves
measurement of a resource. The reason that this is not a resource saving is
that a specific level of resource saving is not being requested. The resource
measurement is simply a convenient way of capturing the ‘adaptability’ of the
system.

o This is also not a budget (a resource or cost requirement) as the level is not set
up primarily to monitor the expenditure of resource.

These are important distinctions, because as a consequence of them, you will be
Jorced to react in different ways to the problems arising in meeting these
requirements.
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2.2 Resource Saving Requirement

A resource saving requirement defines some required level(s) of
saving of a resource compared to the benchmark system(s). How
much resource do we have to save?

Customer Installation Cost:

Ambition: Reduce the costs to our customers of installing our products on customer
sites.

Type: Resource Saving Requirement.

Scale: Average Total Installation Cost for each Installation of defined [Product] for
all <involved customer departments> within defined [Customer].

Total Installation Cost: Defined As:

{Cost of Education of <customer people>, Cost of Involvement during Planning of
<customer people>, Cost of Shipment of Product, Cost of Involvement during
Installation of <customer people>}.

PP: Past [Last Year, Customer XYZ, Product ABC]: Average <worldwide> Total
Installation Cost for each Installation of Product ABC for Customer XYZ
expressed in $.

Fail [For each Installation, USA, Release 1]: PP.

Goal [For each Installation, USA, Release 1]: 80% of PP.

2.3 Workload Capacity Requirement

A workload capacity requirement defines one specific capacity
of a system for doing work. It specifies an aspect of ‘how much’
work a system or product will be expected to perform in
operation.

Capacity requirements cover such things as transaction speeds,
data storage, maximum transaction volumes and maximum con-
current users.

Responsiveness:

Ambition: Fast immediate response to any type of user asking for information.
Type: Workload Capacity Requirement.

Scale: Time in seconds from when a defined [User] knows what they want to ask
until the correct necessary information is available to them to carry out a defined
[Task].

Past [User = Free Set, Task =Inquiry]: Over one minute. Note: Considered unac-
ceptably slow.

Goal [User = Responsible Administrator, Task = Any Administration Task]: under 5
seconds? <-Guess TG.

Goal [User = Phone User, Task = Call Setup]: Less than <2 seconds?> <- RB.
Note: Depends on type of call you want ro set up.

Example from a client specification (edited).

(See Chapter 4 describing Performance and also Chapter 5 on Scales of Measure.)
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3. Resource Requirement: how much a system can cost
A resource requirement (budget) is a cost (expenditure) require-
ment. A budget is a plan for the use of a finite resource. A budget is
a statement of stakeholder-imposed:

¢ resource targets (Budget, Stretch and Wish levels)
¢ resource constraints (Fail and Survival levels).

How much of a limited resource do we plan to use?

Like performance requirements, all resource requirements are ‘sca-
lar’ or variable in nature and must be specified quantitatively.

We are interested in specifying resource requirements for two
closely related purposes. One is so that the design process can
‘design to cost” The other purpose is to help us influence the
performance to cost ratio. Ultimately, it is the benefit to cost ratio
of any product, organization or system, which defines its competi-
tiveness in the marketplace. Of course, we must control both
performance and its costs simultaneously. (See Chapter 6 for further
discussion on Resources.)

4. Design Constraint
A design constraint is an explicit and direct restriction regarding
the choice of a design idea (This includes any architecture or
strategy).

Euro Safety Design [European Models]:

Type: Design Constraint.

Description:

Use designs {X, Y, Z},

Do not use designs {M, N, P}.

Authority: European Safety Law.

Responsible Manager: Corporate Safety Director.
Implementer: Product Line Architect.

5. Condition Constraint: what restrictions are imposed?

Condition constraints are restrictions on the system lifecycle — that
is, on the system design, operation or disposal — other than those
constraints expressed as attribute constraints (that is, other than
those expressed as function constraints, performance constraints,
resource constraints and design constraints). A condition con-
straint may be expressed as a qualifying [time, place, event] con-
dition or by using a Constraint parameter.

All condition constraints are binary (non-scalar). A condition
is either fulfilled or it is not. A condition is either true or
false.
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Note:

There is a potentially very long list of classifications for the con-
dition constraints. For example: Legal Constraint, Political Con-
straint and Cultural Constraint. Classification is not essential, just
useful. They are what they say they are in the specification.

Condition constraints can impact the design choices of a system.

That is, an architect or a systems engineer is free to choose any

design that does not violate the constraint.

Potential Design Design
Design Solutions Idea 1 Idea 2
Requirements ‘Standard’ Laptop
Pen
Binary-Function Target
Recording
Information Yes Yes
Binary-Design Constraint
Design Metal Yes, Yes,
Constraint 1 Casing Possible Possible
Binary-Condition Constraint
. | Legal Yes Yes
[Legal Constraint 1] in the UK
Scalar-Performance Target
. Performance 1 Portability 209 1Kg
Scalar-Resource Target
Resource 1 > ) F"E:ag's‘i'a' 5Dollars |2.5K Dollars

!

1. The above table includes the binary requirements, which are not normally shown. (Usually, all the design
ideas are informally screened against the binary requirements before drawing up an IE table. An IE table
typically only shows the scalar requirements.)

2. The table is without the scalar baseline information that states the quantitative requirements and bench-
marks, which permit percentage comparisons and improved design idea evaluation.

See Chapter 9, Impact Estimation, for further explanation of |E tables.

Figure 2.3

This is a modified form of an Impact Estimation (IE) table showing an arbitrary set of
requirements and two potential design ideas.
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contains the main concepts.

Planguage Architecture. See the Glossary for further information; this table only

Planguage
Architecture
Parameter Class

Parameter Name,
Type or Content

Use

Notes

Specification Tag Administration and Version can be used at
Control Version Authorization of the level of the
Specification Owner specifications. individual specification
Status object, not just at
Quality Level document level.
Documents are ‘reports’
of views from
specification databases
of specification objects.
Stakeholder — Consumer/Customer/ Specifies role played Provides information
Role (Agent) Product User by individuals or about the nature of
— Client/Customer/ organizational groups.  responsibility and the
Product Business Stakeholders can be relationship to a
— Customer Manager internal or external specification.

— System Owner

— System Designer

— Specification Author
— Project Manager

— System Tester

— System Maintenance

to a specific system.

— Authority
— Sponsor
— Funder
— Champion
— Other
Scope Scope Properties: Defines applicable Answers the question of
— Global/Local specification/system ‘How influential is a
— Generic/Specific space. See ‘Condition”  specification/system?’
— Internal/External Defined using [time,
(Inside or outside a space, event]
specified scope) conditions.
Condition When — Time Defines scope (space Declared using
Where — Place dimensions) and, Qualifiers [...] or a
Where — Place by indirectly, priorities. Condition parameter.
Stakeholder Role or All these objects A complex object can
Organizational Group can be complex or be decomposed into a
Where — System elementary. set of elementary
Component objects.
If — Event Defines a
system attribute, a system
requirement or a
potential system design.
Requirement
Design Idea
System Function ‘Function’ includes Often simply referred
Attribute Performance: ‘Mission’ at the to as ‘Attributes’
(Attribute) — Quality highest function

— Resource Saving

— Workload Capacity
Resource/Cost
Design/Architecture

level.

Continued
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Planguﬂge Parameter Name, Use Notes

Architecture Type or Content

Parameter Class

Requirement 0. Vision To specify and agree ~ The primary
1. Function Requirement  stakeholder needs competitive ideas are
2. Performance the performance

Requirement requirements.

(or Objective)
— Quality Requirement
— Resource Saving
Requirement
— Workload Capacity
Requirement
3. Resource Requirement
4. Design Constraint
5. Condition Constraint

Attribute Class ~ Benchmark/Baseline Declares/clarifies
Target intended use of the
Constraint specification.
Benchmark/ Past Systems Analysis. Analysis data is
Baseline Record Compare to integrated with other
Trend requirements: targets
and constraints.
Target Goal (for Performance) Defines a numeric Must be considered
Budget (for Resource) value, which is valued  together with the
Stretch by stakeholders [qualifier] information
Wish to be fully interpreted.
Constraint For a Scalar Constraint: Defines a limit for a Stakeholders impose
— Fail numeric value or constraints.
— Survival certain specific criteria, Given the same set of
For a Binary Constraint: ~ which has to be qualifiers, constraints
— Constraint respected to avoid are of higher priority
(Usually with an adjective, failure or worse. than targets.
such as ‘Function,” ‘Design’
or ‘Legal)
Standards Policy Defines Work Process  Specification rules
Rule Standards. define the concept of
Process ‘defects’ in a
— Entry Condition specification. This
— Procedure enables quality control,
— Exit Condition process control and
Interface process improvement.
Template Either specification
Form standards or system
Other standards.
For requirements and
much else.
Specification Requirement Specification

Design Specification
Architecture Specification
IE table

Evo Step Specification
Evo Plan

Systems Architecture
Standards Specification
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2.4 Rules: Requirement Specification

Tag: Rules.RS.

Version: October 7, 2004.
Owner: TG.

Status: Draft.

Base: The rules for generic specification, Rules.GS apply. For the
different types of requirement use also the relevant rules (that is,
Rules.FR, Rules.SR and Rules.SD).

R1: Stakeholders: There must be a list of the defined stakeholders and

it must span the entire product lifecycle and system space.

For any specific specification, the specific stakeholders can be stated or
defined explicitly. For example, Stakeholders: {A, B, C}.

R2: Scope: The scope or ‘system space’ of the requirements must be
defined. All specified qualifiers for requirements must be relevant to
the system space.

Note: Scope states the ‘overall system boundaries’. The scope for specific require-
ments is generally specified using [qualifiers]. See Section 2.7 for discussion of
qualifiers. Use a Scope parameter if you want an explicit definition.

R3: Qualifier Conditions: Using qualifiers, requirement specifications
must adequately cover the time period (When: long term and short
term) and the physical scope (Where) for the system and, must state any
known dependency on conditional states or events (If).

R4: Rationale: The rationale or justification for a requirement and for
specific aspects of it should be given. Use the Rationale parameter.

R5: Dependencies: Any conditions or circumstances, which a require-
ment depends on for relevance or authority, must be specified.
(Use the Dependency’ parameter, or any other relevant means.)

R6: Internal Links: All specified requirements can be grouped
into relevant hierarchical levels of requirements. Linkage to related
requirements should be explicit and complete.

For example, use Planguage specifications such as:

o Hierarchical tags (for example, ‘System.Subsystem. Component).

o ‘Consists Of or Includes’ to link to lower hierarchical levels.

o Is Part Of to link ro higher hierarchical levels.

o Supporss’and Is Supported By’ to explicitly specify any intended direct links.

o Impacts’ and Is Impacted By’ to explicitly specify impacts including any
side effects (Impact Estimation table linkage).
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R7: External Links: Requirements which are related to any level
of product line requirements, corporate standards or policies, or
anything outside of the specific system documentation, must always
explicitly indicate that relationship by a suitable specification (By use of
parameters, such as Supports and/or Impacts). The intended readership
should not have to know or guess such relationships (for example, shared
interfaces, shared objectives and use of generic templates).

R8: Testable: Each requirement must be specified so that it is
possible to define an unambiguous test, to prove that it is actually
implemented.

A specific test may be specified or outlined immediately in the Meter or
Test statement. However, any specific tests will usually be designed in
detail later. The key idea is that all requirements must be clear enough to
be testable by some means.

R9: Design Separation: Only design ideas that are intentionally
‘constraints’ ( Type: Design Constraini) are specified in the requirements.
Any other design ideas are specified separately (Type: Design Idea). All
the design ideas specified as requirements should be explicitly identified as
design constraints’ (that is, ‘design ideas’ which are ‘constraints).

2.5 Process Description: Requirement
Specification

Requirement specification is carried out throughout a project’s life-
cycle. It occurs when specifying the initial overall top-level require-
ments and, subsequently, during each evolutionary result cycle.
(Within each evolutionary result cycle, the top-level requirements
are reviewed, and updated if necessary, and the subset of requirements
relevant to the specific step is specified in detail.)

A generalized requirement specification process is given in this section.
Specifically, it does not include any detailed review or updating
considerations.

Process: Requirement Specification
Tag: Process.RS.

Version: October 7, 2004.

Owner: TG.

Status: Draft.
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Entry Conditions

El: The Generic Entry Conditions apply. The Specification Quality
Control (SQC) entry condition applies to any source information,
such as contracts and marketing plans.

E2: Key stakeholders should be available for questions and reviews to
resolve any uncertainty about sources and exact specification.

Procedure
P1: Define the system scope and the overall scope of the requirements.
P2: Identify relevant (critical and profitable) stakeholders.

P3: Determine the requirements of each type of stakeholder. Ensure
all specification statements are source-referenced.

P4: Categorize requirements by type (the major requirement types are
function requirement, performance requirement, resource require-
ment, design constraint and condition constraint).

P5: Specify Function Requirements (Process.FR. See Chapter 3).

P6: Specify Performance Requirements (Process.PR. See Chapter 4) includ-
ing identifying or creating a Scale of Measure (Process.SD. See Chapter 5).

P7: Specify Resource Requirements (Process RR. See Chapter 6).

P8: Identify and question any design constraints and condition con-
straints. (Are they real or was something else intended?) Ensure the
necessary design and condition constraints are specified.

P9: Specify all known significant relationships of the requirements to
any other relevant requirement specifications (external or internal to
the system). You need to identify where there may be overlap or conflict or
double accounting over benefits. There may even be synergy or a chance to
Subcontract’ parts of the system development.

Use Planguage terms such as {Source, Dependency, Assumptions, Author-
12y, Impacts, Risks, Is Impacted By}.

P10: Get stakeholders to approve the written requirement specifica-
tions that specifically affect them.

P11: Carry out Specification Quality Control (SQC) on the require-

ment specification.” Obtain management review approval.

> For the majority of the procedures in this book, the exit and entry conditions serve to
remind you about the need for quality control: explicit reference to quality control
within the main procedure is usually omitted.
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Use sampling to obrain information about the likely number of remaining
major defectslpage. An appropriate default, general exit condition is a max-
imum of one remaining major defect/page (300 non-commentary words).

Note: This is an appropriate point in this procedure to carry out quality
control. However, don’t let this prevent you from carrying out quality
control at other times. For example, it is far better you find out that there
is a problem after writing three pages than after 30 pages.

Exit Conditions

X1: The Generic Exit Conditions apply. The requirement specifica-
tion must have exited SQC.

X2: There is management review approval of the requirement speci-
fication.

Note: This exit does not mean that the requirements can or should be
‘frozen’ and final. They are merely ready for continuous refinement,
detailing, correction and supplements, which will result primarily
from feedback from early and frequent evolutionary delivery steps.

2.6 Principles: Requirement Specification

1. The Principle of ‘Results Beat All’
The top strategy is ‘getting the stakeholder results’.

Meeting requirements is more fundamental than any other process or

principle.

2. The Principle of ‘Goodies Control beats Bean Counting’
Focus on getting the Goodies. Their costs will be forgiven.

The main point of any project, or change effort, is to improve stake-
holder benefits. The benefits must be at least as well-controlled as the
resources needed to get them. Otherwise the benefits will lose out, at the
hands of the always limited, clearly budgered resources.

3. The Principle of ‘Reasonable Balance’
Reach for dreams, but don’t let one of them destroy all the others.

You cannot require an arbitrary set of requirements. There must be
balance between performance requirement levels, resources available
and available design technology.

4. The Principle of ‘Unknowable Complexity’

You must feed a lion to find out how hungry it is.
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You cannot have correct knowledge of all the interesting requirements’
levels for a large and complex system in advance. You cannot know which
requirements are needed, and which are realistic, until you have some
practical experience with a real system with real people using it.

. The Principle of ‘Specification Entropy’

Even gourmet decays.

Any requirement or design specification, once made, will become
gradually less valid, as the world, for which they were intended, will
change over time.

. The Principle of ‘Critical Values’

If you don’t find the critical requirements, they will find you!

You must identify all potentially requirements for all stakeholders or
you risk losing profitability, or even system failure.

. The Principle of ‘How Good’ and ‘How Much’ before ‘How’

All performance requirements and resource requirements must be
stated before any design idea can be fully and properly evaluated.

. The Principle of ‘Gap Priorities’

The least fulfilled requirement attributes become our current
priorities.

By calculating the ‘gap’ between current real levels of performance deliv-
ered and the required levels, we can assume that the biggest unfilled ‘gap’
in meeting our targets is our current greatest priority. For example, you
cannot know now if you will be hungrier, thirstier or more tired a week
Sfrom now. But wait a week and you will know which need has priority.

. The Principle of ‘Stop the World, I Want to get Off

There is no final set of real-world requirements; freezing the
specifications will make your real problems worse than any pro-
blems caused by updating them.

The Principle of ‘Eternal Projects’

Survival is a lifetime project.,

The process of delivery of results has no end, if you are in competition
for survival.®

2.7 Additional Ideas

Using Qualifiers to Specify Conditions

Planguage is able to capture a wide variety of situations. This cap-

ability allows us to target specific parts of a system; for example,

¢ Based on the wisdom of W. Edwards Deming.
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aiming to deliver to our most critical stakeholders and customers
early, without waiting for the entire systems effort to complete. The
major tool we use to give this flexibility and power is the ‘qualifier’
statement.

Qualifier Definition

A qualifier specifies any useful set of conditions that must be fulfilled,
in order for the specification to become effective (valid as a require-
ment, a design or other specification). The qualifiers usually specify
when, where and under what special conditions a specification is valid.
There are three main classes of conditions [time, place, event], in
other words, [when, where, if]. They are specified as follows:

¢ time’ or ‘when’ states a time concept.

o This can be a date. The date can be past, present or future.

o It can also be any relative notion of time, such as [After Release 1].

o It can be any multiple notions of time. For example, [After April
1, Except Sunday].

¢ place’ or ‘where’ states a notion of ‘placement’.

o “Where’ stated as a ‘physical location” has a wide range of interpreta-
tion; it can be any component part of a system and/or any physical
location where the system operates or has operated or will operate.

o For example: [Market = European Union],

[Use Area = At School],
[System Module={Module A, Module B,
Module F}].

o The ‘where’ location can even be stated indirectly by reference
to any aspect of the system that implies certain areas. For
example, ‘where’ can be captured by naming the stakeholders
involved (by user roles, or by their relationship to specific
locations), or tasks.

o For example, [Stakeholder = {First Time User, Pupil}],

[Users = Account Managers],
[Users = Head Office Staff],
[Task = Address Entry].

e ‘event’ or ‘if’ states any special circumstances that have to be in a ‘crue’
state for the specification to apply (For example, [If Contra-
ct23 = Signed]).

(Aside: This final category of ‘event’/‘if is really a somewhat
simplified concept. The main aspect to consider is capturing
any ‘special circumstances/conditions.” If you think about it, all
conditions, including time and place are actually ‘if conditions.)
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Qualifiers are defined within a Scale definition or within an individual
Planguage statement on a ‘need to know’ basis.

Qualifiers defined within a Scale definition are known as ‘Scale
Qualifiers.” When using a Scale, all the scale qualifiers have to each
be assigned a ‘Scale Variable.” A scale variable can be assigned by
default value, by explicit declaration or by implied inheritance.

Training Time:

Scale: Average time in minutes for defined [User: default= Student] to complete
defined [Task].

Goal [User=Year 1 Student, Task=Learn to Use Library Catalogue,
School = G&L]: 10.

Referring ro potential qualifiers in a Scale definition using Scale Variables. User and Task
are defined within the Scale and are Scale Qualifiers. Student’ is a default Scale Variable
for User. School is added in the Goal (performance) statement as an additional qualifier.

Qualifiers are usually stated within square brackets. However, there is
also a Qualifier parameter.

Goal [Case Home]: 99.5%, [Case Euro]: 99.6%.

Source: Product Planning.

Project Defaults: Qualifier [Years End, Consumer Goods, If Fierce Competition on
Price].

Case Home: Qualifier [Home Market, Project Defaults].

Case Euro: Qualifier [Euro Market, Project Defaults].

A qualifier statement can be defined independently, for example in order to reuse it, or ro
have a short summary reference to it elsewhere.

There is no sequence requirement for the conditions. There can be
multiple instances of any one class of condition. For example:

[Country = {USA, UK, NO}].

The qualifier content should either be self-evident for purpose (For
example: [End of this Year, USA, If No War] or make use of add-
itional explicit qualifier parameters as follows: [Qualifier Name =

Qualifier ‘Value’].

Goal [Deadline =End of Next Year, Country = UK, State = If No War]: 55%.

Qualifiers can be present in any requirement, design idea, or Evo step
specification. Most Planguage parameters can use qualifiers: certainly
all benchmarks, targets and constraints would be expected to have
qualifiers present.

In fact, without adequate qualifiers, a specification is too general. For
example, for a requirement to really exist, time and place conditions
must be set.
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ExAamPLE

Qualifiers can apply ‘by default’ from other system specifications. This is
called ‘inheritance’. Inheritance occurs from more global specifications
and/or from higher hierarchical specification levels. In such situations,
there exist no ‘more local” qualifiers that override the inherited qualifiers.

Qualifiers and System Space/Scope

Scope is the overall ‘space’ for a system. The scope for specific
requirements is generally specified using [qualifiers]. Alternatively,
you can use the Scope parameter if you want to state a set of scope
boundaries as a separate reusable statement.

Constraints may help establish the limits of the system scope (bound-
aries). Condition constraints can be used to specify any specific con-
ditions that are limits to the scope of a system.

The Difference between Qualifier Conditions and Condition
Constraints

Qualifier conditions are not usually constraints. Any specification (such
as requirement, design, implementation planning or test planning)
can contain qualifier conditions of any kind. Qualifier conditions
must all be ‘true’ for the related specification to be made effective.
The effective specification may or may not itself be a constraint
specification. (A constraint sets a limit because some kind of ‘pain’
will be experienced if the constraint is not met/conformed to).

L [X, Y]: Type: Condition Constraint: The system must be legal in area E.

G [M, NJ: Type: Function Requirement: Children’s Games.

L is a condition constraint, which is activated only when qualifier condition X and Y are
both true.

G is NOT a condition constraint. It is a function requirement that is a valid requirement
when both conditions M and N are true.

Qualifiers and Evo Steps

One of the many uses of qualifiers is in helping us to ‘divide up’ both
requirements and design ideas into ‘chunks’ for implementation pur-
poses. All qualifiers specified in requirements help identify potential
‘natural boundaries” within the system that might enable sub-setting
of the system to support selection and delivery of Evo steps.

Deadlines provide a set of time sequences, and ‘place’ qualifiers give a
set of locations that can be exploited in planning the evolution of the
system. Even an event condition can give us the possibility of further
differentiation for selection of possible Evo steps.
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Additional Ideas Concerning Constraints

Constraints are not the main reason our project exists and they are
certainly not what we are investing in. However, constraints are
essential requirements as they provide the information about the
design limitations, which we must adhere to: the absolute limits for
performance and resource levels and, the absolute restrictions on what
we can and can’t do.

Constraints are set as a result of many factors: corporate policy,
national laws, competitive forces and limited project resources, to
name a few of the many areas that supply us with constraints. The
penalty for us if we do not identify, specify and respect these con-
straints is some degree of partial, to total, failure to deliver the
stakeholder requirements. Constraints are not ‘fun,” but try to think
of them as presenting interesting engineering challenges.

Adherence to Constraints

When designing a system, the list of constraints needs to be treated as
a checklist against which every single potential design idea has to be
checked for possible violation. Remember also to check any sets of
design ideas and, the potential total design (if it is outlined) against
the constraints. It could be that collectively a set of design ideas
violates some constraint(s). For example, by exceeding a resource
constraint. Any potential design idea that violates any constraint
might be rejected for this reason. But, not for sure! It depends on
the relative priority of the requirements, which the design idea is
trying to satisfy, as well as the options for alternative design ideas.
In some cases, the constraint itself may have to ‘back down’. It
would be good practice to specify what has happened in the design
specification.

ExAMPLE Note: This design conflicts with the following constraints {CA, CB}, but we have
decided to make an exception, as no other better alternative has been found <- TG.

Authority: Chief Architect.

One point to bear in mind is that constraints always result from the
choices of stakeholders. What might be a ‘given’ constraint to you is
likely to be the free choice of another stakeholder. If you decide there
is an issue with a constraint or that a conflict exists, then the first thing
to consider is the authority that ‘set’ the constraint. You can then
determine how to treat the issue to achieve resolution.

Remember, constraints have cost implications as well: the addition,
alteration or removal of a constraint can have significant impact on
the implementation or operational system costs.
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Example Cl1: European Community Suppliers of <system components> must be used, where
possible.
Type: Political Constraint.

ExAmPLE C2: The system must be legal in the country of operation.
Type: Legal Constraint.

ExampLE  C3: Tt cannot cost more than Y’ to develop <the system>.
Type: Resource Constraint [Resource = Financial, Lifecycle Stage = Development].

ExampLE  C4: It cannot cost more than ‘X’ to produce, distribute or support <the system>.
Type: Resource Constraint [Resource = Financial, Lifecycle Stage = Post Development].

Constraint Viewpoints

Constraints can be classified from several viewpoints (see Figure 2.4).
If you consider the system lifecycle viewpoint, two specific categories

Constraint Viewpoints

Constraint Specification System  |Stakeholder

Structure Lifecycle | Authority | Other

2}
o)
L
)
L

Binary

Resource Constraint
Function Constraint
Design Constraint
Engineering Process
Operational System
Other
Country Legislation
Chairman /CEO
Other

IIIII*

H

ey Condition Constraint

Use Language X
for all programming

sssssssnnnnedipotomance Constraint

Meet CO Emission Levels I

Obey UK Environmental Emission Laws

Figure 2.4
Constraint viewpoints: constraints are either scalar or binary. They can be categorized
from several viewpoints.
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of interest could be ‘System Operational Constraints’ and ‘Engineer-
ing Process Constraints.” System operational constraints apply across
the entire operational system, while engineering process constraints
only restrict the engineering process itself (as opposed to the system

being engineered). A constraint such as ‘Meet carbon monoxide

emission levels’ is simultaneously a system operational constraint, a

performance constraint and a legal constraint.

2.8 Further Example/Case Study: A Proposal to the
Board for $60 Million

Here is the original plan (edited to conceal identities) presented to the

Board of Directors of an engineering organization, requesting $60
million for CAD/CAM equipment. It was written by the Engineering
Director for Quality and Productivity. The answer was “No.”

A special effort is underway to improve the timeliness of Engineering
Drawings. An additional special effort is needed to significantly
improve drawing quality. This Board establishes an Engineering
Quality Work Group (EQWG) to lead Engineering to a breakthrough
level of quality for the future. To be competitive, our company must
greatly improve productivity. Engineering should make major con-
tributions to the improvement. The simplest is to reduce drawing
errors, which result in the AIR (After Initial Release) change traffic
that slows down the efficiency of the manufacturing and procure-
ment process. Bigger challenges are to help make CAD/CAM a
universal way of doing business within the company, effective use
of group classification technology, and teamwork with Manufactur-
ing and suppliers to develop and implement truly innovative design
concepts that lead to quality products at lower cost. The EQWG is
expected to develop ‘end state’ concepts and implementation
plans for changes of organization, operation, procedures, stand-
ards and design concepts to guide our future growth. The target
of the EQWG is breakthrough in performance, not just ‘work harder’.
The group will phase their conceptualizihg and recommendations
to be effective in the long ferm and to influence the large number
of drawings now being produced by Group 1 and Group 2 design
teams.

My critical review of the above draft:

1.

It does not have a clear ‘structure’, which would enable the reader
to understand it.

The objectives (for example, cost savings) are not clearly stated (no
numeric targets, when? scope?).
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3. Undefended and unjustified assumptions are made, prejudicing
the work of the group.

4. No reference to any of their own past, present or competitive
efforts in this area (no benchmarks).

The first thing I do when presented with a document such as this is to go
through and mark the ideas concerning performance requirements — the
objectives (bold and underlined) and the ideas concerning strategies or
solutions (Ztalics and underlined). 1 also underline implied requirements.

(Hint: You can use underlining and the letters ‘O’ and 'S’ on a paper copy
of a document.)

A special effort is underway to improve the timeliness of Engineering
Drawings. An additional special effort is needed to significantly
improve drawing quality. This Board establishes an Engineering Quality Work
Group (EQWG) to lead Engineering 10 O breakthrough level of qualiyy for
the future. To be comperitive our company must greatly improve
productivity. Engineering should make major contributions to the
improvement. The simplest is to reduce drawing errors, which result
in the AIR (After Initial Release) change traffic that slows down the
efficiency of the manufacturing and procurement process. Bigger
challenges are to help make CAD/CAM a universal way of doing business
within the company, effective use of group classification technology,
and teamwork with Manufacturing and suppliers to develop and implement
truly innovative design concepts that lead to quality products at lower cost.
The EQWG is expected to develop ‘end state’ concepts and imple-
mentation plans for changes of organization, operation, procedures, standards and
design_conceprs 1o guide our future growth. The target of the EQWG is
breakthrough in performance NoOt just ‘work harder'. The group will phase
their conceptualizihng and recommendations to be effective in the
long term and to influence the large number of drawings now being
produced by Group 1 and Group 2 design teams.

A framework for the requirements can then be drawn up for
further work. Fuzzy brackets denote where more information is
required.

Scope:
Time:
<short term>
<long term>
Place [Organizational Group]:
Engineering Organization: Research and Development
Group 1 Design Team
Group 2 Design Team
Manufacturing
Procurement
Suppliers
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Performance Requirements:
Ambition: <competitive> + <breakthrough level of quality>.
Reduce Product Cost.
Improve Productivity [Engineering].
Improve timeliness of <engineering drawings>.
Improve <drawing quality>.
Reduce <drawing errors>.
Others.
Reduce <Engineering Process> timescales (‘time to market’).
Improve <Efficiency> [Manufacturing, Procurement].
Achieve <Growth>.
Others

This is just the start — there are no benchmarks or numeric values
specified! Note also, that these are just initial lists; they are not in
Planguage format. (See later chapters for discussion on how to specify
such requirements.)

Some of the suggested potential design ideas are listed below. These
design ideas are not requirements unless they are specific design
constraints. Further work is required to establish how they should
be viewed.

Potential Design Ideas:

¢ Have a team responsible for improvement - EQWG

¢ <Innovative> change of organizational, operation, procedures,
standards and design concepts

¢ Make CAD/CAM a universal way of doing business

o <Effective> use of group classification technology

o <Effective> teamwork with Manufacturing

o <Effective> teamwork with Suppliers

Below is a clearer way to express the same ideas (but not necessarily the
best way), which begins to address the issues of numeric values and
evolutionary progress towards solutions. Some values are deliberately
‘set up’ with the aim that any wildly incorrect values will be

challenged.

Ambition: As our primary inifial task, we have targeted a significant
reduction in the drawing errors, which are not due to customer
change requests. When we have shown we can achieve that,
other tasks await us.

The long-range objective is a reduction of drawing errors, which
require After Initial Release changes. The aim is for errors to be
dropped by aft least 20% each year, from the levels current at the
beginning of the year. Results are expected from the end of
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November. Results should be designed to come in at the rate of
10% of annual target each month (that is, a 2% reduction of draw-
ing errors each month). When results are not achieved, the EQWG
will analyze the attempt and advise the Programs on possible
improvements to achieve results.

Plan: The first month is November. An attempt to get a 2% reduction
by the end of that month is the implied target.

Strategies: The Group 1 and the Group 2 design teams will start in
parallel and will have a friendly competition for reduction of the
drawing errors.

The design teams are expected fo find their own detailed solutions
and strategies.

Funding: Up to $500,000 is available immediately for funding any
activity necessary for achievement of this target {experiments, train-
ing, consultants, research frips}. In the long run, the project should
be self-funding through savings.

Responsibility: The Program Directors (and their staff) are responsible
for achieving targets. The EQWG is responsible for supporting the activ-
ity, by dispensing the funding, reviewing progress and assisting the
responsible program managers with any resources they may need.
Method: The method for planning outlined in the ‘Proposed stan-
dard for EQWG Organization’ will be the basis for planning. It will be
modified as required by the EQWG.

Note: As the above was intended for presentation to management, it was
formatted as ordinary text (without identifying user-defined terms).

See more about this case study in Section 3.2.

Bill of Rights

You have a right to know precisely what is expected of you.

You have a right to clarify things with colleagues, anywhere in the

organization.

* You have a right to initiate clearer definitions of objectives and strate-
gies.

* You have a right to get objectives presented in measurable, quantified
formats.

* You have a right to change your objectives and strategies, for better
performance.

® You have a right to try out new ideas for improving communication.

You have a right to fail when trying, but must kill your failures quickly.

You have a right to challenge constructively higher-level objectives and

strategies.

* You have a right to be judged objectively on your performance against
measurable objectives.

* You have a right to offer constructive help to colleagues to improve

communication.

Original version in (Gilb 1988 Page 23)

Figure 2.5
The author suggested these ‘rights’ for a multinational client. Of course it is a sneaky
way to tell people what their ‘duties’ are!
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2.9 Diagrams/Icons: Requirement Specification

F is a function attribute. R is resource attribute, shown as an input attribute to F.
P is a performance attribute, shown as an output attribute to F.

D is a design attribute.

C represents a condition attribute (the two ‘brackets’ combined).

The set {R, F, P, D, C} make up a system, S.

Figure 2.6
A simple system model showing the main attributes for a system, S.

C1
C2

C1
c2

I .
T
T ny)
-
P
(@]

] L

F1 and F2 are sub-functions of function attribute, F.

RS is a complex cost. RS.1 and RS.2 are the corresponding resource attributes of their respective sub-functions
F1 and F2. They can be referred to like this, F1.RS.1 or F.F2.RS.2.

RR is another resource attribute of F.

PR is a performance attribute of F.

F1.PR.1 and F2.PR.2 are the corresponding performance attributes at the sub-function level. PR.A, PR.B and
PR.C are performance attributes (each has a separate scale definition). As a set, PR.A, PR.B and PR.C define
the meaning of PR, a complex performance requirement.

PF is another performance attribute of F.

D is a design attribute of the system, S1. D has sub-components of DS1 and DS2.

C1 and C2 are condition attributes.

Figure 2.7
A more complex system model for a system, S1.
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Note: * Hierarchical relationships are usually represented by lines rather than arrows.
Arrows are used here to explicitly show the direction of the relationship.

Notes:
Simplified icons are shown for resource and performance (in ‘true’ icons, the block arrows should each be linked

to an oval, representing function).
The ‘linking’ terms include: Consists Of, Includes, Is Part Of, Impacts, Is Impacted By, Supports and Is
Supported By. Note: Not all relationships are shown.

Hierarchical Links: IE Table Links:

Performance X Consists Of {Performance Z,
Performance T Consists Of Performance Y}.
Design W Consists Of {Design Q, Design S}.

Resource A Includes Resource B.
Function E Includes Function G.

Design W Includes Design Q.

Design Idea D Includes Design Idea R.
Performance X Includes Performance T.

Resource B Is Part Of Resource A.
Performance Z Is Part Of Performance X.
Function F Is Part Of Function E.

Design Idea R Is Part Of Design Idea D.

Figure 2.8

Design Idea D Impacts Design Q.
Design Idea D Impacts Resource C.
Design S Impacts Performance X.
Design Idea D Impacts Performance Z.

Resource A Is Impacted By Design Q.
Performance Z Is Impacted By Design Idea D.
Resource C Is Impacted By Design Idea D.

Specific Attribute Links:

Resource A Supports Function E.
Function E Supports Performance X.
Resource A Supports performance X.

Diagram showing how to express the relationships amongst attributes, between attribute

and design idea, and amongst design ideas.
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Requirement Specification Template (A Summary Template)

Tag: <Tag name for the system>.
Type: System.

Basic Information
Version: <Date or other version number>.

Status: <{Draft, SQC Exited, Approved, Rejected}>.
Quality Level: <Maximum remaining major defects/page, sample size, date>.

Owner: <Role/e-mail/name of the person responsible for changes and updates>.
Stakeholders: <Name any stakeholders (other than the Owner) with an interest in the
system>.

Gist: <A brief description of the system>.

Description: <A full description of the system>.

Vision: <The overall aims and direction for the system>.

Relationships
Consists Of: Sub-System: <Tags for the immediate hierarchical sub-systems, if any, com-
prising this system>.

Linked To: <Other systems or programs that this system interfaces with>.

Function Requirements
Mission: <Mission statement or tag of the mission statement>.

Function Requirement:

<{Function Target, Function Constraint}>: <State tags of the function requirements>.
Note: 1. See Function Specification Template. 2. By default, ‘Function Requirement’ means
‘Function Target’.

Performance Requirements

Performance Requirement:
<{Quality, Resource Saving, Workload Capacity}>: <State tags of the performance
requirements>.

Note: See Scalar Requirement Template.

Resource Requirements

Resource Requirement:

<{Financial Resource, Time Resource, Headcount Resource, others}>: <State tags of
the resource requirements>.

Note: See Scalar Requirement Template.

Design Constraints
Design Constraint: <State tags of any relevant design constraints>.
Note: See Design Specification Template.

Condition Constraints
Condition Constraint: <State tags of any relevant condition constraints or specify a list of
condition constraints>.

Priority and Risk Management
Rationale: <What are the reasons supporting these requirements? >.

Value: <State the overall stakeholder value associated with these requirements>.
Assumptions: <Any assumptions that have been made>.

Dependencies: <Using text or tags, name any major system dependencies>.

Risks: <List or refer to tags of any major risks that could cause delay or negative impacts to the
achieving the requirements>.

Priority: <Are there any known overall priority requirements? >.

Issues: <Unresolved concerns or problems in the specification or the system>.
Evolutionary Project Management Plan
Evo Plan: <State the tag of the Evo Plan>.

Potential Design Ideas
Design Ideas: <State tags of any suggested design ideas for this system, which are not in the
Evo Plan>.

Figure 2.9
Requirement specification template. This is a summary template giving an overview of the
requirements.



//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D - 35 - [35-80/46] 29.6.2005
12:37PM

78 Competitive Engineering

2.10 Summary: Requirement Specification

This chapter has given an overview of requirement specification and
introduced the different requirement types: function requirement,
performance requirement, resource requirement, design constraint
and condition constraint. Subsequent chapters (Chapters 3 to 6) will
describe these requirement types in greater detail.

Planguage helps with requirement specification:

¢ by helping you to focus on the most critical requirements

¢ by demanding numeric definition for variable (scalar) requirements

¢ by making sure you obtain and specify benchmark levels for per-
formance and resource attributes

* by encouraging specification of constraints.

As a result, the overall communication of the requirements between
business management and systems engineering becomes much more
precise:

¢ Technical staff of all levels have a clearer practical understanding of
what they must deliver.
¢ Management can better understand and control project progress.

There are also two further, significant benefits from Planguage
requirement specification:

e It actively assists the system design process. The numeric values of
the benchmark and target requirements are direct inputs into
Impact Estimation, which is used to quantitatively assess design
ideas (see Chapters 7 and 9).

It caters for evolutionary system engineering methods as it supports
dynamic requirements and, it enables rapid, numeric tracking of

progress. There is the ability to clearly specify how critical require-
ment levels should change over time and any changes to these
numeric values (by project progress or change in requirement) are
clearly visible to all. There is also the ability by specifying [time,
place, event] conditions to readily communicate sub-division of a
system.

Clear, specified requirements are at the heart of systems engineer-
ing. Planguage is a flexible tool to help you communicate require-
ments better.
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“Would you tell
me please,
which way |
ought to go
from here?”
“That depends
a good deal
on where you
want to get to,”
said the cat.
“l don’t much
care where --,”
said Alice.
“Then it
doesn’t matter
which way
you go,” said
the cat.

Lewis Carroll

&

Figure 2.10
Alice and the Cheshire Cat. lllustration by John Tenniel, wood-engraving by Thomas
Dalziel. From Chapter 6, Alice in Wonderland by Lewis Carroll.
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Chapter

3

FUNCTIONS
What systems ‘do’

GLossary CONCEPTS
Function
Function Requirement
Mission
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Infroduction: Function and Function
Requirement Specification

Function specifications define ‘the business we are in’. Functions are
‘what’ a system does. Functions must be distinguished from how well
a system performs (the stakeholder performance attributes, such as
quality) and from how much a system costs (the resources expended).

Manual Dialing:

Type: Function Requirement.

Description: The user capability, by any available means {finger on key, voice, name
list}, to select or provide and, transmit a {telephone or internet} {number or address}
and any other required symbols, to reach and access any available services. It
specifically includes any keying or other activity needed in connection with commu-
nication, such as accessing lists. It specifically excludes any non-communication
activity such as game playing.

