
© Gilb.com

Super Methods:  
New Ways for Europe to do

much better software
‘engineering’ than the rest

of the world
one hour, + 15 minutes qa then a break, a separate qa session later

By Tom Gilb

TomsGilb@Gmail.com
www,Gilb.com

MASTER

2 February 2012 1

mailto:TomsGilb@Gmail.com

© Gilb.com

 Super Methods:  
NEXT SLIDE = SUMMARY  

New Ways for Europe to do much better software engineering than the rest of the
world

• Background:
– Most of the world of software development is filled with poor practices, which have lead

to decades-long consistent-failure to deliver expected software qualities, on time, and
under budget.

– The US-based latest fashion ideas are themselves poor conceptually, and then they are
accepted and practiced uncritically, and in haphazard and second-rate ways

– If Europe, as a high cost area, is to survive in the long term, it must now start to lead in
delivering value for money. Old Europe is clearly hopeless and unmotivated. But, New
Europe is capable and motivated: but maybe so young they have not yet learned about
the powerful proven ideas that they can apply to master the software business.

– The methods I am going to suggest are well proven, and well documented, in practice,
with our own clients including IBM, HP, Citigroup, JP Morgan, Boeing, Ericsson, Sony and
many smaller companies.

– But, they are not well taught, and are not well known outside of the places that
practice them. Those who choose to practice them can expect quick measurable
improvements, and a competitive advantage over popular practices elsewhere.

– In summary the methods represent a paradigm shift from software as a craft (coding) to
software as a real engineering discipline. The engineers will beat, or manage, the
‘Chinese army’ of coders.

2 February 2012 2

© Gilb.com

 Super Methods:  
New Ways for Europe to do much better software

engineering than the rest of the world

<

• Bad Practices = Project Failure
• US led culture is NOT impressive (where is EU ?)
• Can New Euope LEAD?
• These are Well Proven Methods
• NOT TAUGHT, NOT KNOWN
• Quick proven measurable results = NORMAL

here
• a paradigm shift

– from software as a craft (coding)
– to software as a real engineering discipline.

2 February 2012 3

© Gilb.com

 Super Methods:  
New Ways for us to do much better software engineering

than others

• The Super Methods
– Quality Quantification
– Dynamic Design to Cost
– Iteration and Incrementation with Multidimensional

Quantified Quality and Cost Process Control
– Defect Prevention Process (DPP)
– Systems Engineering (for software projects)
– ‘No Cure, No Pay’ Contracting, and Project Management
– Specification Quality Control: SQC
– Quantified Software Process Control: Numeric XE
– Life Cycle Engineering of System and Product

Adaptability

2 February 2012 4

© Gilb.com

 Super Methods:  
New Ways for Europe to do much better software

engineering than the rest of the world

• The Super Methods

2 February 2012 5

© Gilb.com

Quality
Quantification

Putting 12345’s on the ‘-
ilities’

2 February 2012 6

© Tom@Gilb.com www.gilb.com

Quality: the concept, the noun  
Planguage Concept *125, Version: March 20, 2003

A ‘quality’ is
– a scalar attribute -|-|-|-|- (Scale symbol)
– reflecting ‘how well’ ------Past Level<----------->
– a system functions. (Fn)------Past Level<-------->

Performance
*434

Quality
*125

Workload Capacity
*459

Resource Saving
*429

How well How much How much
saved

How good

• “As I see it Tom Gilb was the inspiration for
much of what is defined in CMM Level 4.”

• Ron Radice (CMM Inventor at IBM, SEI Process Director) 1996 Salt lake City
• (agreed orally by Watts Humpreys - his IBM Boss)
• stt@stt.com www.stt.com

CMM Level 4 Basis

© Tom@Gilb.com www.gilb.com

Quality is characterized by these traits
1. Quality describes ‘how well’ a function is done.
2. Quality describes the partial effectiveness of a function (as do all other performance

attributes).
3. Quality is valued to some degree by some stakeholders of the system
4. More quality is generally valued by stakeholders; especially if the increase is free, or

lower cost, than the value of the increase.
5. Quality attributes can be articulated independently of the particular means (designs)

used for reaching a specific quality level –
6. even though all quality levels depend on the particular designs used to achieve them.
7. A particular quality can be a described in terms of a complex concept, consisting of

multiple elementary quality concepts.
8. Quality is variable (along a definable scale of measure: as are all scalar attributes).
9. Quality levels are capable of being specified quantitatively (as are all scalar

attributes).
10. Quality levels can be measured in practice.
11. Quality levels can be traded off to some degree; with other system attributes valued

more by stakeholders.
12. Quality can never be perfect (100%), in the real world.
13. There are some levels of a particular quality that may be outside the state of the art;

at a defined time and circumstance.
14. When quality levels increase towards perfection, the resources needed to support

those levels tend towards infinity.

© Tom@Gilb.com www.gilb.com

Quality is characterized by these traits
1. Quality describes ‘how well’ a function is done.
2. Quality describes the partial effectiveness of a function (as do all other performance

attributes).
3. Quality is valued to some degree by some stakeholders of the system
4. More quality is generally valued by stakeholders; especially if the increase is free, or

lower cost, than the value of the increase.
5. Quality attributes can be articulated independently of the particular means (designs)

used for reaching a specific quality level –
6. even though all quality levels depend on the particular designs used to achieve them.
7. A particular quality can be a described in terms of a complex concept, consisting of

multiple elementary quality concepts.
8. Quality is variable (along a definable scale of measure: as are all scalar attributes).
9. Quality levels are capable of being specified quantitatively (as are all scalar

attributes).
10. Quality levels can be measured in practice.
11. Quality levels can be traded off to some degree; with other system attributes valued

more by stakeholders.
12. Quality can never be perfect (100%), in the real world.
13. There are some levels of a particular quality that may be outside the state of the art;

at a defined time and circumstance.
14. When quality levels increase towards perfection, the resources needed to support

those levels tend towards infinity.

