

WHAT’S WRONG WITH AGILE METHODS?

SOME PRINCIPLES AND VALUES TO ENCOURAGE QUANTIFICATION

Tom Gilb Independent Consultant Tom@Gilb.com

Iver Holtersvei 2, NO-1410 Kolbotn, Norway. +47 66801697

Lindsey Brodie Middlesex University L.Brodie@mdx.ac.uk

Copyright © 2006 by Tom Gilb

WHAT’S WRONG WITH AGILE METHODS?

SOME PRINCIPLES AND VALUES TO ENCOURAGE QUANTIFICATION

ABSTRACT

Current agile methods could benefit from using a more quantified approach across the entire

implementation process (that is, throughout development, production and delivery). The main

benefits of adopting such an approach include improved communication of the requirements and,

better support for feedback and progress tracking.

This chapter first discusses the benefits of quantification, then outlines a proposed approach

(Planguage) and, finally describes an example of its successful use (a case study of the

‘Confirmit’ product within a Norwegian organization, ‘FIRM’).

INTRODUCTION

Agile Software Methods (Agile Alliance 2006) have insufficient focus on quantified

performance levels (that is, metrics stating the required qualities, resource savings and workload

capacities) of the software being developed. Specifically, there is often no quantification of the

main reasons why a project was funded (that is, metrics stating the required business benefits,

such as business advancement, better quality of service and financial savings). This means

projects cannot directly control the delivery of benefits to users and stakeholders. In turn, a

consequence of this is that projects cannot really control the corresponding costs of getting the

main benefits. In other words, if you don’t estimate quantified requirements, then you won’t be

able to get a realistic budget for achieving them. See Figure 1 for a scientist’s (Lord Kelvin’s)

opinion on the need for numerical data!

"In physical science the first essential step in the direction of learning any subject is to find

principles of numerical reckoning and practicable methods for measuring some quality

connected with it. I often say that when you can measure what you are speaking about, and

express it in numbers, you know something about it; but when you cannot measure it, when you

cannot express it in numbers, your knowledge is of a meagre and unsatisfactory kind; it may be

the beginning of knowledge, but you have scarcely in your thoughts advanced to the state of

Science, whatever the matter may be.”

 Lord Kelvin, 1893

Figure 1. A statement made by Lord Kelvin on the importance of measurement. From

http://zapatopi.net/kelvin/quotes.html [Last Accessed: April 2006]

Further, quantification must be utilized throughout the duration of an agile project, not just to

state requirements but, to drive design, assess feedback and, track progress. To spell this last

point out, quantification of the requirements (what do we want to control?) is only a first step in

getting control. The next steps, based on this quantification, are design estimation (how good do

we think our solutions are?) and measurement of the delivered results (how good were the

solutions in practice?). The key issue here is the active use of quantified data (requirements,

design estimates and feedback) to drive the project design and planning.

One radical conclusion to draw, from this lack of quantification, is that current conventional

agile methods are not really suitable for development of industrial products. The rationale for

this being that industry is not simply interested in delivered ‘functionality’ alone; they probably

already have necessary business functions at some level. Projects must produce competitive

products, which means projects must deliver specific performance levels (including qualities and

savings). To address this situation, it is essential that the explicit notion of quantification be

added to agile concepts.

See Figure 2 for a list of the benefits to agile development of using quantification.

Benefits of the Use of Quantification in Agile Development
• Simplify requirements (if the top few requirements are quantified, there is less need for copious
documentation as the developers are focused on a clearer, simpler ‘message’);
• Communicate quality goals much better to all parties (that is, users, customers, project

management, developers, testers, and lawyers);
• Contract for results. Pay for results only (not effort expended). Reward teams for results
achieved. This is possible as success is now measurable;
• Motivate technical people to focus on real business results;
• Evaluate solutions/designs/architectures against the quantified quality requirements;
• Measure evolutionary project progress towards quality goals and get early & continuous
improved estimates for time to completion;
• Collect numeric historical data about designs, processes, organizational structures for future
use. Use the data to obtain an understanding of your process efficiency, to bid for funding for
improvements and to benchmark against similar organizations!
Figure 2. What can we do better in agile development (or ‘at all’), if we quantify requirements

DEFINING QUALITY

The main focus for discussion in this chapter will be the quality characteristics, because that is

where most people have problems with quantification. A long held opinion of one of the authors

of this chapter (Tom Gilb) is that all qualities are capable of being expressed quantitatively (see

Figure 3).