Separation of Functions from Design Ideas

Functions must also be distinguished from design ideas (how a system
is going to achieve its requirements)." Tt is all too easy to mix them up
but, if you do, you cheat yourself of the results you might get from a
better design idea. The test is simple. Ask “Why this {function or
design idea}?” If the answer is “because that is what our system ‘must
have’ to be ‘our’ system at all,” you are probably talking about a
function: something so fundamental that it is not for the systems
engineer to modify or choose.

If the answer to “Why?” is “in order to get a performance improve-
ment” or “for cost reduction,” then that specification is a design idea,
not a function. For example, for a bank, ‘lending and dispensing
money are clearly basic functions. The automated teller machines
(ATMs) in the wall are clearly a ‘design idea’ from the bank’s point of
view. This is because the ATM is one way to make the functions (of
lending and dispensing money) have certain performance attributes
(such as “to make it easier for our customers to withdraw money at the
time they want to”).

Making this ‘function or design?’ distinction perhaps even more
ifficult, is the issue that the ‘objects’ we analyze are not purely
difficult, is th that the ‘object 1 t 1
‘function’ or ‘design.” Returning to the ATM example, at the ‘bank’

' Chapter 2 discussed how requirements must be separated from design in general.
Now, here we are specifically discussing how function requirements must be clearly
separated from design and explaining some of the associated issues.
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level, the ATM functionality is a ‘design idea’. However, at the level of
the ‘ATM project’ the ATM functions become undisputed ‘function-
ality’. The classification is dependent on your viewpoint.

In Planguage, we classify as ‘function’ or ‘design’ in order to convey
the information about what is fundamental in a given situation
(function) and what is a ‘currently selected option’ (a design idea).
In this sense, we could say that the classification ‘function’ acts as a
constraint” on the system designer. This distinction is one made in our
minds, because we want the designer to have, or not to have, freedom
to improve things. The ‘system itself’ is unaware of the distinction. An
outside observer might not be able to see the distinction by merely
looking at the system. For example, is air-conditioning in a car a
function or a design? Is it an option or a fundamental concept? It all
depends on the attitude of the people involved.

To give another example: at one stage the concept of putting a ‘motor’
into a horse-drawn carriage (creating the auto-mobile, the horse-less
carriage) was clearly a ‘design’ intended to give certain performance
and cost attributes, which ‘horses’ did not have. At this present stage
of culture, the ‘mechanical engine’ in a car is taken almost completely
for granted and has become a function, ‘providing mechanical engine
power.” This function clearly requires design ideas to implement i,
which contribute to the overall characteristics of the car (some engine
fuel design options are gasoline, diesel, steam, electricity and nuclear
power).

With “functions’ you are not empowered to change them. You can’t
decide that a car will have no wheels; ‘wheel functionality’ is too much
of a ‘given’ function. However, you can decide about many features of
the design of the wheels, to ensure they have interesting attributes.
You can also decide about the design of the ‘motor’ function, to give
both it, and consequently the car, better attributes. But you cannot
suddenly change the ‘motor’ function and opt for the horse again!

One advantage of making the design/function distinction clear is that
if new design ideas come along (which could replace current design),
you are psychologically ready to evaluate them, and accept the ones
that on balance are better than the current design.” Another advantage
is that you are more likely actively to look for alternative designs. In
overall effect, the design/function distinction can free us up to design
systems more competitively.

2 Of course, it is only a ‘true’ requirement constraint if declared as a ‘function
constraint.” See later discussion in Chapter 7 on Priority Determination.

® How we estimate the relative contribution to requirement satisfaction of design ideas
(their ‘impact’) relies on the methods in the following chapters: the quantification of
attributes, and the estimation of the impact on these attributes, of the design ideas.
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Keep uppermost in your mind that this classification process is simply
about giving information to systems engineers about what they should
take as ‘givens’, and about what they should ‘engineer.” Any engineer,
who has a true (engineering or systems architecture) design process,
should care about this distinction: the information about what they
should design is of crucial importance to them.

Classification as either ‘function’ or ‘design’ depends on:
¢ the circumstances:

A “selected design’ or ‘design constraint’ becomes viewed as provid-
ing ‘required functionality’ as seen from later and lower levels of the
decision-making hierarchy.

¢ the stage of development:

One stakeholder’s design idea becomes another development pro-
cess person’s ‘required function’.

e the current culture:
Yesterday’s design may become today’s ‘given’ function.
¢ the intent of the specification:

If it is specified in order to deliver performance or savings require-
ments, it is a design.

If it is there because it is ‘fundamental’, ‘because that is how we do
things,” then it is a function.

e the degree of freedom of a given type of planner/designer/architect
to actually change the specification:

If they are free to change it, then it is more likely design.

The above are some, hopefully useful, ideas to help you classify a
specification as a function or a design. But, do not get over fixated by
this process. It is finally one of degree and subjective judgment. A
specification ‘is what it is specified to be’ — no matter how we classify
it. The classification is intended to give us better ideas of our respon-
sibilities for the specification and our options (Must implement as it
is? Or, OK to improve it?).

Function Requirements

Any required function, which is essential and fundamental to the
future system, is called a ‘function requirement’. It must be specified
as ‘pure’ function and it must be specified with information about the
conditions [time, place, event] under which the functionality exists
(otherwise there is no actual requirement!).
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ExAMPLE

ExAmPLE

ExAMPLE

ExAMPLE

Type: Function Requirement: {F1, F2, F3}.

F1 [USA]: 911 Emergency Dialling Capability.

F2 [Finland]: Character Capability {Finnish, Swedish, English}.
F3 [End Next Year, California]: Exhaust Emission Testing.

In addition, any instance of a real-world function always comes
attached with a set of resource and performance attributes. So when
we specify a function requirement, we have to consider what has to be
done about its associated attributes. All function requirements must
respect the full set of performance and resource requirements, which
apply to ‘their level’ of the system.

Availability.Q1 [F1, F2, F3]:
Type: Quality Requirement.
Scale: % Uptime. Fail: 99.0%. Goal: 99.5%.

Availability.Q1:

Type: Quality Requirement.

Scale: % Uptime.

Fail [F1]: 90%, [F2]: 92.5%, [F3]: 95%.

Goal [F1, F2, F3]: 99.5%.

An example of how to specify the specific attachment of performance levels to functions.
Availability Q1 is ‘attached’ to the three named functions, Fl, F2 and F3 using
qualifiers. In the first instance all goals are attached to the three functions. In the second
instance only the one Goal is attached to the three functions and the Fail levels are
attached individually and differently.

Any global scope requirements automatically apply to a function or
sub-function, unless they are specifically contradicted by more specific
local requirements.

Of course, it may be the case that certain key functions may require
even higher performance levels (say for reliability and efficiency) than
other functions. In these specific cases, the definition of the function
requirement must explicitly be linked to appropriate specific
requirements.

Reliability: Scale: MTBF. Goal [Function X]: 99.98%.

Service Performance: Scale: Time in seconds to <reply to inquiries>.
Goal [Function: FX]: 1 second/reply.
Explicitly linking an attribute to a function.

By the time a function requirement (or part of a function require-
ment) is planned for delivery in an Evo step, its performance and
resource requirements, and the conditions surrounding its delivery
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should be precisely pinned down using specification parameters like
Risks, Is Impacted By, Dependency and Authority.

All function requirements will, ultimately, have a set of performance
and resource attributes associated with them.
Systems engineering is about getting control over these attributes.

3.2 Practical Example: Function Analysis

Consider the (real) proposal to the Board of Directors asking for
$60 million, which we first considered in Section 2.8:

Proposal to the Board of Directors

A special effort is underway to improve the timeliness of Engineer-
ing Drawings. An additional special effort is needed to signifi-
cantly improve drawing quality. This Board establishes an
Engineering Quality Work Group (EQWG) to lead Engineering to
a breakthrough level of quality for the future. To be competitive,
our company must greatly improve productivity. Engineering
should make major contributions to the improvement. The simplest
is fo reduce drawing errors, which result in the AIR (After Initial
Release) change ftraffic that slows down the efficiency of the
manufacturing and procurement process. Bigger challenges are
to help make CAD/CAM a universal way of doing business within
the company, effective use of group classification technology,
and teamwork with Manufacturing and suppliers to develop and
implement fruly innovative design concepts that lead to quality
products at lower cost.

The EQWG is expected to develop ‘end state’ concepts and imple-
mentation plans for changes of organization, operation, proce-
dures, standards and design concepts to guide our future growth.
The target of the EQWG is breakthrough in performance not just
‘work harder.” The group will phase their conceptualizihg and
recommendations to be effective in the long term and to influence
the large number of drawings now being produced by Group 1 and
Group 2 design teams.

Now let’s further analyze it. Who are the stakeholders? What are the
functions?

Stakeholders:

Management (Engineering Manager, Board of Directors and others)
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Engineering Design Teams

EQWG
Group 1 Design Team
Group 2 Design Team

Procurement
Manufacturing
Suppliers
Customers

Functions:

Carry out Research and Development
Create Designs

Produce Engineering Drawings

Procure Materials

Manufacture Goods

Establish Work Environment

Maintain Work Standards and Practices
Maintain Organizational Structures

Note: These lists of stakeholders and functions show an alternative simpler
Jormatting for Planguage sets (Parenthesis brackets { }” and commas are
dispensed with).

As the functions become ‘lower level,” they begin to constrain the
design options! Great care must be taken that function specification is
not taken down too far to the wrong level of decomposition. For
example, ‘Produce Engineering Drawings’ is possibly beginning to
dictate certain aspects of the solution.

Notice that by separating the different concepts of functions, design
ideas, performance, resources and stakeholders, you get much greater
clarity about what is really being said. The basis for further system
improvement is also laid. For example, the performance attributes
should next be taken a stage further, and be given better definitions
that include numeric values stating the requirement levels. You are
then able to start evaluating the ‘impact of the proposed design ideas’
on ‘all the requirements.’

Now you try! Take some recent and important system requirements
from your own work, and analyze it into these components: {Func-
tion Requirements, Performance Requirements {Qualities, Workload
Capacities, Resource Savings}, Resource Requirements, Design
Constraints, Condition Constraints, Design Ideas, Assumptions and
Comments}.




//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D - 81 - [81-108/28] 29.6.2005
12:38PM

Functions 89

3.3 Language Core: Function and Function

Requirement Specification

Here are some formats for referencing and specifying functions,
including structuring them. If this seems more than you need for
the moment, then all you really have to know is the basic format,
Function Tag: <function description>.’

Note: Function specification is not always for function require-
ments. You need to specify functions for other purposes as well,
such as describing existing systems and clarifying functional
concepts.

Implement
Process
Improvement

Maintain
Standards

Maintain
Rules

Others
Maintain

Policy

Maintain
Process

Maintain
Process Owner

Maintain
Process Description

Update
Procedure

Update
Process Details

Update
Entry Conditions

Update
Exit Conditions

Figure 3.1
Diagram showing the relationships amongst the functions used
section.

in the examples in this
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ExAMPLE

ExAMPLE

ExAmPLE

Referencing Functions

Functions are identified with a tag. Some variations on the tag
structure are given here below. You can use the format: ‘Parent
Tag.Kid Tag or, if it is ‘unique in context,” just ‘Kid Tag.’ The
first/left tag indicates a parent function, and the following tag indi-
cates a kid/child function.

Tag: Maintain Standards.Maintain Rules.
Tag: Maintain Rules.Update Rule. “or just Update Rule if it is not ambiguous.”

You can also use the format:

Maintain Standards: Includes: Maintain Rules.

Maintain Standards: Includes: {Maintain Policy, Maintain Rules, Maintain Process}.
Or

Maintain Standards: Includes: Maintain Rules: Includes: Update Rule.

The latter example is explicit about the hierarchy.

Note: {...} is the Planguage symbol for a ‘set’ of things.

Specifying an Arbitrary Set of Functions

There is no implication when specifying functions and functional
relationships, that all siblings are specified or that the functions listed
are even direct descendants of the same parent. Any set of functions
can be given a common collective tag for reference:

Arbitrary Function Set: Type: Function {Function Tag 1, Function
Tag 2,..., Function Tag N}.

Maintain Standards:

Type: Function.

Defined As: {Maintain Rules, Maintain Policy, Maintain Process, Others}.

Or more briefly:

Maintain Standards:

Function: {Maintain Rules, Maintain Policy, Maintain Process}.

Note: use of the parameters “Type’ and Defined As’ are optional. It is a matter of style and
readability.

Inheritance of Higher Level Requirements

A function will automatically inherit any relevant specifications’ para-
meters from relevant higher system levels. This includes higher-level
(system-wide) performance requirements, budgets and any condition
constraints. These inherited parameters apply by implication, unless
there are other parameters that specifically override them in more local
function specifications.
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Function Specification

A function specification defines all the currently interesting functional
aspects. It optionally includes the function description, functional
relationships (that is, the names of relevant supra-functions, sub-
functions and sibling functions), associated specific performance and
resource attributes, condition information [time, place, event], source
information, risks and assumptions, as well as many other parameters.
It even includes the implied or ‘default’ attributes’ properties inherited
from higher levels of the system of which the function is a member!

Here is an example of a client’s function specification (edited for

confidentiality):

Emergency Stop:

Type: Function.

Description: <Requirement detail>.

Module Name: GEX.F124.

Users: {Machine Operator, Run Planner}.

Assumptions: The User Handbook describes this in detail for all <User Types>.
User Handbook: Section 1.3.5 [Version 1.0].

Planned Implemented: Early Next Year, Before Release 1.0.

Latest Implementation: Version 2.1. “Bug Correction: Bug XYZ.”
Test: FT.Emergency Stop.

Test [System]: {FS.Normal Start, FS.Emergency Stop}.

Hardware Components: {Emergency Stop Button, Others}.
Owner: Carla.

The main parameters for function specification are described in the
following paragraphs.

Function Description
A function description describes on/y the action(s) of the function.

Function Tag 1: Function: <function description> <-Source.

Refugee Transport: Moving refugees back to home villages. <- Charity Aid Manual.
“The mode of transport will be determined by safery, and cost factors.”

A more explicit ‘parameter-driven’ format may also be used for clarity:

Tag: Refugee Transport.

Type: Function Requirement.

Description: Moving refugees back to home villages.

Source: Charity Aid Manual [Version = Last Year].

Dependency: The mode of transport will be determined by safety and cost factors.
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ExAMPLE

ExAmPLE

The choice of more or less formality is governed by factors such as size
of plan, size and type of readership, familiarity with Planguage and
stage of planning (for example, ‘drafting ideas’ or ‘making a formal
plan’).

Functional Relationships

Functional relationships are used to define the relationships amongst
functions. For a specific function, the different kinds of relationship
include:

¢ Sub-functions: These are any lower-level functions that comprise a
function. Any sub-functions at the immediate lower level to the
specific function are known as Kid (Child) functions.

¢ Supra-functions: These are any higher level functions, which the
specific function forms a part of (is ‘sub-function’ of). The immedi-
ate supra-functions of a function are called the Parent functions.
The ultimate, hierarchical top level function, within an organization
or project, is usually called a ‘mission.’

¢ Sibling functions: These are any functions sharing at least one
parent function with another ‘sibling’ function.

Here are some examples of specifying functional relationships (see
Figure 3.1):

Defining Supra-functions (as a set of functions)

Supra-functions: Function {Function Tag 1, Function Tag 2,...,
Function Tag N}.

Tag: Update Rule.

Type: Function.

Supra-functions:

Function: {Maintain Rules, Maintain Standards, Implement Process Improvement}.

Referencing Supra-functions for a Function

A hierarchy of tags can be used to show the function hierarchy. You
can use bold or underline to emphasize which tag you are focusing on.
The non-emphasized part is the information about the supra-function
ancestry or genealogy.

A hierarchy of tags is connected by dots: “Tag 1.Tag 2.Tag 3’.

Maintain Standards.Maintain Rules.Update Rule: Type: Function.
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Defining Sibling Functions

The format examples below define siblings.
Some Kids: Includes: {Kid1, Kid2}.

All Kids: Consists Of: {Kid1, Kid2, Kid3, Kid Last}.

Attributes of a Function

Attributes of a function are any specific performance or resource
attributes specified in the function definition. They include past
benchmarks {Past, Record, Trend} describing a function’s current or
historic attributes and, if a function requirement is being specified,
they also include future target requirements {Goal, Budget, Stretch,
Wish} and constraints {Fail, Survival}. Qualifiers must be used in
those attribute specifications to define the specific instances of the
past or future use of the function.

Goal [End Dec Next Year]: 22,000.

Attributes of a function can be described and directly connected to the
function in the following way:

<Function Tag 1>:

Type: Function.

Description: <describe the function here, well enough to allow testing of it>.
Attribute 1: Scale: <?> Goal: <?>.

(Attribute 2: Scale: <?> Budget: <?>.)

Template for specifying the attributes of a Function.

Note: Fuzzy brackets, ‘<. .. >’ are used in a template to indicate what
to ‘fill in’. The fuzzy brackets may contain some instruction, which
will always be wiped out when the brackets are filled in. The paren-
thesis, ‘(...)" are used to indicate (optional) specification types.

Flagship Product:

Type: Function.

Description: Provide a mobile telephone service [Product Code 9998].

Reliability: Scale: Mean Hours between Faults. Goal [End Dec Next Year]:
22,000.

Battery Life: Scale: Hours Life. Goal [Standby]: 500, [Calling]: 50.

Function with specific local performance requirements. The specification of function,
Flagship Product contains explicit and local definition of two performance attri-
butes. Other attributes and specifications may be implied by other specifications
elsewhere.
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Qualifiers

Qualifiers can be used to specify the set of conditions [time, place,
event] applying to a specific function.

Qualifiers can also be applied to functions in the following way:

<Function Tag 1>:

Type: Function Requirement.

Qualifier: [time condition, place condition, event condition].

Description: <Define the function here>.

Template for a function with conditions. Note: the function is only ‘required’ or ‘valid’
when all elements of the qualifier are ‘true’

Installation:

Type: Function Requirement.

Qualifier: [Next Year, Activity = Emergency Repair, Major Cities].
Description: Any job <our installers> must perform.

Any useful set of qualifiers is valid.

3.4 Rules: Function and Function Requirement

Specification

Gist: Specific Rules for specification of Functions and Function
Requirements.

Tag: Rules.FR.

Version: October 7, 2004.
Owner: TG.

Status: Draft.

Base: The rules for generic specification, Rules.GS and the rules for
requirement specification, Rules.RS apply.

R1: Functionality: Function requirements will specify what the
system must do and all specified functionality must be required by
specified stakeholders (Type: Function Requirement).

Function requirements are not themselves ‘unconditionally required.’
Their actual implementation will depend on their relative priority — as
specified by qualifiers and other parameters (such as ‘Authority).

R2: Detail: The function requirement specification should be
specified in enough detail so that we know precisely what is
expected, and do not, and cannot, inadvertently assume or include
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function requirements, which are not actually intended. It should
be ‘foolproof’.

Detailed definition within sub-functions can satisfy this need for clarity, the
higher level function does not need to hold all the information.

Fuzzy Function Environment:

Gist: Ensuring Environmental Considerations.

This is a defective specification, given Rule R2. A more detailed function definition is
given in the following example.

Ensuring Environmental Considerations:

Type: Function Requirement.

Description: All legally and competitively necessary functionality, immediate and
potential, regarding environmental protection, in the widest interpretation possible,
to protect us against lawsuits, and give us a clear positive reputation amongst
consumers.

R3: Not Degrees: Elementary function specifications must 7oz be
described in terms of degrees or variability.

Elementary functions are binary (present or absent in totality) in
nature. If something is ‘variable in degrees,’ then it probably needs to be
reclassified, and redefined as a performance or resource specification linked
to a function.

R4: Not Design: The specified ‘function’ requirement must not be
a design idea (for example, a strategy, a device, a method or a process)
whose only or main justification is to satisfy a performance or resource
requirement of the system.

If the ‘function specification’ is really a design idea, then it shall be
re-classified as ‘Type: Design Idea’. If it was intended to support yet
undefined performance or resource requirements (like Design X Impacts
Performance Y), then action will be taken to properly define these attri-
bute requirements. Such action might justify rewriting the so-called
function’ as a design specification, as there is now at least one requirement
that the design idea can impact.

We must avoid ‘false’ function requirements, which are really just designs,
which someone assumes would be good for meeting unspecified and
unofficial performance requirements. (Local version of Rules.RS.R9:
Design Separation.)*

“* This rule intentionally duplicates RS.R9 as it is considered so important for functions.
Whenever such duplication occurs, specific reference should be made to the rule being

duplicated.
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Usability: “An example that violates R4 as the Type classification is incorrect! The
Description also has errors.”

Type: Function Requirement.

Description: A state-of-the-art, user-friendly interface.

Usability’ is a performance attribute, and needs definition (using a Scale and other
parameters, such as Goal). If your intuition doesn’t tell you this, then State of the art’ is a
clue as to ‘variability’ or ‘degree of goodness.”

Interface’ is a ‘thing to be designed’ in order to achieve various attributes, including, bur
not limited to, ‘Usability.’ Specify this interface amongst the ‘design ideas.” It is not a
‘what,” but it is a ‘how’ (a design idea).

R5: Function Priority: If there is a required simple priority for
a function requirement, then it should be explicitly stated with
information about its authority and/or the source reference and the
reason for the priority.

Use the Priority parameter ‘Priority: After Y or use suitable qualifiers
‘[Before X].” Use the Authority, Source and Rationale parameters to
specify the supporting information.

Rationale: We must address Service Level Agreements as soon as possible to enable
the correct level of support to be given when a customer phones with a problem.
That is where we are incurring too much cost and tying up engineering support
resources. <- Customer Services Director.

See also Section 7.7, which discusses Priority Determination.

R6: Testable: A function must be specified, so that it is possible to
define an unambiguous test, to prove that it is later implemented

(Local version of Rules.RS.R8: Testable).

R7: Test: Any notions of how or what needs to be tested, in order to
validate a function may be described using the Planguage parameter
“Test,” with the function name as the qualifier.

The Test information is either specified with the function definition
or as a separate item.

Function Y:

Type: Function Requirement.’

Description: Charging to Accounts.

Test [Function Y]: Tests shall be developed to demonstrate that this function is
available for all counties in this state, and prove that no other states or countries can
access it.

> Note: By default, a ‘Function Requirement’ is assumed to be a ‘Function Target’.
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Audit: Test [Function Requirement: Function Y]: We must demonstrate to internal
auditors that no counties, which are <financially insolvent> are allowed access to
this function <- Audit Report [August This Year].

3.5 Process Description: Function Requirement
Specification

Process: Function Requirements

Gist: A process for specification of function requirements.
Tag: Process.FR.

Version: October 7, 2004.

Owner: TG.

Status: Draft.

Entry Conditions
El: The Generic Entry Conditions apply.

E2: You have the ability to observe comparable ‘real’ systems (see P3,
below).

Procedure

P1: Describe the hierarchical structures of the high-level function(s), as
sets of related function and sub-function tags (for example, F1.F2.F3).

P2: For each function tag (this also includes tags for sub-functions and
supra-functions as relevant), define the function, in the detail required
by the rules for function requirement specification (see Rules.FR in
Section 3.4).

Note: Focus on real functionality (‘what it does) and exclude any design

ideas intended to satisfy performance and resource requirements.

P3: Where relevant: sample comparable ‘real systems’ to check the accuracy
of the function specifications. Correct the specifications as necessary.

P4: Check accuracy and completeness of function requirements, with
the people who are currently using similar existing systems. Correct
the specifications as necessary.

P5: Perform Specification Quality Control (SQC) on the draft func-
tion specifications. Check the quality level against the required quality
level, as specified by the exit conditions (see X1). If SQC fails, rewrite/
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correct the function specifications (that is, revisit P1 to P4). Continue
P5 until the appropriate quality level is reached.

P6: Once the function specifications have exited SQC, get real current
system users (if any) to sign off agreement to them.

P7: Repeat any procedure above until the exit conditions can be satisfied.

Exit Conditions

X1: The Generic Exit Conditions apply.

By default, no more than 0.2 remaining major defects/page are allowed in
any of the function specifications. (A page is 300 words of non-commen-
tary text.)

X2: The relevant system users, if any, must have signed off the
function specification.

Simplified Function Requirement Specification Process

Process: Function Requirement Simplified.

Gist: An alternative simplified variation for Function Requirement
Specification.

Tag: Process.FRS.

Version: October 7, 2004. Owner: TG. Status: Draft.

Entry Conditions
None.

Procedure
P1: Declare a specific, ‘already specified’ and ‘currently opero-
fional’ system to be the ‘living map’ of the function requirements.

There is usually an old existing system of some kind. It is likely that a
future system must replace this old system, in order for the business
or organization to remain viable in the future.

Where relevant, use [qualifiers] to aid the mapping of the old to the
new.

The function specification detail is then continuously observable
‘in the real system.’ It should only be analyzed ‘as needed.’ Exit
immediately.

Exit Conditions
None.

Note: This method is useful when doing evolutionary delivery of
changes to impact performance/resource atfributes and minor
changes to real functionality for an existing large system. You focus
on ‘improvement results,” not ‘supporting functionality.’ | normally
apply this method to most real projects | get involved in (TG).
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3.6 Principles: Function and Function Requirement
Specifications

These are principles for recognizing what is, and is not, a function and

also for working with functions.

1.

10.

The Principle of “What Function?’
Function is ‘what’ a system does, never ‘how well’ it does it or
‘how it does it so well.’

The Principle of “Thing with Attributes’

A function is the thing, which has the performance and resource
attributes attached to it.

The Principle of ‘Living Map’

Function specification is sometimes best done by declaring the
existing system to be a living map.

The Principle of ‘Part of Totality’

Functions are always part of some larger function and can prob-
ably be described by their own sub-functions.

The Principle of ‘Each to their Own’

Different functions require different performance and resource
attributes; so, one reason we specify the functions is to identify
and distinguish their required attributes.

The Principle of “Timing’

Different functions can be delivered to customers at different times,
so another reason to specify functions is to know ‘what to do when.’

The Principle of ‘Conditional Function’

Some functions may not be necessary, excepr under specified condi-
tions or events, and these conditions should be specified and exploited
in project planning. You don’t have to do what is not yer required!

. The Principle of ‘Room with a View’

A function definition is not absolute; it is a viewpoint, and many
overlapping function views can be made and used fruitfully to
satisfy different needs.

The Principle of ‘“Terrain does not change with the Maps’
The real system does not change just because you document func-
tion viewpoints and function hierarchies: correctly or incorrectly.

The Principle of ‘False Function Foils Fruits’

If you mistakenly request a design, as basic functionality, you will
limit your ability to improve the design to give better competitive
attributes.

Alternatively,

Don’t request ‘functions’ which are really ‘designs for performance’,

You might not get the performance you really want.
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3.7 Additional Ideas: Function and Function

ExAMPLE

Requirement Specification

Mission

As mentioned earlier in this chapter, the ultimate top-level function of
any system is termed its ‘mission.” A mission describes ‘what” a specific
system does. Many organizations have explicit mission statements.

We could just as well call ‘mission’ the ‘top-level function.” But the
concept and term ‘mission’ is well known, and for many purposes
works better than ‘function.” For example, “The mission of this project
is Mars Exploration’ sounds better with ‘mission’ rather than ‘func-
tion.” Keep in mind that any ‘mission’ is still really a sub-function of
some larger functional context.

Of course, a mission only provides a high-level description of a
system’s function. Further detail is provided by its sub-functions and
by its associated performance and resource attributes. Also, to fully
understand a system, we must have information about its environ-
ment. A system Znteracts with the environment in which it operates.

Note it is important that we not confuse ‘mission” with ‘vision.” A
vision statement is a higher-level concept. It can include ideas about
how well the mission will be conducted. For example, “Our vision for
the ‘Mars Mission’ is to get back alive, with substantial new scientific
knowledge.”

Elementary and complex concepts

Functions and many other Planguage types can be described as being
elementary or complex concepts. The meaning of these terms, regard-
ing functions, is as follows:

* An elementary function is not decomposed into sub-functions. It may
be the case that it is unable to be broken down any further or a
deliberate decision may have been taken not to further decompose it.

e A complex function is composed of a set of at least two sub-
functions. The set of sub-functions can be any mix of relevant
complex and elementary functions. At the lowest level of functional
decomposition a complex function is defined completely in terms of
elementary functions.

Planning a Project:

Type: Complex Function.

Includes: Elementary Function: {Reviewing Evo Step Feedback, Checking Require-
ment Specification is Valid, Selecting Next Evo Step, Allocating Staff to Evo Step}.
An example of elementary and complex functions.
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Measuring Functionality

Functions are either ‘present or absent;’ they have a binary nature.
They are either documented or observable (testable) in a real system or
they are not.

Sets of complex functions can be thought of numerically as ‘per-
centage amounts’ of their ‘defined lists’ of elementary functions.
Elementary functions are (by definition) not divided into sub-
functions.

Complex functions are either 100% present (all elementary functions
in the defined complex function set are present) or they do not
‘wholly’ exist. For a complex function called ABC, you can talk about,
say, 90% of the set of elementary functions comprising ABC being
defined or implemented. In such a situation ABC itself, the entire
complex function, doesn’t exist yet; only known degrees of it are
defined or in place.

Additional Examples of Function Specification

Here are some Planguage ideas, additional to the ones shown in
Section 3.3, which can be applied to function specification. They give
more detail on the use of qualifiers.

F3 [F499]: Receiving e-mail from Customers.

F3 is a valid function if; and only if; F499 is active or in existence. F499 is a ‘condition’
(specified in the format of a [qualifier]). F499 is detailed ‘elsewhere’. F3 is a complex
function specification because it has a qualifier, which must be determined by the
qualifier’s own definition

SYSX. F5: Sending e-mail to defined [Group].

F5’is a ‘kid’ element of the complex function SYSX. The actual function implementation
will differ depending on the current definition of ‘Group’.

F6 [Date = After First Release]: Get approval by electronic signature.

F6 is not ‘valid’ (for implementation, for testing) until after First Release’ event has
taken place. First Release is a specification variable, depending on the actual release
date.

F7:

Qualifier: [Country ={European Union Countries, Norway, Not USA, Not
Canada}].

Definition: Maintain System XYZ Standards.

The function, F7 is valid for a defined set of countries. The qualifier parameter,
‘Country="illustrates how a more explicit format can provide better readability for
Planguage novices.

F8:

Description: Answering direct-line telephone.

Speed: Scale: Number of <whole rings> heard at Receiving End, before Answer
Signal is <sensed>.
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Past [Condition = Employee Not At Desk]: 4.

Goal [Condition = Employee Not At Desk]: 1.
Answer: Scale: Probability that Caller is satisfied with the Given Answer.

Past [OK]: 50%, Goal [OK, Version 6]: 90%.

OK: Defined As: {Condition = Correct Employee, Hours = 0800 to 1700}.
In this example, the function, F8 is defined together with multiple attributes,
both benchmark and rarger. Notice the qualifier ‘OK’ is defined in a separate
statement to make reuse of it easier. This also prevents repetition, saves space and
saves time when making changes.

3.8 Further Example/Case Study: Function
Specification for an Airborne Command and
Control System

This is an extract from the top-level function specification for a
real system (The system is now operational and delivered to
customers).

Note: Mapping functions in detail is not the prime intention
when using Planguage. The aim is to establish an evolutionary
plan, which focuses on result delivery to some defined system
stakeholders. This aim does not necessarily require any ‘delivery’
of additional functionality! Delivering ‘designs,” to just improve
performance and resource attributes for existing functionality is
quite common. The level of understanding of the functions
needed at the planning stage is merely that required to support
the system designers and others involved in the requirement
specification process. Specifically, this means that a complete, in-
depth description of all the system functions and processes is not
required. I strongly recommend investigating functions in detail
only as required, at the design stage of each evolutionary delivery
step. (There may well be exceptions to this, but don’t waste
resources.)

Airborne Command and Control: ACC.
Type: System.

Includes: Type: Sub-system:

M: Mission.

P: Planning.

D: Data Handler.

C: Communications Intelligence.

ACC.D.MOP: ''MOP stands for ‘Manual Operation(s)’."”
Type: Function.




P: Planning

Functions within the Airborne Command and Control (ACC) System.

Includes:
BIT:
DATAB:

DATALINK:

DIAG:

DISPLAY:

ESM:

FMS:

HEARTBEAT:

INIT:

LINK:
LOG:

PRINTER:

RADAR:

DATAELEMENT:
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Provide ‘Built In Test.'

Provide database diagnostics. <Various levels of
checking>. Not including <on mission>.

Check <Data element reasonableness> when
<on mission>.

Interchange data links manually by operators.
""Component from our mother company.”’
Display all faults to operator and log on file.
Display error and fault detection data to operator.
Display error messages from communications/
non-communications system.

Display any loss of data from Flight Management
System.

Supervise computer node <status> by heart-
beat <signaling>.

Test data destfructive HW when inifializing the
<system>.

Display <status information> of the data links.
<Save on file> fault defection data and
detailed test information.

Report <printer status> from the AX-BUS when
any fault occurs.

Display loss of data from radar.

This was from the first draft of the function specification. Many

concepts are marked with <fuzzy brackets> and require further work

to precisely define them.

ACC: Airborne
Command and Control

D: Data Handler.MOP

HEARTBEAT

C: Communications
Intelligence
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Here is an example of a function requirement:
(Notice the use of a Planguage template. The template parameters are given in
bold. See the next section for a more detailed specification of this template.)

Example of a Function Requirement

Tag: DATADIAG:

Type: Function Requirement. ‘‘Note, DATADIAG is not ‘real’, it is an
example made up using the basic ideas named in the real case
above. It is for feaching purposes only."

Version: October 7, 2004 21:38.

Owner: Quality Assurance Division.

Implementer: Database Team.

Stakeholders: Quality Assurance Division, Maintenance Support.
Gist: Obtain Database Diagnostics.

Description:

S1: To monitor database quality. <Various levels of checking>.

S2: To report database diagnostics.

$3: To integrate with the automatic recovery system.

S4: To run in parallel with the operational use of the database as a
background function.

S5: Monitoring operation to be optional. For example, to be off
when <on mission>.

Sé: Monitoring operation to be user-driven by parameters to enable
selected sampling of specific classes of database records, data
elements and relationships.

Supra-function: ACC.D.MOP. "‘This is the specification of the supro-
function of DATADIAG from some viewpoint."

Sub-functions: None specified.

Supports: {System Recovery, Bug Maintenance, Database Integrity}.
Assumptions:

Al: This sub-system will not degrade operational database perfor-
mance by more than 5%.

A2: It will be cheaper to automate this function than fo do analysis
manually.

A3: It will be faster and more reliable than manual checking.
Dependencies: D1: The database system itself must be defined and
operational.

Risks: R1: Failure to update this function in parallel with the data-
base structure.

Priority: This function must be available to some degree in first
customer use releases. It will also be used in pre-release systems
testing to some undefined degree.

Test: T1: This function shall be used in system testing and an early version
of it can and should be made available in parallel with the develop-
ment of the database itself. The function shall be tested by insertion of
artificial database defects, and shall discover 100% of these.
Financial Budget: The cost of developing and maintaining this func-
fion is assumed to be between 10% and 50% of the cost of building
and maintaining the database software in total.

Function Infranet Location: ACC. Software.DB-Diagnosis.
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3.9 Diagrams/Icons: Function and Function
Requirement Specification

Resources Functions

Performance

Availability

Implementation
Resources

Operational
Resources

Adaptability

Cost Reduction

Work Capacity

Maintenance
Resources

Financial
Resources

'l Many-to-many relationships

between the different hierarchies

............................................ I N

Designs
1
| |
A
Processes Other
A A
P1 P2

Figure 3.3

This shows the four main system attribute types: resource, function, performance and
design. It also shows the processes, which implement the functions. Using Planguage,
the complex relationships amongst these four different types can be specified. For
example, a specific performance level might apply only to a handful of functions rather
than the entire system, or a function might be implemented by several processes, or
different resources can be specifically allocated to different functions.
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Template for Function Specification <with hints>

Tag: <Tag name for the function>.

Type: <{Function Specification,

Function (Target) Requirement,®

Function Constraint}>.

Basic Information
Version: <Date or other version number>.

Status: <{Draft, SQC Exited, Approved, Rejected}>.
Quality Level: <Maximum remaining major defects/page, sample size, date>.

Owner: <Name the role/email/person responsible for changes and updates to this
specification>.

Stakeholders: <Name any stakeholders with an interest in this specification>.

Gist: <Give a 5 to 20 word summary of the nature of this function>.

Description: <Give a detailed, unambiguous description of the function, or a tag reference to
some place where it is detailed. Remember to include definitions of any local terms>.
Relationships
Supra-functions: <List tag of function/mission, which this function is a part of. A hierarchy of
tags, such as A.B.C, is even more illuminating. Note: an alternative way of expressing supra-
function is to use Is Part Of>.

Sub-functions: <List the tags of any immediate sub-functions (that is, the next level down), of
this function. Note: alternative ways of expressing sub-functions are Includes and Consists
Of>.

Is Impacted By: <List the tags of any design ideas or Evo steps delivering, or capable of
delivering, this function. The actual function is NOT modified by the design idea, but its
presence in the system is, or can be, altered in some way. This is an Impact Estimation table
relationship>.

Linked To: <List names or tags of any other system specifications, which this one is related to
intimately, in addition to the above specified hierarchical function relations and IE-related links.
Note: an alternative way is to express such a relationship is to use Supports or Is Supported By,
as appropriate>.

Measurement
Test: <Refer to tags of any test plan or/and test cases, which deal with this function>.

Priority and Risk Management
Rationale: < Justify the existence of this function. Why is this function necessary? >.

Value: <Name [Stakeholder, time, place, event>]: <Quantify, or express in words, the value
claimed as a result of delivering the requirement>.

Assumptions: <Specify, or refer to tags of any assumptions in connection with this function,
which could cause problems if they were not true, or later became invalid>.

Dependencies: <Using text or tags, name anything, which is dependent on this function in any
significant way, or which this function itself, is dependent on in any significant way>.

Risks: <List or refer to tags of anything, which could cause malfunction, delay, or negative
impacts on plans, requirements and expected results>.

Priority: <Name, using tags, any system elements, which this function can clearly be done
after or must clearly be done before. Give any relevant reasons>.

Issues: <State any known issues>.

Specific Budgets
Financial Budget: <Refer to the allocated money for planning and implementation (which
includes test) of this function>.

Figure 3.4
A template for Function Specification.

¢ Note: By default, a ‘Function Requirement’ is assumed to be a ‘Function Target'.
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3.10 Summary: Function and Function
Requirement Specification

Functions are ‘whar’ a system does. The concept of a pure ‘function’
does not include information about the function’s performance attri-
butes (how well a function is done); nor about the function’s condi-
tions [when, where, if]; nor about design ideas (how, a function
achieves its attributes az the required levels).

My view of the discipline of functions is that they are ‘boring, but
essential, necessities.” They are the basics of the business or field you
are dealing with, and probably exactly the same as those of your
competitors in the same market.

The ‘real competitive action’ lies in identifying the interesting (com-
petitive) performance and resource attributes for the functions, then
establishing their required competitive levels and, then finding inter-
esting ways (designs) to achieve them.

So, you can view functions as providing the framework ‘supporting’
the performance and resource attributes necessary for winning.

Any attempt to implement a function without trying to gain control
over its performance and cost attributes, will result in unplanned,
uncontrolled and thus probably undesired attributes. You must con-
trol attributes of functions to control the ‘Risks.’

Many of the common problems, which systems engineers experience
(such as deadline control, cost overruns and bad quality) are, in my
view, significantly caused by:

e Specifying poorly-justified and insufficiently-detailed ‘design’ and
calling it ‘Function Requirements.’

e Articulating the performance and costs of functions in ways that
can’t be measured or tested.

¢ Focusing on testing functions alone, rather than the key stake-
holder-value performance and cost attributes.

Functions are merely real-world reference points. They are not the
interesting ‘problem’ for competitive systems engineering.
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Chapter

4

PERFORMANCE

How Good?

GLossARY CONCEPTS
Performance
Quallity
Resource Saving
Workload Capacity
Scale
Meter
Benchmark
Past
Record
Trend
Target
Goal/Budget
Stretch
Wish
Constraint
Fail
Survival
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Consider the Performance of :

A flower

e fragrance
e attractiveness
e pollen quantity
o toxicity
¢ bloom frequency

A car

e comfort
e safety
e speed
e capacity

A person

¢ balance
e intelligence
e courtesy
¢ helpfulness

Figure 4.1
Some examples of performance concepts.

4.1 Introduction

Performance: Quality, Resource Savings
and Workload Capacity

Performance describes the system benefits: how good the system is and
how it affects the external world. Performance attributes state the
actual and/or potential benefits and effects experienced by stake-
holders in their environments.