You can and should
quantify

Software and system
qualities

© Tom@Gilb.com www.gilb.com

Multiple Required Performance and Cost Attributes  
are the basis for architecture selection and evaluation

Function

Stakeholder B’s
Financial Budget

Effort

Elapse Time

Stakeholder A’s
Financial Budget

Usability

Reliability

Innovation

Environment

Security

Cost Reduction

Resource Performance

Client Accounts

>

>>
>

> >
>

>
>

>>

!

0%

100%

0%

100%

>[Operator]
[Management]

© Tom@Gilb.com www.gilb.com

What can we do better  
 (or ‘at all’), if we quantify quality ideas?

• Evaluation solutions/designs/architectures against the quantified quality
requirements (Impact Estimation)

• Test and measure the degree to which solutions meet quality and cost
expectations (when they were chosen)

• Measure evolutionary project progress towards quality goals
– And get early & continuous improved estimates for time to

completion
• Communicate quality goals much better to all parties (users, customers,

developers, testers, lawyers)
• Contract for results

– Pay for results only (not effort expended)
• Reward teams for results achieved
• Motivate technical people to focus on real business results
• Simplify requirements (the top few quantified- everything else is design)
• Collect numeric data about designs, processes, organizational structures,

to learn and use in future.
• Permits systematic corporate or academic research of a development

environment

© Tom@Gilb.com www.gilb.com

What can we do better  
 (or ‘at all’), if we quantify quality ideas?

• Evaluation solutions/designs/architectures against the quantified quality
requirements (Impact Estimation)

• Test and measure the degree to which solutions meet quality and cost
expectations (when they were chosen)

• Measure evolutionary project progress towards quality goals
– And get early & continuous improved estimates for time to

completion
• Communicate quality goals much better to all parties (users, customers,

developers, testers, lawyers)
• Contract for results

– Pay for results only (not effort expended)
• Reward teams for results achieved
• Motivate technical people to focus on real business results
• Simplify requirements (the top few quantified- everything else is design)
• Collect numeric data about designs, processes, organizational structures,

to learn and use in future.
• Permits systematic corporate or academic research of a development

environment

All
Software and System

Development and
Maintenance Processes

are dramatically affected
by Quality Quantification

© Gilb.com

Lack of clear top level project objectives has seen real
projects fail for $100+ million: personal experience, real

case
Bad Objectives, for 8 years

1. Central to The Corporations business strategy is to be
the world’s premier integrated <domain> service
provider.

2. Will provide a much more efficient user experience

3. Dramatically scale back the time frequently needed
after the last data is acquired to time align, depth
correct, splice, merge, recompute and/or do whatever
else is needed to generate the desired products

4. Make the system much easier to understand and use
than has been the case for previous system.

5. A primary goal is to provide a much more productive
system development environment than was previously the
case.

6. Will provide a richer set of functionality for supporting
next-generation logging tools and applications.

7. Robustness is an essential system requirement (see
partial rewrite in example at right)

8. Major improvements in data quality over current
practice

Quantified Objectives (in Planguage),
Robustness.Testability:
Type: Software Quality Requirement.
Version: 20 Oct 2006-10-20
Status: Demo draft,
Stakeholder: {Operator, Tester}.
Ambition: Rapid-duration automatic testing of
<critical complex tests>, with extreme operator setup
and initiation.

Scale: the duration of a defined [Volume]
of testing, or a defined [Type], by a
defined [Skill Level] of system operator,
under defined [Operating Conditions].
Goal [All Customer Use, Volume = 1,000,000 data
items, Type = WireXXXX Vs DXX, Skill = First Time
Novice, Operating Conditions = Field, {Sea Or
Desert}. <10 mins.

2 February 2012 14

© Gilb.com

VALUE CLARITY:  
Quantify the most-critical project objectives on day 1

P&L-Consistency&T P&L: Scale: total adjustments btw Flash/Predict
and Actual (T+1) signed off P&L. per day. Past 60 Goal: 15

Speed-To-Deliver: Scale: average Calendar days needed from New
Idea Approved until Idea Operational, for given Tasks, on given
Markets.  
Past [2009, Market = EURex, Task =Bond Execution] 2-3 months ?  
Goal [Deadline =End 20xz, Market = EURex, Task =Bond Execution] 5
days

Operational-Control: Scale: % of trades per day, where the calculated
economic difference between OUR CO and Marketplace/Clients, is
less than “1 Yen”(or equivalent).  
Past [April 20xx] 10% change this to 90% NH Goal [Dec. 20xy] 100%

Operational-Control.Consistent: Scale: % of defined [Trades] failing
full STP across the transaction cycle. Past [April 20xx, Trades=Voice
Trades] 95%  
Past [April 20xx, Trades=eTrades] 93%  
Goal [April 20xz, Trades=Voice Trades] <95 ± 2%>  
Goal [April 20xz, Trades=eTrades] 98.5 ± 0.5 %

Operational-Control.Timely.End&OvernightP&L Scale: number of
times, per quarter, the P&L information is not delivered timely to the
defined [Bach-Run].  
Past [April 20xx, Batch-Run=Overnight] 1 Goal [Dec. 20xy, Batch-
Run=Overnight] <0.5> Past [April 20xx, Batch-Run= T+1] 1 Goal [Dec.
20xy, Batch-Run=End-Of-Day, Delay<1hour] 1
Operational-Control.Timely.IntradayP&L Scale: number of times per
day the intraday P&L process is delayed more than 0.5 sec.
Operational-Control.Timely.Trade-Bookings Scale: number of trades
per day that are not booked on trade date. Past [April 20xx] 20 ?