The Principle Of 'Quality Quantification’

All qualities can be expressed quantitatively, 'qualitative' does not mean unmeasurable.

 Tom Gilb

Figure 3. Tom Gilb’s opinion that all qualities can be expressed numerically

A Planguage definition of ‘quality’ is given in Figure 4. Planguage is a planning language and a

set of methods developed by Tom Gilb over the last three decades (Gilb 2005). This next part of

the chapter will outline the Planguage approach to specifying and using quantitative

requirements to drive design and determine project progress.

Definition of Quality
Quality is characterized by these traits:
• A quality describes ‘how well’ a function is done. Qualities each describe the partial
effectiveness of a function (as do all other performance attributes).
• Relevant qualities are either valued to some degree by some stakeholders of the system - or
they are not relevant. Stakeholders generally value more quality, especially if the increase is free,
or lower cost, than the stakeholder-perceived value of the increase.
• Quality attributes can be articulated independently of the particular means (the designs and
architectures) used for reaching a specific quality level, even though achievement of all quality
levels depend on the particular designs used to achieve quality.
• A particular quality can potentially be a described in terms of a complex concept, consisting of
multiple elementary quality concepts, for example, ‘Love is a many-splendored thing!’
• Quality is variable (along a definable scale of measure: as are all scalar attributes).
• Quality levels are capable of being specified quantitatively (as are all scalar attributes).
• Quality levels can be measured in practice.
• Quality levels can be traded off to some degree; with other system attributes valued more by
stakeholders.
• Quality can never be perfect (no fault and no cost) in the real world. There are some valued
levels of a particular quality that may be outside the state of the art at a defined future time and
circumstance. When quality levels increase towards perfection, the resources needed to support
those levels tend towards infinity.
 (Gilb 2005)

Figure 4. Planguage definition of ‘quality’

QUANTIFYING REQUIREMENTS

Planguage enables capture of quantitative data (metrics) for performance and resource

requirements. A scalar requirement, that is, either a performance or resource requirement, is

specified by identifying a relevant scale of measure and stating the current and required levels on

that scale. See Figure 5, which is an example of a performance requirement specification. Notice

the parameters used to specify the levels on the scale (that is, Past, Goal. And Fail.

Tag:

Scale:

Meter:

Past:

Goal:

Fail:

Figure 5. Planguage parameters used to specify a performance requirement

EVALUATING DESIGNS

Impact Estimation (IE) is the Planguage method for evaluating designs. See Table 1, which

shows an example of a simple IE table. The key idea of an IE table is to put the potential design

ideas against the quantified requirements and estimate the impact of each design on each of the

requirements. If the current level of a requirement is known (its baseline, 0%), and the target

level is known (its goal or budget depending on whether a performance requirement (an

objective) or a resource requirement respectively, 100%), then the percentage impact of the

design in moving towards the performance/resource target can be calculated. Because the values

are converted into percentages, then simple arithmetic is possible to calculate the cumulative

effect of a design idea (sum of performance and sum of cost) and the performance to cost ratio

(see Table 1). You can also sum across the designs (assuming the designs are capable of being

implemented together and that their impacts don’t cancel each other out) to see how much design

you have that is addressing an individual requirement.

Table 1 also shows how you can take into account any uncertainties in your estimates. An

additional feature, not shown here, is to assess the credibility of each estimate by assigning a

credibility factor between 0.0 and 1.0. Each estimate can then be multiplied by its credibility

factor to moderate it.