Performance attributes are the output attributes; they state the effec-
tiveness of a system. By contrast, the input (or ‘fuel’) attributes are the
resources/costs of developing and/or maintaining a system that exhibits
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Function Performance

Resource

V\/l\/\/

Figure 4.2
A simple system representation. It consists of a function, and its performance and resource
(cost) aftributes.

those performance attributes. The performance to cost ratio for a system
is a measure of its efficiency.

Performance attributes are scalar. As discussed in Chapter 2, there are
three basic types:

¢ Quality: The quality attributes specify how well the system per-
forms. The term ‘quality’ is used here in the ordinary widest sense of
the word. It is by no means limited to the narrow ‘defect free’
notion that some people mean when using it. How many qualities
can you list of a great car, a dream house, an excellent employee, a
great personal computer or a good wine? We include all such ideas
in our broad concept of quality.

¢ Resource Savings: These specify how much resource is required to be
saved compared to the resource usage/consumption by some reference
or benchmark system. Achieving specific savings is frequently a driver
for system development; for example, cutting the financial cost of
carrying out transactions or reducing the time taken to carry out a task.
Note, for this performance type, the saving of resource is the prime
requirement, it is not simply a fortuitous by-product of the system
improvements; it is what a stakeholder has specifically demanded.

¢ Workload Capacity: These specify how much work the system can
perform: the capacity of the system. For example, the average speed
for completing certain tasks, the capacity to store information and
the maximum number of users supported.

Performance requirements must express quantitatively the stake-
holders’ requirements. I have come to believe, through experience,
that all the performance attributes we want to control in real systems
are capable of being expressed measurably. I find it intolerable that
critical performance ideas are expressed in mere non-quantified words.
Expressions like “vastly increased productivity” annoy me! Not one of
those three words has a precise and agreed unambiguous interpreta-
tion. Yet, I have consistently encountered a world in multinational
high-tech companies, amongst educated, intelligent and experienced
people, where such vague expressions of performance, especially of
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quality, are tolerated; such expressions seem not even recognized as
eing dangerous and capable of improvement.
b d d ble of t

Performance attributes are more than a collection of names like
‘reliability,” ‘user friendliness,” ‘innovation,” ‘transaction time’ and
‘cost saving.” Each performance attribute needs to be precisely defined
by a set of numeric, measurable, testable specifications. Each perfor-
mance attribute specification will include different specified levels for
different conditions [time, place and event]. Unless there is clear
communication in terms of numeric requirements, there is every
chance of the real requirements not being met; and we have no clear
indication of the criteria for success and failure.

Sometimes, it seems difficult to identify satisfactory scales of measure.
Often, the only ones that can be found are indirect, imprecise and have
other problems associated with them. From my point of view, these
problems can be tolerated. The specific scales of measure, and meters
for measuring, can always be worked on and improved over time. In all
cases, an attempt at quantified specification is better than vague words.

Opver the years, I have found people immediately receptive to the idea
that they should quantify all their performance ideas. The only ques-
tion has been “How?” This chapter begins to answer this question. It
describes the main Planguage parameters you can use to specify
quantified performance attributes.

4.2 Practical Example: Perfformance
Requirements

Let us start with an example of how to quantify a typical performance
requirement.

“Increased ease of service” is a term I found in a set of design specifications
for a mobile phone handset. It was not defined further. It sounded like a
nice thing to have. The telecommunications supplier’s culture allowed it
to go unchallenged. In fact, in the few dozen pages of specification, there
were actually 10 distinct design ideas, each one with a bullet-point
claiming it would contribute to “better serviceability” for the new phone.

I asked my client if they had any quantified performance requirement
specification for the “increased ease of service” for the phone. They
had not, so we agreed to explore some possible definitions. We soon
discovered that ‘Serviceability’ for the mobile phone had numerous
elementary components; it was a complex objective.

Here is an extract of what we did. It was a three-step process.
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Step 1

We identified the different components of Serviceability and gave
each of them a name:

Serviceability: “is comprised of the following elementary and complex
objectives.”
Type: Quality Requirement:

{Repair,

Enhancement,

Fashion Changes,

Installation,

Reconfiguration}.

Step 2

We described each of these objectives by defining and agreeing a Gist
(‘Gist’ meaning the essence or main point):

Repair: Gist: Speed of repair of faults under given conditions.
Enhancement: Gist: Speed of introducing hardware or software
enhancements.

Fashion Changes: Gist: Ease of customer varying fashion attachments.
Installation: Gist: Speed of installing telephone in defined settings (for
example, in an automobile).

Reconfiguration: Gist: Work-hours to modify for varied uses (for
example, coupling to personal computer or power supplies).

In fact, we then further decomposed these into a total of 18 elemen-
tary objectives. However, such detail is not required for this example!

Step 3

Once we were satisfied that we had captured the scope of Service-
ability, we added further definition to specify the requirement in
measurable and testable terms: we identified a Scale and a practical
way of measuring on that Scale (a Meter). For example:

Repair:

Ambition: Improve the speed of repair of faults substantially, under
given conditions.

Scale: Hours to repair or replace, from fault occurrence to when
customer can use faultlessly, where they intended.

Meter [Product Acceptance]: A formal Field Test with at least 20
representative cases, [Field Audit]: Unannounced Field Test at random.
===================== Benchmarks ====================
Past [Product = Phone XYZ, Home Market, Qualified Dealer Shop]:
{0.1 hours at Qualified Dealer Shop + 0.9 hours for the Customer to
transit to/from Qualified Dealer Shop}.
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Record [Competitor Product XX]: 0.5 hours average. “Because they
drive a spare to the customer office.”

Trend [USA Market, Large Corporate Users]: 0.3 hours. “As on-site
spares for large customers.”

======================= |argets ======================
Goal [Next New Product Release, Urban Areas, Personal Users]: 0.8 hours
in total, [Next New Product Release, USA Market, Large Corporate
Users]: 0.2 hours <- Marketing Requirement, February 3 This Year.
===================== (Constraints ====================
Fail [Next New Product Release, Large Corporate Users]: 0.5 hours or
worse on average <- Marketing Requirement, February 3 This Year.
Survival [Next New Product Release, All Markets]: 1.0 hours <- TG.

Installation
Fashion Changes
Reconfiguration

Repair .,
D *
3

Past :
[Phone XYZ, ;s Record Trend *,

Home Market, [Competitor [USA Market, *
Qualified Dealer Shop] Product XX] Large Corporate Users]

.
.
cy
.
.

Mobile Phone

Serviceability

Function

e,

{10 08 05 0302 00 %, Timein
: . . : %, Hours
v Yy i Remair N
A A A 2 E[Next New

i Product
T iRelease]
Goal I
[Next New Product Release,
USA Market,
Large Corporate Users]

Fail
[Next New Product Release,
Large Corporate Users]

Goal
[Next New Product Release,
Urban Areas, Personal Users]

Survival
[Next New Product Release, All Markets]

Figure 4.3

Serviceability, a complex performance requirement, decomposes into numerous perfor-
mance atfributes. One of these, the quality, Repair is expanded to show its targets and
constraints and, the supporting benchmark information.
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At this point, everyone realized that we needed to do some ‘serious’
work defining our Serviceability objective. Only with an improved
requirement specification, could we begin to evaluate our ten specified
design ideas that claimed “increased ease of service”!

Whoever had originally written the phrase “increased ease of service” had
failed to communicate a precise, unambiguous requirement. Of consider-
able concern, there was clearly no means of agreeing the specific require-
ment level with other stakeholders. Nor was there any means of verifying
we had met the requirement on delivery. In practice, the engineers were
designing the phone without any significant input from Marketing.

These same problems, of ‘lack of clarity’ and ‘lack of necessary detail’,
also occur elsewhere. In your business too!

4.3 Language Core: Scalar Attributes

All performance and resource/cost attributes are scalar. The Planguage
parameters used for specifying scalar attributes' include:

¢ Ambition

e Scale

¢ Meter

e Past

¢ Record

e Trend

¢ Goal (abbreviation for ‘Planned Goal’ for performance attributes)
* Budget (abbreviation for ‘Planned Budget’ for resource attributes)
e Stretch (abbreviation for ‘Stretch Goal’ or ‘Stretch Budget)

¢ Wish (abbreviation for “Wish Goal” or “Wish Budget’)

e Fail

o Survival (abbreviation for ‘Survival Limit’).

Each scalar attribute must be specified using a tag, and an appropriate
set of these parameters. Past, Record and Trend are used to specify
benchmarks, Goal or Budget,” Stretch and Wish are used to specify
targets, and Fail and Survival are used to specify constraints.

' For the sake of simplicity, only the abbreviations for these parameters tend to be used
in the main text of this book. For example, where ‘Stretch’ is used, distinction is not
made between ‘Stretch Goal’ and ‘Stretch Budget’ as it is evident from the context
whether you are specifying a goal or a budget.

2 In the past, ‘Plan” was used instead of ‘Goal’ and ‘Budget.” Use of ‘Plan’ is still
perfectly acceptable if it better suits your organizational culture. ‘Plan’ does have the
advantage of being simpler and of better conveying to people that it is a level that is
subject to stakeholder acceptance and negotiation.



//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D - 109 - [109-136/28] 29.6.2005
1:44PM

Performance 117

The numeric values of the target, constraint and benchmark parameters
define the attribute levels. Note that benchmarks refer to exiszing or past
values, or future estimates extrapolated from pasz values, whereas targets
and constraints are future requirement values.

Here is some further detail about the main specification concepts:

Ambition

This is a descriptive parameter used to express the level of expected
performance in words.

Scale

The heart of a scalar attribute specification is the ‘scale of measure’
parameter, Scale (sometimes also known as the ‘units of measure’
parameter). The Scale states the specific definition of a scalar attribute
that we intend to use. It defines the units for measurement (for
example, ‘bits per second,” ‘miles per hour,” ‘mean time between
failure’ and ‘number of new customer contracts per year’).

¥

While suitable scales of measure for resources/costs are relatively
obvious to most people, identifying suitable Scales for performance
attributes, especially for qualities, is more challenging. There are, as
yet, few widely recognized standardized Scale definitions available.
(See further discussion in the next chapter, Scales of Measure’)

Scale: A scale of measure, stating the units to be used for numerically
expressing a scalar attribute level.

Meter

The Scale parameter is supported by the Meter parameter, which
defines, references or outlines a practical and economic method for
actually carrying out the measurement of the numeric level of the
attribute in a real system. More than one Meter may be required if the
means of measuring is going to alter over time or vary according to the
place and conditions.

Meter: A practical method for measuring and testing a scalar attribute
level, on a defined Scale.

Benchmarks

The benchmark parameters, Past, Record and Trend are used for
specifying historical, current or extrapolated performance levels. It is
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important that we understand what our own existing systems, our
competitors’ systems and, more generally, any other relevant systems,
are achieving.

Past: A relevant benchmark level worth consideration that has already
been achieved in some defined [time, place, event] conditions. We are
interested in the levels achieved by any relevant existing system (our
own, competitive, or any other system).

Record: A Past, which is the best-known result; a state-of-the-art
numeric value.

Trend: An extrapolation of past data, trends and emerging technology
to a defined [time, place, event] conditions. Aside from our own
project’s plans to improve this level, what future levels are likely to
be achieved by others? What will we be competing with?

Targets

The target parameters, Goal or Budget, Stretch and Wish, define the
attribute levels for success, motivation and dreams respectively.

Goal: A future required level under defined [time, place, event]
conditions, which has to be achieved to claim success in meeting a
performance attribute requirement. Goal levels are also a signal to stop
investing in levels better than this one, as the value gained is most
likely insufficient to justify additional costs.

Budget: A future required level under defined [time, place, event]
conditions, which has to be achieved to claim success in staying within
a resource attribute requirement. A signal to worry about resource
usage when more resources are estimated to be needed, or are really
used, than this ‘acceptable’ level of cost.

Stretch: A future desired level, under defined [time, place, event]
conditions, which is designed to challenge people to exceed Goal
levels or use less than Budget levels.

Wish: A future desired level, currently a ‘dream’ target level, under
defined [time, place, event] conditions, which has some value to a
stakeholder. The requirement is not planned or promised, due to
technical or cost reasons, but it is recorded and kept in the requirement
database (even if not acceptable now) so that it can be borne in mind.

Constraints

The constraint parameters, Fail and Survival, state the levels for some
kind of system failure and system survival respectively.
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Fail: A future required level under defined [time, place, event] condi-
tions, that is necessary to avoid some kind and degree of system
failure, while still allowing the system to operate.

Survival: A future required level under defined [time, place, event]
conditions, which is necessary to avoid total system demise. In other
words, it is a level necessary for the survival or viable operation of the
system.

Conditions

It is also important to distinguish amongst the different numeric levels
required for different conditions. Different times, different places and
different events can all give rise to requirements for different attribute
levels. Qualifiers should be used to specify the qualifying conditions
for the different specified levels. Each of the above Planguage para-
meters will normally contain a qualifier and/or be within the scope of
a qualifier defined elsewhere that applies to this specification. A
qualifier can be used after almost any tag or parameter to be specific
about dates, markets, products, components, stakeholders and other
conditions. (See also fiurther discussion of qualifiers in Section 2.7.)

[Time, Place, Event] or [When, Where, If]: Qualifiers specify
the conditions for a specification being valid, in force or effective.
All conditions must be ‘true’ for the associated specification to be

valid.

Here is an example to illustrate the parameters just defined:

Usability [New Product Line, Major Markets]:

Ambition: To achieve a low average consumer time to learn to use our telephone
answerer under stated conditions.

Scale: Average number of minutes for defined [Representative Consumers and all
their household family members over 5 years old] to learn to use defined [Basic Daily
Use Functions] correctly.

Meter [Product Acceptance]: A formal Field Test with at least 20 representative cases,
[Field Audit]: Unannounced Field Test at random.

Past [Product XYZ, Home Market, People between 30 and 40 years old, in homes in
Urban Areas, <for one explanation & demonstration>]: 10 minutes.

Record [Competitor Product XX, Field Trials]: <5 minutes?> <- one single case
reported,

[USA Market, S Corporation]: 10 seconds <- Public Market Intelligence Report.
Fail [Next New Product Release, Children over 10]: 5 minutes <- Marketing
Requirements February 3 Last Year.

Goal [Next New Product Release, Urban Areas, Personal Buyers]: 5 minutes,
[Next New Product Release, USA Market, Large Corporate Users]: 5 minutes <-
Marketing Requirements February 3 Last Year.

Stretch [Next Year]: (Record [USA Market] — 10%).
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additional basic generic Planguage parameters.

Basic Planguage parameters for scalar attribute specification. See also Table 1.1 for the

Planguage Parameters for Scalar Attributes

Scalar Attribute Meaning Used for Note also
Parameter
Scale: Definition of the scale or  Defining the variable varying ~ Contractual use
units of measure performance or cost concept Icon: -I-I-
with precision and clarity
Meter: Definition of how we are Determining the real world Contractual use
going to measure or test the  numeric levels in practice Icon: -2l -
level of this attribute
Past: A known measured Providing a baseline attribute A useful reference
benchmark of an level point
interesting past or current A benchmark
level Icon: <
Record: A ‘state of the art’ level If a Goal or Budget is near to A useful reference
or better than the Record, then  point
a warning of extra risk and cost A benchmark
is implied Icon: <<
Trend: From extrapolation of A cross-check that the Goal or A useful reference
existing data, an estimated ~ Budget level is ambitious/ point
future level competitive enough A benchmark
Icon: 2<
For performance A future, target Understanding the future A contractual full
attributes, Goal: requirement level, to be requirement level. Knowing payment level
For resource met or bettered for success  when to stop designing, A target
atributes, Budget: and stakeholder sazisfaction  investing and developing Icon: >

Stretch: An interesting, but To motivate teams to do better ~No contractual
difficult to attain, target than currently considered commitment
level practical or economic A target to strive

towards as a challenge
Icon: >+

Wish: A desired level, dreamed of ~ Better understanding of the No contractual
by some stakeholder, even  stakeholder needs. Potential commitment
if unrealistic requirement direction when whatsoever —

feasible later completely
unbudgeted
A stakeholder ‘dream’
to bear in mind
Icon: >?

Fail: A future requirement level, ~ Stating a minimum Contractual use as a
which is necessary to avoid  requirement for delivery levels  minimum payment
some sort of system failure. level
A constraint Understanding the minimum ~ Icon: >>

levels for any tradeoffs
Survival:” A future requirement level, ~ Stating an absolute minimum  Contractual use as a

which is necessary to avoid
total system failure.
A constraint

requirement for any valid
delivery or operation

Failure to meet a Survival level
means total system failure

‘non-payment’ level
Icon: []

Note this icon is
deliberately similar to
that used for qualifiers

Note: " The Catastrophe parameter is an alternative to the Survival parameter. See the Glossary. Survival’ is used in the text of this book.
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Past: any useful reference
point. A performance or
resource level achieved, )

in say, your old product or
a competitor’s organization

?

Record: best in some class, state

of the art. Something to beat.
A challenge for you. An extreme
Past

” Trend: a future
H estimate based
on the Past

Goal: the practical level
needed for satisfaction,
happiness, joy and
100% full payment!

by

Stretch: a level that is valued,
yet presents a challenge to attain

|

Wish: a level valued by a
stakeholder, but which might

not be feasible. Project is not
committed to it

Io

Fail: a level needed

to avoid a system failure
of some kind

Survival: a level

needed for
system survival

Y ¥

i
—

!

Note: This diagram applies to performance attributes and shows performance scale arrows.
With a change to show scalar resource arrows, all the parameters also apply to resource
attributes, apart from the Goal parameter, which is replaced by Budget for resource attributes.

Figure 4.4
Performance benchmarks, targets and constraints.

Note, terms defined by the project such as ‘Major Markets’ are
capitalized to indicate that they are already, or will be shortly, more
formally defined elsewhere. They will not necessarily be defined in
these textbook examples. For example,

Major Markets: Defined As: {USA, Japan, Europe, India}.

There are other additional parameters that can be used to describe a
scalar requirement. Some of these are shown in Figure 4.12, Scalar
Requirement Template.
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Generic
Specification
Rules

Rules.GS

Sources:
o Marketing documentation
o Contracts

e Current system
documentation including
product plans and Evo

Requirement feedback
Specification e Current system reviews
Rules e Current performance
Scalar issues
Requirement o Anv qui
y guidance and/or
Rules.RS and Scale other standards in addition
Definition to rules as found in
Rules handbooks and catalogues
Rules.SR
Rules.SD
v v v
Performance

Requirements

Process.PR

v

Performance
Requirements

Figure 4.5
Performance requirements are subject to at least three types of rules for specification.
These rules should be used in the SQC of performance requirements.

4.4 Rules: Scalar Requirements

Tag: Rules.SR.

Version: October 7, 2004.
Owner: TG.

Status: Draft.

Gist: Rules for Scalar Requirement Specification.
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Note: These rules apply to both performance requirement specifica-
tion and to resource requirement specification.

Base: The generic rules for specification (Rules.GS), the rules for
requirement specification (Rules.RS) and the specific rules for scale

definition (Rules.SD) apply.

R1: Completeness: All scalar attributes, that are arguably critical to
success or failure, shall be identified, specified and thoroughly defined.

R2: Explode: Where appropriate, a complex scalar requirement shall
be specified in detail using a set of complex and/or elementary scalar
attributes.

Note: In addition to detailing by means of elementary specifications, you
can continue decomposing scalar specifications by using sets of [qualifiers].

R3: Scale: All elementary scalar attributes must define a single numeric
Scale, fully and unambiguously, or reference such a definition.

R4: Meter: A practical and economic Meter, or set of Meters, shall
be specified for tracking levels on each Scale. A reference to a full
definition or standard measuring process for all identified Meters
must be given. As an initial minimum for a new Meter, an outline
of the Meter measuring process is permissible.

R5: Benchmark: A reasonable attempt shall be made to specify
benchmarks {Past, Record, Trend} for our current system, and for
relevant competitive systems. Explicit acknowledgement must be
made where there is no known benchmark information.

R6: Requirement: At least one target level {Goal or Budget, Stretch,
Wish} or Constraint {Fail, Survival} must be stated for a scalar
attribute specification to classify as a requirement specification. A
specification with only benchmarks is an analytical specification, but not
a requirement of any kind.

R7: Goal or Budget: The numeric levels needed to meet requirements
fully (and so achieve success) must be specified. In other words, one or
more [qualifier defined] Goal or Budget targets must be specified. The
need for target levels to specifically cover all short term, long term and
special cases must be considered.

R8: Stretch: When you want to indicate an engineering challenge,
in order to motivate design engineers to find designs to achieve
better-than-expected levels, specify a ‘Stretch’ target (using a Stretch
parameter). You should also include information about the benefits of
reaching this target (using Rationale).

R9: Wish: Any known stakeholder wish level (a level that has some
value to a stakeholder, but only a level to be dreamed of, it is an
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Survival
Wish

Stretch

Budget
Goal —> J

Survival ﬁ\

Wish —>

Stretch

Fail
Fail (Too Low) ————> b
Survival| ————> Survival ———>
Performance ‘ Resource
Figure 4.6

How the scalar requirement parameters can be used to describe real-world situations.

uncommitted level) shall be captured in a “Wish’ statement (with
Rationale). Even if the Wish level cannot realistically yet be converted into
a practical target level, it is valuable competitive marketing information
and may allow us to better satisfy the stakeholder at some future point.

R10: Fail: Any known numeric levels to avoid system, political, legal, social,
or economic loss or pain must be specified. In other words, one or more
[qualifier defined] Fail constraints must be specified. Several Fail levels may
be useful for a variety of short term, long term, and special situations.

R11: Survival: The numeric levels to avoid complete system failure (a
totally unusable or unrecoverable system) must be specified. In other
words, any [qualifier defined] constraint levels at which system survival
is completely at risk must be identified, using Survival parameters.

4.5 Process Description: Perfformance
Requirements

Process: Performance Requirements.
Tag: Process.PR.

Version: October 7, 2004.

Owner: TG.

Status: Draft.
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Entry Conditions

El: The Generic Entry Conditions apply. The list of valid source
documents could include marketing documentation, contracts, cur-
rent system documentation, current system reviews, any lists of system
performance issues and any initial design specifications. It specifically
includes any documentation of standards that applies, such as hand-
books and catalogues. The required specification standards include

{Rules.GS, Rules.RS, Rules.SR and Rules.SD}.

Procedure

P1: Scan all input (source) documents for implied (for example, via
design specifications) or explicitly expressed performance requirements.
Build a list of performance requirements categorized by stakeholder type.

P2: Next, scan all input (source) documents (including any design
documents and strategic plans) for design ideas. Mark the design ideas
as requirements, ONLY if they are intentional design constraints (as
they are then true requirements). Otherwise, if they are not constraints,
determine and specify the possible performance requirements that led
to these design ideas being specified. Add these ‘implied’ performance
requirements to the overall list of requirements. You can keep the design
ideas, separately, for design phases. Bur get them out of the real require-
ments. You might well cross-reference the implied requirements (Impacts:
< Requirement X>.) and design suggestions (Is Supported By: < Design
Idea Y>.) for future understanding of why they are there.

P3: Using the P1 lists (explicit requirements) and P2 lists (requirements
derived from design ideas), establish a comprehensive list of candidate
performance requirements. Specify at least Tag, and possibly a Gist or
Ambition. Include cross-reference to any Sources (<-), Assumptions,
Dependencies and Risks you can determine.

P4: Check handbooks, catalogues and lists of standard performance
requirements for ideas of additional performance requirements, which
you should consider. Remember that you need to specify things that are
currently taken for granted because they are not problems in any of your
current products or systems. We have to keep our system healthy in the
future, consciously!

P5: Consider the total stakeholder environment. This involves not just
your one or two users and customers, but more likely, your ten or
more internal and external stakeholders, such as help desk, installers,
politicians, marketing and customer trainers. Using the input docu-
ments, brainstorm to determine each stakeholder’s critical qualitative
attributes. Ensure that the critical performance attributes are identi-
fied on your requirements’ list. Interview the stakeholders to get
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feedback and confirmation about your specification. Add to the list of
requirements or modify them as necessary.

P6: For each identified performance requirement, specify it in detail
using the rules that apply (Rules.GS, Rules.RS, Rules.SR and
Rules.SD). Ensure each performance attribute is measurable in practice.

P7: Consider which performance requirements are key, and must there-
fore be controlled. Identify the most important ‘top ten’ performance
requirements. Group the others as ‘Diverse’ or ‘Less Critical” if you like.

P8: Perform Specification Quality Control (SQC) on the performance
requirements. Correct any identified defects, and calculate the remaining
major defects/page (a page being 300 words of non-commentary text).
Check against the rules: {Rules.GS, Rules.RS, Rules.SR and Rules.SD}.

Exit Conditions

X1: The Generic Exit Conditions apply. The maximum possibly
remaining major defects/page must be less than one.

X2: The Requirement Specification Owner (usually specified as
‘Owner: <name, e-mail address or department>.") agrees to release
the performance requirement specification with #heir name on it
They have veto on release.

4.6 Principles: Performance Requirements

1. The Principle of ‘Bad numbers beat good words’
Poor quantification is more useful than no quantification; at least it
can be improved systematically.

2. The Principle of ‘Performance quantification’
All performance attributes can be expressed quantitatively,
‘qualitative does not mean unquantifiable.

3. The Principle of “Threats are measurable’
If the lack of a performance attribute can destroy your project, then
you can measure it sometime; the only issue will be “how early?”

4. The Principle of ‘Put up or shut up’
There is no point in demanding a performance requirement, if you
cannot pay or wait for it.

5. The Principle of ‘Deadline or die’
There is no point in demanding a performance requirement, if you
would always give priority to something else, for example, a deadline.
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6. The Principle of ‘Dream, but don’t hold your breath’
There is no point in demanding a performance requirement, if it
is outside the state of your art.

7. The Principle of ‘Benchmarks and targets’
Numeric past ‘history’ levels and numeric future requirement
levels together complete the performance requirement definition
of relative terms like ‘improved’.

8. The Principle of ‘Scalar priority’
In practice, the first priority will be survival,
The second priority will be avoiding failure,
The third priority will be success,
And the required levels for all of these will be constantly changing.

9. The Principle of ‘Many-splendored things’
Most performance ideas are usefully described by severa/ measures
of goodness.

10. The Principle of ‘Limits to detail’
There is a practical limit to the number of facets of performance
you can define and control.
It is far less than the number of facets that you can 7magine might
be relevant. (Try a limit of just the Top Ten!)

4.7 Additional Ideas: Perfformance Requirements

Handling Complex Perfformance Requirements

Many performance requirements, like the quality requirement, ‘Usabil-
ity’, can be expressed in greater detail using sub-requirements (such as
Learning Time, Error Rate and Minimum Skills Entry Level). There are
many possible interpretations, and they all have some use or validity. We
call such decomposable ideas ‘complex requirements’. It would be easy
to think, “there is no measure to cover such a complex requirement.”
Our attitude is pragmatic and says, “We wi//define a reasonable number
of the sub-requirements quantitatively, and use them to define what we
mean.” We only need to identify sufficient sub-requirements to capture
the meaning of the performance attribute in the current system context.

The Planguage structure for a hierarchy is as follows:
Tag:
Sub-Tag 1: Scale: <some scale>. <Other parameters as needed>,

Sub-Tag 2: Scale: <some other scale>. <Other parameters as
needed>, ...
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ExampLE

ExAMPLE

ExAMPLE

Sub-Tag n: Scale: <yet another scale definition>. <Other parameters
as needed>.

For example, the first step of the practical example given in Section 4.2
is primarily discussing this idea of expanding a complex quality
requirement, ‘Serviceability’, into a number of elementary and
complex quality requirements (‘Repair’, ‘Enhancement’, ‘Fashion
Changes’, ‘Installation’ and ‘Reconfiguration’).

Here are some known ‘classic’ decomposition examples in the form of
a {descriptive tag set}:

Performance: {Quality: {Availability {Reliability, Maintainability, Integrity}, Adapt-
ability, Usability}, Resource Saving, Work Capacity: Storage Capacity}.

Maintainability: {Problem Recognition, Administrative Delay, Tool Collection,
Problem Analysis, Change Specification, Quality Control, Modification Implemen-
tation, Modification Testing, Recovery}.

Usability: {Entry Level Experience, Training Requirements, Handling Ability, Like-
ability, Demonstrability}.

(See also the next chapter, especially Section 5.7.)

Limit the Amount of Detail

Expanding complex performance requirements into a number of sub-
requirements (and the subsequent need to further expand any sub-
requirements that are also themselves complex requirements) usually
leads to a great deal of detailed information when specification of the
parameters is carried out.

Make sure you focus on the critical (key-influence) performance
attributes. Tracking the top ten attributes is usually more than suffi-
cient to make a start. Remember, if you are using evolutionary
delivery, you can always decide to modify which attributes you are
monitoring over time.

Setting Scalar Levels
Implicit Assumptions Supporting a Scalar Parameter Level

When you set a scalar level, there are certain implicit supporting
assumptions, which apply. For example, when you specify a Goal
level, you are very unlikely to mean ‘this level and only this level.’
You actually are specifying that a stakeholder wants ‘this level or
better” Of course, all the other simultaneously specified targets and
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System Requirements

v AN

Other Requirement Types:
Performance Requirements EUZC“?“
At udge
(Objectives) Design Constraint
l Condition Constraint
Quality Requirements Other Performance Requirements:
Objectives such as ‘Usability’ Workload Cap_acny Reqmrement
Resource Saving Requirement.
* Note: These will have the same structure
as a Quality Requirement.

Quality Objective Hierarchy
(for Complex Objectives)
Many Levels and Branches of

Hierarchy Possible
Such as ‘Ease of Entering Data’

v

Quality Requirement (Elementary Level)
such as ‘Errors introduced by defined [System User]’

Tag
Gist
Ambition
Scale
Goal
Targets |Stretch ~p| Such as “Less than 4 Errors
Wish per 100 Transactions by
Ish = <Trained User>”
Fail
Constraints Sal > Failure Levels |
urvival
~‘| Survival Levels |

Supporting Information:

Past
Benchmarks Record
Trend

Figure 4.7
Requirement specification hierarchy for a quality requirement.
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Table 4.2 A teaching example supplied by Erik Simmons, Intel. The data is not real! Note the
explicit direction specified for the Fail levels.

Attribute Parameter
Fail Goal Stretch
Performance
Power (watts) >10W 5W 34\
Product Cost (each unit) >$21.85 $21.60 $21.50
MTTEF (hrs) <10,000 20,000 25,000
Battery (hrs) <8 12 16
Weight (Ibs) >5 3 2
Display (diagonal in <7 8 9
inches)
Resource
Ship Date >March Next Year  January Next Year ~ November This Year
Effort (hrs) >25,000 23,000 22,000
Peak Headcount >15 12 10
Resource Performance
Survival Survival
Wish Wish
Stretch Stretch
Budget Goal
Fail Fail
Survival Survival
«— —
<« —>
-« >
<« —>
<+ —
_> 4—
<«—— Arrows mark the Planned Success Range or
direction of ‘better ‘Landing Zone’
from the system viewpoint
Figure 4.8

Implicit direction for ‘better’ along a Scale.
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Utilization A
00

Synchronization

. Line Balancing

Utilization B

Line Utilization

Response Time

H Stretch
N Goal
O Past

Figure 4.9

A real case study diagram (slightly modified to preserve anonymity) showing a net of
multidimensional performance scales of measure. It shows a snapshot of a system at a
specific time. The areas show the Past [At Current Time], the gap from Past to the Goal
targets, and the gap from the Goal targetfs to the Stretch targets. This is a powerful

graphical way of displaying scalar data.

Note: Resources are not shown and the Performance scalar arrows are spread through

360 degrees.

constraints that apply under the same set of conditions have to be
taken into account as well: the stakeholder wants @// these requirements
at the same time. By specifying the Goal level, the stakeholder is
providing the information about what they consider the minimum
performance level for success in the light of the other requirements.

Exactly what ‘or better’ means in numeric terms depends on your Scale
definition. A stakeholder wants more performance and to use /less
resource (see Figure 4.8). However, the Scale finally dictates the ‘direc-
tion’ of the numeric value and, therefore, the numeric interpretation of
‘better.” For example, ‘better’ performance can mean a reduction in the
time taken to carry out a task — a numeric level would therefore be
expected to reduce over time as performance improved along the Scale.

4.8 Further Example/Case Study: Performance

Specification for a Water Supply

Here is a real example of specifying Norwegian Church Aid’s performance
requirements (objectives) for improving the water supply in Eritrea.

Function: Supplying Water [Eritrea] <- Norwegian Church Aid (NCA).
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ExAmPLE

We began by capturing the immediate objectives:

Operation and Maintenance

Local Control:

Ambition: Strengthen conditions for local management of Operation and
Maintenance.

Scale: % of Water Supply Pumps which <function> more than 23 hours out of each
24-hour period.

Meter: A <status report> from the Local Water Committees every quarter year.
Past [Eritrea, Four Years Ago]: 65+ 5% <- Survey conducted by NCA’s health
co-ordinator.

Goal [Eritrea, By End of this Year]: 80%,

[Eritrea, By End of Next Year]: 90% <- NCA Planning Committee [May Last Year].
Pump Availabiliry:

Ambition: No single Water Supply Pump shall be <out of order> for <a long
period of time>.

Scale: % of year Water Supply Pumps <function>.

Meter: Faults reported by the Local Water Committees and the Water Supply Projects.
Past [Eritrea, Four Years Ago]: 60 =40% <-?

Goal [Eritrea, By End of This Year]: 90 +10% <- 2,

[Eritrea, By End of Next Year]: 95 £ 5%.

‘Water Supply Efforts
Well Rehabilitation:
Ambition: Rehabilitation of earlier water supply projects and efforts.
Scale: Number of Water Supply Pumps put into operation anew each year, which
satisfy the <minimum need>.
Meter: Reports by Local Water Committees every quarter year.
Past [Eritrea, Four Years Ago]: 30 &= 5%. “of a total of 300.”
Goal [Eritrea, By End of This Year]: 40 5% <- 2,
[Eritrea, By End of Next Year]: 35 + 5%.
New Wells:
Ambition: Make newly drilled wells when other alternatives are not feasible.
Assumptions: {1. New Wells are only to be drilled when other alternatives are
impossible. 2. Institutional responsibility and participation from the local village
shall be defined and accepted in advance.} <- NCA Policy.
Scale: Number of New Wells completed by agreed dates and according to the
Contract between the Drilling Team and the Employer.
Meter: Reports by Local Water Committees every quarter year.
Past [Eritrea, Seven Years Ago]: 66,
[Eritrea, Six Years Ago]: 17.
Goal [Eritrea, By End of This Year]: 10,
[Eritrea, By End of Next Year]: 9.
Alternative Sources:
Gist: Alternatives to drilled wells will be developed whenever the situation
permits it.
Scale: Number of efforts per year, which result in <alternative water supplies>.
Meter: Reports by Local Water Committees, Aid Partners or Aid Projects every
quarter year.
Past [Eritrea, Five Years Ago]: 20,
[Eritrea, Four Years Ago]: 19.
Goal [Eritrea, By End of This Year]: 30,
[Eritrea, By End of Four Years]: 46.
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Once we had captured these objectives, we were pleased that we had a
clear statement of the requirements that could easily be used for planning
purposes and could readily be monitored. However, we soon realized
that these goals were nor directly specifying people’s needs; for example,
improvement in health, clean water and ease of getting the water to
where it should go. Suggestions were consequently made for improved
goal setting with a series of new scales. For example, ‘average time to pick
up the water’ and ‘% of people that die/get sick due to unclean water.’

The major result of the specification was the recognition that the high-
level aims of the water projects needed better definition, and that the
water projects needed to be seen in that light.

4.9 Diagrams/Icons: Scalar Attribute
Requirements

Benchmarks

Record - a past state-of-the-art
worthy of noting

Targets

Trend — extrapolating into the future
based on past benchmark data .
Wish — an unbudgeted
stakeholder dream

Past — pointing backwards towards
the past Stretch - a challenging target

to try to attain

Goal - pointing forwards
Towards the future

[ ' ] P Constraints

L]
Survival - lower limit ~ Fail — a level Survival — upper limit

for System survival. indicating for System survival.
System demise pain or loss System demise
if not met if not met

Note: A Scale icon is drawn as a line with an arrowhead, connected to a function oval
symbol. Performance scales are to the right from the function oval (O—), and resource scales
are at the left of the oval with arrowhead connected to the oval (—0). The performance and
resource attribute icons must both include a function icon (an oval) to distinguish them from
each other. The arrow in a performance attribute points away from the function oval. For a
resource attribute, the arrow points towards the function oval.

Figure 4.10

Three graphical performance attributes showing the icons for scalar performance attri-
bute levels: three analytical benchmarks, three future requirement targets and two future
requirement constraints, respectively. Usually an attribute would have a mix of whatever
benchmark, target and constraint levels were relevant.
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Figure 4.11

Performance
benchmark

Past £ level
[Last Year]

Function Je= <— [ —

Scale of Measure

Performance
Attribute

?

£ 1
|

Fail

Survival

[This Year]

Goal
[Next Year]

[This Year]

[This Year] 7 GO
NS

Performance
constraint levels

Performance
target levels

Example of using some of the scalar icons: two performance target levels and two con-

straint levels compared to one benchmark level.

Table 4.3 Icons for scalar attribute requirements.

Planguage Term
Attribute Definition

Icon

Gist
Ambition
Scale
Meter

Targets

Goal or Budget

Stretch

Wish

Constraints

Fail

Survival

System Space Conditions
Time, Place and Event

Supporting Information
Source
Comment

Benchmarks
Past

Record
Trend

@X
_l-)-

-2

>
>+
>?

!

[]

[qualifier conditions]

<_
“text.”

<
<<
<
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Elementary scalar requirement template <with hints>

Tag: <Tag name of the elementary scalar requirement>.

Type:

<{Performance Requirement: {Quality Requirement,
Resource Saving Requirement,
Workload Capacity Requirement},

Resource Requirement: {Financial Requirement,
Time Requirement,
Headcount Requirement,
others}}>.

Basic Information
Version: <Date or other version number>.

Status: <{Draft, SQC Exited, Approved, Rejected}>.
Quality Level: <Maximum remaining major defects/page, sample size, date>.
Owner: <Role/e-mail/name of the person responsible for this specification>.

Stakeholders: <Name any stakeholders with an interest in this specification>.

Gist: <Brief description, capturing the essential meaning of the requirement>.

Description: <Optional, full description of the requirement>.

Ambition: <Summarize the ambition level of only the targets below. Give the overall real
ambition level in 520 words>.

Scale of Measure
Scale: <Scale of measure for the requirement (States the units of measure for all the targets,
constraints and benchmarks) and the scale qualifiers>.

Measurement
Meter: <The method to be used to obtain measurements on the defined Scale>.

============= Benchmarks ============= “Past Numeric Values”’ =============
Past [<when, where, if>]: <Past or current level. State if it is an estimate> <- <Source>.
Record [<when, where, if>]: <State-of-the-art level> <- <Source>.

Trend [<when, where, if>]: <Prediction of rate of change or future state-of-the-art level> <-
<Source>.

============== Targets ============== “Future Numeric Values” =============
Goal/Budget [<when, where, if>]: <Planned target level> <- <Source>.

Stretch [<when, where, if>]: <Motivating ambition level> <- <Source>.

Wish [<when, where, if>]: <Dream level (unbudgeted)> <- <Source>.

—============== (Constraints ============= “Specific Restrictions” =============
Fail [<when, where, if>]: <Failure level> <- <Source>.
Survival [<when, where, if>]: <Survival level> <- <Source>.

Relationships
Is Part Of: <Refer to the tags of any supra-requirements (complex requirements) that this
requirement is part of. A hierarchy of tags (For example, A.B.C) is preferable>.

Is Impacted By: <Refer to the tags of any design ideas that impact this requirement> <-
<Source>.

Impacts: <Name any requirements or designs or plans that are impacted significantly by this>.

Priority and Risk Management
Rationale: <Justify why this requirement exists>.

Value: <Name [stakeholder, time, place, event]: Quantify, or express in words, the value
claimed as a result of delivering the requirement>.

Assumptions: <State any assumptions made in connection with this requirement> <- <Source>.
Dependencies: <State anything that achieving the planned requirement level is dependent
on> <- <Source>.

Risks: <List or refer to tags of anything that could cause delay or negative impact> <- <Source>.
Priority: <List the tags of any system elements that must be implemented before or after this
requirement>.

Issues: <State any known issues>.

Figure 4.12
A scalar requirement template with hints.
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410 Summary: Performance Requirements

The basic initial step to get control over the primary ‘drivers’ for plans
and resulting projects is to have a clear specification of what we want.