Front-Office-Trade-Management-Efficiency Scale: Time from Ticket
Launch to trade updating real-time risk view  
Past [20xx, Function = Risk Mgt, Region = Global] ~ 80s +/- 45s ??  
Goal [End 20xz, Function = Risk Mgt, Region = Global] ~ 50% better?
Managing Risk – Accurate – Consolidated – Real Time

Risk.Cross-Product Scale: % of financial products that risk metrics
can be displayed in a single position blotter in a way appropriate for
the trader (i.e. – around a benchmark vs. across the curve).  
Past [April 20xx] 0% 95%. Goal [Dec. 20xy] 100%
Risk.Low-latency Scale: number of times per day the intraday risk
metrics is delayed by more than 0.5 sec. Past [April 20xx, NA] 1% Past
[April 20xx, EMEA] ??% Past [April 20xx, AP] 100% Goal [Dec. 20xy] 0%
Risk.Accuracy
Risk. user-configurable Scale: ??? pretty binary – feature is there or
not – how do we represent?  
Past [April 20xx] 1% Goal [Dec. 20xy] 0%
Operational Cost Efficiency Scale: <Increased efficiency (Straight
through processing STP Rates)>
Cost-Per-Trade Scale: % reduction in Cost-Per-Trade  
Goal (EOY 20xy, cost type = I 1 – REGION = ALL) Reduce cost by 60%
(BW)  
Goal (EOY 20xy, cost type = I 2 – REGION = ALL) Reduce cost by x %  
Goal (EOY 20xy, cost type = E1 – REGION = ALL) Reduce cost by x %  
Goal (EOY 20xy, cost type = E 2 – REGION = ALL) Reduce cost by 100%  
Goal (EOY 20xy, cost type = E 3 – REGION = ALL) Reduce cost by x %

2 February 2012 15

© Tom@Gilb.com www.gilb.com

EVO Plan Confirmit 8.5 in Evo Step Impact Measurement 
4 product areas were attacked in all: 25 Qualities concurrently, one quarter of a

year. Total development staff = 13

9
8

3
3

© Tom@Gilb.com www.gilb.com

Evo’s impact on Confirmit 9.0 product qualities 
Results from the second quarter of using Evo. 1/2

Productivity

Intuitiveness

Product quality

Time reduced by

38%
Time in minutes for a defined
advanced user, with full knowledge of
9.0 functionality, to set up a defined
advanced survey correctly.

Probability
increased by

175%

Probability that an inexperienced user
can intuitively figure out how to set up
a defined Simple Survey correctly.

Customer value Description

Productivity
Product quality

Time reduced by

83% and

error tracking
increased by 25%

Time (in minutes) to test a defined survey
and identify 4 inserted script errors, starting
from when the questionnaire is finished to
the time testing is complete and is ready for
production. (Defined Survey: Complex
survey, 60 questions, comprehensive
JScripting.)

Customer value Description

17February 2, 2012

© Tom@Gilb.com www.gilb.com

Evo’s impact on Confirmit 9.0 product qualities 
 Results from the second quarter of using Evo. 2/2

Number of responses
increased by 1400%

Number of responses a database can
contain if the generation of a defined table
should be run in 5 seconds.

Performance

Number of panelists
increased by 700%

Ability to accomplish a bulk-update of X
panelists within a timeframe of Z second

Scalability

Performance

Product quality

Number of panelists
increased by

1500%

Max number of panelists that the system
can support without exceeding a defined
time for the defined task, with all
components of the panel system performing
acceptable.

Customer value Description

18February 2, 2012

© Tom@Gilb.com www.gilb.com

Code quality – ”green” week
• In these ”green” weeks, some of the deliverables will be less

visible for the end users, but more visible for our QA department.
• We manage code quality through an Impact Estimation table.

Speed

Maintainability

Nunit Tests

PeerTests

TestDirectorTests

Robustness.Correctness

Robustness.Boundary
Conditions

ResourceUsage.CPU

Maintainability.DocCode

SynchronizationStatus

© Tom@Gilb.com www.gilb.com

THE PRINCIPLE OF 'QUALITY QUANTIFICATION'
• All qualities can be expressed quantitatively,
• 'qualitative' does not mean unmeasurable.  

 

"In physical science the first essential step in the
direction of learning any subject is to find principles of
numerical reckoning and practicable methods for
measuring some quality connected with it.

I often say that when you can measure what you
are speaking about, and express it in numbers, you
know something about it;

 but when you cannot measure it, when you cannot
express it in numbers, your knowledge is of a
meagre and unsatisfactory kind;

 it may be the beginning of knowledge, but you have
scarcely in your thoughts advanced to the state of
Science, whatever the matter may be.”
Lord Kelvin, 1893
from
http://zapatopi.net/kelvin/quotes.html

© Tom@Gilb.com www.gilb.com

Exercise: Aspects of Love, or 
Love is a many splendored thing!

• Make a list of of
love’s many aspects

• Quantify a
requirement for
one of those
aspects

See note for Sutra

© Tom@Gilb.com www.gilb.com

Love Attributes:  
Brainstormed By Dutch Engineers

•Kissed-ness
•Care
•Sharing
•Respect
•Comfort
•Friendship
•Sex
•Understanding
•Trust

• Support
• Attention
• Passion
• Satisfaction
• ...
• ...
• ...

© Tom@Gilb.com www.gilb.com

Trust [Caroline]

• Other aspects of
Trust:

– Broken
Agreements

– Late
Appointments

– Late delivery
– Gossiping to

Others

• Love.Trust.Truthfulness
Ambition: No lies.
Scale:
 Average Black lies/month from

[defined sources].
Meter:
 independent confidential log

from sample of the defined
sources.