While such simple arithmetic does not represent the complete picture, it does give a convenient

means of quickly identifying the most promising design ideas. Simply filling in an IE table gives

a much better understanding of the strengths and weaknesses of the various designs with respect

to meeting all the requirements.

 Design Ideas->

Requirements:
Goals and Budgets

Idea1

Impact

Estimates

Idea 2

Impact

Estimates

Sum for

Requirement/

(Sum of

Percentage
Impacts)

Sum of

Percentage
Uncertainty

Values

Safety

Deviation

1650hr
±0

840hr
±240

Reliability
300 <-> 3000 hours MTBF

 61%±0 31%±9%

92%

±9%

-108%

1min.
±4

6 min.
±9

Usability
20 <-> 10 minutes

 10%±40% 60%±90%

70%

±130%

-130%

Sum of Performance 71% 91%

500K
±200K

100K
±200K

Capital
0 <-> 1 million US$

50%±20 10%±20

60%

±40%

-10%

0 K$/Y
±180K

1 M$/Y
±720K

Maintenance
1.1M <-> 100K/year US$

 0%± 18% 100%±72%

100%

±90%

-50%

Sum of Cost 50% 110%

Performance to Cost Ratio

1.42
(71/50)

0.83
 (91/110)

Table 1. An example of a simple IE table (Gilb 2005)

Table 1 simply shows estimates for potential design ideas. However, you can also input the

actual measurements (feedback) from implementing the design ideas. There are two benefits to

this: you learn how good your estimates where for the design ideas implemented, and you learn

how much progress you have made towards your target levels. You can then use all the IE table

data as a basis to decide what to implement next.

EVOLUTIONARY DELIVERY

The final Planguage method we will discuss is Evolutionary Project Management (Evo). Evo

demands include the following:

• that a system is developed in a series of small increments (each increment typically taking

between 2% and 5% of the total project timescale to develop);

• that each increment is delivered for real use (maybe as Beta or Fieled trial) by real ‘users’ (any

stakeholder) as early as possible (to obtain business benefits, and feedback, as soon as possible).

• that the feedback from implementing the Evo steps is used to decide on the contents of the next

Evo step;

• that the highest value Evo steps are delivered earliest, to maximize the business benefit.

Note that ‘delivery’ of requirements is the key consideration. Each delivery is done within an

Evo step. It may, or may not, include the building or creation of the increment (Some Evo steps

may simply be further roll-out of existing software);

Development of necessary components will occur incrementally, and will be continuing in

parallel while Evo steps are being delivered to stakeholders. Most development will only start

when the decision has been taken to deliver it as the next Evo step. However, there probably will

be some increments that have longer lead-times for development, and so their development will

need to start early in anticipation of their future use. A project manager should always aim to

‘buffer’ his developers in case of any development problems by having in reserve some

components (readied in the ‘Backroom’) ready for delivery. The ‘Frontroom’ being the term for

the interface between developers and stakeholders – for implementation of the steps.

Planguage approach to Change

It is important to note that the quantified requirements, designs and implementation plans are not

‘frozen,’ they must be subject to negotiated change, over time. As Beck points out, “Everything

in software changes. The requirements change. The design changes. The business changes. The

technology changes. The team changes. … The problem isn’t change, per se, … the problem,

rather, is the inability to cope with change when it comes” (Beck 2000).

Planguage’s means of dealing with change is as follows:

• performance and resource requirements are quantified to allow rapid communication of any

changes in levels;

• IE tables allows dynamic reprioritization of design ideas and helps track progress towards

targets;

• Evo enables all types of change to be catered for ‘in-flight’, as soon as possible. There is

regular monitoring of what the best next Evo step to take.

DESCRIPTION OF THE PLANGUAGE PROCESS

To summarize and show how the methods (for quantifying requirements, evaluating designs and

evolutionary delivery) described earlier in this chapter fit together, here is a description of the

Planguage process for a project:

1. Gather from all the key stakeholders the top few (5 to 20) most critical goals that the project

needs to deliver. Give each goal a reference name (a tag).

