
Principle 1
Control projects by quantified
critical-few, results. 1 Page total !
(not stories, functions, features, use
cases, objects, ..)
Most of our so-called functional
requirements, are not actually
requirements. They are designs to
meet unarticulated, higher-level, and
critical, requirements. For example
the requirement to have a ‘password’
is hiding the real ‘security’ quality
requirement. Most of these really-
critical project quality objectives are
almost always buried in pre-project
management slides, and formulated
in a woolly and un-testable way (‘very
robust’, ‘highly user-friendly’). They
are never actually used in project
architecture, contracting or testing.
This is a major cause of project
failure. Management and project
sponsors are led to believe the
project will deliver certain improve-
ments. In practice the agile culture
has no mechanism for following up
and delivering expected values.
Scrum would argue that that is the
job of the product owner. But even
top Scrum gurus openly acknowledge
that the situation in practice is
nowhere near what it should be.
We simply do not teach and practice
the necessary mechanisms. Software
people were always bad at this, but
agile did not deliver on its’ own initial
ideals.

Principle 2
Make sure those results are
business results, not technical.
Align your project with your financial
sponsor’s interests!
People do not do development
projects to get function, features and
stories. Yet these seem dominant in
the current agile practice. We need
functions, stories and perhaps
‘features’ to make sure the applica-
tion will do the fundamental business
activities that are expected. Like
‘issue an Opera ticket’. ‘Give a Child
discount’. But these fundamentals are
never the primary drivers for invest-
ment in a development project. As a
rule, the stakeholders already have
those functions in place, in current
systems. If you look at the project
documentation, someone ‘sold’
management on better systems –
some improvements. Faster, cheaper,
more reliable etc.

These are usually specifically speci-
fied somewhere, and are always
quantifiable, as improvements.
Unfortunately we, in agile develop-
ment avoid being specific at this
level. We use adjectives like ‘better’,
‘improved’, ‘enhanced’ and leave it at
that. We have learned long ago that
our customer is too uneducated, and
too stupid (common sense should
compensate for lack of education)
to challenge us on these points.
They happily pay us a lot of money
for worse systems than they already
have.
	 We need to make it part of our
development culture, to carefully
analyze business requirements (‘save
money’), to carefully analyze stake-
holder needs (‘reduce employee
training costs’), to carefully analyze
application quality requirements
(‘vastly better usability’). We need to
express these requirements quanti-
tatively. We need to systematically
derive stakeholder requirements
from the business requirements. We
need to derive the application quality
requirements from the stakeholder
requirements. We need then to
design, and architect, the systems to
deliver the quantified requirement
levels, on time. We are nowhere near
trying to do this in current conven-
tional agile methods. So we consist-
ently fail the business, and the
stakeholders, by not delivering the
quality levels required.
	 Let me be clear here. You can do
this as the system evolves, and it can
be expressed on a single page of
quantified top-level requirements. So
don’t try the ‘up front bureaucracy’
argument on me!

Principle 3
Give developers freedom, to find out
how to deliver those results.
The worst scenario I can imagine is
when we allow real customers, users,
and our own salespeople to dictate
‘functions and features’ to the
developers, carefully disguised as
‘customer requirements’. Maybe
conveyed by our Product Owners.
If you go slightly below the surface,
of these false ‘requirements’ (‘means’,
not ‘ends’), you will immediately find
that they are not really requirements.
They are really bad amateur design,
for the ‘real’ requirements – implied

Continues on next page

By © Tom@Gilb.com

12 13

The more often you deploy, the more someone
have to wait for someone else. The solution is
to make sure the code is always deployable.

Tore Vestues is an architect and developer at BEKK Consulting.
He puts his pride into his work and thinks quality must be built
into all aspects of software development, from process through
code to deploy.