Past Lie Level:
Past [My Old Mate, 2004] 42 <-Bart

Goal
 [My Current Mate, Year = 2005]

Past Lie Level/2
Black: Defined: Non White Lies

© Tom@Gilb.com www.gilb.com

Love: Biblical Dimensions :  
Bishop L Day, Boeing

A person who loves acts the following way toward
the person being loved:
1. suffereth long
2. is kind
3. envieth not
4. vaunteth not itself, vaunteth...:

or, is not rash (Vaunt = extravagant self
praise)

5. is not puffed up
6. Doth not behave itself unseemly
7. seeketh not her own
8. is not easily provoked
9. thinketh no evil
10. Rejoiceth not in iniquity (=an unjust act)
11. rejoiceth in the truth
12. Beareth all things
13. believeth all things
14. hopeth all things
15. endureth all things
16. never faileth

The biblical citation (Book of
First Corinthians I) gives the
quantification of the term
"love" (agape in Greek).
 The ‘quantification’
for love would be as follows:

------------>

© Tom@Gilb.com www.gilb.com

More Info Quality Quantification

• QQ Paper
– Quantifying Quality:  

How to Tackle
Quantification of the
Critical Quality aspects for
Projects for Both
Requirements and Designs

– http://www.gilb.com/tiki-
download_file.php?
fileId=124

• QQ Book Chapter (CE book)
– http://www.gilb.com/tiki-

download_file.php?fileId=26

• QQ Slides
– http://www.gilb.com/tiki-

download_file.php?
fileId=131

• L. Day Love Quantification
Paper
– http://www.gilb.com/tiki-

download_file.php?
fileId=335

• Love Quantification Slides
– Gilb, ACCU Lightening Talk
– http://www.gilb.com/tiki-

download_file.php?
fileId=388

http://www.gilb.com/tiki-download_file.php?fileId=124
http://www.gilb.com/tiki-download_file.php?fileId=124
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=131
http://www.gilb.com/tiki-download_file.php?fileId=131
http://www.gilb.com/tiki-download_file.php?fileId=335
http://www.gilb.com/tiki-download_file.php?fileId=335
http://www.gilb.com/tiki-download_file.php?fileId=388
http://www.gilb.com/tiki-download_file.php?fileId=388

© Gilb.com

Dynamic Design to Cost

2 February 2012 26

© Gilb.com 2011

The Risk Principles 
• 1. DRIVERS: If you have not specified all critical performance and quality levels

numerically – you cannot estimate project resources for those vague requirements.

• 2. EXPERIENCE: If you do not have experience data, about the resources needed for
your technical solutions, then you cannot estimate the project resources.

• 3. ARCHITECTURE: If you implement your project solutions all at once, without
learning their costs and interactions incrementally – you cannot expect to be able
to understand the results of many interactions.

• 4. STAFF: If a complex and large professional project staff is an unknown set of
people, or changes mid-project – you cannot expect to estimate the costs for so
many human variables.

• 5. SENSITIVITY: If even the slightest change is made, after an ‘accurate’
estimation, to any of the requirements, designs or constraints – then the estimate
might need to be changed radically. And – you probably will not have the
information necessary to do it, nor the insight that you need to do it.

February 2, 2012 27

© Gilb.com 2011

The Risk Principles 
Bottom Line = 

• 1. DRIVERS: If you have not specified all critical performance and quality levels
numerically – you cannot estimate project resources for those vague requirements.

• 2. EXPERIENCE: If you do not have experience data, about the resources needed for
your technical solutions, then you cannot estimate the project resources.

• 3. ARCHITECTURE: If you implement your project solutions all at once, without
learning their costs and interactions incrementally – you cannot expect to be able
to understand the results of many interactions.

• 4. STAFF: If a complex and large professional project staff is an unknown set of
people, or changes mid-project – you cannot expect to estimate the costs for so
many human variables.

• 5. SENSITIVITY: If even the slightest change is made, after an ‘accurate’
estimation, to any of the requirements, designs or constraints – then the estimate
might need to be changed radically. And – you probably will not have the
information necessary to do it, nor the insight that you need to do it.

February 2, 2012 28

“You cannot hope
To estimate

with useful accuracy
For large complex
software projects

© Gilb.com 2011

How much will ‘High Availability’ Cost? 
Just (99.90% to 99.98%) 00.08% more?

February 2, 2012 29

See communication re.David Long, AT&T 2010 in pptx note here

© Gilb.com 2011

How much will ‘High Availability’ Cost?

February 2, 2012 30

2 to 3,000 developers
for 8 years

© Gilb.com 2011

The Control Principles 
(detailed in paper and slides referenced at end here)

6. LEARN SMALL: Carry out projects in small increments of delivering requirements –
so you can measure results and costs, against (short term) estimates.

7. LEARN ROOT: If incremental costs for a given requirement level (and its designs)
deviate negatively from estimates – analyze the root cause, and change anything
about the next increments that you believe might get you back on track.

8. PRIORITIZE CRITICAL: You will have to prioritize your most critical requirements
and constraints: there is no guarantee you can achieve them all. Deliver ‘high-value
for resources-used’ first.

9. RISK FAST: You should probably implement the design ideas with the highest
value, with regard to cost and risk, early.

10. APPLY NOW: Learn early, learn often, learn well; and apply the learning to your
current project.

February 2, 2012 31

© Gilb.com 2011

The Control Principles 
(detailed in paper and slides referenced at end here)

6. LEARN SMALL: Carry out projects in small increments of delivering requirements –
so you can measure results and costs, against (short term) estimates.

7. LEARN ROOT: If incremental costs for a given requirement level (and its designs)
deviate negatively from estimates – analyze the root cause, and change anything
about the next increments that you believe might get you back on track.

8. PRIORITIZE CRITICAL: You will have to prioritize your most critical requirements
and constraints: there is no guarantee you can achieve them all. Deliver ‘high-value
for resources-used’ first.

9. RISK FAST: You should probably implement the design ideas with the highest
value, with regard to cost and risk, early.

10. APPLY NOW: Learn early, learn often, learn well; and apply the learning to your
current project.

February 2, 2012 32

You can dynamically adjust
Your project

To meet budgets and
deadlines

© Gilb.com 2011

We can simplify The Control Principles

1. Do something of value
 in a short time

2. Measure values and costs

3. Adjust what you do next,
 if necessary

Repeat
 until you no longer can find value for money

February 2, 2012 33

© Gilb.com 2011

In the Cleanroom Method, developed by IBM’s Harlan Mills (1980) they reported:  
(in Fact this is an Early ‘Agile’ Method!!) 