2. For each goal, define a scale of measure and a ‘final’ goal level. For example:

Reliable:

Scale: Mean Time Before Failure,

Goal: 1 month.

3. Define approximately 4 budgets for your most limited resources (for example, time, people,

money, and equipment).

4. Write up these plans for the goals and budgets (Try to ensure this is kept to only one page).

5. Negotiate with the key stakeholders to formally agree the goals and budgets.

6. Draw up a list of design ideas: Ensure that you decompose the design ideas down into the

smallest increments that can be delivered (these are potential Evo steps). Use Impact Estimation

(IE) to evaluate your design ideas contributions towards meeting the requirements. Look for

small increments with large business value. Note any dependencies, and draw up an initial rough

Evo plan, which sequences the Evo steps. In practice, decisions about what to deliver for the next

Evo step will be made in the light of feedback (that is when the results from the deliveries of the

previous Evo steps are known). Plan to deliver some value (that is, progress towards the required

goals) in weekly (or shorter) increments (Evo steps). Aim to deliver highest possible value as

soon as possible.

7. Deliver the project in Evo steps.

• Report to project sponsors after each Evo step (weekly, or shorter) with your best available

estimates or measures, for each performance goal and each resource budget. On a single page,

summarize the progress to date towards achieving the goals and the costs incurred.

• Discuss with your project sponsors and stakeholders what design ideas you should deliver in

the next Evo step. This should be done in the light of what has been achieved to date and what is

left to do. Maximizing the business benefit should be the main aim.

8. When all goals are reached: ‘Claim success and move on.’ Free remaining resources for more

profitable ventures

Ten Planguage Values for an Agile Project

Simplicity

 1. Focus on real stakeholder values.

 Communication

 2. Communicate stakeholder values quantitatively.

 3. Estimate expected results and costs for weekly steps.

 Feedback

 4. Give deployment, of your understanding, weekly, to stakeholders, in their environment.

 5. Measure all critical aspects of the deployment.

 6. Analyze deviation from estimates.

 Courage

 7. Change plans to reflect weekly learning.

 8. Immediately implement valued stakeholder needs, next week.

 Don’t wait, don’t study (‘analysis paralysis’) and, don’t make excuses. Just Do It!

 9. Tell stakeholders exactly what you will deliver next week.

 10. Use any design, strategy, method, process that works quantitatively well - to get your

 results. Be a systems engineer, not a just programmer. Do not be limited by your craft

 background, in serving your paymasters

Figure 6. Planguage’s ten values for an agile project based around Beck’s Four Values for XP
(Beck 2000 Page 29)

Planguage Project Management Policy

• The project manager, and the project, will be judged exclusively on the relationship of

progress towards achieving the goals versus the amounts of the budgets used.

• The project team will do anything legal and ethical to deliver the goal levels within the

budgets.

• The team will be paid and rewarded for benefits delivered in relation to cost.

• The team will find their own work process and their own design.

• As experience dictates, the team will be free to suggest to the project sponsors (stakeholders)

adjustments to ‘more realistic levels’ of the goals and budgets.

Figure 7. Planguage policy for project management

CASE STUDY OF THE ‘Confirmit’ PRODUCT

Tom Gilb and his son, Kai taught the Planguage methods to the FIRM (Future Information

Research Management, in Norway) organization. Subsequently, FIRM used these methods in the

development of their Confirmit product. The results were impressive, so much so that they

decided to write up about their experiences (Johansen 2004, Johansen and Gilb 2005). In this

section, some of the details from this Confirmit product development project are presented.

Use of Planguage Methods

First, the quantified requirements were specified, including the target levels. Next, a list of

design ideas (solutions) was drawn up (see Figure 8 for an example of an initial design idea

specification).

Recoding:

Type: Design Idea [Confirmit 8.5].

Description: Make it possible to recode a marketing variable, on the fly, from Reportal.

Estimated effort: 4 team days.