New Agile Principles:
with focus on value delivered
to stakeholders

but not well defined. I gave one
example earlier (a real one, Ohio)
where ‘password’ was required, but
‘security’ (the real requirement) was
not at all defined.
	 We are so bad at this, that you
can safely assume that almost all
so-called requirements are not real
requirements, they are bad designs.
All you have to do to see this is ask
‘why’? Why ‘Password’? (Security
stupid!) – Oh! Where is the Security
requirement? Not there, or worse,
stated in management slides as
‘State of the Art Security’ – and then
left to total amateurs (the coders)
to design it in!
	 Imagine if Test Driven Develop-
ment (TDD) actually tested the
quality levels, like the ‘security’
levels, to start with? Far from it;
and TDD is another disappointment
in the agile kitbag.
	 In my job analyze real require-
ments about once a week, interna-
tionally, and find very few excep-
tions – i.e. situations where the real
requirements are defined, quanti-
fied, and then designed (engineered,
architected) towards. Agile culture
has no notion of real engineering at
all. Softcrafting (coding), sure. But
not engineering – a totally alien
culture.
	 You cannot design correctly
towards a vague requirement
(‘Better Security’). How do I know
if a password is a good design? If
the Security requirement is clear
and quantified (and I simplify here!)
like “Less than 1% chance that
expert hackers can penetrate the
system within 1 hour of effort”, then
we can have an intelligent discus-
sion about the 4-digit pin code, that
some think is an OK password.
	 I have one client who pointedly
refuses to accept functions and
features requirements from any
customer or salesperson. They focus
on a critical few product qualities
(like the usability attribute ‘Intui-
tiveness’) and let their developers
engineer technical solutions, to
measurably meet their quantified
quality requirements.
	 This gets the right job (design)
done by the right people (develop-
ers, not users or customers)
towards the right requirements
(higher level overall views of the
qualities of the application). This

client of mine even do their ‘refac-
toring’ by iterating towards a set
of long-term quality requirements
regarding maintainability, and
testability. Probably just a coinci-
dence that my client’s leaders have
real engineering degrees?

Principle 4
Estimate the impacts of your
designs, on your quantified goals.
I take quantified improvement
requirements for granted. So do
engineers. Agilistas do not seem to
have heard of the ‘quantified quality’
concept. This means they cannot
deal with specific, or ‘high’, quality
levels.
 	 The concept of ‘design’ also
seems alien. The only mention of
design or architecture in the Agile
Manifesto is “The best architec-
tures, requirements, and de-
signs  emerge from self-organizing
teams.” There is some merit in this
idea. But, the Agile view on architec-
ture and design is missing most all
essential ideas of real engineering
and architecture.
	 We have to design and architect
with regard to many stakeholders,
many quality and performance
objectives, many constraints, and
many conflicting priorities. We have
to do so in an ongoing evolutionary
sea of changes with regard to all
requirements, all stakeholders, all
priorities, and all potential architec-
tures. Simply pointing to ‘self-or-
ganizing teams’ is a ‘method’ falling
far short of necessary basic con-
cepts of how to architect and
engineer complex, large-scale
critical systems..
	 Any proposed design or architec-
ture must be compared numerically,
with estimates, then measurements,
of how well it meets the multitude
of performance and quality require-
ments. WE must also measure to
what degree it eats up resources,
or threatens to violate constraints.
I recommend my Impact Estimation
table as a basic method for doing
this numeric comparison of many
designs to many requirements.
Impact Estimation has been proven
consistent with agile ideals and
practices, and given far better
reported results than other methods
(example Confirmit, gilb.com).
If a designer is unable to estimate

the many impacts of their suggested
designs, on our requirements, then
the designer is incompetent. Most
software designers, and software
‘architects’, are by this definition
incompetent. They don’t just fail to
estimate, they do not even under-
stand their obligation to try!

Principle 5
Select designs with the best value
impacts for their costs, do them
first.
Assuming we find the assertion
above, that we should estimate and
measure the potential, and real,
impacts of designs and architecture
on our requirements, to be common
sense. Then I would like to argue
that our basic method of deciding
‘which designs to adopt’, should be
based on which ones have the best
value for money. Scrum, like other
methods, focuses narrowly on
estimating effort. This is not the
same as also estimating the multi-
ple values contributed to the critical
project objectives (which ‘Impact
Estimation’ does routinely). It seems
strange to me that agile methods
understand the secondary concept
of estimating costs, but never deal
with the primary concept of esti-
mating value to stakeholders, as
defined by their improvement
requirements. There is little point in
managing cost, if you cannot first
manage value. The deeper problem
here is probably not Agile methods,
but is a total failure of our business
schools to teach managers much
more than about finance, and
nothing about quality and values.
If management were awake and
balanced, they would demand far
more accountability with regard to
value delivered by software devel-
opers and IT projects. But the
development community has long
since realized that management was
asleep on the job, and lazily taken
advantage of it.

Principle 6
Decompose the workflow, into weekly
(or 2% of budget) time boxes.
At one level the Agilistas and I
agree, that dividing up big projects
into smaller chunks, of a week or so,
is much better than a Waterfall/Big
Bang approach.
	 But I would argue that we need to

do more than chunk by ‘product
owner prioritized requirements’. We
need to chunk the value flow itself
– not just by story/function/use
cases. This value chunking is similar
to the previous principle of prioritiz-
ing the designs of best value/cost.
We need to select, next week (next
value delivery step to stakeholders)
the greatest value we can produce in
an arbitrarily small step (our team,
working a week). In principle this is
what the Scrum Product owner
should be doing. But I don’t think
they are even remotely equipped to
do this well. They just do not have
the quantified value requirements
(above), and the quantified design
estimates (above) to make it happen
in a logical manner.