• “Software Engineering began to emerge in FSD” (IBM Federal Systems Division,
from 1996 a part of Lockheed Martin Marietta) “some ten years ago [Ed. about
1970] in a continuing evolution that is still underway:

• Ten years ago general management expected the worst from software
projects – cost overruns, late deliveries, unreliable and incomplete software

• Today [Ed. 1980!], management has learned to expect on-time, within
budget, deliveries of high-quality software. A Navy helicopter ship system,
called LAMPS, provides a recent example. LAMPS software was a four-year
project of over 200 person-years of effort, developing over three million, and
integrating over seven million words of program and data for eight different
processors distributed between a helicopter and a ship in 45 incremental
deliveries [Ed. Note 2%!]. Every one of those deliveries was on time and under
budget

• A more extended example can be found in the NASA space program,
• - Where in the past ten years, FSD has managed some 7,000 person-years of

software development, developing and integrating over a hundred million
bytes of program and data for ground and space processors in over a dozen
projects.

• - There were few late or overrun deliveries in that decade, and none at all in
the past four years.”

February 2, 2012 34

© Gilb.com 2011

In the Cleanroom Method, developed by IBM’s Harlan Mills (IBM SJ 4.1980) they
reported:  

Simplified Slide 

• “Software Engineering at IBM Federal Systems Division
• Before ‘Cleanroom’ Method– cost overruns, late deliveries, unreliable

and incomplete software
• Today [Ed. 1980!], management has learned to expect

on-time, within budget, deliveries of high-quality
software.

– A Navy helicopter ship system, called LAMPS ship in 45 incremental deliveries.

–Every one of those deliveries was on
time and under budget

• A more extended example can be found in the NASA space program,
• - There were few late or overrun deliveries in that decade,

• and none at all in the past four
years.”

February 2, 2012 35

© Gilb.com

Recent (20 Sept, 2011) Report on
Gilb Evo method (Richard Smith,

Citigroup)

• http://rsbatechnology.co.uk/blog:8
• Back in 2004, I was employed by a large investment bank in their FX e-commerce IT department as a business analyst.
• The wider IT organisation used a complex waterfall-based project methodology that required use of an intranet

application to manage and report progress.
• However, it's main failings were that it almost totally missed the ability to track delivery of actual value

improvements to a project's stakeholders, and the ability to react to changes in requirements and priority for the
project's duration.

• The toolset generated lots of charts and stats that provided the illusion of risk control. but actually provided very
little help to the analysts, developers and testers actually doing the work at the coal face.

• The proof is in the pudding;

– I have used Evo (albeit in disguise sometimes) on two large, high-risk projects in front-office investment banking
businesses, and several smaller tasks.

– On the largest critical project, the original business functions & performance objective requirements
document, which included no design, essentially remained
unchanged over the 14 months the project took to deliver,

– but the detailed designs (of the GUI, business logic, performance characteristics) changed
many many times, guided by lessons learnt and feedback gained by delivering a succession of early
deliveries to real users.

– In the end, the new system responsible for 10s of USD billions of notional risk, successfully went
live over over one weekend for 800 users worldwide,

and was seen as a big success by the sponsoring stakeholders.

2 February 2012 36

 “ I attended a 3-day course with you and Kai whilst at Citigroup in 2006”

http://rsbatechnology.co.uk/blog:8
http://rsbatechnology.co.uk/blog:8

© Gilb.com 2011

Advantages with Control Principles

1. You cannot waste much time or money
before you realize that you have false ideas
2. You can deliver value early, and keep
people happy
3. You are forced to think about the whole
system, including people (not just code)
4. So you are destined to see the true costs
of delivering value – not just the code costs
5. You will learn a general method that you
can apply for the rest of your career.

February 2, 2012 37

© Gilb.com 2011

Disadvantages of the  
Control Principles

1. You cannot hide your ignorance from
yourself any longer
2. You might have to do something not
taught at school, or not taught in textbooks
3. There will always be people who
criticize anything different or new
4. You cannot continue to hide your lack of
ability to produce results, inside a multi-
year delayed project.

February 2, 2012 38

© Gilb.com

Dynamic Design to Cost: more info

• More Info
– Paper on Estimation with many

links
• Volume 13 Issue 2 of SQP journal -

the March 2011 version.
• http://www.gilb.com/tiki-

download_file.php?fileId=460
• Estimation: A Paradigm Shift Toward

Dynamic Design-to Cost and Radical
Management

•

– Slides made for BCS SPA June 1
2011

• 'Estimation, a Waste of Time'
• http://www.gilb.com/tiki-

download_file.php?fileId=470

2 February 2012 39

© Gilb.com

Iteration and Incrementation
with Multidimensional

Quantified Quality and Cost
Process Control

2 February 2012 40

© Tom@Gilb.com www.gilb.com

EVO Plan Confirmit 8.5 in Evo Step Impact Measurement 
4 product areas were attacked in all: 25 Qualities concurrently, one quarter of a

year. Total development staff = 13

9
8

3
3

© Tom@Gilb.com www.gilb.com

Primary Evo Concept:  
Deliver Potential Value

• Incremental Value Delivery to Stakeholders

Stake-
holdersPotential Value

Plan Do

 Act Study

The Evo Cycle:
Viewed as a Deming PDSA Cycle

42February 2, 2012

© Tom@Gilb.com www.gilb.com

Deliver the highest value for resources

HIGHEST AVAILABLE Incremental Value Delivery to Stakeholders

Plan Do

 Act Study

30% 5% -15% 22% 40%

80%15%0%1%

Stake-
holdersPotential Value

43February 2, 2012

© Tom@Gilb.com www.gilb.com

Evo Concept: 
Potential Value to Many

• Incremental Value Deliveries to Many Stakeholders

Stake-
holdersPotential Value

Plan Do

 Act Study

Stake-holders

Potential Value

Stake-

holders

Potential Value

44February 2, 2012

© Tom@Gilb.com www.gilb.com

Evo Concept: Short Term Feedback  
“This looks like a change I can get value from!”