Figure 8. A brief specification of the design idea, ‘Recoding’

The impacts of the design ideas on the requirements were then estimated. The most promising

design ideas were included in an Evo plan, which was presented using an Impact Estimation (IE)

table (see Tables 2 and 3, which show the part of the IE table applying to Evo Step 9. Note these

tables also include the actual results after implementation of step 9). The design ideas were

evaluated with respect to ‘value for clients’ versus ‘cost of implementation’. The ones with the

highest value-to-cost ratio were chosen for implementation in the early Evo steps. Note that

value can sometimes be defined by risk removal (that is, implementing a technically challenging

solution early can be considered high value if implementation means that the risk is likely to be

subsequently better understood). The aim was to deliver improvements to real external

stakeholders (customers, users), or at least to internal stakeholders (for example, delivering to

internal support people, who use the system daily and so can act as ‘clients’).

EVO STEP 9: DESIGN IDEA: ‘Recoding’

Estimated Scale

Level

Estimated

% Impact

Actual

Scale Level

Actual

% Impact

REQUIREMENTS

 Objectives

 Usability.Productivity

 65 <-> 25 minutes

 Past: 65 minutes.

 Tolerable: 35 minutes.

 Goal: 25 minutes.

65 – 20 =

45 minutes

50%

65 - 38 =

27 minutes

95%

 Resources

 Development Cost

 0 <-> 110 days

4 days

3.64%

4 days

3.64%

Table 2. A simplified version of part of the IE table shown in Table 3. It only shows the
objective, ‘Productivity’ and the resource, ‘Development Cost’ for Evo Step 9, ‘Recoding’ of the
Marketing Research (MR) project. The aim in this table is to show some extra data, and some
detail of the IE calculations. Notice the separation of the requirement definitions for the
objectives and the resources. The Planguage keyed icon ‘<->’ means ‘from baseline to target
level’. On implementation, Evo Step 9 alone moved the Productivity level to 27 minutes, or 95%
of the way to the target level

The IE table was used as a tool for controlling the qualities: estimated figures and actual

measurements were input into it. Each next Evo step was then decided, based on the results

achieved after implementation and delivery of the subsequent step.

Note, the results were not actually measured with statistical accuracy by doing a scientifically

correct large-scale survey (although FIRM are currently considering doing this). The impacts

described for Confirmit 8.0 (the ‘Past’ levels) are based on internal usability tests, productivity

tests, performance tests carried out at Microsoft Windows ISV laboratory in Redmond USA, and

from direct customer feedback.

Step 9

Design = ‘Recoding’

Current

Status

Improvements Goals

Estimated impact Actual impact

Units Units % Past Tolerable Goal Units % Units %

 Usability.Replaceability (feature count)
1.00 1.0 50.0 2 1 0
 Usability.Speed.New Features Impact (%)
5.00 5.0 100.0 0 15 5
10.00 10.0 200.0 0 15 5
0.00 0.0 0.0 0 30 10
 Usability.Intuitiveness (%)
0.00 0.0 0.0 0 60 80
 Usability.Productivity (minutes)
20.00 45.0 112.5 65 35 25 20.00 50.00 38.00 95.00
 Development resources
 101.0 91.8 0 110 4.00 3.64 4.00 3.64

Table 3. Details of the real IE table, which was simplified in Table 2. The two requirements

expanded in Table 1 are highlighted in bold. The 112.5 % improvement result represents a 20

minutes level achieved after the initial 4 day stint (which landed at 27 minutes, 95%) . A few

extra hours were used to move from 27 to 20 minutes, rather than use the next weekly cycle.

The Results Achieved

Due to the adoption of Evo methods there were focused improvements in the product quality

levels. See Table 4, which gives some highlights of the 25 final quality levels achieved for

Confirmit 8.5. See also Table 5, which gives an overview of the improvements by function (that

is, product component) for Confirmit 9.0. No negative impacts are hidden. The targets were

largely all achieved on time.