Consider:

e Performance requirements are often ‘hidden’ in undefined require-
ment terms, such as ‘increased adaptability’.

e Performance requirements may be hidden in designs and plans that
have been inadvertently specified amongst the requirements. For
example ‘Flexible Contracts’ is a design idea seeming to imply that
there is some (undefined) form of ‘flexibility’ required, but what is
i?

¢ Performance requirements need to be numeric and to be qualified by
conditions, so we can specify exactly what stakeholders want and the
[time, place and event] conditions that we must meet.

e Performance requirements must be specified in such a way that they
are testable.

¢ Performance levels are variable; they change from project to project
and vary within a project over time, place and events.

Performance requirements are the key statements of expected and
necessary critical stakeholder benefits for a project. Performance
requirements are the main reason why projects are funded at all. So
it is critical that they are done well and managed well.
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5

ScALES OF MEASURE
How to Quantify

GLossarY CONCEPTs
Scale
Meter
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5.1

ExAMPLE

Scales of Measure 139

Infroduction

Scales of measure are fundamental to Planguage. They are central to
the definition of all scalar attributes, that is, to all the performance and
resource attributes.

You should learn the art of developing your own zilored scales of
measure for the performance and resource attributes, which are
important to your organization or system. You cannot rely on being
‘given the answer’ about how to quantify. You would soon lose
control over your current vital concerns if you waited for that!

Finding and Developing Scales of Measure and
Meters

The basic advice for identifying and developing scales of measure and
meters (practical methods for measuring) for scalar attributes is as follows:

1. Try to ‘reuse’ previously defined Scales and Meters. See Figure 5.3,
Examples of Scales of Measure.

2. Try to ‘modify’ previously defined Scales and Meters.

3. If no existing Scale or Meter can be reused or modified, use common
sense to develop innovative home-grown quantification ideas.

4. Whatever Scale or Meter you start off with, you must be prepared
to learn. Obtain and use early feedback, from colleagues and from
field tests, to redefine and improve your Scales and Meters.

See also Section 5.5, ‘Process Description: Scale Definition.’

Reference Library for Scales of Measure

‘Reuse’ is an important concept for sharing experience and saving time
when developing Scales. You need to build reference libraries of your
‘standard’ scales of measure. Remember to maintain details support-
ing each standard Scale, such as Source, Owner, Status and Version
(Date). If the name of a Scale’s designer is also kept, you can probably
contact them for assistance and ideas.

Tag: <Assign a tag to this Scale>.

Type: Scale.

Version: <Date of the latest version or change>.

Owner: <Role/email of person responsible for updates/changes>.

Status: <Draft, SQC Exited, Approved>.

Scale: <Specify the Scale with defined [qualifiers]>.

Alternative Scales: <Reference by tag or define other Scales of interest as alternatives
and supplements>.
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ExAMPLE

Embedded Scale Qualifiers: <Define the scale parameters, list options>.

Meter Options: <Suggest Meter(s) appropriate to the Scale>.

Known Usage: <Reference projects & specifications where this Scale was actually
used in practice with designers’ names>.

Known Problems: <List known or perceived problems with this Scale>.
Limitations: <List known or perceived limitations with this Scale>.

This is a draft template with hints for specification of scales of measure in a reference
library.

Reference Library for Meters

Another important standards library to maintain is a library of
‘Meters.” Meters (as discussed in Chapter 4) support scales of measure
by providing practical methods for actually measuring the numeric
Scale values. ‘Off the shelf Meters from standards’ reference libraries
can save considerable amounts of time and effort; they are already
developed and are ‘tried and tested’ in the field.

It is natural to reference suggested Meters within definitions of specific
scales of measure (as in the template above). Scales and Meters belong
intimately together.

Tag: Ease of Access.
Type: Scale.
Version: <version date>.
Owner: Rating Model Project (Bill).
Scale: Speed for a defined [Employee Type] with defined [Experience] to get a
defined [Client Type] operating successfully from the moment of a decision to use
the application.
Alternative Scales: None known yet.
Embedded Scale Qualifiers:
Employee Type: {Credit Analyst, Investment Banker, ...}.
Experience: {Never, Occasional, Frequent, Recent].
Client Type: {Major, Frequent, Minor, Infrequent}.
Meter Options:
Test all frequent combinations of parameters at least twice. Measure speed for the
combinations.
Known Usage: Rating Model Project.
Known Problems: None recorded yet.
Limitations: None recorded yet.
Example of a ‘Scale’ specification for a reference library.

Managing ‘What’ You Measure

It is a well-known paradigm that you can manage what you can measure.
If you want to achieve something in practice, then quantification, and
later measurement, are essential first steps for making sure you get it. If
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you do not make it measurable, then it is likely to be less motivating for

people to find ways to deliver it (they have no clear targets to work towards

and there are not such precise criteria for judgment of failure or success).

On Quantification

No matter how complex the situation, good systems engineering
involves putting value measurements on the important parameters of
desired goals and performance of pertinent data, and of the specifica-
tions of the people and equipment and other components of the system.
Itis not easy to do this and so, very often, we are inclined to assume that
it is not possible to do it to advantage.

But skilled systems engineers can change evaluations and comparisons
of alternative approaches from purely speculative to highly meaningful.
If some critical aspect is not known, the systems experts seek to make it
known. They go dig up the facts.

If doing so is very tough, such as setting down the public’s degree of
acceptance among various candidate solutions, then perhaps the public
can be polled.

If that is not practical for the specific issue, then at least an attempt can be
made to judge the impact of being wrong in assuming the public preference.
Everything that is clear is used with clarity: what is not clear is used with
clarity as to the estimates and assumptions made, with the possible
negative consequences of the assumptions weighed and integrated.
We do not have to work in the dark, now that we have professional
systems analysis.

Simon Ramo

Figure 5.1

A quote by Simon Ramo of TRW (Ramo and St. Clair 1998 Page 81).

5.2 Practical Example: Scale Definition

‘User-friendly’ is a popular term. Can you specify a scale of measure
for i?

Here is my advice on how to tackle developing a definition for this.

If we assume there is no ‘off-the-shelf’ definition that could be used:

1.

Be more specific about the various aspects of the quality ‘user-
friendly’ that are to be tackled. There are many, but decide on about
5 to 15 in practice that are key to your environment. For this
example, let’s select ‘environmentally friendly’” as the one of many
aspects that we are interested in, and we shall work on this below as
an example. (There are many other elementary aspects of the comp-
lex requirement, ‘User Friendly’, which we could also have chosen.)
Invent and specify a Tag: ‘Environmentally Friendly’ is sufficiendy
descriptive. Ideally, it could be shorter, but it is very descriptive left as it is.
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Example  Tag: Environmentally Friendly.

Note, we usually don’t explicitly specify Tag:’.

3. Check there is an Ambition statement, which briefly describes the
level of requirement ambition.

ExAmpLE Ambition: A high degree of protection, compared to competitors, over the short-term and
the long-term, in near and remote environments for health and safety of living things.

4. Ensure there is general agreement by all the involved parties with
the Ambition. If not, ask for suggestions for modifications or
additions to it. Here is a simple improvement to my initial Ambi-
tion statement. It actually introduces a ‘constraint’.

ExAMPLE Ambition: A high degree of protection, compared to competitors, over the short term
and the long term, in near and remote environments for health and safety of living
things, which does not reduce the protection already present in nature.

5. Using the Ambition description, define an initial Scale that is
somehow measurable. Think about what will be perceived by the
stakeholders if the level of quality changes. What would be a visible
effect if the quality improved? My initial unfinished attempt at
finding a suitable Scale captured the ideas of change occurring and
of things getting better or worse:

ExAMPLE Scale: The % change in positive (good environment) or negative directions for defined. . .

However, I was not happy with it, so I made a second attempt. I
refined the Scale by expanding it to include the ideas of specific
things being effected in specific places over given times:

ExAmPLE Scale: % destruction or reduction of defined [Thing] in defined [Place] during a
defined [Time Period].

This felt better. In practice, I have added [qualifiers] into the Scale,
to indicate the variables that must be defined by specific things,
places and time periods whenever the Scale is used.

6. Determine if the term needs to be defined with several scales of
measure, or whether one like this, with general parameters, will do.
Has the Ambition been adequately captured? To determine what’s
best, you should list some of the possible sub-components of the term
(that is, what can it be broken down into, in detail?). For example:

ExAMPLE Thing: {Air, Water, Plant, Animal}.
Place: {Personal, Home, Community, Planet}.
Alternatively,
Thing: = {Air, Water, Plant, Animal}.
Place: Consists of {Personal, Home, Community, Planet}.
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The first example means: Thing’ is defined as the set of things Air,
Water, Plant and Animal (which since they are capitalized are
themselves defined elsewhere). Instead of just the colon after the tag,
the more explicit Planguage parameter “Consists Of or =’ can be used
to make this notation more immediately intelligible to novices in
reading Planguage.

Then consider whether the Scale enables the performance levels for
these sub-components to be expressed. You may have overlooked an
opportunity and may want to add one or more qualifiers to that Scale.
For example, we could potentially add the scale qualifier “. .. under
defined [Environmental Conditions] in defined [Countries] ...  to
make the scale definition even more explicit and more general.

Scale qualifiers (like ... defined [Place]’...) have the following
advantages:

¢ they add dlarity to the specifications

¢ they make the Scales themselves more reusable in other projects

¢ they make the Scale more useful in this project: specific bench-
marks, constraints and targets can be made for any interesting
combination of scale variables (such as, “Thing = Air’).

7. Start working on a Meter (remember, you should first check there is
not a standard or company reference library Meter that you could
use). Try to imagine a practical way to measure things along the Scale,
or at least sketch one out. My example is only an initial rough sketch.

Meter: {scientific data where available, opinion surveys, admitted intuitive guesses}.

The Meter will help confirm your choice of Scale as it will provide
evidence that practical measurements can feasibly be obtained
using the Scale.

8. Now try out the Scale. Define some reference points from the past
(benchmarks) and some future requirements (targets and constraints).

Environmentally Friendly:

Ambition: A high degree of protection, compared to competitors, over the short-
term and the long-term, in near and remote environments for health and safety of
living things, which does not reduce the protection already present in nature.

Scale: % destruction or reduction of defined [Thing] in defined [Place] during a
defined [Time Period].

===========—=—=—====—===== Benchmarks =========cocoooooooooooooo
Past [Time Period = Next Two Years, Place = Local House, Thing = Water]: 20%
<- intuitive guess.

Record [Last Year, Cabin Well, Thing = Water]: 0% <- declared reference point.
Trend [Ten to Twenty Years From Now, Local, Thing = Water]: 30% <- intuitive.
“Things seem to be getting worse.”
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ExAmPLE

ExAamPLE

==========—=——=——=—==—--—=-= Constraints ==================—=——=——=
Fail [End Next Year, Thing = Water, Place = Eritrea]: 0%. “Not get worse.”
============================= argets ============================
Wish [Thing = Water, Time = Next Decade, Place = Africa]: +20% <- Pan African
Council Policy.

Goal [Time = After Five Years, Place = <our local community>, Thing = Water]: < 5%.

Not very impressive, maybe I had better find another, more
specific, scale of measure? Maybe use a set of Scales?

Here is an example of a more-specific Scale:
Scale: % change in water pollution degree as defined by UN Standard 1026.

Here is an example of some alternative and more-specific set of
Scales for the ‘Environmentally Friendly’ example:

Environmentally Friendly:

Ambition: A high degree of protection, compared to competitors, over the short-
term and the long-term, in near and remote environments for health and safety of
living things, which does not reduce the protection already present in nature.

Air: Scale: % of days annually when <air> is <fit for all humans to breath>.
Water: Scale: % change in water pollution degree as defined by UN Standard 1026.
Earth: Scale: Grams per kilo of toxic content.

Predators: Scale: Average number of <free-roaming predators> per square km, per day.
Animals: Scale: % reduction of any defined [Living Creature] who has a defined
[Area] as their natural habitat.

‘Environmentally Friendly’ is now defined as a complex attri-
bute, because it consists of a number of elementary attributes:
{Air, Water, Earth, Predators, Animals}. A different scale of
measure defines each of these elementary attributes. Using these
Scales we can add Meters, benchmarks, constraints and target
levels to describe exactly how Environmentally Friendly we want
to be.

Level of Specification Detail

How much detail you need to specify, depends on what you want control
over and how much effort it is worth. The basic paradigm of Planguage is
you should only elect to do what pays off for you. You should not build a
more detailed specification than is meaningful in terms of your project
and economic environment. Planguage tries to give you sufficient power
of articulation to control both complex and simple problems. You need
to scale up, or down, as appropriate. This is done through common
sense, intuition, experience and organizational standards (reflecting
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Love’s Many Attributes

e Trust e Support
- Truthfulness e Care
- Broken Appointments e Comfort
- Late Appointments o Kissed-ness
- Gossiping to Others e Sex
e Respect e Passion
¢ Friendship e other attributes?
e Sharing
o Attention
¢ Understanding

Love.Trust.Truthfulness:

Ambition: No Lies.

Scale: Average Black Lies/Month.

Meter: Confidential Log of Lies.

Past Lies: Past [Ex-Spouse, Two Years Ago]: 42.
Goal [Current Spouse, This Year]: (Past Lies)/2.

Black Lies: Defined As: Non-White Lies.

Figure 5.2

Love is a many-splendored thing! Another example of decomposing a complex subject into
its component attributes. This is from a classroom exercise, which was done in two stages. First,
we decomposed the complex concept, ‘Love’ info many aspects. Then we took one
attribute at random to see if a reasonable quantified specification could be achieved.

experience). Bug, if in doubt, go into more detail. History says we have
tended in the past to specify too little detail about requirements. The
result consequently has often been to lose control, which costs a lot more
than the extra investment in requirement specification.

5.3 Language Core: Scale Definition

This section builds on the specification ideas presented in Chapter 4.
It discusses the specification of Scales with qualifiers.

Specifying Scales
The Central Role of a Scale within Scalar Attribute Definition

A scale of measure (Scale) is the heart of a scalar specification and
essential to support all the targets, constraints and benchmarks. The
specified Scale of an elementary scalar attribute is used (reused!) within
all the scalar parameter specifications of the attribute (that is, within

all the Goal, Budget, Stretch, Wish, Fail, Survival, Past, Record and

Trend parameters).

Each time a scalar parameter is specified, the Scale dictates what has
to be defined. And then, later, each time a scalar parameter
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definition is read, the Scale ‘interprets’ its meaning. So the Scale is
truly central to the definition of any scalar parameter. Well-defined
scales of measure are well worth the small investment to define and
refine them.

Specifying Scales using Quailifiers

The scalar attributes (performance and resource) are best measured in
terms of defined conditions (for example, specific times and places). If we
fail to do this, they lose meaning. People wrongly guess other conditons
than you intend, and cannot relate their experiences and knowledge to
your numbers. If we don’t get more specific by using qualifiers, then
performance and resource continue to be vague concepts and there is
ambiguity (which times? which places? which events?).

Further, it is important that the set of different performance and
resource levels for different defined conditions are identified. It is
likely that the levels of the performance and resource requirements
will differ across the system depending on such things as time, loca-
tion, role and system component.

Decomposing complex performance and resource ideas, and find-
ing market-segmenting qualifiers for differing target levels, is a key
method of competing for business.

Embedded Qualifiers within a Scale: A Scale specification can set up
useful qualifiers by declaring embedded scale qualifiers, using the
format ‘defined [<qualifier>]". It can also declare default qualifier
values that apply by default if not overridden, ‘defined [<qualifier>:
default: <User-defined Variable or numeric value>]. For example,
[...default: Novice].

Additional Qualifiers: However, embedded scale qualifiers should
not stop you adding any other useful additional qualifiers later, as
needed, during specification. But, if you do find you are adding the
same type of parameters in almost all specifications, then you might
as well design the Scale to include those qualifiers. A Scale should
be built to ensure it forces the user to define the critical informa-
tion needed to understand and control a critical performance or
resource attribute.

Here is an example of how user-defined terms (that is, additional
qualifiers) can make a quality more specific. Note also, how a require-
ment can be made conditional upon an event. If the event is not true,
the requirement does not apply.

First, some basic definitions are required:
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Assumption A:
Basis [This Financial Year]: Norway is still not a full member of the European
Union.

EU Trade:
Source: Euro Union Report [EU Trade in Decade 2000-2009].

Positive Trade Balance:
State [Next Financial Year]: Norwegian Net Foreign Trade Balance has Positive
Total to Date.

Now we apply those definitions below:

Quality A:

Type: Quality Requirement.

Scale: % of Goods Delivered, by <value>, which are Returned for Repair or
Replacement by Consumers.

Meter [Development]: Weekly samples of 10, [Acceptance]: 30 day sampling at 10%
of representative cases, [Maintenance]: Daily sample of largest cost case.

Fail [European Union, Assumption AJ: 40% <- European Economic Members.
Goal [EU and EEU members, Positive Trade Balance]: 50% <- EU Trade.

The Fail and the Goal requirements are now defined partly with the help of qualifiers.
The Goal to achieve 50% (or more, is implied) is only a valid plan if ‘Positive Trade
Balance’ is true. The Fail level requirement of 40% (or worse, less, is implied) is only
valid if ‘Assumption A’ is true.

5.4 Rules: Scale Definition

Tag: Rules.SD.

Version: October 7, 2004.
Owner: TG.

Status: Draft.

Gist: Rules for Scale Definition.

Note: These rules are concerned with the use of scales of measure and also
specification of scalar parameters, including specification of numeric
values. They complement Rules.SR.

Base: These rules are to be used in addition to the rules for Scalar
Requirement Specification (Rules.SR).

R1: Standard: The Scale and/or Meter must, wherever possible,
be derived from a standard version (held in named files or referenced
sources) and the standard shall be source referenced in the specifica-
tion. For example, Scale: ... <- Corporate Scale 1.2.
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R2: Notify Owner: If a Scale or Meter is not standard, a notification
must be sent to the appropriate Library Owner to inform them about
the availability of this new case. “Note sent to <Library Owner>" will
be included as a specification comment to confirm this act.

R3: Scale Definition: Each scale definition in a specification is part of
an elementary attribute (that is, the associated elementary requirement
definition must have a unique tag, and appropriate set of parameters, such
as Past and Goal). The scale definition must define the units of measure so
that benchmarks, constraints and targets can be set clearly and consistently.

R4: Elementary Attribute: An elementary attribute must only have
one Scale.

R5: Differentiate: A distinction will be made, by using qualifiers,
between those system components which must have significantly
higher performance levels than others, and components which do
not require such levels. “The most ambitious level [across an entire

1
system] can cost too much.”

ExAMPLE Goal [Operating System Core]: 99.98%, [Online Internet Components]: 99.90%,
[Offline Components]: 99%.

R6: Uncertainty: Whenever there is known uncertainty in the precise
level for a specified numeric value, its upper and lower boundaries
should be explicitly stated. Expressions, such as {60 &= 20, 60 to 80,
602, 60?2}, can be used.

R7: Scalar Priority: No artificial ‘weights’. Use scalar priority. The
relative ‘static’ (initial) priority of a scalar requirement (its ‘claim on
limited resources) is initially given by means of the target and constraint
statements {Goal, Stretch and Wish, Fail and Survival levels} and, also
by the complementary information given by qualifiers, Source and
Authority statements. It is unnecessary and ‘corrupting’ to add any other
priority information (such as weights or relative priority).

The final real ‘dynamic’ priority of meeting a scalar requirement is a
matter for systematic engineering tradeoff later, when the total real
impacts and costs of design ideas are better understood during design
analysis or system development.

(Note: Function requirements can however state ‘simple priority’ directly.
They have no scalar mechanisms for determining priority based on
unfulfilled Goal artainment. See Rules. FR:R5: Function Priorizy.)

' Tonce participated in ‘saving’ a German telecoms project, which had run about 3,000
work years over financial budget and two to three calendar years late, mainly as a result
of applying the highest quality levels across the entire system (in fact, only the core
software warranted such levels).
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Table 5.1 Examples of Scales of Measure.

Performance Effect of Change in Performance  Scale of Measure

Customer Fewer letters of complaint Number of letters complaining about a

Satisfaction defined [Product] received within a
defined [Time Period]

Customer Fewer returned goods Percentage of defined [Product] returned

Satisfaction within defined [Time Period after
Purchase] with defined [Customer Issue]

Environmentally Improved rating as measured Number of defined [Product Type] failing

Friendly on international standard defined [Test] within a defined [Time Period]

User-friendly

Fewer errors made

Percentage of defined [Transaction Type]
with defined [Error] input by defined
[User Typel]

User-friendly

Faster time for completion of
transactions

Time in minutes for a defined
[Transaction] to be carried out to
<satisfactory> completion

Restful Calming, relaxing effect Percentage of users of defined [User Type]

Ambience agreeing that defined [Room Space] was
<restful>

Reliability Fewer breakdowns Mean Time Between Repair (MTBR)

Staff Satisfaction Lower rate of staff turnover Number of staff of defined [Job
Description Response]

Predictability Less variance in time to initial ~ Percentage of service calls of defined

response

[Service Type] exceeding <initial
response> within defined [Time Period]

5.5 Process Description: Scale Definition

Process: Scale Definition

Tag: Process.SD.

Version: October 7, 2004.
Owner: TG.

Status: Draft.

Gist: Determining a Scale of Measure.

Note: The procedure steps cannot simply be done sequentially. Iteration is
needed to evolve realistic scales of measure.

Entry Conditions

El: The Generic Entry Conditions apply. Input documentation
includes contracts, marketing plans, product plans and the
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requirement specification. The relevant rules should also be available:
the generic specification rules (Rules.GS), the requirement specifica-

tion rules (Rules.RS), the rules for scalar requirement specification
(Rules.SR) and, the rules for scale definition (Rules.SD).

E2: Do not enter this procedure if company files or standards already
have adequate quantification devices. Preferably use the existing Scales
and Meters found in the standards’ libraries.

Procedure

P1: Ensure that you have derived an elementary attribute (from a complex
requirement), and that you are not trying to use a complex requirement,
which needs decomposition into its elementary attributes. (Trying to find
a single Scale for a complex (multi-Scale) requirement doesn’r work well. It is

usually the cause of trouble when people fail to find a suitable Scale.)

If you find you do indeed have a complex requirement, then decom-
pose it and try to find Scales for its components. You might well find
that further (second-level and more) decomposition is required!

P2: Ensure that the elementary attribute that you are developing a
Scale for has a suitable tag and a Gist or Ambition parameter that
adequately describes the concept in outline terms.

P3: Using the Gist or Ambition, analyze how a ‘change’ of degree in
the scalar attribute level would be expressed. What would a user
experience or perceive? For some examples, see Table 5.1, ‘Examples
of Scales of Measure’.

Sometimes you can keep things simple, and ‘make do’, by controlling the
details at a higher level of abstraction:

o by deciding to use one dominant Scale only, and consciously ignoring the
potential other scales.

* by aggregating several scales of measure to express one summary scale of
measure.

* by defining a complex attribute as the set’ of other Scales and definitions.

P4: Specify the critical [time, place, event] qualifiers to express differ-
ent benchmarks, constraints and target levels.

P5: If there is no appropriate standard Meter (or test), start working
on a Meter. Try to imagine a practical way to measure things along the
Scale, or at least sketch one. Try thinking about any measures that are
currently being carried out (this could even help you start developing
ideas for scales of measure). Also, think about whether any current
system could be modified, or have its settings changed, to perform
additional measurement.
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P6: Try out the Scale. Define some reference points from the past
(benchmarks) and then, on the basis of benchmarks, specify future
requirements (targess and constraints).

P7: Repeat this process until you are satisfied with the result. Try to
get approval for your Scale from some of the stakeholders. Does it
quantify what they really care about?

P8: Consider putting embedded parameters into the Scale definition.
Rationale: To enable a Scale to be reused both within a project and in
other projects.

ExAMPLE Scale: Time needed to do defined [Task] by defined [User] in defined [Environment].
Goal [Task = Get Number, User = <Novice>, Environment = <Noisy>]: 10 minutes.

P9: Once you have developed a useful Scale, ensure it is made avail-
able for others to use (on your intranet, or a web site, or in course
materials, or your ‘personal’ glossary of Scales?). Offer the Scale to the
owner of the ‘Scales’ library within your organization.

Exit Conditions
X1: The Generic Exit Conditions apply.

X2: Alternatively, consensus is obtained on trying out the Scale in
practice, and exit condition X1 is temporarily waived.

Rationale [X2, Tryout]: The intent being to gain experience, or to
obtain opinions concerning the quantification, so it can be refined
ready for <official use>.

5.6 Principles: Scale Definition

1. The Principle of ‘Defining a Scale of Measure’
If you can’t define a scale of measure, then the goal is out of
control.
Specifying any critical variable starts with defining its scale.

2. The Principle of ‘Quantification being Mandatory for Control’
If you can’t quantify it, you can’t control it.?
If you cannot put numbers on your critical system variables, then you

cannot expect to communicate about them, or to control them.

2 See http://www.Gilb.com/. It is easy to find examples of scales by searching the web,
for example, search for ‘Usability metrics’.
® Paraphrasing a well-known old saying.
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3. The Principle of ‘Scales should control the Stakeholder Require-
ments’
Don’t choose the easy Scale, choose the powerful Scale.
Select scales of measure that give you the most direct control over the critical
stakeholder requirements. Choose the Scales that lead to useful results.

4. The Principle of ‘Copycats Cumulate Wisdom’
Don’t reinvent Scales anew each time — store the wisdom of other
Scales for reuse.
Most scales of measure you will need will be found somewhere in the
literature or can be adapred from existing literature.

5. The Cartesian Principle
Divide and conquer said René — put complexity at bay.
Most high-level performance attributes need decomposition into the list of
sub-attributes that we are actually referring to. This makes it much easier

to define complex conceprs, like ‘Usability’, or ‘Adaptability,” measurably.

6. The Principle of ‘Quantification is not Measurement’

You don’t have to measure in order to quantify!

There is an essential distinction between quantification and measurement.
“I want to take a trip to the moon in nine picoseconds” is a clear
requirement specification without measurement.”

The well-known problems of measuring systems accurately are no
excuse for avoiding quantification. Quantification allows us to com-
municate about how good scalar attributes are or can be — before we
have any need to measure them in the new systems.

7. The Principle of ‘Meters Matter’
Measurement methods give real world feedback about our ideas.
A Meter’ definition determines the quality and cost of measurement
on a scale; it needs to be sufficient for control and for our purse.

8. The Principle of ‘Horses for Courses™
Different measuring processes will be necessary for different points
in time, different events, and different places.’

9. The Principle of “The Answer always being 42°°
Exact numbers are ambiguous unless the units of measure are well-
defined and agreed.
Formally defined scales of measure avoid ambiguity. If you don’t
define scales of measure well, the requirement level might just as well
be an arbitrary number.

4 “Horses for courses’ is a UK expression indicating something must be appropriate for
its use.

> There is no universal static scale of measure. You need to tailor them to make them useful.
® The concept of the answer being 42 was made famous in Douglas Adams, The

Hitchhiker’s Guide to the Galaxy, Macmillan, 1979, ISBN 0-330-25864-8.
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10. The Principle of ‘Being Sure About Results’
If you want to be sure of delivering the critical result — then
quantify the requirement.
Critical requirements can hurt you if they go wrong — and you can
always find a useful way ro quantify the notion of ‘going right.”

5.7 Additional Ideas: Generic Hierarchies for
Scalar Atftributes

You can decompose many scalar attributes into arbitrarily large or
small sets of more specific ‘elementary’ scalar attributes. The selection
of exactly which elementary attributes to define is a practical matter of
knowing your domain well enough to decide which of them will give
you best control over your critical success factors. At best we make
reasonable guesses with some effort to begin with. Then we learn some
hard lessons, usually about what we forgot to exercise control over.

Having said this, we have found that templates for performance and
resource/cost attributes are helpful to most people. So, we will give
some basic performance attributes in this section. Remember, in any
real system they will need to be used selectively. they will need to be
tailored to your local purpose. (See Figure 5.4 for an overview of these
attribute definitions.)

Note all these template ideas build upon the templates originally presented
in Gilb (1988 Chapter 19).

They are organized into multilevel hierarchies of attributes. This does
not imply that any one hierarchical organization is best or correct. But
they are useful. The essential idea is to get control over those elementary
attributes that determine your success or failure. A flat list of the right
ones works as well as any hierarchy. Hierarchies are mainly useful
groups for human convenience, but are not a reality for the system.

Hierarchy of Performance

Performance: ‘Useful values deliverable to stakeholders.’
Includes: {Quality, Resource Savings, Workload Capacity}.

1. Quality: ‘How well a system performs.’
Includes: {Availability, Adaptability, Usability, Other}.

1.1 Availability: “The readiness of a system to do its work.’
Gist: Availability is the measure of how much a system is
usefully (not merely technically) available to perform the work
that it was designed to do.
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Performance
Quality
Availability

Reliability

Maintainability

Integrity
Threat
Security

— Adaptability

Flexibility
Connectability
Tailorability

Extendibility

Interchangeability
— Upgradeability

Installability
Portability
— Improveability

Usability

Entry Level Experience

Training Requirement

Handling Ability
—— Likeability

Demonstratability

Resource Saving
Financial Saving

Time Saving
Effort Saving

Equipment Saving

Workload Capacity

Throughput
Response Time

Storage Capacity

Figure 5.3
One decomposition possibility for performance attributes with emphasis on the detail of
the quality aftributes.

Availability: Type: Elementary Quality Requirement.
Scale: % of defined [Time Period] a defined [System] is avail-
able for its defined [Tasks].

Availability: Type: Complex Quality Requirement.
Includes: {Reliability, Maintainability, Integrity}.

1.1.1 Reliability: ‘A system performs as it is intended.’
Gist: Reliability is a measure of the degree to which a system
performs as it was designed to do, as opposed to doing
something else (like producing a wrong answer or providing
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no answer). Definitions of Reliability will therefore vary
according to the definition of what the system is supposed
to do. In general, if a system is in an unreliable state then it
is ‘unavailable’ for its intended work tasks.

Scale: Mean time for a defined [System] to experience

defined [Failure Type] under defined [Conditions].

Maintainability: ‘Resource required to repair an unreli-
able system.’

Gist: Maintainability is a measure of how quickly an unreli-
able system can be brought to a reliable state. In general,
this covers not only the actual repair of the fault, but also
recovery from any effects of the fault and, quality control
and test of the repair.

Conventionally, maintenance is concerned with the pro-
cess of fault handling, rather than for improvement of a
faultless system. However, the difference between what is
a fault and what is a system improvement can be subjec-

tive! (See also later definition for ‘Adaprability’.)

Maintainability: Type: Elementary Quality Requirement.
Scale: Mean time to carry out a defined [Type of Repair]
to a defined [System] using defined [Repair Method]
under defined [Conditions].

Integrity: “The ability of the system to survive attack.’
Gist: Integrity is a measure of the confidence that the
system has suffered no harm: its security has not been
breached and, its use has resulted in no ‘corruption’ or
impairment to it. An attack on the Integrity of a system
can be accidental or intentional. The Integrity of a system
depends on the frequency of threat to it and the effective-
ness of its securizy.

Integrity: Type: Elementary Quality Requirement.

Scale: Probability for a defined [System] to achieve
defined [Coping Action] with defined [Attack] under
defined [Conditions].

Coping Action: {detect, prevent, capture}.

Integrity: Type: Complex Quality Requirement.
Includes: {Threat, Security}.

1.2 Adaptability: “The efficiency with which a system can be changed.’
Gist: Adaptability is a measure of a system’s ability to change.

Since, if given sufficient resource, a system can be changed in

almost any way, the primary concern is with the amount of

resources (such as time, people, tools and finance) needed to bring
about specific changes (the ‘cost’).
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Maintainability:

Type: Complex Quality Requirement.

Includes: {Problem Recognition, Administrative Delay, Tool Collection, Problem Analysis,
Change Specification, Quality Control, Modification Implementation, Modification Testing {Unit
Testing, Integration Testing, Beta Testing, System Testing}, Recovery}.

Problem Recognition:
Scale: Clock hours from defined [Fault Occurrence: Default: Bug occurs in any use or test of
system] until fault officially recognized by defined [Recognition Act: Default: Fault is logged
electronically].
Administrative Delay:
Scale: Clock hours from defined [Recognition Act] until defined [Correction Action] initiated and
assigned to a defined [Maintenance Instance].
Tool Collection:
Scale: Clock hours for defined [Maintenance Instance: Default: Whoever is assigned] to
acquire all defined [Tools: Default: all systems and information necessary to analyze, correct
and quality control the correction].
Problem Analysis:
Scale: Clock time for the assigned defined [Maintenance Instance] to analyze the fault symp-
toms and be able to begin to formulate a correction hypothesis.
Change Specification:
Scale: Clock hours needed by defined [Maintenance Instance] to fully and correctly describe
the necessary correction actions, according to current applicable standards for this.
Note: This includes any additional time for corrections after quality control and tests.
Quality Control:
Scale: Clock hours for quality control of the correction hypothesis (against relevant standards).
Modification Implementation:
Scale: Clock hours to carry out the correction activity as planned. “Includes any necessary
corrections as a result of quality control or testing.”
Modification Testing:
Unit Testing:
Scale: Clock hours to carry out defined [Unit Test] for the fault correction.
Integration Testing:
Scale: Clock hours to carry out defined [Integration Test] for the fault correction.
Beta Testing:
Scale: Clock hours to carry out defined [Beta Test] for the fault correction before official
release of the correction is permitted.
System Testing:
Scale: Clock hours to carry out defined [System Test] for the fault correction.
Recovery:
Scale: Clock hours for defined [User Type] to return system to the state it was in prior to the
fault and, to a state ready to continue with work.

Source: The above is an extension of some basic ideas from Ireson, Editor, Reliability Hand-
book, McGraw Hill, 1966 (Ireson 1966).

Figure 5.4
A more detailed view of Maintainability.

Adaptability: Type: Elementary Quality Requirement.

Scale: Time needed to adapt a defined [System] from a defined
[Initial State] to another defined [Final State] using defined
[Means].

Adaptability: Type: Complex Quality Requirement.
Includes: {Flexibility, Upgradeability}.
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1.2.1 Flexibility:

Gist: This concerns the ‘in-buil¢ ability of the system to adapt
or to be adapted by its users to suit conditions (without any
fundamental system modification by system development).
Type: Complex Quality Requirement.

Includes: {Connectability, Tailorability}.

1.2.1.1 Connectability: ‘The cost to interconnect the system to
its environment.

Gist: The support in-built within the system to con-
nect to different interfaces.

1.2.1.2 Tailorability: ‘The cost to modify the system to suit its
conditions.

Type: Complex Quality Requirement.

Includes: {Extendibility, Interchangeability}.

1.2.1.2.1 Extendibility:

Scale: The cost to add to a defined [System] a
defined [Extension Class] and defined [Extension
Quantity] using a defined [Extension Means].
“In other words, add such things as a new user or
a new node.”
Type: Complex Quality Requirement.
Includes: {Node Addability,

Connection Addability,

Application Addability,

Subscriber Addability}.

1.2.1.2.2 Interchangeability: ‘ The cost to modify use of sys-
tem components.’
Gist: This is concerned with the ability to modify
the system to switch from using a certain set of
system components to using another set.
For example, this could be a daily occurrence
switching system mode from day to night use.

1.2.2 Upgradeability: ‘The cost to modify the system fundamen-

tally; either to install it or change out system components.
Gist: This concerns the ability of the system to be
modified by the system developers or system support
in planned stages (as opposed to unplanned mainte-
nance or tailoring the system).

Type: Complex Quality Requirement.

Includes: {Installability, Portability, Improveability}.

1.2.2.1 Installability: ‘ The cost to install in defined conditions.
This concerns installing the system code and also,
installing it in new locations to extend the system
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coverage. Could include conditions such as the instal-
lation being carried out by a customer or, by an IT
professional on-site.

1.2.2.2 Portability:  The cost to move from location to location.’

Scale: The cost to transport a defined [System] from a
defined [Initial Environment] to a defined [Target
Environment] using defined [Means].
Type: Complex Quality Requirement.
Includes: {Data Portability,

Logic Portability,

Command Portability,

Media Portability}.

1.2.2.3 Improveability: “The cost to enhance the system.’
Gist: The ability to replace system components with
others, which possesses improved (function, perfor-
mance, cost and/or design) attributes.
Scale: The cost to add to a defined [System] a defined
[Improvement] using a defined [Means].

1.3 Usability: ‘How easy a system is to use.
Scale: Speed for defined [Users] to correctly accomplish
defined [Tasks] when given defined [Instruction] under defined
[Circumstances].
Note: This is a generic scale for Usability, which you can use if
you want to simplify matters and deal with Usability at an
elementary level. It is however more usually declared as ‘com-
plex’ and then defined in a more specific manner; for example,
by using the sub-attributes below. There are of course, many
different possible decompositions of Usability.
Type: Complex Quality Requirement.
Includes: {Entry Level Experience, Training Requirement,
Handling Ability, Likeability, Demonstratability}.

1.3.1 Entry Level Experience:
Scale: The defined [Level of Knowledge] required to
receive training or to use a defined [System].

1.3.2 Training Requirement:
Scale: The degree of training required for a defined [User
Type] to achieve a defined [Degree of Proficiency] with a
defined [System].

1.3.3 Handling Ability:
Scale: A defined [Degree of Proficiency] with a defined
[System] by a defined [Class of User].
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1.3.4 Likeability:
Scale: The degree to which defined [Users] declare that they
are pleased with defined [Aspects] of a defined [System].

1.3.5 Demonstrability:
Type: Complex Quality Requirement.
Includes: Elementary Quality Requirement {Customer
Self-Demonstrability, Sales Demonstrability}.

Some Alternative Models for Usability:

The point of these three alternative models to the basic
Usability model (above) is to emphasize that there is NOT
one ‘correct model.” All major projects need highly railored
models. I also want to show some specific instances of Usabil-
ity sub-scales as a checklist or stimulant to readers when
building their own models.

Usability:

Type: Complex Quality Requirement.

Includes: {Entry Level Experience, Training Requirement, Handling Ability, Like-
ability, Demonstrability}. “Only one of the many possible decompositions of
Usability.”

Demonstrability:

Type: Complex Quality Requirement.

Includes: Type: Elementary Quality Requirement {Customer Self-Demonstrability}.
Customer Self-Demonstrability:

Ambition: Ability of Customer to solo self-demonstrate a Product is to be <high>.
Scale: Probability of <successful completion> of self-demonstration within one hour.
Past [Last Year, All Products]: < 5%.

Fail: 90% to 95% <- Corporate Quality Policy.

Goal: 95%.

Usability:

Type: Complex Quality Requirement.

Device Swapability:

Scale: Minutes to swap over a defined [Input Device or Output Device].

Training Need: Scale: Hours in <training mode> until capable of defined
[Tasks].

User Productivity: Scale: % User Time lost due to Product Fault or <Bad Design>.
User Error Rate: Scale: % of User Actions, which they correct or change.

User Minimum Qualification Level:

Scale: Average % of correct answers to a defined [Qualifying Test] by a defined [User
Typel.

Userlessness: Scale: % of Tasks, which can run <unattended>.

Coherence:

Scale: % of User Interface Elements, which are perceived as consistent with our
Product Image.
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User Opinion:

Scale: % of defined [User Type] who express <positive feeling™ after using defined
[Product Component(s)].

Customer Self-Demonstratability:

Scale: % Probability of successful <self demonstration> of defined [Product or Product
Component] by defined [User Type] within defined [Time Span] of attempt to use it.

Usability:

Type: Complex Quality Requirement.

Includes: Type: Elementary Quality Requirement {Entry Conditions, Training
Requirement, Computer Familiarity, Web Experience Level, Productivity, Error
Rate, Likeability, Intuitiveness, Intelligibility}.

Entry Conditions:

Scale: <Grade Level of User>.

Training Requirement:

Scale: Time needed to read <any instructions> or get <any help> in order to
perform defined [Tasks] successfully.

Computer Familiarity:

Scale: Years of <experience with computers>.

Web Experience Level:

Scale: Years of <experience with using the web>.

Productivity:

Scale: Ability to correctly produce defined [Work Units: Default: Completed Trans-
actions].

Error Rate:

Scale: Number of Erroneous Transactions requiring correction each <session>.
Likeability:

Scale: Option of <pleasure> on using the system on scale of —10 to +10.
Intuitiveness:

Scale: Probability that a defined [User] can intuitively figure out how to do a defined
[Task] correctly (without any errors needing correction).

Intelligibility:

Scale: Probability in % that a defined [User] will correctly interpret defined [Mes-
sages or Displays].

2. Resource Savings:

Gist: How much resource savings a new system produces compared to
some defined benchmark system.

Type: Complex Performance Requirement.

Includes: {Financial Saving, Time Saving, Effort Saving, Equipment
Saving}.