Principle 7
Change designs, based on quanti-
fied value and cost experience of
implementation.
If you get stepwise numeric feed-
back on the actual delivered value
of a design, compared to estimated
and perceived value, as is normal at
Confirmit, then you will on occasion
be disappointed with value
achieved. This will give you the
opportunity to reconsider your
design, or your design implementa-
tion, in order to get the value you
need, no matter your previous lack
of understanding. You might even
learn that ‘coding alone is not
enough’ to deliver value to stake-
holders.
	 I fear that this realistic insight
possibility is largely lost; since the
agile methods neither quantify value
required, nor quantify ‘value expect-
ed’ from a step. The result is that we
will get stuck with bad designs until
it is too late. That does not seem
very ‘agile’ to me.

Principle 8
Change the requirements, based on
quantified value, cost experience,
& new inputs.
Sometimes the quantified quality-
and-value requirements are overam-
bitious. It is too easy to dream of
great improvement, without being
aware of its true cost, or state of
the art limitations. Sometimes we
have to learn the reality of what we
can or should require, by practical
experience. This is of course normal

engineering and
science. To learn
technical and
economic realities
step by step.
	 But the agile
community, as we
have pointed out,
has little concept of
quantifying any require-
ments. Consequently they
cannot learn what is realistic.
They will just get what they get, by
chance or custom.
	 If they did quantify their key
requirements, and if they did
measure the incremental numeric
results, then if requirements were
either overambitious, or unaccept-
ably costly, we would have a chance
to react quickly (agility).

Principle 9
Involve the stakeholders, every
week, in setting quantified value
goals.
Agile methods refer to users and
customers. The terms used are
‘sponsors, developers, and users,
customers’. In systems engineering
(incose.org) there is no doubt that
the generic concept is ‘stakeholder’.
Some parts of software engineering
have been adopting a stakeholder
paradigm. But agile methods do not
mention the concept. In real projects,
of moderate size, there are
20 to 40 interesting stakeholder
roles worth considering. Stakehold-
ers are sources of critical require-
ments. Microsoft did not worry
enough about a stakeholder called
the EU – a costly mistake. Every
failed project – and we have far too
many – you will find a stakeholder
problem at the root. Stakeholders
have priorities, and their various
requirements have different
priorities. We have to keep system-
atic track of these. Sorry if it
requires mental effort. We cannot
be lazy and then fail. I doubt if a
Scrum Product Owner is trained or
equipped to deal with the richness
of stakeholders and their needs.
	 But it can never be a simple
matter of analyzing all stakeholders
and their needs, and priorities of
those needs up front. The fact of
actual value delivery on a continuous
basis, will change needs and priori-
ties. The external environment of

stakeholders
(politics,
competitors,
science,
economics)
will constantly

change their
priorities, and

indeed even change
the fact of who the

stakeholders are. So we
need to keep some kind of line

open to the real world, on a continu-
ous basis. We need to try to sense
new prioritized requirements as
they emerge, in front of earlier
winners. It is not enough to think of
requirements as simple functions
and use cases. The most critical and
pervasive requirements are overall
system quality requirements, and it
is the numeric levels of the ‘ilities’
that are critical to adjust, so they
are in balance with all other consid-
erations. A tricky business indeed,
but – are we going to really be
‘agile’? Then we need to be realistic
– and current agile methods are not
even recognizing the stakeholder
concept. Head in the sand, if you ask
me!

Principle 10
Involve the stakeholders, every
week, in actually using value
increments.
Finally – the stakeholders are the
ones who should get value delivered
incrementally, at every increment of
development. I believe that should
be the aim of each increment. Not
‘delivering working code to custom-
ers’. This means you need to recog-
nize exactly which stakeholder type
is projected to receive exactly which
value improvement, and plan to have
these stakeholders, or a useful
subset of them, on hand to get the
increment, and evaluate the value
delivered. Current agile methods are
not set up to do this, and in fact do
not seem to care at all about value
or stakeholders.
	 In fact developers would have to
consider the whole system, not just
the code, in order to deliver real
value – and coders feel very uncom-
fortable with anything outside their
narrow domain.
	 It is amazing, isn’t it, that they
have been handed so much power, to
screw up society, by ‘managers’?

14 15

10
 N

ew
 A

gi
le

 p
ri

nc
ip

le
s

co
nt

in
ue

d