DESCRIPTION OF REQUIREMENT / WORK TASK PAST CURRENT

STATUS

Usability.Productivity: Time for the system to generate a survey 7200 sec 15 sec

Usability.Productivity: Time to set up a typical specified Market Research (MR)

report

65 min 20 min

Usability.Productivity: Time to grant a set of End-users access to a Report set and

distribute report login info.

80 min 5 min

Usability.Intuitiveness: The time in minutes it takes a medium experienced

programmer to define a complete and correct data transfer definition with Confirmit

Web Services without any user documentation or any other aid

15 min 5 min

Workload Capacity.Runtime.Concurrency: Maximum number of simultaneous

respondents executing a survey with a click rate of 20 seconds and a response time <

500 milliseconds, given a defined [Survey-Complexity] and a defined [Server

Configuration, Typical].

250 users 6000 users

Table 4. Improvements to product quality levels in Confirmit 8.5

FUNCTION PRODUCT

QUALITY

DEFINITION (quantification) CUSTOMER

VALUE

Authoring Intuitiveness Probability that an inexperienced user can

intuitively figure out how to set up a defined

Simple Survey correctly.

Probability

increased by 175%

(30% to 80%)

Authoring Productivity Time in minutes for a defined advanced user,

with full knowledge of Confirmit 9.0

functionality, to set up a defined advanced

survey correctly.

Time reduced by

38%

Reportal Performance Number of responses a database can contain

if the generation of a defined table should be

run in 5 seconds.

Number of

responses increased

by 1400%

Survey Engine Productivity Time in minutes to test a defined survey and

identify 4 inserted script errors, starting from

when the questionnaire is finished to the time

testing is complete and ready for production.

(Defined Survey: Complex Survey, 60

questions, comprehensive JScripting.)

Time reduced by

83% and error

tracking increased

by 25%

Panel

Management

Performance Maximum number of panelists that the

system can support without exceeding a

defined time for the defined task, with all

components of the panel system performing

acceptably.

Number of panelists

increased by 1500%

Panel

Management

Scalability Ability to accomplish a bulk-update of X

panelists within a timeframe of Z seconds.

Number of panelists

increased by 700%

Panel

Management

Intuitiveness Probability that a defined inexperienced user

can intuitively figure out how to do a defined

set of tasks correctly.

Probability

increased by 130%

Table 5. Some detailed results by function (product component) for Confirmit 9.0

The customers responded very favorably (see Figure 9).

 “I just wanted to let you know how appreciative we are of the new ‘entire report’ export

functionality you recently incorporated into the Reportal. It produces a fantastic looking report,

and the table of contents is a wonderful feature. It is also a HUGE time saver.”

Figure 9. An example of pilot customer (Microsoft) feedback

On the second release (Confirmit 9.0) using Planguage, and specifically the Evo method, the

Vice President (VP) of Marketing proudly named the Evo development method on the FIRM

website (see Figure 10. A line executive bragging about a development method is somewhat

exceptional!).

“FIRM, through evolutionary development, is able to substantially increase customer value by

focusing on key product qualities important for clients and by continuously asking for their

feedback throughout the development period. Confirmit is used by the leading market research

agencies worldwide and Global 1000 companies, and together, we have defined the future of

online surveying and reporting, represented with the Confirmit 9.0.”

Figure 10. Comments by FIRM’s VP of Marketing, Kjell Øksendal

Details of the quantified improvements were also given to their customers (see Figure 11, which

is an extract from the product release for Confirmit 9.0 published on the organization’s website).

News release

2004-11-29: Press Release from FIRM

New version of Confirmit increases user productivity up to 80 percent

NOVEMBER 29th, 2004: FIRM, the world’s leading provider of online survey & reporting software, today

announced the release of a new version of Confirmit delivering substantial value to customers including increased

user productivity of up to 80 percent.