* Financial Saving: “Financial Cost Reduction”
Scale: Net Financial Saving planned or achieved compared to a
defined [Benchmark Amount].

¢ Time Saving: “Processing Time Reduction, Elapse Time Reduc-
tion, Time To Market”
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Scale: Net Time Saving planned or achieved compared to a defined
[Benchmark Amount].

Effort Saving: “Reduction in the Person-Hours required”
Scale: Net Effort saving planned or achieved compared to a defined
[Benchmark Amount].

Equipment Saving: “Includes room space!”
Scale: Net Space saving planned or achieved compared to a defined
[Benchmark Amount].

3. Workload Capacity: “The raw ability of the system to perform

work.”
Type: Complex Performance Requirement.
Includes: {Throughput, Response Time, Storage Capacity}.

Throughput:

Gist: Throughput is a measure of the ability of the system to process
work. For example, the average number of telephone sales orders,
which can be dealt with by an experienced telephone sales operator,
in an hour.

Scale: The average quantity of defined [Work Units], which can be
successfully handled in a defined [Time Unit].

Response Time: “Retrieval Timing, Transaction Timing”
Scale: The mean average speed to perform a defined [Reaction] on
receiving a defined [Impulse].

Storage Capacity: “The ability of the system to increase in size”
Gist: This is the capability of a component part of the system to
store units of some defined kind. For example, number of registered
users, lines of code, photographs and boxes.

Scale: The capacity to store defined [Units] under defined [Condi-

tions].

5.8 Further Example/Case Study: Scale Definition

This is part of a quality definition done for the airborne com-

mand and control system, which was discussed previously in
Section 3.8. It is a first draft (there are lots of things to be refined
later) and it is only a sample of the requirement specification we

actually worked out. We chose to work on ‘Usability’ as it was

defined as ‘the key competitive system quality’. This system is now

operational.
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Usability:

Ambition: Operator ease of learning & doing tasks under <all conditions> should
be maximum possible ease & speed of performance with minimum training &
minimum possibility of <unchecked error(s)>.

Usability.Intuitiveness:

Ambition: High probability that an operator will within a specified time from
deciding the need to perform a specific task (without reference to handbooks or help
facility) find a way to accomplish their desired task.

Scale: Percentage Probability that a defined [Individual Person: Default: Trained
Operator] will find a way to perform a defined [Task Type] without reference to any
written instructions, other than the help or guidance instructions offered by the
immediate system screen (that is, no additional paper or on-line system reference
information), within a defined [Time Period: Default: Within one second from
deciding that it is necessary to perform the task].

Comment [Intuitiveness:Scale]: “I'm not sure if one second is acceptable or realistic,
it’s just a guess” <- MAB.

Meter: To be defined. Not crucial this 1st draft <- TG.

Past [System R]: 80%? <- LN.

Record [Mac User Interface]: 95%? <- TG.

Fail [Trained Operator, Rare Tasks [{<1/week, <1/year}] ]: From 50% to 90%?
<- MAB.

Goal [Tasks Done [<1/week (but more than 1/Month)]]: 99%? <- LN,

[Tasks Done [<1/year]]: 20%? <- ]B,

[Turbulence, Tasks Done [<1/year] ]: 10% ? <- TG.
=======================_User Defined Terms =======================
Trained Operator: Defined As: Command and Control Onboard Operator,
who has been through approved training course of at least 200 hours
duration.

Rare Tasks: Defined As: Types of tasks performed by an Onboard Operator less than
once a week on average.
Tasks Done: Defined As: Distinct tasks carried out by Onboard Operator.

Usability.Intelligibility:

Ambition: High ability for an operator to <correctly> interpret the meaning of
given information.

Scale: Percentage Probability of <objectively correct> interpretation(s) of a defined
[Set of <Inputs>] by a defined [Individual Person: Default: Trained Operator]
within a defined [Time Period].

Meter [Acceptance]: Use about 10 Trained Operators, and use about 100
<representative sets of information per operator within 15 minutes?> - MAB.
Comment [Meter]: “Not sure if the 15 minutes are realistic” <- MAB.

Comment [Meter]: “This is a client & contract determined detail” <- MAB.
MI: Past: [XXX, 20 Trained Operators, 300 <data sets>, 30 minutes]: 99.0%
<- Acceptance Test Report from XXX, MAB.

Record [XXX]: 99.0%. “None other than XXX known by me” <- MAB.

Fail [First Delivery Step]: 99.0%? <- MAB.

Fail [Acceptance]: 99.5%? <- MAB.

Goal [XXX, 20 Trained Operators, 300 <data sets>, 30 minutes]: 99.9%
<- LN.
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===================== More User Defined Terms ====================
Acceptance: Defined As: Formal Acceptance Test as defined by our contract with
Customer XXX.

First Delivery Step: Defined As: By end of November this year (The results of the
first evolutionary result cycle will be integrated into the system and will be producing
useful results).

Diagrams/Icons: Scale Definition

Resource Performance
Financial Budget 0%
[Stakeholder A]

[Operator] Usability

Management I
Financial Budget [ 9 ] Reliability

[Stakeholder B]

Security

Elapsed Time Environment

Effort .
Innovation

Cost Reduction
Client Accounts

Figure 5.5

A representation of multiple performance and resource atfributes showing goal and
budget levels respectively. The ‘point’ of the icon goal and budget symbols indicates
the level (reference needs to be made fo the Scale to interpret the numeric value). One
constraint, a Fail level, is shown on the resource attribute for Financial Budget [Stakeholder
Al. The lines of the arrows represent the scales of measure (divisions along the scales are
also marked).

5.10 Summary: Scales of Measure

Quantification of all performance and resource concepts must be
taken seriously. Ideally, you need to have a corporate policy that all
such ideas will be expressed quantitatively at all times. Nothing less
will satisfy ‘the need to be the best’ in a fast-changing competitive
world.

Here is a summary of the key ideas about scales of measure:

¢ you can and should always define a scale of measure for any system
critical variable performance or resource attribute
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defining a scale of measure is a teachable practical process
specification of a scale can be done using embedded qualifiers, which
makes it more immediately powerful and also reusable in other projects
most scales of measure are tailored variations of a generally applic-
able set of scales (like Usability and Maintainability). Once you have
learned the general set, it becomes much easier to generate useful
scales as needed for variations

qualities do not have to be expressed ‘qualitatively’ (for example,
using words like ‘high security’) — they should be quantified for
serious Competitive Engineering

an organization should make a library of useful scales of measure for
its area of interest

really good scales of measure are tailored — truly general scales (like
‘volts’) are not likely to be what you need for best competitiveness
scales of measure in requirements are the foundation of under-
standing any design or architecture impact on that requirement —
both when it is being considered, and then when it is being
implemented in practice.

If you think you know something about a subject, try to put a
number on it. If you can, then maybe you know something about
the subject. If you cannot then perhaps you should admit to yourself
that your knowledge is of a meagre and unsatisfactory kind.

Lord Kelvin, 1893
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Infroduction

You only get what you pay for.
Folk wisdom

A system designer tries to meet the specified system requirements by
identifying value-producing design ideas (solutions). At the same time
as looking for function and performance, the designer must also
consider the resources needed, specifically respecting any constraints
placed on resource usage.

Relationships amongst Resources, Budgets
and Costs

Resources are the inputs, or the ‘fuel,” for a system. They are needed to
produce the system’s performance attributes. They are analogous to
the capital expense, air and fuel needed for a car engine (function
attribute is to provide power) to deliver the engine’s performance
attributes.

Resource requirements specify how much we plan to use of a limited
resource to bring about change (new systems, improved systems) and/or
to operate a system. Resource requirements are also known as budgess.

Stakeholders’ resources pay all the real project and system coszs. In other
words, costs are the actual consumption of resources. Resource require-
ments are therefore sometimes termed cost requirements (or cost budgets).

The term ‘resources’ is used here in the broadest sense of that word. It
covers money, time, people, space and any other ‘currency’ with which we
pay for system changes and the operational system.

Stakeholder Requirements and Resources

Projects exist primarily to deliver stakeholder performance require-
ments. A system’s functions are probably already in place, and may
well have been for ages in earlier generations of the system, but the
projected performance outputs (qualities, workload capacities and/or
resource savings) of the system are probably not satisfactory — or they
will not be in the future. That is what puts you in the ‘business of
change,” in other words ‘creates your project.’

Any project sponsor has limited resources, and is faced with alternative
ways to use them. Projects must control costs, or they will either exceed
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their project sponsors’ capability for providing resources or be seen as a
less attractive (read ‘less profitable’) investment for those resources.

For most of today’s projects, controlling cost (resource expenditure) is
quite a juggling act: you have to balance and trade off performance
against budgets. Your stakeholders want a better system, but not at too
high a cost. They can usually specify a ‘budget’ for what they are
willing to pay for each system improvement, based on their knowledge
of their current system and their competitors’ systems. Of course, their
budgets may or may not be realistic!

There may also, in practice, actually be real and absolute limizs on their
budgets, which are in no way just ‘hopeful plans’. These limits will more
severely restrict the amount of resource that can be made available.

‘Limited resources’ means that either there are necessary economic limits
(it would not be profitable to spend more, or other projects need these
resources more) or finite availability (there is really no more resource
available at all).

To complicate matters further: it could also be the case that some of
your competitors are also willing to provide your stakeholders with
improvements. Maybe, only if you bid the lowest-cost solution for the
defined system performance levels, will you get any development
business whatsoever.

The Relationship between Costs and Performance
Delivery

Many, but not all, system performance attributes are directly related to the
operational costs of using the system or to the costs of changing the
operational system. As examples, think of qualities such as ‘Maintainabil-
ity’ and ‘Reliability’ and workload capacities such as ‘Response Time.” To
give a specific example, a project might invest some resources to produce a
system with a ‘higher ease of maintenance.” The resulting system, in
operation, will have long-term lower Maintenance Costs — due to the
improved Maintainability attribute level (Scale: <mean time to repair>.)
which was the result of a one-off investment (an implementation cost).

Ultimately, every system requirement can be viewed in terms of
resources. When making decisions about system changes, a stake-
holder is merely exercising choice over where resources are to be
expended — by choice (now) or by default (later)!

The key point is that there usually is choice about where and when
resources are expended. To be competitive, not only must a stake-
holder consider if an investment bears a clear relationship to produ-
cing the required benefits, they must also be sure that the specified
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‘required benefits’ are the ‘correct’ objectives and that the selected
investment is going to give the best available payoff.

Look at the Use of Resources across the Entire
System Lifetime

There is no point in narrow cost control. We need ‘value for money’
control instead. We must learn to balance the use of resources across
the entire system lifetime. To give some examples:

e there is little use in simply controlling an implementation project’s
financial investment, if the result is excessive operational costs for
the resulting system, or excessive system retirement costs

* it is no good constraining the time to market, if the consequence is
that the product cannot achieve the necessary performance levels for
sales on that market

e there is no point in constraining head count on a project only to
experience that the consequence is project delays to market, which

threaten profitability.

The design engineer must be able to intelligently trade off and
balance, to some reasonable degree, all the many performance and
cost requirements. To do this, a full set of requirement specifications
is required across the entire system lifetime. Otherwise, any tradeoffs
will be carried out without knowledge of the ‘full picture,” and short-
term priorities will tend to dominate.

Numeric Performance Levels Enable Us to
Understand the Associated Costs Better

Numeric performance requirement specification, with sufficient pre-
cision for purpose, is necessary in order to be able to calculate the costs
of achieving the performance levels with any precision. Conventions
such as specifying performance levels as ‘low,” ‘medium,” ‘high’ and
‘extremely high,” will not allow us to exercise reasonable control over
costs. For example, availability levels like 99.90%, 99.98% and
99.998%, which can easily have order-of-magnitude cost differentials
to achieve, would be impractical to distinguish amongst by merely
using such non-numeric terms.

The Cost of Perfection — Beware Infinite Cost Increases

‘Perfect quality’ does not seem possible in our world and lifetime. The
stakeholder would always /ike to have it (the ‘Ideal’ level), but cannot
ever afford it in practice. It seems that the ‘cost of perfection’ is infinite
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Figure 6.1
As we move any performance level fowards nearing perfection, we increase costs dra-
matically in the direction of infinite costs.

resources. More practically, the costs of performance levels ‘nearing
perfection’ have a nasty tendency to accelerate fowards infinity. So, as
we become more ambitious regarding performance, we must become
much more exact at specifying the performance levels, if we are to
hope to understand and control the cost implications.

Further, we must also understand that our systems can be sensitive to
very small changes in any attribute or design specification. These
seemingly small changes can give unexpectedly large cost increases,
incalculable in advance.

Specify Costs Down to a More Detailed Level - Not
Just Total Costs!

We also need to specify the cost requirements in far more detail than
people usually do. Not a simplistic ‘bottom-line-for-everything’ cost
budget, but in dezail. What costs are associated with every increment of
performance? What costs accompany each increment of function?
Estimating and tracking detailed costs will improve our capability of
getting feedback early and correcting any situation where the costs are
getting ‘out of line’. One practical way to view such cost information
is by using an Impact Estimation table (IE table) (see Section 6.8 and
Chapter 9, Impact Estimation).

Accurate Estimation of Costs in Advance is Unlikely
for Complex Systems

In advance of building and delivering complex systems (or parts
of them), there is no reliable way with reasonable accuracy, to
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compute the real, final cost or, to compute the consequential,
longer-term cost (Morris 1994). History shows that it is more
successful to stipulate a reasonable budget amount, and then ‘see
how much you can get out of it' (MacCormack 2001; Mills
1980). This means that cost budgets cannot really (and should
not) be unilaterally fixed in advance for defined performance

requirements.

Multiple cost budgets and multiple performance goal levels must
somehow be set together in some reasonably ‘balanced” way. The exact
balances amongst them may well be difficult to estimate or know in
advance: only the inexperienced believe they can accurately calculate
such effects. But we can ‘learn as we go’” about expected costs in small
increments of experience.

Use Design to Cost and Evolutionary Project
Management (Evo)

In practice, the best approach to controlling costs for complex systems
must be to ‘Design to Cost; and then to use the Evolutionary Project
Management (Evo) method (see Chaprer 10) and track actual costs.

‘Design to Cost’ means that you intentionally select designs which fiz
within your committed cost budgets. You may even trade off some
marginal performance levels in order to stay within your resource
constraints and meet resource targets (budgets). It depends on your
priorities. (The alternative is to design for performance alone, and be
surprised at the budget overruns!)

Using the Evo method for your project means delivering to your
customer or market a succession of improvements in the system’s
functionality and performance levels. The highest priority improve-
ments must be delivered ‘first’ (at the earliest opportunities). You
must be prepared to learn from the frequent feedback from the partial
deliveries and to make any necessary adjustments in cost budgets. In
practice, this is in your interest because, with early warning, you can
‘change course’ early and so avoid many cost problems.

When, eventually, the budgeted resources do run out — even if you
have not delivered all the requirements yet — you can ask, like Oliver
Twist, for ‘another cup of broth.” If you have been good at delivering
value in relation to the resources you have used, then one would
expect that your stakeholders would want to keep you in business
(the next ‘round’, at least).

The reader may well find that the ideas of ‘Design to Cost,” and of
taking an evolutionary approach to costs are strange. But we argue
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that they are both necessary and possible. Planguage has these
approaches in-built in the form of the Impact Estimation and Evolu-
tionary Project Management methods. Even when performance
requirements are set at the highest levels, Evolutionary Pro-
ject Management has a successful past history of being in control of
costs and deadlines (for example, the space and military projects in the
late 1970s). (More on this method can be found in Chapter 10, ‘Evolu-
tionary Project Management.” More on ‘Design to Cost’ can be found in
Chapter 7, “The Design Process’ and in Chapter 9, ‘Impact Estimation.’)

We can control costs if we get early warnings of unexpected costs
and we are able to react to these warnings. We must have early,
frequent, feedback mechanisms in our planning, our systems engi-
neering and our project management. We can get this degree of
control:

* by budgeting resources in small (say, 2%) increments

® by designing to stay within the budget

* by reacting to experience with cost expenditure (changing
designs or requirements as far as it is realistic fo do so)

* by monitoring a multiplicity of resource budgets and a multiplicity

of performance goals

by specifying all the constraints that apply to the problem, in

advance of solving it.

6.2 Practical Example: Resources, Budgets
and Costs

Resource Requirement Specifications: Allocation
of Resources

We are all familiar with the simplest types of ‘resource limitation’
specifications: ‘the total budget is a million’ and ‘the deadline is
January next year.” There is a real human need for these simple
ideas.

However, in order to control and deliver ‘within budget’, we must
take a more sophisticated approach to budget specification. We must,
for example, relate resources more carefully to exactly what is to be
achieved or delivered to stakeholders (the required function and
performance attributes), and we must consider the resource con-
straints. If we fail to do so, then both time and money will run out
but we will not have achieved our ‘real aims,” which are the function
and performance improvements. For example, if only 2% or 20% of
the work is accomplished by using 80% of our budget, then we are
usually in deep trouble.



//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH006.3D - 165 - [165-184/20] 29.6.2005
12:40PM

ExAmPLE

Resources, Budgets and Costs 173

Here is an example of a generic financial budget specification, which
helps ensure more specific detail:

Financial Budget:

Scale: Percentage (%) of total initial Project Money Allocation.

Type: Resource Requirement.

Meter: Project Accounting.

=========================== (CORnstraints ===========================
Survival [Final Deadline]: 100% “Must not use more than this by final deadline”.
Rationale [Survival]: If >100% we have a loss on this project, and it can be deemed
a failure.

Fail [Final Deadline]: 90%. Rationale: This gives us 10% profit.
============================= |aIgets ============================
Budget [For each 2% of Total Project Calendar Time, If 2% Benefit]: 2% “of total
budget. See Scale above.”

2% Benefit: Defined As: At least an incremental 2% of the total of all planned
performance improvement (‘benefit’) shall be delivered.

Rationale [2% Benefit]: This Evo approach will give us consistent control and
feedback throughout the project, so we can take action early if necessary, to avoid
disaster.

Stretch [Final Deadline]: 80%.

Rationale [Stretch]: This gives us 20% profit. “Double the normal.”

Notice the subtle distinction between a Survival level (a hard budget constraint level to
avoid unacceptable losses), and a Fail level (a softer budger constraint level to avoid some
sort of failure or pain). The Budget is the actual required target budget for some degree of
success. The final target set, Stretch,’ is intended as a motivating cost target. Consider how
the resulting ‘differentiated’ project budget plan will differ from the simplest budger
maximum specification.

In the example, we are specifying in the Budget level that for
every 2% of our budget we had better not plan to use more than
2% of the calendar time budgeted, and we had better plan to
deliver corresponding planned performance improvements in mea-
surable increments. I remind the reader that the previous two
chapters tried to introduce the notion that performance measures
(such as 2% of any planned performance improvement) can be
specified and measured.

If you want project control, you will insist on doing things on
such a ‘pay as you go’ basis (or even, ‘no cure, no pay’). If you let
projects spend money, without demanding clearly measurable
results, I promise you ‘they’ will spend your money, take your
time and be unable to give you anything worthwhile in return. On
several occasions, I have investigated very large projects, in the
UK, Sweden and Germany, which have managed to consume
hundreds of millions of dollars without delivering a single solution
of any value to any stakeholder. Take steps to ensure this doesn’t
happen on your project!
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ExAMPLE

Engineering Hours:
Gist: To help ensure resource usage is balanced with the business progress and value
by controlling the allocation of engineering hours to different stages and types of
work.
Ambition: Low resource-use in beginning, more as value increases.
Type: Resource Requirement [Engineering Work-Hours].
Scale: % of total Engineering Work-Hours allocated.
Budget [Early Pilot Trials]: 10%,
[Domestic Deliveries to Contracts]: 10% <- Marketing Plan 6.8,
[From Next Year, Domestic Deliveries, Wholesalers]: 20%,
[European Deliveries, Contracts [At least 10 signed], If Authority Given]: 30%,
[European Deliveries, Wholesalers [1 in each country]]: 30% <- The Board.
Authority Given: Authority: Board Approval granted for this budget fraction <- The
Board.
An example of allocating a budget. Notice the conditions “[From Next Year], [At least 10
signed], [1 in each country], [If Authority Given].” We could call this a ‘conditional
budger.’

6.3 Language Core: Resources, Budgets

ExAmPLE

and Costs

Resource Requirement Specification

Resource requirements (Budgets) are specified in a similar manner to
performance requirements, because they are a/so scalar requirements (that
is, they are variable along a defined scale of measure). See Section 4.3,
‘Language Core: Scalar Attributes.’

Logic Space:

Type: Resource Requirement.

Scale: Maximum Storage Space in megabytes.

Owner: System Architecture.

Stakeholders: {Architect, Hardware Storage Designer, Handset User}.
Fail [Any One Function]: 100 Mb. “A resource constraint”.

Budget [Any One <Frequent> Function]: 50 Mb. “A resource target’.

6.4 Rules: Resource Requirement Specification

The rules for scalar requirement specification (Rules.SR) apply

(see Section 4.4).



//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH006.3D - 165 - [165-184/20] 29.6.2005
12:40PM

Resources, Budgets and Costs 175

6.5 Process Description: Resource Requirement
Specification

Process: Resource Requirement Specification
Tag: Process.RR.

Version: October 7, 2004.

Owner: TG.

Status: Draft.

Gist: A process for specifying resource requirements and for cost
estimating, resource budgeting, and project adjustment to stay within

budgets.

Note: This process is highly iterative, and needs to be done early and often.
It should actually be embedded in the Evolutionary result cycles. It is
described here so that the reader sees the multiple elements of determining
budgess. This is certainly not a simple procedure within a real project.
Budgers will probably need to be estimated and adjusted several times, in
the course of attempting to achieve a balance of the performance and
[function requirements with the resources.

Entry Conditions

El: The Generic Entry Conditions apply. The specific source docu-
ments that should have already exited successfully from Specification

Quality Control (SQC) include:

e the current requirements

e the design specifications

e any Impact Estimation tables (giving cost estimates for designs, or
for Evo steps).

Note: If any of the source documents has failed to successfully exit SQC, then
you can ‘stipulate’ desired costs, but you do not have a reasonable basis to
confidently ‘estimate’ the costs of the designs/plans, which are needed to
deliver the desired functionality and performance levels, on time.

Procedure

P1: Identify Resource List: Get existing lists of ‘critical resources to
be controlled’ for this sort of project. These lists should include such
things as project elapse times (long and short term), people, people work
hours, project space, investments, development costs, production costs
and operational costs (including maintenance costs).
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P2: Analyze Benchmark Costs: Examine earlier similar projects
for cost levels, and cost deviations from plans.

P3: Determine Project Costs: Determine acceptable and unacceptable
cost levels for this project. Consult any contracts, marketing plans and

product plans.

P4: Produce Initial Project Budgets: Specify an initial draft of project
resource budgets.

P5: Perform SQC: Perform Specification Quality Control (SQC)
using Rules.GS, Rules.RS, Rules.SD and Rules.SR. The source docu-
ments (process inputs) are listed in the entry condition E1 above. If
the specification is not ‘clean enough’ (the SQC process calculates that
there are one or more remaining major defects/page), then return to
P1 and cycle through the procedure again as required.

P6: Carry Out Evo: Perform an Evo step. (Deliver some results!)
Measure real costs, for the delivery, versus the budgeted step costs. Re-
plan either costs or other things (such as designs, performance levels, and
timing) in order to keep within the project resource requirements. Con-
tinue ‘cycling’ with this step until all the planned Evo steps for the project
are completed.

Exit Conditions
X1: The Generic Exit Conditions apply.

The entire process of cost adjustment, and learning, goes on as long as
money is still being spent on the project, or spent on the operational
system. Project end’ allows exit from the project. System/Product end’
(that is, the system or product is no longer sold or distributed) allows exit
from the system/product support process. This is a formal way of saying

this is a continuing process, as long as resource is being consumed.’

6.6 Principles: Resource Requirements

1. The Principle of ‘Many Critical Risks’
There are many resource, performance and condition dimensions
critical to any system, not just one or a few.

2. The Principle of “You Can’t Have It All, Trade-offs are a Necessity’
Fixing the required level of one resource dimension arbitrarily can
only be done at the probable expense of other attributes.

3. The Principle of ‘You Get What You Pay For’
It is really the availability of resources, which limits the levels of
performance that can be delivered in practice.
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. The Principle of ‘Attribute Balance’

Once you have found a balance between performance and costs,
management cannot cut the financial budget, people or time
without negative consequences.

. The Principle of ‘The Cost of Perfection’

Perfect quality costs infinity.

. The Principle of ‘The Rolls Royce’

Near-perfect performance levels cost more than most people
would pay.

. The Principle of ‘Natural Ambition’

The pressure on resources will 2/ways be at a ‘level of discomfort’,
not to say downright intolerable — this is a natural management
strategy to find out how far they can push!

. The Principle of ‘The Traffic Bottleneck Illusion’

Increasing your allocated resources will 7ot relieve the pressure on
you, but only raise that sponsor’s expectations.
Removing one bottleneck serves mainly to discover others.

. The Principle of ‘Really Useful Resource Management’

The only practical way to control costs and performance in
large complex dynamic systems is by early, frequent realistic
evolutionary feedback on costs, and consequent adaptation to
realities.

The Principle of ‘Shifting Conflicts’

Conflicts amongst budget targets, performance targets and design
ideas are natural; there’s no blame. You just keep resolving them:
it’s the name of the game.

Budget constraints will always exist and, will always be subject to change.

6.7 Additional Ideas

Using Impact Estimation and Evolutionary Processes
to Balance Requirements

There are two Planguage methods that are worth outlining' at this
point, because they are fundamental to the control of costs (and also

performance).

One is Impact Estimation (IE), which enables design evaluation against

multiple resource budgets and multiple performance targets. It produces

' See Chapter 9, ‘Impact Estimation” and Chapter 10, ‘Evolutionary Project Manage-

ment’ for more detail.
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Table 6.1 A simple IE table.

Designs-> Contract ~ Supplier  Motive  Architect ~ Parts Used | Sum
Requirements % Impacts
Quality 1 0% 100% 50% 30% —20% 160%
Quality 2 100% 50% 0% 20% 50% 220%
$Investment Cost 5% 10% 1% 10% 110% 136%
$Operational Cost 5% 50% 20% 1% 10% 86%
Staff Resource 10% 20% 10% 5% 0% 45%

Performance ro Cost ratio | 100/20 150/80 50131 50116 30120

an IE table that provides, amongst other information, performance to
cost ratios, which allow relative assessment of the proposed designs.

The other method is Evolutionary Project Management (Evo), which
plans and implements design delivery in a sequence of Evo steps. The
choice of design for the next Evo step is re-evaluated once the feedback
from the implementation of the latest Evo step is received. Evo can use
the IE table information to select the design(s) for the next Evo step
and to capture the feedback from past Evo steps.

The key point is that these two methods can evaluate realistic feedback
from partial implementation of our designs. We get a more reliable picture
of the real costs of what we are doing, and can then make adjustments to
anything necessary (design, resources, performance levels and/or timing)
to achieve the performance-to-cost ratio we are satisfied with.

Table 6.1 shows an example of a simple IE table.

This IE table has three resource requirements. $Investment Cost,
$Operational Cost and Staff Resource. These are defined somewhere
else, with a Past (Benchmark) level, which is represented by the 0%
level on this table, and a Budget (or other Target) level, which is
expressed by the 100% level on this table.

The referenced designs (Contract, Supplier, Motive, Architect, Parts
Used) are also defined somewhere else with enough detail to permit us
to estimate their impact, sufficiently well for our current purposes, on
the performance goals (Quality 1 and Quality 2). Interpretations of

impact are as follows:

¢ 0% is no change from the benchmark

* 100% reaches the target level on time

* 50% is halfway to the target level

o —20% is a ‘negative impact compared to the benchmark.?

2 . . . . .
For costs this would imply that a design earned resource rather than consumed it. This
is not unthinkable.
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We should arrive at the estimates of impact based on evidence (such as
experiences with the defined design ideas).

Once each design idea has a numeric impact estimate for each per-
formance cell and each cost cell, we can use these cell estimates to
calculate a ‘performance to cost’ ratio. This is the overall ratio of
performance delivered with respect to our objectives by the design idea
(the sum of Quality 1 and Quality 2), over the sum of the estimated
use of resources in relation to the plan by the design idea (the sum of
the costs: {$Investment Cost, $Operational Cost, Staff Resource}).

Using a basic IE table, the impact of any design idea on performance
with respect to its estimated costs can be evaluated. Design decisions,
such as “what happens if we drop the design idea, Parts Used?” can
also be assessed. Of course, the IE table simplifies, as all models do,
but it still gives useful insights.

When there is a sufficient set of design ideas, that is likely to meet the
planned levels, on time, with reasonable ‘safety factors’ (for example,
all the ‘Sum for Requirement’ values are in excess of, say, 200%), then
Evo can start to use the IE information in a slightly modified IE Table
format to plan the implementation steps of the project.

In simple terms, an Evo plan would sequence the implementation of the
design ideas to get the best results (the highest performance-to-cost ratios)
delivered to stakeholders early. An IE table can be used after each evolu-
tionary step delivery to capture the numeric feedback from the implemen-
tation of any set, or sub-set, of the designs, for any target market of interest
(see Chapter 10, ‘Evolutionary Project Management,’ for more detail).

Instead of relying solely on estimates, rea/ performance and cost
experience is captured step by step and, of course, it can then be
compared against the estimates step by step. This feedback on rea/ cost
and real performance levels allows better understanding of the true
future cost levels, at an early stage of the project. This leads to better
control over costs, system performance, design and projects. The heart
of good project management is such multidimensional, numeric feed-
back and consequent improvement in plans.

6.8 Real Example: Resource Target and Resource
Constraint Specification

Here is an example of a resource requirement specification, which
includes some resource constraints. It also includes price specification.
It is based on a real case study, but edited for confidentiality and to
reflect the latest Planguage terminology.
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ExAMPLE

Installation Time:

Ambition: Installation time must not be more than that of an unlicensed system
<- RSW 3.

Type: Resource Requirement.

Installation Effort: Scale: Work Hours.

Budget [USA]: 15 <- Requirement Specification, Feb 5.

Installation Duration: Scale: Calendar Days.

Budget [USA]: 2.5 <- Requirement Specification, Feb 5.

Installation Costs:

Scale: Total Installation Cost of all Involved Parties.

Type: Resource Requirement.

Total Installation Cost: Defined As: Financial Cost of {Education of Customer
People, Involvement during Installation of Customer People, Involvement during
Planning of Customer People, Loss of Service in a PBX, Special Tools for Strange
Cabling, any other thing even if not on this list!}

Past [DECT, USA, Last Year]: <not known exactly>.

Fail [Per Installation, USA, Release 1]: Maximum of twice DECT Installation Costs.
“A constraint.”

Budget [Per Installation, USA, Release 1]: Within £20% of DECT Installation
Costs. “A Target.”

Per User Price:

Note: The actual price targets may vary from time to time and market to market.
Type: Performance Constraint.

Note: this is NOT a budget for the project or the Base Station system. This is a result
of the design of the new system.

Scale: $ Per User Price for defined [Number of System Users] to use at a defined
[Location] for defined [Release] of total Base Station {CE and RH}.

Past [Last Model]: $1,000.

Fail [30 to 250 System Users, USA, Release 1]: $700 or more <- RSW 2.

Survival [More than 250 System Users Or Larger Building Or tougher than Normal
Radio, USA, Release 1]: $700 or more. <- RSW 2.

Subscriber Cost:

Type: Performance Constraint.

Note: The actual customer cost targets may vary from time to time and market to
market.

Scale: $ Cost for a defined [Number of Users] of System per Subscriber, including
TK and SW licenses cost to TeleCo.

Past: $600.

Fail [100 Users, USA, Release 1]: $400 or more <- RSW 2, Cost Assumptions
(Page 2).

This is a real example, but not in its final form: it is only the first draft translation of a
customer’s older, non-Planguage specification. It is also upgraded with recent Planguage
changes.
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6.9 Diagrams/Icons: Resource Requirement
Specification

Resource Requirement Icons

Resource target and constraint icons are scalar icons, identical to those
used for performance attributes.

Resource targers specify how much we would ‘like’ to use of a resource. There

are three types of resource target: Budger (>), Stretch (>+) and Wish (>?2).

—>—>+—>7—0
Budget Stretch Wish

Resource Targets

—[— 1L —]1—0

Lower Fail Upper
Survival Survival
Level Level

Resource Constraints

A Resource constraint is defined using a Fail concept (!) or a Survival
concept: the [’ is a lower limit and the 1" is an upper limit.

Resource constraints set (relatively) strong framework limits to the use
of resources. These strong constraints could be due to legal restric-
tions, contract limits or other sources, which are relatively inflexible.
They are generally outside our control. Constraints are not so easily
the subject of tradeoff decisions, as targets might well be.

Resource Requirement Specification Template

The scalar requirement template given in Section 4.9 should be used
for resource requirement specification.

6.10 Summary: Resource Requirement
Specification

There are many limited resources we must track for building, modifying
and operating a system. Budget specifications will include calendar time,
people effort, and money to implement, operate and service the system.
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‘Costs’ is our term for ‘use of resources’: resources that are generally in
demand for satisfying ozher priorities. Failure to think and document
clearly with regard to resources is likely to lead to resource scarcity
problems.

We assume that most systems that the reader is likely to use the
Planguage methods on are non-trivial and difficult to manage. They
are of such a nature that they are very difficult to predict costs for, and
almost as difficult to control the costs of. Planguage addresses these
problems in several ways:

¢ Planguage ensures specification of resource requirements is per-
formed in a disciplined and detailed numeric way.

¢ Through Impact Estimation (IE), Planguage obtains tightly inte-
grated performance and cost information. Not just the total final
budgets, but detailed budget allocation at design idea level and at
evolutionary step level, which is linked to the evolution of the
stakeholder valued results! Such resource requirement specification
information gives a better ability to predict costs in advance. Such
resource budgeting is also important to ensure engineers do ‘Design
to Cost’ from the earliest stages. It helps them keep aware that they
do have finite limits for resources. It is otherwise too easy for them
to focus on performance and technology; leaving serious cost con-
siderations until too late.

¢ Through Evolutionary Project Management, Planguage provides
better cost-expenditure control, because we have a way of adjust-
ing cost budgets and estimates for resource usage, as we learn, early
and frequently, from practical experience. Alternatively we can get
resource control, because we can choose ‘tradeoffs in order to
maintain the budgets we #nitially planned for. “Tradeoff’ means
that we can adjust certain performance levels and/or adjust certain
design specifications. We can also adjust certain qualifiers [when,
where, if]. With Planguage, we can more clearly, and earlier, see
the exact options available, and make more intelligent tradeoff
decisions.

The fundamental assumption of the Planguage method is that we
must set things up to learn (this is Shewhart’s Plan-Do-Study-Act
cycle) as rapidly as possible, before we fail, and before our competitors
do things better and ‘put us out of business’. The threat of losing your
workplace and budget to ‘competition’ applies even if you are a
government agency or a charity!

By use of Planguage practices, the all-too-common project syndromes
of ‘running out of resource (time or money) without delivering any
value’ and ‘pushing the system out of the door on the deadline; system
performance be damned’ ought to be eliminated for good! This is
more than an optimistic hope. It has been done.
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The real price of everything, what everything really costs to the man
who wants to acquire it, is the toil and trouble of acquiring it.

Adam Smith (1723-90) Scottish economist,
The Wealth of Nations (1776)

Overview of Planguage Methods for Controlling Costs

The prerequisites for effective control over a project are fight inte-
gration of cost and performance considerations, ‘design to cost’
and using feedback on actual costs to modify plans. Planguage
methods ensure these prerequisites by demanding:

* detailed, numeric, measurable performance specifications that

adequately capture the performance requirements: the qualities

(stakeholder-related objectives) as well as the workload capaci-

ties and resource savings (the resource-related objectives)

resource requirement specifications for the resources allocated,

and for any known restrictions on resource expenditure

design specifications with detailed expected cost and perfor-

mance afttributes of the design

impact estimates of the abilities of the various designs to meet

both the performance goals and the resource budgets

selection of evolutionary steps according to their stakeholder

value, and their performance to cost ratios

feedback from live systems of the actual progress towards

achieving the performance levels, and the actual resource

expenditure after implementing each evolutionary step

* action being taken on the feedback to adjust specifications, or
the future evolutionary steps, to ensure realistic plans (revision of
budgets or tradeoffs).

A Proposed Resource Requirement Specification Policy

. Define Resource Requirements Thoroughly: In requirement speci-
fications, all potentially critical resources shall be specified as
budgets in a well-defined, thorough manner.

2. Specify the Perfformance and Cost Relationship: The level of both
resource budget and performance goal detail shall be sufficient
to enable us to understand the benefit, in relation to resources, of
incremental performance improvements.

3. Make All Cost Requirements Visible: We must be able to ‘see’
all opportunities to reduce costs by investment in better system
design. The budgets must specifically incorporate ongoing
operational costs requirements (that is, the resources required
for such things as installation, adaptation, porting, mainte-
nance, recovery, auditing, servicing and/or customer help
lines) so these can compete for priority with short-term invest-
ment costs.




//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH006.3D - 165 - [165-184/20] 29.6.2005
12:40PM

184 Competitive Engineering

4. Plan for the Long Term: All budgets shall consider the fotal lifetime
of system perspectives. This specifically includes long-term con-
siderations (such as costs of system retirement, pollution and
accidents).

5. Designs Shall Be Cost Estimated for Impact on All Critical
Resources: Costs shall be estimated for all critical and budgeted
multiple resource factors for every discrete design idea using
Impact Estimation Tables.

6. Let Value Decide the Costs: Value delivered in relation to costs,
not ‘resources consumed' alone, should dictate expenditure. If
designs provide the opportunity for excellent required ‘payback’,
then we should automatically spend more, and vice versa. (Given
that budgets are formulated in ‘performance to cost’ terms, and
we have Evolutionary feedback, the levels of risk should be under
acceptable confrol.)

7. Document Supporting Information: When defining cost require-
ments, full documentation shall be given about assumptions,
benchmarks, risks, uncertainties, ranges, authorities, sources and
otherrelated facts so as to give us the best possible background
for rapid, confident, independent decision-making by the sys-
tfems engineers and managers.

8. Justify Estimates and Perform Specification Quality Control: When
making estimates, the full array of evidence and sources of the
evidence shall be documented. Worst-case scenarios shall be
given explicitly. The estimations shall undergo Specification Qual-
ity Control (SQC).

9. Track Costs Early, During Implementation: Costs shall be tracked
and analyzed at every evolutionary step of development, so as to
learn of problems as early as possible, and take corrective action.

This policy above captures many of the key points discussed in this chapter
about Resource Requirements. Note: this policy should also be supported by
specification rules to enable the Specification Quality Control (SQC) of

Resource Requirements and Cost Estimates.



Chapter

7

DESIGN IDEAS AND
DESIGN ENGINEERING

How to Solve the
‘Requirements Problem’

GLossArRY CONCEPTS
Design Idea
Design Specification
Design Engineering
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7.1 Infroduction

To Design and to Engineer

The basic design process is finding ‘means’ for ‘ends’: it is finding
designs that match the requirements.

What is the difference between design and design engineering? They
are both essentially the same generic, and basic, process of ‘finding
satisfactory designs.” However, engineering disciplines are character-
ized, in my opinion, by the following distinctive traits:

* quantification of variable ideas (not ‘high’, but ‘42’)

e concern for all necessary factors (all stakeholders, all requirements
and all known design options)

concern for more than mere ‘satisfaction’; concern for competitive
optimization — ‘being the best’, rather than just ‘getting along’
rational and systematic argument (for example, the use of Impact

Estimation tables to discuss or present design quantitatively with
respect to facts, not ‘less formal’ design or ‘emotional’ design.

Design asks, ‘'Is this a good designg”’

Design Engineering asks, ‘‘What are the totality of performance and
cost attributes expected from this design in relation to the multiple,
quantified, performance and cost requirements2 What are the risks,
priorities, uncertainties, issues, relationships, dependencies and
long-term lifecycle considerations, that we should responsibly con-
sider about this designe”’

Requirement Specification, Design Engineering and
Evo are all lterative Processes

Design ideas emerge, and are refined, throughout the lifetime of a
system. Iteration is necessary in order to improve both the design
ideas and the related requirements. Requirements and design ideas
cannot be determined well in one single pass. Feedback from
initial design engineering processes is necessary to get a realistic
idea of which design ideas are possible, to determine how much
design ideas might cost and to identify which tradeoffs amongst
performance levels might have to be made. Until the design and the
requirements are adjusted to this ‘balanced level’ with regard to
reality, it is not possible to ‘finalize’ a competitive design for
implementation.