• Initial Feedback from Stakeholders, after Evo Cycle delivery

Stake-
holdersPotential Value

Plan Do

 Act Study
Perceived Value

45February 2, 2012

© Tom@Gilb.com www.gilb.com

Long-Term Real Value Feedback 
“This is the real value we have gotten to date, and what we expect to get

in the future!”

• 2 Kinds of Feedback from Stakeholders, when value
increment is really exploited in practice after
delivery

Stake-
holdersPotential Value

Plan Do

 Act Study
Perceived Value Info

Realized
Value Stake-

holders

Realized Value Information

46February 2, 2012

© Tom@Gilb.com www.gilb.com

Study critical factors in your environment  
“Budget cut, Deadline nearer, New CEO, Cheaper Technology”

• 2 Kinds of Feedback from Stakeholders, when value increment is really exploited in practice after delivery.
• Combined with other information from the relevant environment. Like budget, deadline, technology, politics,

laws, marketing changes.

Stake-
holdersPotential Value

Plan Do

 Act Study Perceived-Value Info

Realized
Value Stake-

holders

Realized-Value Information

Stake-
holders

Stake-
holders

Stake-
holders

Stake-
holders

Other
Critical
Factors

47February 2, 2012

© Tom@Gilb.com www.gilb.com 48

Agile project Management; Evo Policy

• Policy
• The project manager, and the project, will be judged exclusively

on
– the relationship of progress towards achieving the goals
– versus the amounts of the budgets used.
– The project team will do anything legal and ethical to deliver the

goal levels within the budgets.
• The team will be paid and rewarded for

– benefits delivered
– in relation to cost.

• The team will find their own work process and their own design.
• As experience dictates, the team will be free to suggest to the

project sponsors (stakeholders) adjustments to ‘more realistic
levels’ of the goals and budgets.

February 2, 2012

© Tom@Gilb.com www.gilb.com 49

Agile project Management; Evo Policy

• Policy
• The project manager, and the project, will be judged exclusively

on
– the relationship of progress towards achieving the goals
– versus the amounts of the budgets used.
– The project team will do anything legal and ethical to deliver the

goal levels within the budgets.
• The team will be paid and rewarded for

– benefits delivered
– in relation to cost.

• The team will find their own work process and their own design.
• As experience dictates, the team will be free to suggest to the

project sponsors (stakeholders) adjustments to ‘more realistic
levels’ of the goals and budgets.

February 2, 2012

© Gilb.com

Iteration and Incrementation with Multidimensional
Quantified Quality and Cost Process Control  

• REFERENCES 
 
1. Book “Competitive
Engineering” (ask me for full
digital copy by email)
– Chapter 10 Evo
– http://www.gilb.com/tiki-

download_file.php?fileId=77
–  

• 2. Book: Kai Gilb, Evo:
• http://www.gilb.com/tiki-

download_file.php?fileId=27
•  
 

• Papers:
• Confirmit Case of Evo

– How we rapidly created faster, more
user-friendly, and more productive
software products for a competitive
multi-national market.

– http://www.gilb.com/tiki-
download_file.php?fileId=32

• Evo Principles
– http://www.gilb.com/tiki-

download_file.php?fileId=59
• What are Evo methods?

– http://www.gilb.com/tiki-
download_file.php?fileId=55

• SLIDES
– Evo Method with Metrics

– http://www.gilb.com/tiki-
download_file.php?fileId=150

2 February 2012 50

http://www.gilb.com/tiki-download_file.php?fileId=77
http://www.gilb.com/tiki-download_file.php?fileId=77
http://www.gilb.com/tiki-download_file.php?fileId=27
http://www.gilb.com/tiki-download_file.php?fileId=27
http://www.gilb.com/tiki-download_file.php?fileId=27
http://www.gilb.com/tiki-download_file.php?fileId=32
http://www.gilb.com/tiki-download_file.php?fileId=32
http://www.gilb.com/tiki-download_file.php?fileId=59
http://www.gilb.com/tiki-download_file.php?fileId=59
http://www.gilb.com/tiki-download_file.php?fileId=55
http://www.gilb.com/tiki-download_file.php?fileId=55
http://www.gilb.com/tiki-download_file.php?fileId=150
http://www.gilb.com/tiki-download_file.php?fileId=150
http://www.gilb.com/tiki-download_file.php?fileId=150

© Gilb.com

Defect
Prevention

Process (DPP)  
= CMM(i) 5

• Robert G. Mays and Linda Jones IBM

2 February 2012 51

© Tom@Gilb.com www.gilb.com

How does DPP work?
DPP Detail
• After an Inspection Process, Major defects are

examined by the checking team. Half an hour
sessions.

– They are looking at a colleagues work,
colleague is there (the source of defects:
knows why)

• They arbitrarily select one, of a small group of
recurrent types of defects, to work on (3
minutes each). 10 in 30 minutes.

• They brainstorm root causes (organizational,
not personal)

– Like: misleading training course information
• They brainstorm possible ‘cures’

– Like: enhance slides, and tests to make the
point clearer.

• They may themselves, carry out the proposed
changes and try them to see if they work.
Keep it simple – prove concept works.

• Successful changes are picked up at
corporate quality level and instituted more
widely and more properly.

DPP Process Summary
• Grass roots teams

quickly analyze frequent
defects causes

• Brainstorm root causes
• Brainstorm cures for root

causes
• Pilot the changes locally

• If successful
– Spread corporate wide

February 2, 2012 52

© Tom@Gilb.com www.gilb.com

Effects of DPP: Grass roots wisdom
Detail
• Systemic (due to ‘common cause’)

defects are reduced quickly and in
volume (2/3 in year)

• The inside knowledge of local teams is
exploited – how things really work in
the real world – why the defects really
occurred

• The inside local understanding of
socially acceptable changes is used:
people will not suggest changes they
would hate to do themselves

• The feeling of ‘empowered creativity’ to
find process improvements that really
work, is very motivating to the grass
roots professionals!