FIRM is using Evolutionary (EVO) development to ensure the highest focus on customer value through early and

continuous feedback from stakeholders. A key component of EVO is measuring the effect new and improved

product qualities have on customer value. Increased customer value in Confirmit 9.0 includes:

* Up to 175 percent more intuitive user interface*

* Up to 80 percent increased user productivity in questionnaire design and testing*

* Up to 1500 percent increased performance in Reportal and Panel Management*

Figure 11. Confirmit 9.0 release announcement from the FIRM website
http://www.firmglobal.com. It gives detail about the method and the quantified product results

Impact on the developers

Use of Evo has resulted in increased motivation and enthusiasm amongst the FIRM developers,

because it has opened up ‘empowered creativity’ (Trond Johansen, FIRM Project Director). The

developers can now determine their own design ideas, and are not subject to being dictated the

design ideas by marketing and/or customers, who often tend to be amateur technical designers.

Daily, and more often, product builds, called Continuous Integration (CI, using Cruise Control),

were introduced. Evo combined with CI, is seen as a vehicle for innovation and inspiration.

Every week, the developers get their work out onto the test servers, and receive feedback.

By May 2005, FIRM had adopted the approach of using a ‘Green Week’ once monthly. In a

Green Week, the internal stakeholders are given precedence over the client stakeholders and can

choose what product improvements they would like to see implemented. The FIRM developers

chose to focus on the evolutionary improvement of about 12 internal stakeholder qualities (such

as testability and maintainability).

Initial difficulties in implementing Planguage

Even though Planguage was embraced, there were parts of Planguage that were initially difficult

to understand and execute at first. These included:

• Defining good requirements (‘Scales’ of measure) sometimes proved hard; (they only

had one day training initially, but after the first release saw the value in a weeks training!)

• It was hard to find ‘Meters’ (that is, ways of measuring numeric qualities, to test the

current developing quality levels), which were practical to use, and at the same time

measured real product qualities;

• Sometimes it took more than a week to deliver something of value to the client; (this

was mainly a test synchronization problem they quickly overcame).

• Testing was sometimes ‘postponed’ in order to start the next step. Some of these test

postponements were then not in fact done in later testing.

Lessons learned with respect to Planguage, especially the Evo method

Some of the lessons learnt about the use of Planguage, and especially the Evo method, included:

• Planguage places a focus on the measurable product qualities. Defining these clearly

and testably requires training and maturity. It is important to believe that everything can

be measured and to seek guidance if it seems impossible;

• Evo demands dynamic re-prioritization of the next development steps using the ratio of

delivering value for clients versus the cost of implementation. Data to achieve this is

supplied by the weekly feedback. The greatest surprise was the power of focusing on

these ratios. What seemed important at the start of the project may be replaced by other

solutions based on gained knowledge from previous steps;

• an open architecture is a pre-requisite for Evo;

• management support for changing the software development process is another pre-

requisite, but this is true of any software process improvement;

• The concept of daily builds, CI, was valuable with respect to delivering a new version

of the software every week;

• It is important to control expectations. ‘Be humble in your promises, but overwhelming

in your delivery’ is a good maxim to adopt;

• There needed to be increased focus on feedback from clients. The customers willing to

dedicate time to providing feedback need identifying. Internal stakeholders (like sales and

help desk staff) can give valuable feedback, but some interaction with the actual

customers is necessary;

• Demonstrate new functionality automatically, with screen recording software or early

test plans. This makes it easier for internal and external stakeholders to do early testing;

• Tighter integration between Evo and the test process is necessary.

Conclusions of the Case Study

The positive impacts achieved on the Confirmit product qualities has proved that the Evo process

is better suited than the Waterfall process (used formerly) to developing the Confirmit product.

Overall, the whole FIRM organization embraced Planguage, especially Evo. The first release,

Confirmit 8.5 showed some of Planguage’s great potential. By the end of November 2004, with

the second release (Confirmit 9.0), there was confirmation that the Evo method can, consistently

and repetitively, produce the results needed for a competitive product. Releases 9.5 and 10.0 of

Confirmit continued this pattern of successful product improvements delivered to the customers

(as of November 2005).