In addition, after implementation starts, as a result of the measurable
feedback obtained from the delivery of each of the Evo steps, even
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further refinement has to be considered for the design ideas, the
requirements and the implementation plans.

Requirement Specification, Design Engineering and Evo are infi-
mately linked, and some iteration linking them is necessary fo get
the best competitive results.

Requirements Dictate and Constrain the Design, but
Detailed Requirement Specification can Wait

What stakeholders perceive as ‘value’ drives us to state ‘what stake-
holders want’ and ‘how much stakeholders might be willing to pay for
such change’: in other words, to state the requirements. Requirements,
which reflect values, give us a sound basis for evaluating a design idea:
a basis for deciding if we might get what we will find of ‘value’ from a

potential design idea.
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‘Interesting’ results are our ‘values.’
Keeney (1992)

We have to have at least a preliminary set of requirements, before we are
ready to ‘design.”’ These requirements could, even for a large project, be
as simple as a statement of the handful of most critical requirements.
(After all, these critical requirements are in fact usually driving the
investment and the project!) The more detailed requirements can be
derived gradually, as needed, during the Evolutionary Project Manage-
ment (Evo) process. There is no need to try to get all the detail
immediately. In fact, there is some virtue in letting the detail emerge
as a function of experience and of interaction with key stakeholders.

Note: The detail is, however, ultimately important, and must be eventually
specified, so we can fully understand the meaning, intent, risks, assumptions
and dependencies of all the requirements. For example, we need to under-
stand which requirements are targeted only at specific system components.

Any Design Idea? can be Considered

Any design idea that potentially contributes to the solution of the
requirements, can be suggested. It is a question of how much a design
idea contributes towards meeting the requirements, and at what costs,
which determines whether a design is finally selected and imple-
mented. It is then the design idea’s real performance, on delivery, that
will determine whether it survives, or must be replaced by another
design idea.

Some Design Ideas:

® using process improvement teams

¢ allowing the project team an extra day’s time off if a deadline is successfully met
(motivation)

* buying an extra server (buy hardware)

* giving discounts to customers who field trial new products (monetary motivation)

* buying a standard component (buy hardware with known characteristics)

* contracting for a special tailored component (subcontracting and tailoring)

* building our own software component (development in-house)

* improving testing process (improving a specific development process).

This example shows a wide variation of types of design.

' In this book generally, T use the term ‘to design,’ but with regard Planguage processes,
I actually mean ‘to design engineer,’ that is, to use rational and quantitative approaches.
% The term ‘design idea’ is used in this chapter. Solution, idea, strategy, design, means,
idea and design solution are all synonyms amongst many other synonyms for ‘design
idea.’
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Design Ideas can be Identified during Requirement
Specification

Even while you are initially specifying reguirements, you should,
if you feel that design ideas are flowing into your mind or
the minds of colleagues, develop two separate lists of design ideas:
potential design ideas and design constraints. The potential design
ideas can then be kept aside for serious consideration in the

design phase.

Potential Design Ideas

These are either design ideas that were first assumed to be require-
ments, but then were recognized as really being optional designs, or
they are simply design ideas that surfaced during requirement speci-
fication. Sometimes such design ideas are deliberately ‘brainstormed’
(for example, if experts in a specific area are available only during the
initial requirements’ gathering, then capturing their design ideas
might be opportune). Here is an example of a way of keeping track
of any potential design ideas; there is #o commitment to implementing
them at #his stage.

Availability:

Type: Quality Requirement.

Scale: % Uptime.

Goal [USA, Version 1.0]: 99.90% <- Marketing Plan [April 20, This Year].
Design A [Availability = 99.90%]: Design Idea: Reuse of <high MTBF> Compon-
ents <- Ed’s suggestion.

Stretch [Worldwide, Version 3.0 and on]: 99.998% <- CEO Vision, “World Class.”
Design B [Availability = 99.998%]: Design Idea: Triple Redundant Distinct Soft-
ware <- Mike.

The two design idea specifications are local to the two different target specifications. They
are not design constraints. They are clearly suggestions that need to be evaluared like any
other suggestion.

Allowing systems engineers to note design ideas at an early stage is
useful in several ways:

e it keeps track of potentially valuable design ideas which otherwise
might get forgotten

e it helps make the distinction between the requirements and the
design technology clearer (‘clear ends—means separation’)

¢ it lends credibility to the proposed goal levels (there exists some
credible technology for the goal level suggested)
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* it avoids the ‘frustration’ that some systems engineers feel when they
are not allowed to be specific about the technology they have in mind

e it allows us to send a message that we have noted a systems
engineer’s suggestion or ‘pet idea’ and credited them with it —
without yet officially approving it.

Some of the early design ideas may be politically wise to consider, due
to the fact that influential stakeholders have suggested them. There is
no risk of any unfairness in considering these design ideas, because
they will have to compete with the later design ideas. All design ideas
must win their place for implementation by being the best, in terms of
numeric satisfaction of the requirements.

Design Constraints

These are design ideas within the requirement specification, which have
to be implemented at some stage. They can either specify or veto the use
of specific designs. Usually, specific qualifying conditions apply.

Project Interface [Product Line = New Generation, European Market]:

Type: Design Constraint.

Description: The full Project Interface shall be implemented using the most
<current version> available. It shall be updated whenever <newer versions> are
available.

Rationale: Project Consortium Agreements.

This design constraint (a requirement) applies only ro the Product Line of
New Generation within the European Market.

The Need for Alternative Design Ideas
Choosing the Best from the Alternatives

When searching to find design ideas, it is important to look for alternative
design ideas. Each individual design idea will produce different effects on
a system’s scalar attributes: the resource usage and performance levels. It is
a question of selecting the design idea which has the best performance to
cost ratio or the ‘best fit to the requirements’ with regard to ‘delivering
stakeholder value’ compared to ‘resources used’ (value to cost ratio).

Choosing the Best Combined Set from all the Alternatives

Design ideas put together in different combinations will interact with
each other in different ways: there could be negative side effects and/or
positive ‘combining’ effects (synergy). By having several alternatives, it
is possible to select the combination of design ideas, which has the
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best, estimated impact on the requirements. (Of course, the chosen
combination can always be altered over time, in the light of feedback
from evolutionary delivery.)

Reducing Risk by Use of Alternative Design

Another main reason for having alternatives is to reduce risk. If there
are several candidate design ideas, then if the first choice fails there
is always a backup. At an extreme, alternative design ideas may
be implemented in parallel to ensure that specific requirements are
fully met.

Design Optimization

When you are designing, you need to decide what type of optimiza-
tion strategy you intend to use. The strategy options for Design
Optimization Tradeoff include:

¢ Cost Minimization: When performance targets are met by specified
designs, we can choose to continue to find alternative designs, that
are at least equally well performing, with a view to reducing costs to
the cost targets (if not below them!).

¢ Design to Cost: Another approach would be to design o fully use
the all budgeted resources and to look for the designs that give
maximum impact on the performance targets. In other words, the
most value for a specific amount of limited resources. This is called
‘Design to Cost.” ‘Cutting your coat to suit your cloth.

Resource Performance
Past Level Budget Level Past Level Goal Level
0% 100% 0% 100%

< > Crunction K >S— >
Design Idea A H Design Idea A H B ‘ [} ‘

Design Idea A ‘ Design Idea D ‘ Design Idea A ‘ Design Idea D ‘

Figure 7.2

To ‘design’ is to find design ideas, like A, B, and C, which will contribute towards planned
performance and resource levels, while simultaneously respecting all constraints. Design
ldea D is ‘good,’ but costs too much.
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* Design to Performance Targets within Cost: Another option
would be to design to meet all the performance targets within cost,
but to stop the process once all the planned performance levels were
met. In other words, do not use additional time to reduce resource
utilization further. This could be a possible approach when Time to
Market is the most critical resource.

¢ Design for Risk: Another optimization concept would be to design
with regard to risk. The most pessimistic estimates of performance
impact, and of costs, would be used to determine the ‘best design’.
There are many other devices in Planguage that help us consider risk
when designing (see specifically, Impact Estimation).

There are more combinations than those mentioned above. But you can
see some basic choices. It is important in any project that you recognize
how you are approaching the design optimization process, and that you
communicate with your management about it. It could be there is some
misunderstanding — maybe there s more financial budget available
from them, as long as you show a track record of successful delivery.

If there are specific resource budgets that are critical to you, such as
‘Time to Market’, we recommend that you initially ‘Design to Cost’
with respect to ‘calendar time’ for delivery to market. Generally, you
will want to design to meet the most critical constraints first, then see
if you can maximize delivery of performance attributes and minimize
other cost aspects in a second round of design effort.

Brief Recap of Planguage Methods and the Design
Engineering Process

See Figures 1.3 and 1.6 and Table 1.1 in Chapter 1, ‘Planguage Basics
and Process Control,” and also the generic project process in Section
1.5. These show how the Design Engineering Process fits into the
overall Planguage process model.

Specifically, with regards the Design Engineering Process:

¢ Requirement Specification supports the design engineering process
by capturing the requirements. The requirements include specific
information required for design decision-making. (For example, see
further discussion on ‘Priority Determination’ in Section 7.7.)

¢ Impact Estimation (IE) is part of the Design Engineering Process.
It is the Planguage method used to evaluate and choose design ideas.
It also incorporates risk evaluation. In addition, IE can also be used
to monitor the actual progress towards meeting the requirements.
The actual step measurements, obtained after each Evo step has
been completed (with delivery of one or more design ideas), can be
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input into an IE table and compared against the original estimates.
This feedback is used by the design engineering process, to under-
stand where the gaps in design actually exist (that is, the gaps, which
require additional design). (See Chapter 9 for further details on IE.)

¢ Evolutionary Project Management (Evo) is used to actually deliver
the design ideas. Evo handles risk by several means:

[¢]

[o]

implementing design, step by step

demanding that we choose the design ideas most likely to provide high
benefit (highest value to cost ratios, highest performance to cost ratios)
for early delivery (design ideas are ‘sequenced’ by some chosen
evaluation of their potential benefits and costs into an Evo step plan)
testing the reality of the design ideas ‘in the field’

providing and using feedback data after each step. We can then
realistically understand the accuracy of our estimates, concerning
design ideas, and can take appropriate measures, depending on
the level of risk we perceive

we have incrementally ‘banked’ some results and eliminated some
risk, which maybe means we can afford to discuss taking some

higher risk steps.

Note: Both the requirement specification process and the design engineer-
ing process are incorporated into Evo; each result cycle demands
re-evaluation of the design and brief re-evaluation of the requirements
(possible adjustments and tradeoffs) (see Chapter 10). As stated earlier in

this section, there is continuous iteration amongst these processes.

7.2 Practical Example: Beginning the Design
Engineering Process

Let us say we have specified the following requirements for a project

‘Staging a Conference’:

Staging a Conference: Type = Function.

======== Conference Performance Requirements ==========

Participation: Quality Requirement:

Scale: Percentage of Worldwide Membership participating.
Goal: 10%.

Representation:

Scale: Percentage of Worldwide Membership represented within
defined <groups>.

Goal [Age under 25 or equating to <Student Status>]: 10%.
Information:

Scale: Percentage of Talks rated as ‘good’ or better (54 on feedback
sheet scale).

Goal: 50%.
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Conviction:

Scale: Percentage of Participants wanting to return Next Conference.
Goal: 80%.

Influence:

Scale: Percentage of Participants who <improve as result of the
Conference>.

Past: 90%.

Goal: 95%.

Fun:

Scale: Percentage of Participants rating the Conference City quality as
‘good’ or better (54 on Feedback Sheet scale).

Past: 45%.

Goal: 60%.

============= Conference Budget Requirements ============
Financial Cost: Resource Requirement [Financial:

Scale: Average Participant Conference Cost for an individual Partici-
pant including Travel Costs.

Fail: Less than $2,000.

Budget: Less than $1,200.

A set of requirements for a conference, mostly performance requirements

and one budger.

Now we can, driven by these relatively clear requirements, start
designing.

We begin by listing any design constraints — the ‘given’ design ideas.
Here there are none, the only ‘given’ is the main function that we are
to stage a conference.

We can then list ‘at least one potential design idea, for each of the
requirements.” This is an arbitrary way of covering the requirements
with ‘some’ design.

Design Ideas:

Central: Choose a location in the membership center of gravity (New
York?).

Youth: Suggest and support local campaigns to finance ‘sending’ a
young representative to conference.

Facts: Review all submitted papers on <content>.

London: Announce that the conference is to be in London the next year.
Diploma: Give diplomas for attendance, and additional diplomas for
individual tutorial courses.

Events: Have entertainment activities organized every evening, such as
river tours.

Discounts: Get discounts on airfare and hotels.

Now, are these design ideas going to make the conference what we want it
to be, as defined by the target levels? Nobody really knows and nobody can
say. Why not? Well, it depends on the interpretation of the design ideas and
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their execution in practice. Can we influence that? Yes. By specifying a
more detailed design specification with precise details of what we are going
to do, and exactly how it is to be done in practice (the implementation and
operational design detail). In other words, we now have that first ‘sketch of
the building,” but we need to get down to the detailed ‘blueprints’
(engineering) needed by the ‘bricklayers and carpenters.’

The first step is to assess what we can evaluate about the impact of our
proposed design ideas on the requirements (perhaps a little exagger-
ated to make our point).

The Impact Estimation table is a way to ‘see’ what we are doing. A
100% estimate on this table is a belief (right or wrong, well founded
or not) that we wil reach the planned level on time. The plus/minus
estimate is a rough notion of the uncertainty. Until we get better
definition and justification, these numbers are of only slightly better
value than words, such as good, bad, excellent. But they do give us 2
systematic basis for improvement in our planning.

(I ask the reader to be patient; a proper version of Impact Estimation
is presented in Chapter 9. All I am doing here is illustrating how one
might define some requirements and design ideas, and then evaluate
the impacts of each of the design ideas on all the requirements.)

The first observation I would make here is that we need to redefine the
design ideas, with more detail. This is because of the high plus/minus
uncertainties specified.

Central: Town must be cheaply accessible by most Participants. Location itself must
offer reasonable priced Accommodation (like university dorms) within walking dis-
tance of the Conference Facilities. Easy access to shops, restaurants, entertainment.
<Add even more, and give concrete suggestions>

The ideal would be to create a hierarchy of the components of the
design idea, Central and evaluate each separately, to home in on
exactly what aspects of the design idea gave most stakeholder value.

7.3 Language Core: Design Idea Specification

Design specification is not just writing down the bare outline of the
‘design idea’ itself. You have the option of including a large number of
additional parameters to describe the design idea. Why bother? Well,
it is a matter of how much you want to force yourself to think about
your idea, how much you want to share in writing with others, and
how much you want to control any risks involved with the design.
You must have reasonable confidence that the design idea really will
deliver the results you have estimated.
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In the design specification, you should ensure that you:

¢ Supply more detail in the Definition parameter, as this will lead
to better understanding of its specific performance and cost
impacts. This can be done using structural breakdown (see the
Definition parameter in ‘Transport by Buses’ example below).
Each of the sub-design ideas can be refined, until you feel that
you have enough detail in the design ideas to guarantee the
results levels and result timings, which are planned across all the
requirements (or you identify that you need additional design
ideas).

e Clarify and limit the design ideas to the specific ones that you want.
Avoid ambiguity so that other people can’t misinterpret your design
intent.

¢ Identify and specify designs that clearly deliver at least partly one
required performance attribute. Any ‘side-effect’ impacts of each
design, on the other requirements, must also be analyzed and
estimated. Use the ->’ Impacts parameter to explicitly declare
which attributes you hope, or expect, will be impacted by specific
sub-design ideas. (“Design Idea A -> Safety.”)

Of course, you need to tailor your design specifications to suit
the circumstances. A simple rule to guide you is ‘to try the
design specification parameters out at least once.” Too much
description of a design idea will not hurt you, and can easily
be deleted if it does not serve a useful purpose. Observe what
the engineering team feels is worthwhile, and use that level of
specification.

Here is an example of specifying a design idea. It was actually used in
charity relief-organization work. (It shows how the main idea can be
supported by sub-designs. The aim being to get better control over the
results.)

Transport by Buses: Design Idea.

Description: Drive Refugees back across the border by bus.

Definition [Sub-designs]:

Village: Refugees should be selected from the same, or nearby, village -> Financial
Cost.

White Paint: Buses should be painted UN white, and UN marked -> Safety <-
Geneva Convention, Article 6.3.

Agreement: <Agreement with government> to allow transport and resettlement,
without harassment, shall be made before crossing the border. Agreement papers will
be onboard the bus -> Safety.

Radio: Buses shall have radio or mobile telephone contact with our headquarters
during the transport -> Safety. “Maybe also video and tape recorder?”

Witness: UN employees, or relief agency employees, perhaps UN soldiers will
accompany the buses -> Safety.
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Tag: OPP Integration.
Type: Design Idea [Architectural].
Basic Information

Version:

Status:

Quality Level:

Owner:

Expert:

Authority:

Source: System Specification Volume 1 Version 1.1, SIG, February 4 — Precise reference <to be supplied
by Andy>.

Gist: The X-999 would integrate both ‘Push Server’ and ‘Push Client’ roles of the Object Push Profile (OPP).
Description: Defined X-999 software acts in accordance with the <specification> defined for both the Push
Server and Push Client roles of the Object Push Profile (OPP).

Only when official certification is actually and correctly granted; has the {developer or supplier or any real
integrator, whoever it really is doing the integration} completed their task correctly.

This includes correct proven interface to any other related modules specified in the specification.

Stakeholders: Phonebook, Scheduler, Testers, <Product Architect>, Product Planner, Software Engi-
neers, User Interface Designer, Project Team Leader, Company engineers, Developers from other Com-
pany product departments which we interface with, the supplier of the TTT, CC. “Other than Owner and
Expert. The people we are writing this particular requirement for.”

Design Relationships

Reuse of Other Design:
Reuse of This Design:
Design Constraints:
Sub-Designs:

Impacts Relationships
Impacts [Functions]:

Impacts [Intended]: Interoperability.

Impacts [Side Effects]:

Impacts [Costs]:

Impacts [Other Designs]:

Interoperability: Defined As: Certified that this device can exchange information with any other device
produced by this project.

Impact Estimation/Feedback
Tag: Interoperability.

Scale:

Percentage Impact [Interoperability, Estimate]: <100% of Interoperability objective with other devices that
support OPP on time is estimated to be the result>.

Priority and Risk Management

Rationale:

Value:

Assumptions: There are some performance requirements within our certification process regarding prob-
ability of connection and transmission etc. that we do not remember <-TG.

Dependencies:

Risks:

We do not ‘understand’ fully (because we don’t have information to hand here) our certification require-
ments, so we risk that our design will fail certification <-TG.

Priority:

Issues:

Implementation Control
Not yet filled in.

Location of Specification
Location of Master Specification: <Give the intranet web location of this master specification>.

Figure 7.3

Here is a real (doctored!) example of a design specification using a version of the Design
Specification Template given later in Section 7.9. Not all parameters are filled out yet.
Notice that even the parameters which are not filled out (like Impacts [Side effects] and
Issues) are asking important questions about the design — and hinting that responsible
designers should answer such questions!
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7.4 Rules: Design Specification

Tag: Rules.DS.

Version: October 7, 2004.
Owner: TG.

Status: Draft.

Note: Design specifications are either for optional design ideas (possible
solutions) or required design constraints (that is, actual requirements
AND consequently, pre-selected solutions).

Base: The rules for generic specification, Rules.GS apply. If the design
idea is a design constraint (a requirement), the rules for requirement
specification, Rules.RS also apply.

R1: Design Separation: Only design ideas that are intentionally ‘con-
straints’ (Type: Design Constraint) are specified in the requirements. Any
other design ideas are specified separately (7ype: Design Idea). Note all
the design ideas specified as requirements should be explicitly identified as
Design Constraints.” (Repeat of Rules.RS.R9: Design Separation.)

R2: Detail: A design specification should be specified in enough detail
so that we know precisely what is expected, and do not, and cannot,
inadvertently assume or include design elements, which are not actu-
ally intended. It should be ‘foolproof.” For complex designs, the detailed
definition of its sub-designs can satisfy this need for clarity, the highest
level design description does not need to hold all the detail.

R3: Explode: Any design idea (Type: Complex Design Idea), whose
impact on attributes can be better controlled by detailing it, should be
broken down into a list of the tag names of its elementary and/or
complex sub-design ideas. Use the parameter ‘Definition’ for Sub-Designs.

If you know it can be decomposed; but don’t want to decompose it
just now, at least explicitly indicate the potential of such a breakdown.
Use a Comment or Note parameter.

R4: Dependencies: Any known dependencies for successful imple-
mentation of a design idea need to be specified explicitly. Nothing
should be assumed to be ‘obvious.” Use the parameter, Dependency (or
Depends On), or other suitable notation such as [qualifiers].

(For design constraints (requirements), this is a repeat of the rule,
Rules.RS.R5: Dependencies.)

R5: Impacts: For each design idea, specify at least one main perform-
ance attribute impacted by it. Use an impact arrow “>’ or the Impacts
parameter.
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Comment: At early stages of design specification, you are just establishing
that the design idea has some relevance to meeting your requirements.
Later, an IE table can be used to establish the performance to cost ratio
and)or the value to cost ratio of each design idea.

ExAamPLE  Design Idea 1 -> Availability.
Design Tag 2: Design Idea.
Impacts: Performance X.

R6: Side Effects: Document in the design specification any side
effects of the design idea (on defined requirements or other specified
potential design ideas) that you expect or fear. Do this using explicit
parameters, such as Risks, Impacts [Side Effect] and Assumptions.

Do not assume others will know, suspect or bother to deal with risks, side
effects and assumptions. Do it yourself. Understanding potential side
effects is a sign of your system engineering competence and maturity. Don’t

be shy!

ExAMPLE Design Idea 5: Have a <circus> -> Cost A.
Risk [Design Idea 5]: This might cost us more than justified.
Design Idea 6: Hold the conference in Acapulco.
Risk: Students might not be able to afford attendance at such a place?
Design Idea 7: Use Widget Model 2.3.
Assumption: Cost of purchasing quantities of 100 or more is 40% less due to discount.

Impacts [Side Effects]: {Reliability, Usability}.

R7: Background Information: Capture the background information
for any estimated or actual smpact of a design idea on a performance/
cost attribute. The evidence supporting the impact, the level of
uncertainty (the error margins), the level of credibility of any informa-
tion and the source(s) for all this information should be given as far as
possible. For example, state a previous project’s experience of using
the design idea. Use Evidence, Uncertainty, Credibility, and Source
parameters.

Comment: This belps ‘ground’ opinions on how the design ideas contri-

bute to meeting the requirements. It is also preparation for filling out an
IE table.

ExAMPLE Design Tag 2 -> Performance X <- Source Y.

R8: IE table: The set of design ideas specified to meet a set of
requirements should be validated at an early stage by using an Impact
Estimation (IE) table.

Does the selected set of design ideas produce a good enough set of expected
attributes, with respect to all requirements and any other proposed design
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ExAMPLE

ideas? Use an IE table as a working rool when specifying design ideas and
also, when performing quality control or design reviews on design idea
specifications.

See Chapter 9, Tmpact Estimation.’ Failing that, at least ask the ‘Twelve
Tough Questions’ about the design ideas! (Can you quantify the impacts?)
See Section 1.2 for details of the Twelve Tough Questions.’

R9: Constraints: No single design specification, or set of design
specifications cumulatively, can violate any specified constraint. If
there is any risk that this might occur, the system engineer will give
a suitable warning signal. Use the Risk or Issues parameters, for example.

R10: Rejected Designs: A design idea may be declared ‘rejected’ for
any number of reasons. It should be retained in the design documen-
tation or database, with information showing that it was rejected, and
also, why it was rejected and by whom.

Design Idea D: Design Idea.

Status: Rejected.

Rationale [Status]: Exceeds Operational Costs.
Authority: Mary Fine. Date [Status]: April 20, This Year.

7.5 Process Description: The Design

Engineering Process

Process: Design Engineering Process
Tag: Process.DE.

Version: October 7, 2004.

Owner: TG.

Status: Draft.

Assumption: We have clearly-stated and reasonably complete require-
ments.

Notes:

1. Design is an iterative process. The process given in this section should be
viewed with this in mind; the procedure is written as if it were carried out
in a single pass, but in practice, a much more complex pattern of cross-
checking, backtracking and tradeoffs would actually be carried out.

2. This procedure is much longer than it needs to be, due to the nature of
this book. You should probably use a more concise version (say, one
statement for each procedure step).
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Overview of a Design Process

Design is an intellectual process, which is supported by problem definition, requirement
specification, best-practice design process standards and analysis tools. The following funda-
mental questions arise in designing:

1. Analyze the Requirements: Which requirements are of high stakeholder value? What
constraints apply? What is the priority time sequencing for delivery of requirements?

2. Find and Specify Design Ideas: How do we find and specify potential design solutions for
our requirements?

3. Evaluate Design Ideas: How do we evaluate potential design solutions?

4. Select Design Ideas and Produce Evo Plan: How do we choose from several ‘good’
design alternatives? What do we do about uncertainties, and about the risk that the selected
designs are not as good as we thought?

Notes:

Ansoff points out that “Simon has shown that solution of any decision problem in business,
science, or art can be viewed in four steps:

1. PERCEPTION of decision need or opportunity. Simon calls this the INTELLIGENCE phase.
2. FORMULATION of alternative courses of action.

3. EVALUATION of the alternatives for their respective contributions.

4. CHOICE of one or more alternatives for implementation.” (Ansoff 1965)

This supports the choice of the four main sub-processes of the Design Process!

Figure 7.4
Overview of a Design Process. This applies with or without a quantified engineering
approach to design.

Entry Conditions

El: The Generic Entry Conditions apply. The requirement specifica-
tion should ideally have exited from Specification Quality Control

(SQO).

E2: Any existing feedback, from Impact Estimation (design idea
analysis), or practical trials, is made available to the design
engineer.

Procedure

P1: Analyze the Requirements: You may well identify stakeholder
conflicts and overlaps® amongst the requirements while analyzing
them. These need conflict resolution: consider if the ‘tougher’ require-
ment level can be used, identify the ‘owning’ stakeholders for all values
and negotiate with the stakeholders. It may well be worth waiting
until you have some alternative design ideas before you negotiate with
the stakeholders, as by then you will have a better understanding of

® Overlaps in requirements represent either an opportunity for additional value to be
delivered or, the possibility for over-estimation of value (‘double accounting).
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what solutions can be delivered. See also discussion in Section 7.7 on
Priority Management.

P1.1: Establish the Stakeholder Value on Delivery of each Require-
ment: The value on delivery of each requirement to the system/
organization should be assessed. You are looking for the requirement
areas where there are major benefits. (What is of value depends on the
stakeholders: it might not be just financial resource.) Identify the
volume of use associated with each requirement.

Ideally, the stakeholders will have already selected the highest value

requirements as the critical requirements.

For example: resource savings for performance requirements will be
relatively simple to determine. Say you wanted to bring the time of
carrying out a transaction down from two minutes to one minute. The
benefit to the business, assuming 200 such transactions were carried out
a day, would be 200 minutes per day. If operators had to wait while
each transaction went through — this could amount to freeing up over
three work-hours each day to carry out additional activities. In other
words, assuming 250 work-days each year, 250 multiplied by 200
minutes each year. To the business, the ability ro free up staff or the cost
of employing the staff in this area, is the ‘value’ gained on delivering the
requirement.

P1.2: Sequence the Delivery Order of the Requirements: Sequence
the requirements for attention in the order of maximum stakeholder
value first. Adjust to cope with any dependencies amongst the imple-
mentation of requirements (These dependencies either prevent imple-
mentation or prevent some level of benefit being achieved).

Note also the possibility for delivering each requirement in stages
either by gradually improving a performance level or cost level or by
delivering into different areas at different times (that is, to divide
according to qualifier conditions; for example, by geographic area,
by role and/or by timescale).

P1.3: Establish Scope of Design Interest: Establish and specify the
scope of interest for the system design. This will be a set of qualifying
conditions covering a specific timeframe and specific system space
(locations/components/functionality). For larger systems, you might
want to divide the system into major subsets — maybe, say, by
functionality and/or by timescale, so that you can work on a series
of smaller design areas.

P1.4: Make a List of Requirements within the Scope defined:
Identify any function, performance, resource or condition constraints
specified in the requirements. Then identify the mrger requirements.
Note the qualifying conditions, which apply to each one of them.
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P2: Find and Specify Design Ideas:

P2.1: Exploit any Earlier Notes of Design Ideas: Check to see if there
is already a list of potential design ideas developed at the same time as
the requirement specification. If there is, include those design ideas for
consideration.

P2.2: Establish the Design Constraints: Read the requirements to see
if there are any design constraints specified (Type: Design Constraint).
If there are, then note them and any specific conditions qualifying
them [time, place, event].

P2.3: Brainstorm Design Ideas: Search all available sources of design
information for good matches to our stated requirements. (Specifically
with regard to meeting the function requirements, achieving the
performance levels and, delivering within the budgets. Any constraints
and conditions must also be considered.)

Identify any dependencies amongst design ideas.
Also identify any design ideas that are alternatives.

Attention needs to be focused especially on the areas of greatest
benefit to the system/organization. It is #he gaps between our current
updated system design process benchmarks (how well we have
satisfied requirements until now) and our specified targets, which
are of interest.

We are totally dependent in our search on the following:

¢ Knowledge of the existence of good design ideas (Where are they?
Do we have the best ones?).

* Having complete and reliable information abour the likely impacts of
the design ideas on system attributes, so we can match the best
design ideas to our residual requirement gaps. Most design ideas
have too little specified, or available, data about their performance
and cost characteristics.

¢ Understanding how design ideas mix and interact with each other.
(Maybe the mixture will conflice? A design idea, in itself, might
seem satisfactory, but the effect of combination with other design
ideas, already in place, or under consideration, could be a counter-
productive. Alcohol and driving don’t mix well; though each in the
right time and place might be acceptable.)

Hint: Select design ideas from available knowledge: books, periodicals,
conference proceedings, past products, memory, colleagues, web searches,
company experience, competitive analysis, benchmarking and others.

Stop the search when a set of satisfactory design ideas has been found,
or when you run out of time to search for more.
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P2.4: Draft Design Ideas: Draft a set of the design ideas, which might
satisfy the requirements. See the design specification template outlined
in Section 7.9.

P2.5: Collect Specification Detail (to support later Impact Estima-
tion) : Add detail to the design idea specifications in order that there is
sufficient information to enable estimates of the impact that each
design idea will have on each performance and cost attribute. Refine
the design idea specifications to the levels of detail, which reflect the
‘level of uncertainty’ and ‘risk of deviation’ from planned levels, which
you are prepared to accept. Ensure all suspected risks, assumptions,
and uncertainties are documented.

Document clearly, where any design idea has weaknesses with regard to
the requirements. (For example, “Risk: Too long an implementation
time.” and “Risk: High risk of user dissatisfaction over usabiliry.”)

P2.6: Consider Design Implementation: Once you have defined the
design ideas themselves, then turn your attention ro their implementa-
tion processes. What qualifications are required for the implementers or
subcontractors? What process should they follow? How will they be
required to prove or measure their results? Leave nothing essential to
the whims of others! Get control over your design ideas. See
Implementation Control’ section in the design specification template in

Section 7.9.

P2.7: Consider System Capacity and Growth: Even when things
work well in practice initially, there is no guarantee they will continue
to do so. Success breeds volume. Volume breeds capacity problems.
The ‘good’ system is no longer good enough. So we must be
prepared to undertake a continuous responsibility for modifying the
system design to meet changed circumstances. Sometimes ‘gradual
adjustment’ is all that is necessary. Sometimes major new architecture
is necessary. You need to be explicit about system capacity and give,
if relevant, an outline of your plans of how to cater for system
growth.

P3: Evaluate Design Ideas: We must evaluate the effects of a design
on the system to which it will be added, and with regard to how it will
mix with ‘design changes yet to be implemented,” or even ‘yet to be
imagined,” by considering our long-range requirements, and architec-
ture, for adaptability. We must ensure that we evaluate design ideas
for their incremental effects on 4/l of our required attributes — not just
the requirements we initially designed them to primarily impact.
Consider side effects — good and bad, intended and unintended.

P3.1: Filter for Violation of any Constraint: A design idea must not
violate any applicable constraint(s). Check each design idea against
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each constraint. Mark the status of any design idea that violates, or
potentially might violate, any constraint as ‘Rejected” giving the reason
in a ‘Rationale’ parameter. (This is a more systematic check than might
have been carried out when brainstorming during P2.3.)

P3.2: Estimate all Impacts: Using an Impact Estimation (IE) table,
estimate the impact of each design idea (or set of design ideas), on
each performance target and each cost budget.

Cite evidence, plus/minus uncertainty and source(s) for each impact
estimate. Determine the credibility of each estimate (using the credibility
ratings scale from 0.0 ro 1.0).

See Chapter 9, Tmpact Estimation’ for further detail.

P3.3: Consider Side Effects: It is not just a case of checking that a
design idea delivers the reguired benefits, we must also consider
whether a design idea has any unintended negative side effects, which
are unacceptable (some negative effects may be tolerable overall).

P3.4: Consider Safety Margins: You also need to assess whether the safety

factors are met. Maybe a factor of two times ‘over-design’ is required?

If needed, return to P2 to look for further design ideas or, consider if
the requirements need modifying.

P4: Select Design Ideas and Produce Evo Plan:

P4.1: Initial Sequencing of Design Ideas: We are then faced with
decisions about which design ideas to select for implementation and
which to reject. We will often be faced with several ‘sufficient’ alter-
natives; any one of which would be adequate. So how do we choose?
Usually, no one dimension (for example, ‘cost) is decisive.

In general, the selection decision must be made based on the many
dimensions of measurable performance and cost. Any conditions
(such as those specified in qualifiers) also impact selection.

Selection means prioritization. We need to determine which require-
ments we intend to satisfy first. (We have an initial selection of critical
requirements from P1.) Evolutionary project management (Evo) will
have the final say in determining the actual implementation sequence,
but during the design engineering process we must attempt an initial
sequencing of the design ideas to meet the requirements’ priorities.

Establish which design ideas impact each of the constraints.

Establish which design ideas impact each target requirement (function
targets, performance targets and budget targets). The impact estima-
tion table will provide the information for the performance and
budget targets. The design specifications will also hold some informa-
tion depending on how much detail has been captured. Remember the
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We need a Design Idea to improve Reliability of Function X this to reduce risk!

Figure 7.5

Diagram shows the path for a system improving over time as Evo steps are delivered. The
points marked on the time axis are the times when specified constraints have to be
delivered. The sequenced Evo steps are attempting to deliver the requirements on time.
The design ideas making up the content of the Evo steps have, as the first priority, fo fry fo
satisfy any constraints. Not shown in this diagram — the second priority is that they deliver the
required target functions, and to the target levels for the performance and cost attfributes.

performance and budget attributes do not ‘hang in mid-air’— they will be
attached to some functionality.

Next, identify any design idea dependencies.

At this stage, there should be a sequence of design ideas dictated by the
(system scope) conditions — especially by the required timescales.

Where there are alternative design ideas, the performance to cost ratios
from an IE table can be used to determine which designs contribute
most efficiently towards meeting the requirements.

P4.2: Ensure adequate Safety Margins to address Risks: Ensure the
sum of the impact estimates for each performance requirement covers
the required safety margins for both performance and cost targets.

P4.3: Consider Design Ideas with regard to the Risks: We must also
consider the uncertainties in our evaluations. The initial, purely intel-
lectual, design process is inherently at risk of giving us false conclusions
because our system is always somehow different from all others. Past
design idea experience might not be valid. Our information on design
effects could also be too general, or even downright wrong,.
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We can make allowances to cope with risk by ‘over-design.” We may
deliberately choose more design ideas than we strictly need in order to
have safety margins. For example, we may choose two solutions that
back each other up, rather than one.

We must also carefully validate our design choices in reality, and be
prepared to re-designwhenever practical experience shows this is necessary.

P4.4: Consider Optimization: Once we have an initial set of design
ideas, which provide a satisfactory solution, then we can try to
optimize using a declared optimization strategy (which might be a
requirement of an engineering policy statement).

For example:

¢ Look for the least-cost set of design ideas, which fit/ly meets the
requirements.

e Select design ideas with the highest performance to cost ratios. This
is generally good competitive practice.

But there are all kinds of variations on optimization strategies depending
on your priorities regarding performance targets, resource budgets and risk
(see Design Optimization within Section 7.1).

P4.5: Re-define Design Definitions: Re-define design ideas, if you
can improve your impact estimates, and get better control over desired
results by doing so. Re-define them so that they have substantially
different performance and cost impacts, in the direction you need
them to be.

P4.6: Consider Pilot and/or Trial: Plan to try out design ideas, which
seem high risk, in pilots and/or trials, or specify them for implementa-
tion in early evolutionary result cycles. Feedback any results into #his
process (at P3.2: Estimate all Impacts.). Refine your estimates.

Design knowledge, from past uses of a design, gives us some idea of how we
can expect things to work. But, new systems contain many new elements of
technology, inputs and people. Thus, only practical use of a new design
idea, in the real environment, will assure us that we were correct in our
estimates of design effect or will convince us that we were to some degree
wrong. So, the design engineering process must somehow be linked with a
practical process of trying things out, well before large-scale irreversible
commitment is made to design ideas.

Exit Conditions

X1: The Generic Exit Conditions apply. The set of design specifica-
tions should have exited SQC with no more than one estimated
remaining major defect/page. (Expectation: If you don’t demand such
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a low exit level, the specification will have 20 or more major defects/
page.)

X2: A safety factor of <four> is required for all performance and cost
attributes.

Note: (4 times over-design, is NOT 4 times more cost])

Note: Process ‘Exit’ means we can #hen use the design specification for
planning #rials to get feedback (that is, using the design in Evo steps, see
Chapter 10). It does not mean the design specification is a ‘final’
specification.

Gap Analysis by Igor H. Ansoff
The procedure within each step of the cascade is similar.

(1) A set of objectives is established.

(2) The difference (the ‘gap’) between the current position of the
firm and the objectives is estimated.

(3) One or more courses of action (strategy) is proposed.

(4) These are tested for their ‘gap-reducing properties.’

A course is accepted if it substantially closes the gaps; if it does not,
new alternatives are fried.

Igor H. Ansoff, Corporate Strategy (Ansoff 1965 Pages 25-26).
Also quoted in Mintzberg (1994).

7.6 Principles: The Design Engineering Process

1. The Principle of ‘Design Ideas are only as Good as the Require-
ments Satisfied’
Design ideas cannot be correctly judged or validated excepr with
respect to all the performance and cost requirements they must
satisfy.

2. The Principle of “The Best Chess Move’
You should try with each increment of design specification or
design implementation, to get the best possible satisfaction of your
unsatisfied performance requirements, from your unused cost

budgets.
3. The Principle of ‘Results Beat Theory’

Design ideas are only as good as their real results, not their intent.

4. The Principle of ‘Early Surprises’
You never know how it works, until you have actually tried out a
design idea in practice. Get surprised as early as possible!
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The Principle of ‘It’s Not Just What You Do, It's How You
Do It

Design ideas must try to exercise control over both design content
and design implementation. The devil is in the details!

The Principle of ‘Good is Not Always Good Enough’
A ‘good’ design idea might not be good enough to meet all your
targets on time.

The Principle of ‘Designs should have Good Return on their
Investment’
‘Good’ design ideas might cost 2o much, sooner or later.

. The Principle of ‘Sneaky Gremlins’

Apparently ‘good’ design ideas might have subtly-hidden nasty
side effects. Estimate them, know when you don’t know them,
measure them, and don’t assume they won’t hurt you! They will
show you no sympathy!

The Principle of ‘Design Beats Test’
Design performance ‘in’, and design ‘to control’ costs:
You cannot fest quality 7nzo a badly designed system.

The Principle of ‘Eternal Vigilance for the Butterfly Effect’
You never finally know about a design idea’s effects;
Tomorrow’s slightest change might ruin your whole project.
Even initially successful designs might have to be adjusted for growth
and change.

7.7 Additional Ideas

Priority Determination

Systems engineering can be viewed as a constant stream of priority

evaluations. So priority determination is a key concern. However, the

conventional means of deciding priority are frequently inadequate: a

subjective weighting approach is, unfortunately, often adopted. Ideally

priority determination for implementing requirements should be:

e a ‘performance to costs impact’ and ‘resource-focused’ process. It

should consider value to cost ratios, return on investment (ROI)

and take into account resource availability.

¢ an information-based process, which makes full use of the available

factual information, and is able to reuse this information. Not a

weight-based process.