– Big costly ideas that never work, as often
suggested by management, architects,
and interested suppliers, are not imposed
on the developers.

– Ideas that don’t work are discarded
quickly, or re-tuned to work better.

• Many small but practical
improvements, quickly and cheaply
deployed, 200-2,000 annually, add up to
major measurable change in quality.

• Any one group (like ‘test’, or a 4 person
development team) can use this
method on their own work, to prove
how well it works – improving quality.

Summary
• 2/3 annual defect

reduction

• Exploits practical shop
floor knowledge

• Suggested changes are
acceptable

• Empowered Creativity

• Many small practical
improvements

• DPP can be proven locally
as a pilot

February 2, 2012 53

© Tom@Gilb.com www.gilb.com

DPP Policy

Detail
• All interested teams will be given regular

opportunities to analyze their own defects
using the DPP process.

• They will be given the opportunity to try out
their solutions; and measure the effects of
their solutions.

• Local successful solutions will be adopted
more widely, by groups responsible for change
and improvement (CTO level)

• Local groups responsible for initially finding,
and successfully trying out improvements will
be suitably honoured and rewarded.

• The minimum amount of annual investment in
this activity is 5% of total work hours.

• Failure to successfully invest in this each year,
irrespective of excuses*, will be considered a
serious management failure.

– * ‘meeting deadlines’ is an invalid excuse.
Deadlines are a major reason for doing this
properly. Defects destroy deadlines!

– Investments early in critical projects can easily
save those projects.

Summary

• Frequent local
analysis

• Eat your own dog
food (try ideas)

• Spread good stuff
fast (ex. Douglas Templates)

• 5% investment
• Invest NOW, early in

project

February 2, 2012 54

© Tom@Gilb.com www.gilb.com

Cost of Quality over Time: Raytheon 95

The individual learning
curve ??

Cost of Rework
(non-conformance)

Cost of
Conformance

End 1988 End 1994

43% Start of Effort

5%

Bad
Process
Change

55February 2, 2012

© Tom@Gilb.com www.gilb.com

Cost of Quality over Time: Raytheon 95

The individual learning
curve ??

Cost of Rework
(non-conformance)

Cost of
Conformance

End 1988 End 1994

43% Start of Effort

5%

Bad
Process
Change

56February 2, 2012
www.sei.cmu.edu/reports/95tr017.pdf

© Tom@Gilb.com www.gilb.com

Positive Motivation: 
Personal Improvement

80 Majors Found
(~160-240 exist!)

40

23

8
00

20

40

60

80

100

0 1 2 3 4 5

Defects/Page

February April
Inspections of Gary’s Designs

“Gary” at  
McDonnell-Douglas

“We find an hour of doing
Inspection is worth ten hours of
company classroom training.”

A McDonnell-Douglas line
manager

“Even if Inspection did not have
all the other measurable quality
and cost benefits which we are
finding, then it would still pay off
for the training value alone.”

A McDonnellDouglas Director

57February 2, 2012

© Tom@Gilb.com www.gilb.com 58

Defect Rates  
in 2003 Pilot Financial Shop, London, Gilb Client  

Spec QC/Extreme Inspection + Planguage Requirements

Across 18 DV (DeVelopment) Projects using
the new requirements method, the average
major defect rate on first inspection is 11.2.

4 of the 18 DV projects were re-inspected
after failing to meet the Exit Criteria of 10
major defects per page.

A sample of 6 DV projects with requirements
in the ‘old’ format were tested against the
rules set of:

The requirement is uniquely identifiable
All stakeholders are identified.
The content of the requirement is ‘clear
and unambiguous’
A practical test can be applied to validate
it’s delivery.

The average major defect rate in this sample
was 80.4.

M
ajor defects/page

on 1st Q
uality C

ontrol

February 2, 2012

© Tom@Gilb.com www.gilb.com

Defect Detection strategies versus Defect
Prevention strategies

• Defect detection
– (inspection, test, customer reports)
– Is ineffective for getting high bug-freeness into

systems
– It is better than nothing
– Inspection is cheaper than test-and-debug

• Defect Prevention - is at 2 levels
– process improvement

• (CMMI Level 5)
– individual capability improvement

• (50% per motivated cycle)

• Defect prevention is BY FAR the smartest one
59February 2, 2012

© Tom@Gilb.com www.gilb.comHalf-day Inspection Economics. Gilb@acm.org

Prevention  
Costs

• 5%, stable at 5%
–of development costs
– (Raytheon 1993)

• 0.5 % of development costs
– (Mays 1995)

Deming Cycle

60February 2, 2012

© Tom@Gilb.com www.gilb.comHalf-day Inspection Economics. Gilb@acm.org

Defect Prevention Experiences:  
Most defects can be prevented from getting in

there at all

% of usual defects
prevented

•Years of continuous improvement effort

50%

70%
80%
90%

Mays & Jones (IBM) 1990

Mays 1993, User 1996 "72% in 2 years" <-tg

1 2 3 4 5 6

Cleanroom levels: approach zero def.
IBM MN 99.99%+ fixes:Key= "DPP"

North Carolina
IBM Research Triangle Park Networking Laboratory

61February 2, 2012

© Tom@Gilb.com www.gilb.comHalf-day Inspection Economics. Gilb@acm.org

Prevention + Pre-test Detection  
is the most effective and efficient

• Prevention data based on state of the art prevention experiences (IBM RTP),
Others (Space Shuttle IBM SJ 1-95) 95%+ (99.99% in Fixes)

• Cumulative Inspection detection data based on state of the art Inspection (in an
environment where prevention is also being used, IBM MN, Sema UK, IBM UK)

\

50%

70%
80%
90%

<-Mays & Jones 50% prevented(IBM) 1990

<- Mays 1993, 70% prevented

1 2 3 4 5 6

 "Prevented"

70% Detection
 by Inspection

95% cumulative detection
by Inspection (state of the art limit)