It is expected that the next versions of Confirmit will show even greater maturity in the

understanding and execution of Planguage. The plan is to continue to use Planguage (Evo) in the

future.

CHAPTER SUMMARY

Use of quantified requirements throughout the implementation of a project can provide many

benefits as has been demonstrated by the FIRM organization’s use of Planguage (including Evo).

The key messages of this chapter can be summarized in twelve Planguage principles (see Figure

12). By adopting such principles, agile methods would be much better suited for use in the

development of industrial products.

Twelve Planguage Principles

1. Control projects by a small set of quantified critical results (that is, not stories, functions,

features, use cases, objects, etc.). Aim for them to be stated on one page!

2. Make sure those results are business results, not technical.

3. Align your project with your financial sponsor’s interests!

4. Identify a set of designs. Ensure you decompose the designs into increments of the smallest

possible deliverables.

5. Estimate the impacts of your designs, on your quantified goals.

6. Select designs with the best performance to cost ratios; do them first.

7. Decompose the workflow and/or deliveries, into weekly (or 2% of budget) time boxes.

8. Give developers freedom, to find out how to deliver those results.

9. Change designs, based on quantified experience of implementation (feedback).

10. Change requirements, based in quantified experience (new inputs).

11. Involve the stakeholders, every week, in setting quantified goals.

12. Involve the stakeholders, every week, in actually using increments.

Figure 12. Twelve Gilb Planguage principles for project management/software development.

REFERENCES

Agile Alliance, 2006, URL: http://www.agilealliance.com/ [Last Accessed: April 2006].

Beck, Kent, Extreme Programming Explained: Embrace Change, 2000, Addison-Wesley. ISBN

0201616416.

Gilb, Tom, Competitive Engineering: A Handbook For Systems Engineering, Requirements

Engineering, and Software Engineering Using Planguage, 2005, Elsevier Butterworth-
Heinemann, ISBN 0750665076.

Johansen, Trond, FIRM: From Waterfall to Evolutionary Development (Evo) or How we rapidly
created faster, more user-friendly, and more productive software products for a competitive
multi-national market, Proceedings of European Software Process Improvement (EuroSPI),
Trondheim, Norway, November 10-12, 2004, Torgeir Dingsøyr (Ed.), Lecture Notes in
Computer Science 3281, Springer 2004, ISBN 3-540-23725-9. See also Proceedings of
INCOSE 2005 (Johansen and Gilb 2005) and FIRM website,
http://www.confirmit.com/news/release_20041129_confirmit_9.0_mr.asp/ [Last Accessed:
February 2006].

AUTHOR BIOGRAPHIES

Tom Gilb has been an independent consultant, teacher and author, since 1960. He works mainly

with multinational clients; helping improve their organizations, and their systems engineering

methods.

Tom’s latest book is ‘Competitive Engineering: A Handbook For Systems Engineering,

Requirements Engineering, and Software Engineering Using Planguage’ (2005). Other books are

‘Software Inspection’ (Gilb and Graham 1993) and ‘Principles of Software Engineering

Management’ (1988). His ‘Software Metrics’ book (1976 Out of Print) has been cited as the

initial inspiration (IBM, Radice) for what is now CMMI Level 4.

Tom’s key interests include business metrics, evolutionary delivery, and further development of

his planning language, ‘Planguage’.

Tom@Gilb.com

http://www.Gilb.com

Lindsey Brodie is currently studying for a PhD. at Middlesex University, UK. She holds a MSc.

in Information Systems Design. She edited Tom Gilb’s latest book, Competitive Engineering.

Previously she worked for many years for International Computers Limited (ICL), UK carrying

out technical project support, product support (operating system and database support), and

business process and management consultancy.

Lindsey is a member of the British Computer Society and a Chartered Engineer (MBCS CITP

CEng).

Author Contact: L.Brodie@mdx.ac.uk

END OF CHAPTER

Version 14 April 2006 01:05 TG