¢ a dynamic process, which uses feedback from the ongoing imple-

mentation; and is open to instigating, and catering for, change in

requirements and in design ideas.
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Ideally the ultimate values to the stakeholders, which are the results of
the system performance characteristics, would be evaluated and used
to determine priority. In practice it might be difficult for a systems
engineer to access the stakeholder domain data needed to calculate the
value that the stakeholder would expect to experience. Even the
stakeholder might have difficulty estimating the ‘value delivered’
accurately. So, we might choose to fall back on a more immediate
notion of stakeholder value — meeting the required targets.

What is wrong with the Subjective Weighting Approach for
Determining Priority?

In the priority weighting (or priority ranking) process, each element of
a set of elements in a decision-making model, is subjectively assigned a
numeric value indicating its priority (For example, a value on a scale
of 1 to 10 or, a percentage weight).

The degree of subjectivity” is determined by such factors as the actual people
asked (the number of people, their roles and their expertise) and how they
arrive at their decisions (their decision processes; including such things as
their influences). In many cases, people are asked on a one-off basis during a
group meeting to assign numerous comparative weightings ‘off-the-top-of-
their-heads.” Inadequate documentation of who, when and why (experience
and/or fact) is widespread. The reasons why such a process is weak, when
determining the priority for implementing requirements, include:

¢ Information overload: too many things have to be taken into
account at once for subjective assessment to work well.

Lack of specific information: often there are gaps in the information

available: evidence and source data are usually missing.

¢ ‘One-off’ weightings: weightings tend to be ‘frozen’, they are not
reassessed frequently.

e Lack of consideration of resources: resources are simply not taken
into account.

¢ An individual stakeholder’s viewpoint is limited (a person’s subject-

ive judgment depends on many things. For example, experience and

access to information).

Typically people can only participate in supplying their require-

ments and committing their resources. They are unlikely to be able

to make a globally optimal priority decision, on behalf of the entire
stakeholder community.

e In a group meeting, factors such as authority, office politics and
personality interfere with the outcome.

Note, I am objecting to subjective weightings, not to stakeholders proposing their

own subjective requirements.
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The Role of Resource in Determining Priority

Planguage defines priority as follows:

A ‘priority’ is the determination of a relative claim on limited resources.
Priority is the relative right of a competing requirement to the bud-
geted resources.®

If resources were unlimited, there would be no need to prioritize things.
You could have it all.

Many approaches to priority oversimplify or even eliminate considera-
tion of resources (for example, see Saaty 1988; Akao 1990). Yet return
on investment (ROI) is ultimately the key driver when deciding
priority. What value shall be obtained in relation to the ‘resources
needed’ (the costs)?

Resource availability can also be a factor in determining implementa-
tion priority. Selection of a priority solution might be:

¢ influenced by a lack of some resources
e affected by the ability to substitute one resource with another.

Planguage Information Supports Priority Determination

Planguage captures a wide range of reusable information that supports
priority determination. It quantifies all scalar requirements and caters
for individual deadlines at a detailed level, and as a result gives you a
greater level of priority control. Some key Planguage specification
parameters assisting priority determination are as follows:

* Value

¢ Stakeholder

¢ Constraint

o Target

¢ Dependencies

¢ Qualifiers [Time, Place, Event]
e Authority

¢ Source.

The source, authority, and stakeholder information establishes the
stakeholders affected by a requirement, and their level of responsibility.
When determining priority, meeting any constraints is the first priority.
The next priority is to meet the targets. The qualifiers narrow the
requirements down to the specific conditions: time qualifiers specify

> I mean all types of resource including time to deadline, human effort, money and space.
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the timescales, place qualifiers limit the system space and event quali-
fiers state any specific circumstances, which apply.

Planguage might capture this information, but it requires evaluation to
establish the priorities. There may be priority conflicts needing negotiation.

Priority Strategy

One piece of information vital for priority determination is the
strategy for priority. There are several different strategies that could
be chosen. See discussion on Design Optimization within Section 7.1.

Dynamic Priority Evaluation

Planguage adopts a dynamic, numeric idea of priority. Priority is
defined as the claim on resources to develop or operate a system. It
is the currently unfulfilled requirements, (the gaps) which have prior-
ity. Our highest priorities, at any moment in time, are the unfulfilled
requirements that are due next, date-wise.

There are no artificial weighting factors needed in Planguage. We use
only direct natural statement of the qualities and costs we want,
together with when we want them. We compare ‘what we want’ with
‘what we have’ at the moment. The larger the gap between ‘wants’ and
accomplishments, the higher the current priority in that area to do
more design work or to do more implementation work.

Using Evo, priority control becomes early, frequent and continuous,
throughout the project design and implementation phases. Priorities
change as they are satisfied (just as appetite changes as food satisfies it).

Also, the basic requirements can change at any moment of a project.
It would be convenient if they didn’t, but the real world is not that
co-operative! Continuous re-assessment of priority, allows any changes
in the requirements to be incorporated into the system design process.

See also Section 9.7 on priority.

7.8 Further Example/Case Study: Design
Specifications Masquerading as Requirements

This is a sample of some real design ideas, which were found in a
requirement specification. (Certain details are changed for confidentiality.)

They are extremely early outline drafts and still need a lot of
work! We certainly had not yet enhanced the specifications to
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the level required by the Planguage template in this chapter.
However, the drafts do give some practical insights into simple
Planguage formatting. The most important steps we took were as
follows:

¢ to refuse to treat them as requirements

¢ to identify the performance attributes they were intended to impact
(see Tmpacts’ parameters below) and

¢ to define the impacted performance attributes properly.

Adaptive Channel Allocation: ACA: Design:

Assumption [ACA]: New Product must automatically yield to Macro cellular system,
and to re-tuning of the Macro radio network.

Impacts [Co-existence]: Slow or Fast? <- Marketing Specification 3.11.

Note: This is one design idea, not a constraint.

Automatic Roaming Designs: “A rough collection of design ideas.”

Impacts: Automatic Roaming.

Note: these may be design constraints! <- New Product Team 4 March.

IS-41 signaling link to the public network <- Marketing Specification 5.2.1.
Signaling, data and messaging interfaces <- Marketing Specification 5.2.

The New Product must support the protocol of Cellular Messaging Teleservice
(CMT) over its signaling link over both public and cellular network <- Marketing
Specification 5.2.2.

The New Product must support the receipt and acknowledgment protocol for voice-
message-waiting indication <- Marketing Specification 5.2.3.

Cell Plan Minimization:

Impacts: {Installability, Maintainability}.

Cooling Fans [Radio Heads]: to be avoided to avoid noise, but quiet ones, as defined
by Quietness quality requirement, acceptable.

Impacts: Quietness <- Marketing Specification 4.1.5.

Product Evolution: Design Idea. “These design ideas are a rough collection from the
Marketing Specification”.

Impacts: Evolution.

New Product shall have a modular structure <- Marketing Specification 3.2.
Modular, future proof <- Marketing Specification 4.3.3.

New Product shall be easy to upgrade <- Marketing Specification 3.3.

The switch must support remote SW loading <- Marketing Specification 4.3.4.
‘Plug & Play’ <- Marketing Specification 4.5.2.

Remote Software Upgrade: for both correction and upgrading proposes <- Market-
ing Specification 4.5.14.

Software changes shall not require manual physical access to Radio Heads
<- Marketing Specification 4.5.15.

New software — upgrades, patches, new releases, etc. should require a minimum of
scheduled downtime for New Product <- Marketing Specification 4.5.16.

Home Location Register: HLR:

HLR is part of the Macro cellular system?? <- Marketing Specification 4.3.7.
Impacts: <unspecified>.

Low Power Consumption [Radio Heads]:

Low Power consumption will be designed.

Impacts: Quietness “in order to avoid fans and consequent noise” <- Marketing
Specification 4.1.5.
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ExAMPLE
CONTINUED

Low RF Power Output [Radio Heads]:

Impacts: {<avoiding interference>, Availability, Co-existing, Per User Cost, Robust-
ness, others} <- Marketing Specification 4.2.1.8.

Remote SW Loading:

The switch must support remote SW loading <- Marketing Specification 4.3.4.
Impacts: Maintenance.

Single Cabinet [Central Equipment]:

The Central Equipment must fit into a single cabinet including power, but not
batteries <- Marketing Specification 4.5.4.

Comment: This is really a way to achieve Volume of 36 liters as estimated by TW.
RH1: Assumption: RH assumed to be single cabinet.

Impacts: <unspecified>.

Basically, what we did was to identify these design specifications as design ideas, not
requirements (design constrainss), and to structure them so we could see their Source and
their Impact intents.

7.9 Diagrams/Icons: The Design
Engineering Process

Figure 7.6

Design Gap requiring more Design Ideas
Resources Performance

Staff Resource Quality A
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®ecccsececcccsccccccscnnns

< ‘ ; , Hesource
: Savings B
4
Financial Cost Workload
Capacity C
Key Icon
—— Past <
----- Design Idea |

........... Budget/Goal | >

Diagram showing the gap between the Past and the Goal/Budget levels and the
contribution that a Design Idea makes towards filing the gap.
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Design Specification Template <with Hints>

Tag: <Tag name for the design idea>.
Type: {Design Idea, Design Constraint}.

Basic Information

Version: <Date or version number>.

Status: <{Draft, SQC Exited, Approved, Rejected}>.

Quality Level: <Maximum remaining major defects/page, sample size, date>.

Owner: < Role/e-mail/name of person responsible for changes and updates>.

Expert: < Name and contact information for a technical expert, in our organization or otherwise
available to us, on this design idea>.

Authority: <Name and contact information for the leading authorities, in our organization or
elsewhere, on this technology or strategy. This can include references to papers, books and
websites>.

Source: <Source references for the information in this specification. Could include people>.
Gist: <Brief description>.

Description: <Describe the design idea in sufficient detail to support the estimated impacts
and costs given below>.

<Term Tag here>: Definition: <Use this to define specific terms used anywhere in the
specification>. “Repeat this for as many definitions as you need”

Stakeholders: <Prime stakeholders concerned with this design>.

Design Relationships
Reuse of Other Design: <If a currently available component or design is specified, then give
its tag or reference code here to indicate that a known component is being reused>.

Reuse of This Design: <If this design is used elsewhere in another system or used several
times in this system, then capture the information here>.

Design Constraints: <If this design is a reflection of attempting to adhere to any known design
constraints, then that should be noted here with reference one or more of the constraint tags or
identities>.

Sub-Designs: <Name tags of any designs, which are subsets of this one, if any>.

Impacts Relationships
Impacts [Functions]: <List of functions and subsystems which this design impacts attributes
of>.

Impacts [Intended]: <Give a list of the performance requirements that this design idea will
positively impact in a major way. The positive impacts are the main justification for the
existence of the design idea!>.

Impacts [Side Effects]: <Give a list of the performance requirements that this design idea will
impact in a more minor way, good or bad>.

Impacts [Costs]: <Give a list of the budgets that this design idea will impact in a major way>.
Impacts [Other Designs]: <Does this design have any consequences with respect to other
designs? Name them at least>.

Impact Estimation/Feedback
For each Scalar Requirement in Impacts [Intended] (see above):

Tag: <Tag name of a scalar requirement listed in Impacts [Intended]>.

Scale: <Scale of measure for the scalar requirement>.

Scale Impact: <Give estimated or real impact, when implemented, using the defined Scale.
That is, given current baseline numeric value, what numeric value will implementing this design
idea achieve or what numeric value has been achieved?>.

Scale Uncertainty: <Give estimated optimistic/pessimistic or real & error margins>.
Percentage Impact: <Convert Scale Impact to Percentage Impact. That is, what percentage
of the way to the planned target, relative to the baseline and the planned target will implement-
ing this design idea achieve or, has been achieved? 100% means meeting the defined Goal/
Budget level on time>.

Figure 7.7
Continued next page
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Percentage Uncertainty: <Convert Scale Uncertainty to Percentage Uncertainty =+
deviations>.

Evidence: <Give the observed numeric values, dates, places and other relevant information
where you have data about previous experience of using this design idea>.

Source: <Give the person or written source of your evidence>.

Credibility: <Credibility 0.0 low to 1.0 high. Rate the credibility of your estimates, based on the
evidence and its source>.

Priority and Risk Management
Rationale: <Justify why this design idea exists>.

Value: <Name [stakeholder, scalar impacts and other related conditions]: Describe or quantify
the knock-on value for stakeholders of the design impacts>.

Assumptions: <Any assumptions that have been made>.

Dependencies: <State any dependencies for this design idea>.

Risks: <Name or refer to tags of any factors, which could threaten your estimated impacts>.
Priority: <List the tag names of any design ideas that must be implemented before or after this
design idea>.

Issues: <Unresolved concerns or problems in the specification or the system>.
Implementation Control
Supplier: < Name actual supplier or list supplier requirements>

Responsible: <Who in your organization is responsible for managing the supplier relation?>
Contract: <Refer to the contract if any, or the contract template>

Test Plan: <Refer to specific test plan for this design>

Implementation Process: <Name any special needs during implementation>

Location of Specification
Location of Master Specification: <Give the intranet web location of this master specification>.

Figure 7.7
Design Specification Template. This is a form to fill out, with <hints in fuzzy brackets>.

7.10 Summary: The Design Engineering Process

The ‘design engineering process’ is a systematic, rational process of
finding design specifications, which when implemented will satisfy a
balanced set of requirements on time.

The term ‘design engineering’ means a design process based on multi-
dimensional quantified requirements and multiple quantified design
attributes. It requires concurrent use of an implementation process,
like Evo, based on quantified measurement of performance and costs
at frequent evolutionary cycles, and of necessary analysis and correc-
tion to maintain progress towards (potentially adjusted or traded off)
formal and quantified targets.

The selection of design ideas is determined by the need to deliver a set of
specified stakeholder target levels within a set of specified constraint levels.

The design engineering process is really concerned with identifying
optional design ideas and evaluating the alternative possibilities to find
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a satisfactory architecture (that is, the sum of all design ideas), which
provides:

e the best fit with the requirements

e carly delivery of key results (with high stakeholder values)
¢ best value to cost ratios and performance to cost ratio, and
e acceptable risks.

The design engineering process may also involve identifying the best
reaction (redesign) to any feedback (good or bad feedback from
actually implementing design ideas in the real system).

The design engineering process cannot usually be done, competitively,
in a single pass. The effects of even a single design idea are too
complex to understand without ‘experience analysis’ from past use
of the idea (see ‘Impact Estimation’, Chapter 9), and especially with-
out actual use on our new system (see Evo, Chapter 10). So it must
normally be expected that the ‘final’ and ‘correct’ design specification
can only be evolved towards (never perfectly or ideally reached) as a
result of multiple feedback-and-change cycles.

Refinement of design can be done in parallel with actual use (by at
least some early stakeholders) of a version of the product. The prac-
tical feedback from this early delivery can be used to improve the
design; probably faster and more correctly than by staying in the
‘design phase’ longer.

A further complication is that as time goes on, both the ‘design
requirements’ and ‘potential and selected design technology’ will
‘expectedly’ change, thus requiring yet another set of cycles of learning
how to satisfy these new, changed requirements. Never perfect, con-
tinuously better, is the watchword.

In terms of ‘Competitive Engineering’ you can always refine the
design to be more competitive. However, there is a point where the
cost and time of refining the design exceeds any competitive benefit,
and it is time to stop designing and to get the product out of the door,
this time around.

Design Policy

Design ideas are only really finally validated when they display
satisfactory attributes in a real system (that is, after successful deliv-
ery in an evolutionary step). Don't kid yourself that they are ‘final’
before that.

A suggested mental attitude towards design specifications. Don’t believe
any estimates of performance and cost, only reality as measured!
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8

SPECIFICATION QUALITY
CoNTROL

How to know how well you
specified

GLossARY CONCEPTS
Specification Quality Control (SQC)
Defect Detection Process (DDP)
Defect Prevention Process (DPP)
Specification
Source
Kin
Checklist
Issue
Maijor Defect
Minor Defect
Checking Rate
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8.1 Introduction: Specification Quality Control

Specification Quality Control (SQC) is the name I shall use to refer to this
method in this text. Within the software community, the term ‘Inspection’
is used. However, it is a poor choice for engineering communities, which
already use ‘inspection’ in another sense during final production line
quality control. SQC is remote from such assembly-line inspections, as it
takes place from the earliest stages of idea specification and has different
organizational impacts (for example, team building and assisting in ‘on
the job’ training).

The primary purpose of SQC is systems engineering process control
through sampling measurement of specification quality. Through
SQC, we can improve systems engineering processes, save project time
and increase systems engineering productivity.

Improving Process

Control of projects, designs, strategies, marketing, selling and buying,
management planning, and programming, all have one thing in com-
mon at least — they rely on ideas specified by people, and read by people.
If those ideas are misunderstood by the reader, incomplete, wrongly
written or out of date, then we are doomed to lose control and be less
competitive, no matter how well we design, plan and implement!

For software, studies have long since shown that a considerable percent-
age (44% at Bellcore (Pence and Hon 1993) and 62% (Thayer, Lipow
and Nelson 1978)) of all bugs in computer programs were not due to
faulty programming. They were due to faulty requirements and design
being handed to the programmers and the testers. In many cases, the
testers, unwittingly, checked that an erroneous specification was ‘cor-
rectly’ programmed! Testing, in this situation, does not solve the
problem: it confirms it. However, SQC can address such problems.

In aircraft design at Douglas Aircraft (now Boeing), ‘engineering order’
faults cost $2,965 each to correct and 30% of engineering orders needed
correction. After SQC was applied in 1987-88, the percentage of faulty
engineering orders fell to 0.5% (Personal Experience). We achieved
similar results in 1989 at Boeing, Renton on all aspects of aircraft design.

The tendency to commit some kind of error, when communicating
complex ideas in writing to other people, is much worse than most
people realize. My own experience in industrial measurement of
defects suggests that technical documents, initially and routinely,
contain at least 20-60, and often far more, ‘major engineering
specification defects in each ‘logical’ page (300 non-commentary
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words). Through systematic use of feedback from SQC to specifica-
tion writers, this level can be brought down to well under one
remaining major defect/page (British Aerospace, Eurofighter Project,
Wharton, achieved this in 18 months (Personal Communication)).

Saving Time

Without SQC, a major defect left in a technical specification can cost an
average of 9.3 work-hours to deal with." Use of SQC at an early stage
(during writing the specification) would cost only one work hour to
remove it. “A stitch in time saves nine” (or an SQC hour saves nine-

point-three to be exact! (Gilb and Graham 1993)).

Increasing Productivity

The reduction of defects (as a result of using SQC) saves ‘rework’, which
is otherwise about half of all effort in software projects. Raytheon (Haley
etal. 1995) found that software engineering productivity for about a
thousand programmers increased by a factor of 2.7 over a few years of
using SQC (Inspection and Defect Prevention Process).

One major reason for defect reduction is the ‘training effect’ of SQC on
individuals. The number of defects injected by a systems engineer reduces
by about 50% each time they go through an SQC process (Personal
Experience since 1988). Systems engineers rapidly learn to take the rules
seriously. They see that their peers expect them to comply with the rules
and that their work cannot exit, and be ‘finished’, until they reach at least
the exit level for the estimated number of remaining major defects. I have
found that this is as true in software as it is in hardware engineering.

Industrial Usage

The methods needed for quality control (QC) of specifications originated
in the early 1970s within IBM, when they were used under the name of
‘Design and Code Inspections’.” Since then significant changes have
occurred, resulting in the SQC method described in this book. The most
notable change was the introduction, again within IBM, of the Defect
Prevention Process (DPP) (Mays 1995). The other major change is the shift
to ‘sampling’, rather than 100% checking and trying to clean up defects.

! As measured on a 1,000 defect sample by (then) Thorn EMI (electronics industry) in
1990. See Section 8.8 and (Gilb and Graham 1993 Page 315: Reeve).

? Fagan, M. E. 1976. Design and code inspections. IBM Systems Journal. Volume 15.
Number 3. Pages 182-211. Reprinted 1999. IBM Systems Journal. Volume 38. Num-
bers 2 and 3. Pages 259-287. See http://www.research.ibm.com/journals/sj/
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100% of all Field Bugs

< »

44% due to
Design Errors

31% Reduction
14% — Jueto SQC

30%

Figure 8.1

Due to use of SQC during development of telecommunications software, a 31% reduction

in design errors tha
Hon 1993).

t caused bugs in the field was measured after 2 releases (Pence and

The first large-scale hardware engineering uses of SQC took place at
Douglas Aircraft (1988) and Boeing (1989) under this author’s guid-
ance. In recent years, Siemens, Alcatel and Ericsson have also success-
fully used the method on a large scale (hundreds trained) for total
product development purposes. Hewlett Packard has reported esti-
mated savings due to SQC (some use within hardware product plan-
ning) of $21.5 million and $34 million in 1993 and 1994 respectively
(Grady and Van Slack 1994).

The use of SQC ourside of the software area is, as yet, little understood
or appreciated, except by the few corporations who have tried it out
such as Ericsson, Douglas and Boeing. It is time that this industrial
experience was more widespread knowledge. There is little difference
in the specification of software engineering, management planning or
hardware engineering with regard to human specification errors, their
causes and their consequences.

8.2 Practical Example: Specification
Quality Control

Take the simple performance requirement statement:
The objective is to get higher adaptability using modular structure.’

Do you see any problems with i? Is it similar to statements you see
every day? Well, if you have read this book this far, you would notice
that it violates some rules we have suggested. Of course, there is
nothing wrong with it, unless we agree that these rules are in force.
For some purposes they should be in force, for others not.
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SQC works by using the formal rules that are in force: a ‘defect’ is a
rule violation. SQC discovers whether people have applied the agreed
rules or not. A specification writer must always know the rules that
apply (and have agreed to them in advance). The specification writer
should welcome any help to follow them. Rules, after all, should be
‘best practice’ rules.

Let us now (for the sake of this example) introduce a few short rules,
which apply to the quality requirement statement above.

Rules For Performance Requirements

Tag: Rules.OBJ.

Clear: They must be unambiguously clear to the intended readers
(not to ‘anyone,’ just the relevant people).

Detail: They must detail complex concepts as a set of elementary
measurable concepts.

Scale: They must specify a scale of measure to define the concept
(all performance attributes are quantifiable).

Quantify: They must specify at least two points of reference on the
defined Scale to define ‘relative’ terms, such as ‘*higher.’’ These are
called the benchmark and target specifications.

Qualify: Targets must specify exactly ‘when’ a performance level is
to be available. Other qualifier notions, such as ‘where’ and ‘if’
should also be made explicit, if the target is not elsewhere specified.
Ends: They must not put ‘designs’ in the specification of ‘perfor-
mance requirements.’ Specify the Ends, not the Means.

Source: The source statements for each requirement must be pre-
cisely referenced (for example, <- the contract and marketing
documentation).

Fuzzy: Fuzzy unclear concepts shall be marked with <fuzzy/angle
brackets> to indicate there is room for improvement.

A checker (a person assigned to check a specification and its selected
source documents against these rules) would be obliged to report, for
the performance requirement statement about ‘higher adaptability’,
that all the above rules were violated.

There are, therefore, at least eight defects in the requirement state-
ment. If these defects mighr have much higher costs later in a project
(if not fixed at specification time), they should be classed as ‘major’
defects. Majors are the defects it pays to fix now, at a tenth of the cost
we would otherwise suffer later. (Fixing majors early is useful, but
preventing their injection is even more profitable.)

Checkers are friendly, confidential personal advisors to the specifica-
tion writer. The checker’s first job is to point out potential problems
for correction before a specification is released to other engineers, or to
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customers. Checking is a service the writer will likely perform, in
return, when their former peer checkers specify something themselves,
and want SQC help. The responsible engineer will take a list of the
checker’s suggested advice regarding ‘potential defects’ (issues) and
consider correcting them. They should address similar defects, outside
the sample checked, as far as necessary, according to the applicable
rules, procedures and source documents. However, it may pay off to
totally rewrite the specification. The specification document ‘Exit
Level’ is based on a general calculation of what is the best project
time-saver. We don’t exit, if cleaning up the specification now saves
the most time, in the long run. The following are the expected results

of a single pass of SQC:
(Note: Multiple passes should be rare.)

1. Based on defects found and corrected and, on an assumed SQC
effectiveness at spotting defects of 50%, a calculation will be made
about the (probable) remaining major defects in the specification
(which is about as many defects as we found — since we cannot
expect to be much better than 50% effective in finding defects). If
these are more than permitted by the exit conditions, the specifica-
tion will not be released. This is because the estimated unfound
remaining majors would cause more loss of time than savings to be
gained, if we let them exit downstream; that is, if we released the
specification immediately.

2. The specification writer will learn about current agreed rules and
their peers’ interpretations of these rules. As a result they are likely,
by my industrial experience, to learn to produce a specification with
half the number of defects next time. (Ultimately, after several SQC
experiences for the writer, about 100 times cleaner — using major
defect reduction as the measure — specification is usually achieved!)

3. The checkers themselves will learn best practice rules and their
peers’ attitudes towards those practices. This will influence the
checkers’ specification work quality.

4. The ‘users’ of the specification will learn to expect (in terms of
their entry condition) a minimum specification quality level (such
as no more than one remaining major defect/page).

5. The SQC team will continuously suggest process improvements to
reduce future major defects. (Poor working processes, training,
tools and the working environment ‘force’ defects on the workforce
according to Deming (Deming 1986)).

6. Project productivity will at least double, mainly due to fighting
fewer defects later (Dion has reported productivity increasing by a

factor of 2.7 (Dion 1993; Haley etal. 1995)).

As a result of SQC we will have data to decide if it pays off to release the
specification to another engineering process, or fight the defects now.
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8.3 Language Core: Specification Quality Control

Basic Definitions (see also Glossary terms)
Specification Quality Control (SQC)

Specification Quality Control (SQC) consists of two main processes:
the Defect Detection Process (DDP) and the Defect Prevention
Process (DPP).

Specification Quality Control (SQC) Process

b Defect Detection “Defect Prevention
Process (DDP) Process (DPP)

Defect Detection Process

The Defect Detection Process is concerned with document quality,
mainly with identifying defects in the documentation and using this
information to make decisions about how best to proceed with the
main document under SQC — the main specification.

Ideally, though sometimes not done due to the economics of the
situation, a known defect must be removed as soon as possible after
the error has been committed. This is to avoid the high cost of late
removal (at test or in field) of the defect, or to avoid the high cost of its
consequences. “A stitch in time saves nine.”

Defect Prevention Process

The Defect Prevention Process is concerned with learning from the
defects found and suggesting ways of improving processes to prevent
them reoccurring in future. The process improvement suggestions are
routed on to the relevant process owner for further consideration. “An
ounce of prevention is worth a pound of cure.”

Here are some other basic SQC concepts.

Issue

An issue is a perceived defect in a document. It is a non-confrontational
way for a checker to say, “I think I may have identified a defect.”
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Defect

A failure to observe a formal, written, required rule. It is not a personal
opinion or personal taste. It is failure to observe a group norm, or
required best practice.

Major defect

A major defect is a defect (rule violation) which, if not fixed at the
requirements or design stage of specification, will possibly grow
approximately an order of magnitude or larger in ‘cost-to-find-and-
fix’ and/or damage potential. It is often intentionally written with a
capital ‘M’. Minor defects tend not to be economic to identify or fix
(but you sometimes have to identify them to determine that they are
indeed minor and not, major).

Page

A logical page, as opposed to a physical page, is defined as a specific
number of non-commentary words. If no other definition is given
then use 300 non-commentary words” for each logical page (default
‘volume’ definition). This ensures measurements of checking rates and
defect densities are consistent.

Checking Rate

The checking rate is the average speed with which an individual
checker searches a specification for defects, allowing time for checking
it against rules, sources, kin documents and checklists. This is a critical
factor to control for effective checking. You have to go surprisingly
slowly to raise your checking effectiveness from 5% to 50%. (For
example: one page an hour!)

Oplimum Checking Rate

The optimum checking rate is the rate, which gives the highest
checking productivity (effectiveness in finding majors). It is the check-
ing speed that in fact works best on a given document type for an
individual checker to do their assigned tasks. It is found by establish-
ing the most effective average historical checking rate in terms of
finding major defects. The optimum checking rate is usually in the
range of 300 non-commentary words/hour (plus 300/minus 270).
This is used as a guide for team planning. Individuals need to
tune in to their personal optimum rate, which varies from this average.
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The major trick to going at this ‘slow’ rate is to sample, not to attempt
100% checking of all pages and consequent ‘defect clean up’.

Remaining Major Defects

The remaining major defects are the estimated remaining major
defects/‘volume’ measure (which could be a page, a technical draw-
ing or an entire specification) given for a sample or an entire
specification. It is estimated based on ‘total found’ and ‘known %
effectiveness.’

Checklist

A ‘checklist’ is a list of questions, which can be asked about a
document’s contents by a checker, with a view to improving the
effectiveness of that checker in finding major defects. Checklist
questions are always directly derived from individual official rules.
They are not allowed to be the rules, or to change the rules, just to
interpret them.

Rule

A rule is a standard for the production of a written process output. A
rule can be used to judge the objective quality (‘defect-freeness’
according to current rules) of a written process output. Violations of
rules are defined as ‘defects.’

Rules are often grouped into sets according to the type of standard,
which they are setting (for example, ‘specification clarity’ or ‘specifica-
tion consistency’).

Main Specification

The main specification is one of potentially 7any documents involved
in a single SQC. However, it distinguishes itself as the one we are
trying to get formal ‘exit’ for. Exit (acceptable exit level) is based
primarily on the specification’s qualicy with respect to the official
systems engineering standards (rules) for writing it.

Source Documents

The source documents are the ‘parents’ used to produce a specific
main specification. For example, contracts are typical sources for
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requirements. Requirements are a source for design. Requirements
and design are sources for Impact Estimation. Design is source for
planning, estimating and construction or programming. Change
requests are sources for an updated specification.

Kin Documents

‘Offspring of the same ‘parent’ (source) documents are ‘kin.” For
example, test plans, source code and user handbooks could all be derived
from the same requirements or the same design. The use of kin docu-
ments is that they can serve as information to perform defect checking

in SQC.

8.4 Standards: Specification Quality Control

Rules are standards, and are central to the SQC process; specifications
must be checked against their agreed specification rules. However, the
rules to be used depend on the specification type, so we won’t attempt
to list them here. The rules given in other chapters of this book are
suitable examples of such rules (bur they are by no means a complete list).

Here is a list of guidelines for assessing whether your overall SQC
process is functioning correctly.

Guidelines for assessing functioning of overall SQC

Economic: SQC must always make economic sense. If SQC is not
saving in the order of 10 hours for every hour spent on SQC, then
your SQC process should probably be modified or abandoned.

SQC Champion: There must be an SQC champion within the
organization. (At the very least, a nominated person responsible for

SQC; an SQC process owner.)

Team Leaders: There must be a list of current SQC team leaders. It
should show that there is a sufficient number of team leaders within
the organization and also that the team leaders are trained, tested and
‘certified’ to ensure they know what they are doing.

Statistics: The SQC statistics must be up-to-date on the SQC data-
base.

Meetings: All meetings must be of maximum length of two hours
(tiredness reasons). If more time is needed, schedule a set of such

meetings (but do consider the possibility of using sampling).
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Checkers: Unless you are training novices, the number of check-
ers at a meeting should be five or less. Two or three people is
typically most cost-effective, Four to five is generally more

‘effective.”®

Checking Rate: All checking must be carried out near the relevant
optimum checking rate. This rate will vary by document type and
organization. It is about 1 page/hour.

Condition: Entry and exit conditions must be taken seriously. They
are there to save you wasting time. The number of remaining major
defects/page for successful exit must be ultimately less than one (major

defect/page).

Standards: There must be an up-to-date (intranet) ‘library’ of official
rules, checklists and forms.

Upstream Pollution: The number of major issues identified by
your team in source specifications, which have just previously-
exited SQC, should be approximately 15% of the total number
of logged issues. Otherwise, this is a sign that your team is not
taking the ‘second-round’ opportunity to find source defects,
seriously.

Forms

SQC uses four main forms: the Master Plan, the Editor Advice Log,
the Data Summary and the Process Meeting Log. There are examples
of these forms filled in, in Figures 8.2, 8.3, 8.4 and 8.5. Blank forms
are given in Section 8.9.

Note forms are a ‘procedure’ (in the format of the form) for gathering
data. Most of our clients have their own local variation of the forms
and automate them (usually on an intranet web site).

® The original evidence for this came from research performed by Seren Nielsen in the
Danish electricity industry (Danish Technical Institute, Lyngby, 1987; cited in Gilb and
Graham 1993), and was confirmed by further research at Jet Propulsion Labs by John
Kelly (Kelly 1990a; 1990b). Optimum effectiveness (number of unique issues per
checker) was achieved with teams of 4-6 people, optimum efficiency (cost per unique
issue found) with teams of 2—4 people. The recommended team size of 4-5 people
achieves the best compromise between these factors. It was Edward Weller, analysing
data from more than 6,000 inspection meetings conducted at Bull HN (Weller 1993),
who reported that “four-person teams were twice as effective.. . . as three person teams.”

Also included in Wheeler, Brykczynski and Meeson (1996).
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Process Meeting Log

Issue

Reference

Cause Class

(tick1)

Communication
Oversight
Transcription
Education

Team Leader Lucy Jones Date 10 Jul 2000 SQC ID 57 Page 1 of 1

Root Cause
Ideas

Lack of importance
attached to such
information

Improvement
Ideas

Have a header
page insisting on
such info

Communication
Oversight
Transcription
Education

New Legislation
has not been
published

Send out e-mail
to all managers in
Division

Communication
Oversight
Transcription
Education

Only partially
transferred

Insist on use
of one master,

Communication
Oversight
Transcription
Education

Communication
Oversight
Transcription
Education

Communication
Oversight
Transcription
Education

Communication
Oversight
Transcription
Education

Communication
Oversight
Transcription
Education

Communication
Oversight
Transcription
Education

10

Communication
Oversight
Transcription
Education

© Gilb

Start Time

Stop Time

Duration

No. People

Total Cost

1215

1245

30 Mins.

5 People

2.5 Workhours

Figure 8.5

Filled-in Process Meeting Log.
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SQC Process Roles and Responsibilities

An efficient team (most major defects/work-hour) uses 2 or 3 people in
total. An effective team (most major defects/page) uses a maximum of 3
to 5 people in total.

Team Leader

A team leader is responsible for managing an SQC process. The team
leader is responsible for knowing SQC thoroughly and helping the
team members to perform. They follow the ‘best-practice’ SQC
processes. An SQC team leader is normally trained for about a week,
and is then formally approved to practice by virtue of their practical
ability and continued correct practice. Inadequate SQC team leader
trainin4g leads to failure of the SQC process (Grady and Van Slack
1994).

Checker

Checkers are primarily ‘consultants to the writer’ and their detailed
knowledge of the defectiveness of the writer’s work is confidential.
Almost all engineering team members work as checkers on occasion,
including the writer and probably the team leader. (The team leader
might choose to be a ‘non-playing captain’ of the team. They would
not check in order to focus their time on the team leader responsibility
or because they were not technically capable in the specification
‘language.’)

Checkers are SQC team members who actively check a set of
documents: the main specification, its source specifications, kin
specifications, the rules, checklists and procedures. They focus on
using the checklists and rules to find major defects. Exactly which
documents a specific checker uses, and what they check for, is
determined by the role or roles assigned to them by the team
leader.

Checkers are also invited to submit specific comment on possible
improvements to the process and the process standards (procedures,
rules, entry conditions, exit conditions and forms). They will, hope-
fully, get some insights during their checking work (for example,
about the need for better rules).

* Grady reported that HP failed to achieve results from 1983 to 1988 until they properly
trained their team leaders on a week-long course (designed and held, as cited there, by this

author). This article is reproduced in Wheeler, Brykczynski and Meeson (1996).
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Writer: Also Known as Author

The writer is the person currently responsible for writing or updating
a specification. The SQC process serves the writer primarily: in con-
fidence. SQC serves the organization secondarily.

Editor

The editor is usually the same person as the writer. The editor is the
person, who takes over the issues in the Editor Advice Log, decides
(based on standards) what action is required and carries it out. Some
issues will be defects and need fixing. Some issues will require clari-
fication. Some issues will be rejected and others will require change
requests to other documents to be raised. The Editor Advice Log can
be updated with the editor’s decisions.’

In extreme cases, but unfortunately all too frequenty, the defect
density found (for example 90 majors in a page) will effectively spell
out the fact that ‘burning’ the work and completely rewriting it will be
more cost-effective.

Scribe

The scribe writes up the Editor Advice Log or other team notes at
an SQC meeting. This can be any one of the team members. By
default, the team leader will scribe. “Who scribes’ is not a critical
decision.

Others

In a larger organizational setting, there are ‘players’ outside the
team who support the SQC process. These include quality manage-
ment, SQC process champions, process owners (for both SQC
processes and the work processes, for example, ‘Requirement pro-
cess owner’), senior SQC team leaders, SQC process trainers and
engineering data analysts (perhaps specialized in SQC data statis-
tics). When the SQC process is applied to perform specification
content reviews, the participants will be senior staff expected to use
judgment and to take responsibility for the consequences of their
approval.

> There are many ways to report what editing action has been undertaken and any
suitable method is fine.
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8.5 Process Description: Specification
Quality Control

Process: Specification Quality Control
Tag: Process.SQC.

Version: October 7, 2004.

Owner: TG.

Status: Draft.

Note: See (Gilb and Graham 1993) for more detail on the sub-
processes. All sub-processes are DDP unless marked as DPP.

Entry Conditions

El: The specification writer must have requested the SQC hoping to
get help and exit validation for the specification.

E2: A team leader for the SQC is found from amongst the ‘approved
team leaders” group.

E3: All relevant documents (main specification, kin documents, source
documents, rules, checklists and forms) are available and ideally have
successfully exited SQC — apart from the main specification!

SQC Sub-Processes
Entry

The team leader ensures that the SQC entry conditions are met. This
includes obtaining the relevant documents and checking their status.
Entry conditions are evaluated during the Planning phase.

Planning

The team leader produces the master plan for the SQC (about 1
hour’s work). This involves deciding what material within the speci-
fication is to be sampled, what documents are to be included, what
rules must be used, who is going to be on the team and what their
roles are. The optimum checking rate is determined based on history.

SQC Strategy

The team leader decides the purpose(s) of this SQC and ensures a
suitable overall SQC strategy. Again this is evaluated during Planning.



//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D - 221 - [221-260/40] 29.6.2005
12:42PM

240 Competitive Engineering

Kickoff

The team meets at a Kickoff meeting, where the team leader makes sure
every member knows what they need to know about the SQC process
and the project documents, and that they are committed to working the
plan as a team. The team may approve a suggested ‘quantified goal’ and
‘appropriate strategy’ to meet it (a DPP component).

Checking

The team members individually carry out their assigned defect-search roles
at their self-adjusted optimum checking-rate, looking for major defects.
They collect data about the cost and result of their personal checking
activity. This process will typically, for a sample of about two logical pages,
take two hours for each person. Checkers will ask the team leader for help
if necessary. They will also report to the team leader any unusual or serious
problems they discover that might impact the future course of the SQC
process, for example, that the number of issues (potential defects) discov-
ered is sufficiently large to consider abandoning the SQC.

Specification Meeting

This is a team meeting (real or virtual) of up to two hours duration. The
duration and meeting content depend on data collected from Checking.

o Checkers” Reporr. At the beginning of the specification meeting,
checkers report their data from Checking. The team leader evaluates
this data and makes decisions about how the meeting and the rest of
this SQC process should proceed. The meeting may be cancelled or
modified in content and duration.

Issue Logging: The checkers report their issues, mainly potential
majors, which can be in any of the participating documents. A scribe
logs issues in the Editor Advice Log. There should be no discussion
concerning the issues discovered, just unconditional logging of the
issue (the rule violation and its location in the specification). Checkers
may also make process improvement suggestions (Note: This is part of
the DPP process), and log technical ‘questions of intent’ to the writer.
Issue logging within a specification meeting takes up to 30 minutes.
Double Checking: If it is desired that additional defects are found, then
double checking at the experienced specification meeting® optimum
checking rate will be carried out during the meeting. This identifies

® This rate is similar but may vary by about 30% from the optimum rate average found

for individual checking activity. In addition, it is a group activity rate and is not directly
tunable to single individuals. Of course, single individuals will exploit the given time
more or less effectively, depending on their personal ability and motivation.
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about 15% additional major defects and adds about 1.5 hours to the
meeting. This extra checking is only useful in ‘cleanup mode,” not
when sampling and measuring to determine exit (normal mode).

Process Meeting

After the specification meeting and a short break, the team optionally
may spend up to 30 minutes, analyzing up to 10 logged potential
major defects. For each chosen potential defect, one minute is spent
describing the issue, one minute is spent brainstorming possible root
causes and one minute is spent brainstorming preventative cures. This
data will later be recorded in a quality assurance (QA) database as
inputs (‘grass root insights’: suggestions, hints, ideas) to the organiza-
tion’s more-systematic and formal process improvement specialists.
(Note: A Process Meeting is part of the DPP process.)

Edit

The editor (usually the specification writer) takes over the ‘Editor
Advice Log’, which consists of the issues (that could warrant correc-
tion or action) logged at the specification meeting. The editor exam-
ines the logged issues, determines how to resolve them and then at
least fixes the issues considered to be major defects. The editor may
discover additional defects and should make corrections to any majors
identified outside the sample checked. Other reasonable action is
taken, such as sending out change requests to owners of other docu-
ments. An extreme edit is a full rewrite according to all rules.

Edit Audit

A process carried out by the team leader to verify that a reasonable and
complete editing job has been done. Consequently, the editor takes
formal responsibility for the editing. This can be done in minutes.

SQC Statistics

The team leader will ensure that all the required statistics from the
SQC are captured in the SQC database. This assumes a process
control use of SQC data.

Exit

The team leader evaluates the formal SQC exit conditions to see if the
specification may be released ‘economically’ for normal use. The
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Note: The ‘Process Meeting’ sub-process is exclusively a part of Defect Prevention
Process (DPP). All the rest is Defect Detection Process (DDP), although there may
be a small component of DPP within some of these sub-processes.

Figure 8.6

Diagram of the SQC Process showing the sub-processes.

estimated number of remaining major defects in the specification is
especially important. If the main specification is not released, the team
leader must work towards acceptable exit-levels of quality, usually in
cooperation with the specification writer.

Exit Conditions

X1: The main specification must have fewer remaining major defects/
page than the agreed exit standard (a maximum of ‘one remaining’ is a
reasonable ambition level, initially).

A Simplified SQC Process

SQC as described in the procedure above is the full-scale version.
ere are situations when a simplifie rocess is more appro-
Th tuat h plified SQC p pp
priate (for example, to obtain a rapid assessment of the specification
quality of a contract or to demonstrate to management some of the

power of SQC to get their ‘buy-in’).
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A ‘Simplified SQC Process’ is presented below.
Note: There are several limitations to this simplified process:

e it is only a small sample so the accuracy is not as good as a full or
larger sample

¢ the team will not have time or experience to get up to speed on the
rules and the concept of major defect

¢ a small team of two people does not have the known effectiveness of
three or four people

¢ you will not have the basis for making corrections to the entire
specification

¢ the checking will not have been carried out against all the possible
source documents. (Usually in the simplified SQC process, no
source documents are used and memory is relied on. While this
means that the checking is not nearly as accurate, it does consider-
ably speed up the process.)

However, if the sample turns up a defects density estimation of 50 to
150 major defects/page (which is quite normal), that is more than
sufficient to convince the people participating, and their managers,
that they have a serious problem.

The immediate solution to the problem of high defect density is not to
remove the defects from the document. The most effective practical
solution is to make sure each individual specification writer takes the
defect density criteria (and its ‘no exit’ consequence) seriously. They will
then learn to follow the rules and, as a result, will reduce their personal
defect injection rate. On average, a personal defect injection rate should
fall by about 50% after each experience of using the SQC process.
Widespread use of SQC will result in large numbers of engineers
learning to follow the rules.

To get to the next level of quality improvement, the next step is to
improve the rules themselves.
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Simplified SQC Process

Tag: Simplified SQC.
Version: October 7, 2004.
Owner: Tom@Gilb.com.
Status: Draft.

Entry Conditions

* A group of two, or more, suitable people” to carry out Simplified SQC is assembled in
a meeting.

* These people have sufficient time to complete a Simplified SQC. Total elapsed time:
30 fo 60 minutes.

® There is a trained SQC feam leader at the meeting fo manage the process.

Procedure

P1: Identify Checkers: Two people, maybe more, should be identified to carry out the
checking.

P2:Select Rules: The group identifies about three rules to use for checking the specification.
(My favorites are clarity (‘clear enough to test’), unambiguous (‘to the intended reader-
ship’) and completeness (‘compared to sources’). Forrequirements, | also use ‘no design’.)
P3: Choose Sampile(s): The group then selects sample(s) of about one page in length
(300 non-commentary words). Choosing a page at random can add credibility — so
long as it is representative of the content subject to quality control. The group should
decide whether all the checkers should use the same sample or whether different
samples are more appropriate.

P4: Instruct Checkers: The SQC team leader briefly instructs the checkers about the
rules, the checking rate, and how to document any issues and determine if they are
major defects (majors).

P5: Check Sample: The checkers use between 10 and 30 minutes to check their
sample against the selected rules. Each checker should ‘mark up’ their copy of the
document as they check (underlining issues and classifying them as ‘major’ or not). At
the end of checking, each checker should count the number of ‘possible majors’ they
have found in their page.

Pé: Report Results: The checkers each report to the group their number of ‘possible
majors.” The SQC team leader leads a discussion to determine how many of the
‘possible majors’ are actually likely to be majors. Each checker determines their num-
ber of majors and reports it.

P7: Analyze Results: The SQC team leader extrapolates from the findings the number of
majors in a single page (about 6 times™ the most majors found by a single person, or
alternatively 3 times the unique majors found by a 2 to 4 person team). This gives the
major defect density. If using more than one sample, average the densities found by
the group in different pages. The SQC team leader then multiplies this average major
defects/page density by the total number of pages to get the total number of major
defects in the specification (for dramatic effectl).

P8: Decide Action: If the number of majors/page found is a large one (ten majors or
more), then there is little point in the group doing anything, except determining how
they are going to get someone to write the specification properly. There is no eco-
nomic point in looking at the other pages to find ‘all the defects’, or correcting the
maijors already found. There are too many majors not found.

P9: Suggest Cause: Choose any major defect and think for a minute why it happened.
Then give a short sentence, or better sfill a few words, to capture your verdict.
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Exit Conditions
* Exit if less than 5 majors/page exirapolated total density, or if an action plan to
‘rewrite’ has been agreed.

Notes:

* A suitable person is anyone, who can correctly interpret the rules and the concept of
‘maijor.’

** Concerning the factor of multiplying by ‘6': We have found by experience (Gilb and
Graham 1993: Bernard) that the total unique defects found by a feam is approximately
twice that of the number found by the person who finds the most defects in the feam.
We also find that inexperienced teams using Simplified SQC seem to have about one
third effectiveness in identifying the major defects that are actually there. So 2 x 3=46is
the factor we use (or 3 x the number of unique majors found by the team).

Simplified Specification Quality Control Form

SQC Date: May 29, 200X. SQC Start Time:
SQC Leader: Tom.

Author: Tino.

Other Checkers: Artur.

Specification Reference: Test Plan.
Specification Date and/or Version: V 2 Total Physical Pages: 10.

Sample Reference within Specification: Page 3.
Sample Size (Non commentary words): approx. 300.

Rules used for Checking: Generic Rules, Test Plan Rules.
Planned Exit Level (Majors/logical page): or less.

Checking Time Planned (Minutes): 30. Actual: 25.
Checking Ratfe Planned (Non commentary pages/hour): 2.
(Note this rate should be less than 2 logical pages/hour)

Actual Checking Rate (Non commentary words/minute):
Number of Defects Identified by each Checker:
Majors: 6, 8, 3. Total Majors Identified in Sample: 17.
Minors: 10, 15, 30.

Estimated Unique Majors Found by Team: 16 +5.
(Note 2 x highest number of Majors found by an individual checker)

Estimated Average Majors/Logical Page: ~16 x 3=48.

(A Logical Page =300 Non commentary words)

Maijors in Relation to Exit Level: 48/1 (47 too many).

Estimated Total Majors in entire Specification: 48 x 10 =480.

Recommendation for Specification (Exit/Rework/Rewrite): No exit, redo and resubmit.

Suggested Causes (of defect level): Author not familiar with rules.

Actions suggested to mitigate Causes: Author studies rules, All authors given tfraining
in rules.

Person responsible for Action: Project Manager.
SQC End Time: 18:08. Total Time taken for SQC:

Version: August 15, 2004. Owner: Tom@Gilb.com
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8.6 Principles: Specification Quality Control

1. The Principle of ‘Tllegality’

‘Defects’ are objective violation of accepted written rules.

2. The Principle of ‘Majors are the pay off’
Major defects are the only economically interesting defects.

3. The Principle of ‘Keen to be seen clean’
The main purpose of SQC is to measure that the specification is
clean enough: 7ot to clean up a specification that 7sn .

4. The Principle of ‘Cleanup your own mess’
Specification cleanup is the writer’s responsibility, before SQC.

5. The Principle of ‘Prevention is better than cure’
There are many effects of SQC, but the most useful are learning to
avoid defects caused by bad process, and committed by the writer.

6. The Principle of *50% effectiveness’
History shows that you can only expect to find and fix about half
the defects that are there.

7. John Craven’s Principle (within Hewlett Packard)
The team is there to make the “writer look like a Aero.”

8. The Principle of ‘Magnificent Profitability’
The expected return on investment for SQC is at least ‘ten to one.’

9. The Principle of ‘Client-Server’

The writer is the c/ient and the checkers serve as advisors.

10. The Principle of “The Pilot in Command’
The team leader is responsible for the SQC process.

Good execution of a badly executed specification will tend to execute
you!

8.7 Additional Ideas: Specification Quality Control

There are some central ideas of SQC, which are worth looking at in
more depth:

Economics of using SQC

The cost of finding and fixing defects has to be balanced against the
benefit of removing the defects. The cost of fixing a defect escalates
the longer it is left unfixed. In general, as we move from requirements/
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design-stages to test-stages, the total system-wide costs of removing
major defects increase by an order-of-magnitude. As we move into
design implementation, manufacturing, installation, servicing and
distribution, yet another additional order-of-magnitude of cost is
generally our penalty for dealing with major defects later.

The cost of finding defects also varies. There are several QC nets that
specifications pass through as a product is developed. Also, just because
there s a defect doesn’t mean that it wéll cause damage. This is where
sampling and understanding your document quality level is essential.

If there is more than approximately one remaining major defect/page,
it will tend to pay off to fight the defects immediately, using SQC,
rather than downstream. With less than that, it probably pays off to let
that major defect (exact location unknown) slip through #his particular
QC net, and hope it is still caught in some other QC net in the
systems engineering process.

Unfortunately most real engineering environment ‘approved’ docu-
ments are at least one order-of-magnitude worse quality than one
major defect/page: 10 to 20 or far more major defects/page is com-
mon, according to my frequent measurements. But without SQC, to
measure for us, we don’t ‘know’ this.

Effectiveness of SQC

If SQC is consistently carried out according to official guidelines
(critically including the ‘checking rate’ being at the optimum level),
then experience in IBM Rochester Labs, MN (Gilb and Graham 1993
Page 23) shows that the defect-finding effectiveness is relatively stable.
Thirty percent effectiveness is a beginner’s level (my experience). For a
mature SQC process, effectiveness, for a single-pass attempt, tends to
be in the range 60% to 90% (Gilb and Graham 1993: IBM Experi-
ence), depending on the type of specification being checked. By
systematic SQC process improvement, the effectiveness can slowly
be improved to its maximum potential. Cumulative SQC effective-
ness, for multiple passes, has been shown to reach a maximum of 95%

(IBM UK and Sema UK Case (Gilb and Graham 1993: Leigh, D.)).

Determining Effectiveness and Estimating
Remaining Defects

SQC can be used directly to measure defects found and, indirectly to
estimate the defects not found. Providing that ‘effectiveness’ (% of
100%) at finding defects is known and is relatively stable, it can be used



//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D - 221 - [221-260/40] 29.6.2005
12:42PM

248 Competitive Engineering

to estimate the number of unfound defects. Effectiveness (of your teams
on your specifications at finding defects) can be determined in two ways:

1. For a specific specification, we can measure the percentage of the
‘available’ defects, which a given SQC process was able to find. We
can work out this percentage if we know the number of defects found by
the SQC and the total number of defects found at later stages by other
QC processes, testing and field use. IBM has practiced this for decades
in software engineering (Kaplan, Clark and Tang 1994; IBMS] 1994).

2. Another method, faster and cheaper, and more credible locally, is
to repeat SQC on the same sample. If we find 30 defects on first
attempt, fix them all, and hypothesize that we are 30% effective at
finding them, this means we should have about 70 defects not
found in our sample, right? If, after fixing all the 30 we found, the
second SQC, done on the same sample, consistently finds about 21
defects (£ about 6), it would confirm our prediction of 30%
(21 of the 70 remaining from the first SQC). The ‘% of available
defects found’ is the effectiveness of the given SQC process. We
use this method regularly on our training courses, and it works! It
will also work for any test or QC process.

Once you have determined your effectiveness, you can estimate the
remaining defects in a specification. We use the number of ‘estimated
probable remaining defects’ to decide if a specification can exit (a typical
exit condition is ‘no more than one probable remaining major defect/
page’). See Figure 8.7 for the calculation of ‘estimated probable remain-
ing defects.” We use effectiveness to determine the number of defects
unidentified, and then we improve the accuracy by considering the
effects of the editing. One sixth of fix attempts during editing fail (M.
Fagan 1986:” IBM experience), unless an SQC for each fix is done to
reduce fix failure (IBMS]J 1994: Kan). In addition, defect injection
occurs during editing as a side effect of the fixes; the defect injection
rate is sometimes 2% to 5% — but is highly variable and uncertain.

The final consideration is the uncertainty in the estimate. I have found
that this remaining defect estimate is reasonably correct, and even in
poor circumstances is £30% uncertain, which is good enough for
most purposes.

A specification can have ‘too high a density’ of major defects (equals
serious engineering-cost rule violations) to be acceptable for use (to be
allowed ‘entry’ or ‘exit’). ‘We will find it in test’is a dangerous delay.
Delaying action on your specification’s major defects threatens not
only cost (thus profit), but time-to-market and competitive quality. It
pays off to deal with most major defects early.

7 Fagan. M. E, ‘Advances in Software Inspections’, IEEE Transactions on Software
Engineering. Volume SE-12, Number 7, Pages 744-751, July 1986.
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Estimating the Remaining Major Defect Density

Assumptions:
A logical page (page) is 300 non-commentary words.

* 30 major defects/page have been found during SQC.

* Your SQC effectiveness is 60% and your SQC is a statistically stable process.
* One sixth of your attempts to fix defects fail (One sixth is average failure to fix).
* New defects are injected during your attempts to fix defects at 5%.

* The uncertainty factor in the estimation of remaining defects is +30%.

Probable remaining major defects/page =‘Probable unidentified majors’+ ‘Bad fix
majors’ + ‘Majors injected’
Let E = Effectiveness expressed as a percentage (%) =60%

Probable unidentified majors =major defects acknowledged-by-editor for each page at
Edit x (100 — E) / E = 30 major defects/page found x (100 — 60) / 60 = 20 major defects/page.

Bad fix majors =One sixth of fixed majors =So, of 30 attempted fixes, 5 major defects in
each page are not fixed.

Majors injected = 5% of majors attempted to be fixed = 1.5 major defects/page.
Probable remaining major defects/page =20+ 5 + 1.5 =26.5 remaining major defects/page.

Taking into account the uncertainty factor of £30% and rounding down to the nearest whole
number gives 26 + 7 Remaining Major Defects/Page

(Minimum = 19, Maximum = 33 remaining major defects/page).

Figure 8.7
Estimating Remaining Major Defect Density: the main specification exit condition.

SQC and Rules

SQC is completely dependent on the rules that are applied. Just
because you exit from an SQC process does not mean that all quality
checking has been completed. It simply means that checking has been
completed against the rules actually used, and has demonstrated an
acceptable defect level.

By using different rules, different types of quality checking can be
achieved. It is not simply a case of using the relevant rule set to
match the type of specification. You need to consider what type of
defects you are checking for and their potential cost if not detected.

Extending from SQC into Specification Review

There is no reason why the SQC method shouldn’t be used to prepare
for management reviews. You might have checked the content of a
specification for consistency, completeness and clarity (Specification
Rules).® But maybe you have not yet checked for the relevance to

8 Note: This chapter mainly discusses and illustrates SQC from the viewpoint of
checking for specification clarity, completeness and consistency. This ties in with the
rules found in the other chapters, which are Specification Rules.
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current business or technical demands. For example, maybe a certain
level of ROI is demanded? Maybe a specific safety margin must be
shown to be present? By creating a different set of rules, called
Specification Review Rules, the SQC process can also be used to carry
out pre-review quality control, in advance of a review meeting. This
will probably result in better quality control than would be carried out
in a hurried executive review meeting.

8.8 Further Example/Case Study: A Stitch in Time
Saves Nine

Trevor Reeve made use of SQC (at that time he called it ‘Statistical
Quality Control applied to Software and Documentation’ or ‘Docu-
mentation Quality Improvement’) in all industrial aspects of a 1,500
person defense electronics manufacturer (later a part of Racal). He
documented four years of experience after this author ran a course

on-site (Gilb and Graham 1993, Pages 305-316).

Reeve carried out an analysis of the first 1,000 major defects logged by
the SQC process to investigate the cost savings of using SQC. Test
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Figure 8.9

MEL/Thorn EMI (later RACAL) UK, Factory and Lab-wide SQC gave order-of-magnitude
savings. About 1,000 major defects found by using SQC with multi-disciplinary teams
were analyzed. The alternative cost to fix majors, if caught downstream, was nine
fimes greater than if caught upstream by SQC. This is a frequency chart for the 1,000
defects.

and field staff were asked when these defects would have been found in
their test or field reports. They were also asked to indicate what the
cost of finding and fixing them would be. The frequency curve in
Figure 8.9 was drawn based on their answers. The mean time to correct
these defects downstream would have been 9.3 hours. The mean time
to find and fix them using SQC was about one hour. The defects
would otherwise have been found by test and by customers. The result
of this was that it was acknowledged by top management that remov-
ing a major defect using SQC gave a net saving of about 8 hours, or a
9.3 to 1 ratio of engineering hours ‘return’ on investment in SQC.

Compare this to the Raytheon return of 7.7 to 1 (see Section 1.8). Six
hundred inspections had been done at Thorn EMI by 1992, and over a
thousand by early 1993. Savings were conservatively estimated at
£500,000 each year, after one-time startup costs of £50,000. External
consultants are said to have estimated real savings at double this figure.
“Quality increased and development time has been reduced significantly.”

Use of SQC on many different types of document

SQC experience at Raytheon was limited to software, but at MEL/
Thorn EMI, the documents

“ranged from system, hardware and software design docu-
ments to software code and change notes. . . test specifications,
proposals, program management documents (for example,
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configuration and program plans), contracts and purchase
specifications, printed circuit board design and test specifica-
tions, and procedures and standards.

Further application (1993) all contractual documents, drawings
and internal specifications (for example, information technol-
ogy and financial requirements) . .. with all contracts using it to
a lesser or greater degree by end 1992. ...

The product appraisal process was revised to incorporate the
technique into the normal activities performed by the organiza-
tion on all types of document from contract to lowest level
design and test specification including drawings.” (Gilb and
Graham 1993: P310)

Note: The use of SQC on the upstream documents will produce the
greatest benefits because defects will be caught earlier, and do less
damage.

The Organization Must be Supportive and SQC
Needs a Champion

Since 1993, Trevor has confirmed many times within different organ-
izations and various parts of the world, that two of the main factors for
SQC to succeed are as follows:

1. An organization really needs to be willing to change, and

2. The continuous presence of a totally committed champion of
the method is necessary, for many years after the initial introduc-
tion of the method, to help the necessary culture change to take
place. (This was also the experience in the same period of another

client, Hewlett-Packard (Grady and Van Slack 1994).)

8.9 Diagrams/Icons: Specification Quality
Control

This section shows the SQC forms as follows:

e Figure 8.10: Master Plan

¢ Figure 8.11: Editor Advice Log

e Figure 8.12: Data Summary

e Figure 8.13: Process Meeting Log
¢ Figure 8.14: Simplified SQC Form

These are the blank versions of the filled-in forms given earlier in this
chapter.
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Process Meeting Log

Team Leader Date SQCID __ Page of _

Issue Cause Class Root Cause Improvement

ltem Reference (tick 1) Ideas Ideas

Communication

1 Oversight

Transcription
Education

Communication

5 Oversight

Transcription
Education

Communication

3 Oversight

Transcription
Education

Communication

4 Oversight

Transcription
Education

Communication
Oversight
Transcription
Education

Communication

6 Oversight

Transcription
Education

Communication

7 Oversight

Transcription
Education

Communication

8 Oversight

Transcription
Education

Communication

9 Oversight

Transcription
Education

Communication
Oversight
10 et
Transcription
Education

© Gilb

Start Time Stop Time  Duration  No. People  Total Cost

Figure 8.13
Blank Process Meeting Log.
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Simplified Specification Quality Control (SQC) Form

SQC Date: SQC Start Time:

SQC Leader: __

Author:

Other Checkers:

Specification Reference:

Specification Date and/or Version: Total Physical Pages:

Sample Reference within Specification:
Sample Size (Non commentary words):

Rules used for Checking:
Planned Exit Level (Majors/logical page): or less.

Checking Time Planned (Minutes): Actual:
Checking Rate Planned (Non commentary words/minute):
(Note this rate should be less than 2 logical pages/hour)

Actual Checking Rate (Non commentary words/minute):
Number of Defects Identified by each Checker:

Majors: Total Majors Identified in Sample:
Minors:
Estimated Unique Majors Found by Team: +
(Note 2 x highest number of Majors found by an individual checker)
Estimated Average Majors/Logical Page: (A Logical Page= 300 Non commentary
words)

Majors in Relation to Exit Level:
Estimated Total Majors in entire Specification:
Recommendation for Specification (Exit/Rework/Rewrite):

Suggested Causes (of defect level):

Actions suggested to mitigate Causes:

Person responsible for Action:
SQC End Time: Total Time taken for SQC:
Version: August 15, 2004. Owner: Tom@Gilb.com

Figure 8.14
Simplified Specification Quality Control (SQC) form.

8.10 Summary: Specification Quality Control

The basic ideas of SQC are simple:

e “A stitch in time saves nine”: fix defects at early design stages
(DDP), before they cause damage and/or require a costly ‘defect
removal’ process, during test or operation,

e “An ounce of prevention is worth a pound of cure”: learn from
defects, which have common underlying causes, and continuously
improve your work processes (DPP).



//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D - 221 - [221-260/40] 29.6.2005
12:42PM

258 Competitive Engineering

Finding Defects

The Defect Detection Process (DDP) is more powerful than similar
processes, such as ‘chc:cking’9 (of engineering drawings, as proven at
Douglas Aircraft 1988, Boeing 1989 and Thorn EMI 1990 on),
‘reviews ’, ‘walkthroughs ’, meetings and management approval. This
is mostly due to a series of tactics, the most critical of which are
probably the use of a proven optimum defect-searching time (optimum
checking rate) and, the total focus on finding and fixing ‘major’ defects
(which saves time downstream).

Understanding Document Quality

One of the most important opportunities using SQC is to be able to
measure the degree to which systems engineering and management
documents of all types really do correspond to the required standards of
quality. The concepts of ‘entry’ to, and ‘exit’ from, all systems engineering
and management processes are enabled by our ability to measure ‘prob-
able remaining major defects/page’ and to decide by estimation if a
specification is economic enough to release downstream (‘exit’), or eco-
nomic enough to start work on (allow ‘entry’). If necessary, sampling of
large documents is an economic way to measure quality levels before
making decisions of consequence concerning those documents.

The fact that the SQC process is universally applicable to any readable
specification (in any intellectual, administrative, project management,
planning, systems engineering, software or user specification task), means
that any group of people can use it wherever they want control over
quality-in-relation-to-standards. However, SQC has some limitations in
understanding ‘how well” specifications will work in practice. Even if
specifications exit according to any rules you use to analyze them, there
can still be catastrophic defects in them in practice. So, we need to use
additional methods to see ‘how good’ a specification is and, if necessary,
adjust the specification. Thar is the mission of other tools in this book
(like Impact Estimation and Evolutionary Project Management).

The SQC ability to measure quality, in relation to standards, is also
important when the standards are a major part of continuous process

? Do not confuse with the SQC ‘Checking’ sub-process! The aircraft factory traditionally
used the term ‘checking’ for a process done by a group of people who specialized in this,
called ‘checkers.” The process checked engineering drawings against the official engineer-
ing drawing specification rules, which were in a large handbook — so large that copies were
not given to inform individual engineers what the rules were! In 1988 we proved, with
hard data on a large scale, for the engineering directors, that the SQC process was far more
effective at finding interesting engineering defects than the traditional ‘checking’ process.
We ended up within the first year with sixty times better quality in terms of rejected and
reworked drawings (0.5% versus earlier about 30% reworked).
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Possible Purposes For Using SQC

-Reducing Time-to-Delivery

-Measuring the Intelligibility of a Document

-Measuring the effectiveness of engineering specifications

-Measuring the ability of the Process producing the Document to follow best practice rules.
-Enabling Estimation of the Number of Remaining Major Defects

-ldentifying Major Defects

-Removing Major Defects

-Preventing consequential ‘Downstream’ Defects being generated by removing existing
Defects

-Improving the Engineering Specification Process (better standards, like rules)
-Improving the SQC Process (better rates, better entry exit conditions, better procedures)
-On-the-Job Training for the Checkers

-Training the Team Leader

-Certifying the Team Leader

-Peer Motivation (getting people to learn, and follow the rules)

-Motivating the Managers (to deal with problems early)

-Helping the Writer (learn to write clearly and have effective ideas)

-Reinforcing Conformance to Standards

-Capturing and Re-using Expert Knowledge (by use of Rules and Checklists)

-Reducing Costs

-Team Building

-Fun — a Social Occasion

Figure 8.15
Possible purposes for using SQC. Any one or several can apply at anytime.

improvement. We can use SQC to measure process improvement
efforts! The measurement of defects is a measure of whether people
have actually learned, practiced, and understood the continuous
improvements intended to increase productivity.

Continuous Process Improvement

The Defect Prevention Process (DPP) exploits grass-root everyday
experience with Defect Detection Process (DDP), as well as making
use of your data about defects from ‘test’ and ‘field’ situations. DPP is
the ‘engineering and management version of what Deming (1993)
and Juran (1974) taught manufacturing industry, starting in Japan.
Experience (Dion 1993; Haley etal. 1995; Kaplan, Clark and Tang
1994) shows that 40% annual productivity improvements are possi-
ble, when this is done properly (which is rare).
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Impact Estimate
Scale Impact
Scale Uncertainty
Incremental Scale Impact
Percentage Impact
Percentage Uncertainty
Performance to Cost Ratfio
Credibility
Safety Factor
Safety Margin
Safety Deviation
Side Effect
Uncertainty
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9.1 Introduction to Impact Estimation

Systems engineers and managers need a reliable way of analyzing how
effective their design ideas or strategies are in meeting the require-
ments. Surprisingly, there are few methods being taught or used to do
this. Impact Estimation (IE) is one of these methods. It is the only one
that attempts to use any quantified rigor.

The intention of IE is that it helps answer the question of how
our design ideas impact all a system’s critical performance attributes
(such as usability and reliability) and all its resource budgets (such as the
financial cost and staff headcount) for implementation and operational
running. This question is fundamental to systems engineering,.

IE can be used for a wide variety of project purposes. Its most
important uses include:

¢ Comparing alternative design ideas: “What’s best?”

¢ Estimating the state of the overall design architecture: “Have we
designed enough?”

¢ Analyzing risk: “Where are our biggest problems now?”

¢ Planning and controlling evolutionary project delivery steps: “Is the
project on track?”

IE can be used at any organizational level and by different specialist
staff roles (such as systems analyst, architect, risk analyst, project
manager and purchasing manager) to evaluate any technical or orga-
nizational idea. In fact, IE is useful in permitting integrated assessment
of technical and organizational design ideas. It is specifically helpful in
improving communication about system design decisions across orga-
nizational levels and boundaries.

1. All design ideas or strategies which can have a significant impact (5% or more) on any
critical performance or cost requirement of a project must be evaluated in an IE table.

2. The design ideas must be specified in sufficient detail and clarity to support IE, irrespective
of who would make or evaluate the estimates.

3. An IE table, together with all its related design and requirement specifications, must be
quality controlled with respect to all the relevant rules. The level of estimated remaining
major defects/page must be low enough to exit and it must be stated (ideally on the cover
page of the document).

4. Significant proposed changes to the design ideas or architecture must be accompanied by a
quality controlled IE table showing the net impact of the changes.

Impact Estimation Policy

Figure 9.1

Impact Estimation Policy. Several of my clients have adopted a policy mandating use of
IE. This ensures people use the method and helps management (assuming they are IE
literate) make more informed decisions about proposed strategies.
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3.

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

IE can be used for a wide variety of purposes including:

1.
2.

Evaluating a single design idea. How good is the idea for us?

Comparing two or more design ideas to find a winner, or set of winners. Hint: Use IE, if you
want to set up an argument against a prevailing popular, but weak design idea!

Gaining an architectural overview of the impact of all the design ideas on all the objectives
and budgets. Are there any negative side effects? What is the cumulative effect?

. Obtaining systems engineering views of specific components, or specific performance

aspects. For example: Are we going to achieve the reliability levels?

. Analyzing risk: evaluating a design with regard to ‘worst case’ uncertainty and minimum

credibility.

. Planning evolutionary project delivery steps with regard to performance, value, benefits

and cost.

. Monitoring, for project management accounting purposes, the progress of individual evolu-

tionary project delivery steps and, the progress to date compared against the requirement
specification or management objectives.

. Predicting future costs, project timescales and performance levels.
. Understanding organizational responsibility in terms of performance and budgets by orga-

nizational function.*

Achieving rigorous quality control of a design specification prior to management reviews
and approval.

Presenting ideas to committees, management boards, senior managers, review boards
and customers for approval.

Identifying which parts of the design are the weakest (risk analysis). Hint: If there are no
obvious alternative design ideas, any ‘weak links’ should be tried out earliest, in case they
do not work well (risk management). This impacts scheduling.

Enabling configuration management of design, design changes, and change consequences.
Permitting delegation of decision-making to teams. People can achieve better internal
progress control using IE, than they can from repeatedly making progress reports to
others, and acting on others’ feedback.

Presenting overviews of very large, complex projects and systems by using hierarchical IE
tables. Aim for a one page top-level IE view for senior management.

Enabling cross-organizational co-operation by presenting overviews of how the design
ideas of different projects contribute towards corporate objectives. Any common and
conflicting design ideas can be identified. Hint: This is important from a customer view-
point; different projects might well be delivering to the same customer interface.
Controlling the design process. You can see what you need, and see if your idea has it by
using an |E table. For example, which design idea contributes best to achieving usability?
Which one costs too much?

Strengthening design. You can see where your design ideas are failing to impact suffi-
ciently on the objectives; and this can provoke thought to discover new design ideas or
modify existing ones.

Helping informal reasoning and discussion of ideas by providing a framework model in our
minds of how the design is connected to the requirements.

Strengthening the specified requirements. Sometimes, you can identify a design idea,
which has a great deal of popular support, but doesn’t appear to impact your requirements.
You should investigate the likely impacts of the design idea with a view to identifying
additional stakeholder requirements. This may provide the underlying reason for the
popular support. You might also identify additional types of stakeholders.

Note: * In 1992, Steve Poppe pioneered this use at executive level while at British Telecom, North America.

Figure 9.2
Purposes for the use of Impact Estimation. IE can have a wide variety of uses for a systems
engineer, planner or manager: it can help from the earliest stages of evaluating potential
ideas, strategies, architectures and purchases, to formally presenting proposals to man-
agement, to assessing the results of project delivery.
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Strategy Comparison: Apples and Oranges

Apples Oranges = = = == Alternative Strategies
Objectives @l [ele]e]
Eater Acceptance
From 50% to 80% of People 70% 85%
Pesticide Measurement o, o,
Reduce from 5% to 1% 50% 100%
Shelf-Life o,
Increase from 1 week to 1 month 70% 200%
Vitamin C
Increase from 50 mg to 100 mg per day 50% 80%
Carbohydrates ..
20% 5% ‘.
Increase from 100 mg to 200 mg per day o o “Evidence”
for these numbers
Sum of Performance 260% 470% should, of course,
be available
on a separate sheet
Resources (but not shown here)
Relative Cost 0.50 3.00 4
Local currency ) -
Sum of Costs 0.50 3.00
Performance to Cost Ratio 5.2 1.57

Figure 9.3

Comparison of Apples and Oranges using an |E table. IE allows you to compare all kinds of
strafegies (solutions) against your requirements.

9.2 A Simple Practical Example of Impact
Estimation

Now let’s consider a practical example and show how you can use the
IE approach. Assume you have an objective as follows:

Learning:

Gist: Make it substantially easier for our users to learn tasks <- Marketing.
Scale: Average time for a defined [User Type: Default UK Telesales
Trainee] to learn a defined [User Task: Default Response] using <our
product’s instructional aids>.

Response: Task: Give correct answer to simple request.

Past [Last Year]: 60 minutes.

GN: Goal [By Start of Next Year]: 20 minutes.

GA: Goal [By Start of Year After Next]: 10 minutes.

Imagine you have an initial design idea to satisfy the goals GN
and GA:

Handbook: Gist: Write a user handbook to define how to do the tasks.
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Now, we could just write the handbook, and hope we shall meet
our objectives. But the purpose of IE is to get us to think before
we implement. So, let us make an estimate of how effective this
idea is. How many minutes will be needed to learn the defined
task ‘Response’ using the handbook? The likely initial answer is,
“we cannot possibly know.” “Why?” Well, maybe we don’t even
know the written handbook can, or will, be used by the user.
Maybe we don’t know if the handbook (assuming it can and will
be used) is capable of reducing the learning time compared to last
year’s training methods (Past level). We might also not have a
sufficiently clear and unambiguous definition of the task,
Response. The conclusion to this line of thinking is that we need
to have a much better design and more detailed specifications in
order to make any assertions whatsoever. It is precisely this pro-
blem of inadequate design and lack of information that we want
to identify and attack by using IE.

Well, let us for this example try a symbolic improvement of the design
ideas to meet the goal. We need to identify some alternative design
ideas and assess their impact on our Learning goals. We can draw on
any previous experience with the use of a design idea. Say, on a
different project, the design idea On-line Help had achieved Past
[<similar task>] 10 minutes. What do we think based on that? Let
us say, we guess a learning time of 10 minutes average (minimum
5 minutes, maximum 15 minutes):

Impact Estimate for impact of On-line Help on Learning=10%+5
minutes? <- Based on <similar design> used by Project A.

We can then express this guess as a ‘percentage of the way to the goal.’
We must decide on which of the goals, GA or GN? Say, the GA goal
of 10 minutes. Well, the guess is also 10 minutes, so we have a design,
which appears to get us 100% of the way to our GA goal. The
uncertainty, +5 minutes, is 10% (from Past=60 minutes to
Goal =10 minutes is 50 minutes improvement). So we can express
the impact as either 105 minutes (a Scale Impact estimate) or
100% £ 10% (a Percentage Impact estimate).

In practice, we would have to evaluate the effect of all design ideas on
all goals and budgets. See Figure 9.5. We are not ‘done’ until we
have satisfied all performance goals (100% or more) within all
budgets (100% or less). In the worst case, if the design ideas com-
pletely fail to meet the requirements and there are no additional
design ideas that could be considered, we have to modify the goals
and/or budgets (make ‘tradeoffs’). There must be a correspondence
between your plans and the realities of what you can actually achieve.
Of course, do not lose sight of the fact that the real test is trying out
the chosen design ideas in practice to see how they really work in
reality.



//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH009.3D - 261 - [261-290/30] 29.6.2005
12:43PM

Impact Estimation 267

Design Ideas

On-line Support: Gist: Provide an optional alternative user interface, with the users’ task
information for defined task(s) embedded into it.

On-line Help: Gist: Integrate the users’ task information for defined task(s) into the user
interface as a ‘Help’ facility.

Picture Handbook: Gist: Produce a radically changed handbook that uses pictures and
concrete examples to instruct, without the need for any other text.

Access Index: Gist: Make detailed keyword indexes, using experience from at least ten real
users learning to carry out the defined task(s). What do they want to look things up under?

Figure 9.4
Brief description of some design ideas fo improve learmning time.

Table 9.1 An Impact Estimation table showing the impacts of the design ideas described in
Figure 9.4 on the Learning objective.

On-line Support On-line Help  Picture On-line Help
Handbook + Access Index
Learning
60 minutes <-> 10 minutes
Scale Impact 5 min. 10 min. 30 min. 8 min.
Scale Uncertainty +3 min. +5 min. +10 min. £5 min.
Percentage 110% 100% 60% 104%
Impact
Percentage +6% +10% +20%? +10%
Uncertainty (3 of 50 minutes)
Evidence Project Other Systems ~ Guess Other Systems
Ajax: 7 minutes + Guess
Source Ajax Report, p.6  World Report, John B World Report,
p.17 p-17 + John B
Credibility 0.7 0.8 0.2 0.6
Development Cost 120K 25K 10K 26K
Performance 110/120= 0.92 100/25=4.0 60/10= 6.0 104/26=4.0
to Cost Ratio
Credibility-adjusted  0.92%0.7 =0.6 4.0%0.8=3.2 6.0%0.2=1.2 4.0%0.6=24
Performance

to Cost Ratio
(to 1 decimal place)

Notes: Time Period
is two years.

Longer timescale
to develop

Notes: Here it is a case of comparing design ideas. It is not appropriate to assume that the effects of the different
design ideas are cumulative. The design idea of Picture Handbook is seen as very cost-cffective, but it doesn’t on
its own meet the goals. Maybe there is a complementary design idea that could be found? On-line Support is seen
as achieving the goals (though the safety margin is not extremely comfortable) but, it is not very cost-effective
compared to On-line Help and the development timescales need considering. Qverall, there is a need to review
the long term strategy. Short term, On-line Help seems an ideal design idea to start considering further.
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9.3 Language Core: Impact Estimation

The inputs to IE include:

e Specified quantified Performance Requirements (objectives) and
Resource Requirements. (This is usually for a specific system/
project deadline, and usually consists of the goals with supporting
baseline information, and the budgets.)

e Specified Design Ideas with experience data (Evidence, Sources and
basis for Credibility assessments).

¢ Standard Credibility Ratings and Safety Margins. (These will either

exist in rules or policies or they must be decided locally by the project.)
The outputs from IE include:

¢ IE tables: 2- and/or 3-dimensional graphical diagram(s).

¢ Estimations and calculations for the impacts of each of the specific
design ideas on each of the specific goals and each of the specific
budgets:

o Scale Impact and Scale Uncertainty values: What estimated
impact does a specific design idea have on a specific goal or budget
and, what is the margin for error or doubt? A Scale Impact is expressed
as a numeric value on the defined Scale (For example, if the scale of
measure was in hours, the value could be 10 hours). A Scale Uncer-
tainty is the plus/minus error margin or experience range estimated for
the Scale Impact value (for example, £2 hours). Estimates must be
based on experience data; Evidence, Source and Credibility must
therefore be stated, or referenced, to support each estimate.

o Percentage Impact and Percentage Uncertainty values: What
percentage of the required change in a specific goal or budget does
a specific design idea provide? For a goal (a performance objective),
a Percentage Impact is calculated as the percentage change (that is,
the ability to move) from the chosen baseline level (0%) towards a
specified target level (100%). (0% would mean there was no
change/improvement on the existing past level and 100% would
mean the target goal was met exactly. All other percentage estimates
are in relation to these two values.) For a budget, a Percentage
Impact is the percentage of the budget that is estimated will be
consumed or utilized. Percentage Uncertainty values for budgets
are calculated in a similar way to goals. Note: Sometimes it is
appropriate to declare an overall Percentage Uncertainty (for example,
£50%) for the whole IE table or specified parts of it.

Calculated values for each individual design idea (the ‘vertical sums’):

© Sum of Performance: How ‘good’ is a design idea? Sum of
Performance is the sum of all the estimated Percentage Impacts
achieved by the design idea across all the performance
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requirements (objectives). There is also a need to sum the relevant
Percentage Uncertainty impacts.

Sum of Costs or Sum of Scale Costs: How costly is a design idea?
Sum of Costs and Sum of Scale Costs are the sums of the Percen-
tage Impacts or the Scale Impacts respectively that have been
estimated for a specific design idea across all the appropriate
budgets. (For example, it is likely to be ‘appropriate’ to use only
the total financial cost figures, though the IE table might also show
detailed person work-hours as a ‘cost’ row.) There is also a need for
the sums of the relevant uncertainty impacts (the Percentage
Uncertainty and/or Scale Uncertainty values as appropriate).
Performance to Cost Ratio: How cost-effective is a design idea? The
performance to cost ratios can be calculate