Test

 "Detected
Cheaply"

100%Use

62February 2, 2012

© Tom@Gilb.com www.gilb.comHalf-day Inspection Economics. Gilb@acm.org

IBM MN & NC DP Experience
• 2162 DPP Actions implemented

– between Dec. 91 and May 1993 (30 months)<-Kan
• RTP about 182 per year for 200 people.<-Mays 1995

– 1822 suggested ten years (85-94)
– 175 test related

• RTP 227 person org<- Mays slides
– 130 actions (@ 0.5 work-years
– 34 causal analysis meetings @ 0.2 work-years
– 19 action team meetings @ 0.1work-years
– Kickoff meeting @ 0.1 work-years
– TOTAL costs 1% of org. resources

• ROI DPP 10:1 to 13:1, internal 2:1 to 3:1
• Defect Rates at all stages 50% lower with DPP

63February 2, 2012

© Gilb.com

Defect Prevention Process (DPP)

Papers
• Raytheon Electronic Systems

Experience in Software Process
Improvement

– Technical Report CMU/SEI-95-TR-017,
ESC, TR-95-017

– www.sei.cmu.edu/reports/95tr017.pdf

• Experiences with Defect Prevention.
(1990) at IBM Systems Journal , Robert
G, Mays

– http://agileconsortium.pbworks.com/
f/
Mays1990ExperiencesDefectPreventionI
BMSysJ.pdf

• R Mays IBM SJ Paper on Defect
Prevention Process, DPP

– Chapter 17 in Gilb SW Inspection

Case Aircraft Mfgr.
• DAC Case:

– The experiences of
implementations of Gilb's
Inspection methods on
large scale quality control
of engineering drawings
and engineering orders.

– http://www.gilb.com/tiki-
download_file.php?
fileId=254

– http://www.gilb.com/tiki-
download_file.php?
fileId=253

2 February 2012 64

http://www.sei.cmu.edu/reports/95tr017.pdf
http://www.sei.cmu.edu/reports/95tr017.pdf
http://www.sei.cmu.edu/reports/95tr017.pdf
http://www.sei.cmu.edu/reports/95tr017.pdf
http://agileconsortium.pbworks.com/f/Mays1990ExperiencesDefectPreventionIBMSysJ.pdf
http://agileconsortium.pbworks.com/f/Mays1990ExperiencesDefectPreventionIBMSysJ.pdf
http://www.gilb.com/tiki-download_file.php?fileId=254
http://www.gilb.com/tiki-download_file.php?fileId=253
http://www.gilb.com/tiki-download_file.php?fileId=253

© Gilb.com

Systems Engineering  
(for software projects)

2 February 2012 65

www.INCOSE.org

© Gilb.com

Systems level

Not
• Working code to the

customer
• Software Engineer

(=coder)

But this
• Measurable value delivery

to the stakeholder
• Everything managed that

is necessary to actually
deliver value
– Motivation, information,

training, data, contractds,
hardware, and maybe….
code

2 February 2012 66

© Gilb.com

‘No Cure, No
Pay’

Contracting,
and Project
Management

• This is NOT a widespread practice. But it should be, and I have
done it to a limited extend for decades in practice.

2 February 2012 67

No Cure, No Pay. © www.gilb.comFebruary 2, 2012 68

My suggestion is simple.

• Pay only when defined results
are provably delivered. 

• This requires several things:  
o Contracts that release payment only for meaningful results.  
o The ability to define those results,

• particularly qualitative ones,
• and particularly organizational ones. 

• The ability to deliver those results incrementally,
• thus proving capability at early stages and continuously.
• And being able to cancel bad suppliers early
• Allowing work in parallel with multiple suppliers 

No Cure, No Pay. © www.gilb.comFebruary 2, 2012 69

Defining the ‘Cure’
We write contracts, and we write requirements for projects,
 but these are normally useless for the following reasons.

• We define the wrong things 

• We define (valueless things! Like)  
• Designs, architectures, technologies (not results of them)  
• Functions and use cases: not the improvements and benefits to them  
• Hours of effort, not value delivered 
• The ‘names’ of critical benefits (‘higher productivity’)

 but we do not define them measurably.  

• We fail to define:
• ‘value’ 

• The dozens of stakeholders involved 
• The results that the stakeholders value  
• The quality levels, numerically and measurably 
• The knock-on effects of the new or improved system,

 expected at a higher level
• A series of early, short, and frequent value delivery stages 

No Cure, No Pay. © www.gilb.comFebruary 2, 2012 70

We can evaluate potential suppliers
‘dynamically’..

• We can instead choose suppliers based on
• proven ability in the past,
• and on our project, to deliver. 

• We can, as I suggested to a UK Government

Agency,
• allow 3 competing contractors to start work in parallel,
• and move work towards the ones that prove their ability to

deliver value.
• Move work away from those that do not deliver value as

promised.
• If all 3 perform well, fine, keep them going!
• They would be working on complimentary aspects of the

system.

No Cure, No Pay. © www.gilb.comFebruary 2, 2012 71

The Request For Proposal. RFP.  
(Example of components)

The request for proposal will sound like this:  

1. “We invite you to tender for a contract to <build software/deliver an IT
system>.

2. The contract will be based on a Value Payment system.
3. This means that we will define what we expect in terms of testable

and measurable values from the system.
4. We will pay only when that value is satisfactorily and provably

delivered.
5. We will not pay for effort put in,
6. and we will not pay for sub-specification results.
7. If you are focused on delivering us the results we agree on,
 then you can earn money independently of the costs to you.
8. Efficient suppliers can earn more than usual.
9. Inefficient suppliers would not.
10. We hope you will get rich by helping us to get what we expect for our

money.” 
 

No Cure, No Pay. © www.gilb.comFebruary 2, 2012 72

Specifying the Contract.

• The contract can be as simple as the No Cure No Pay contract template in the next
slide.

– It is a framework for sub-contracting at the Evolutionary Value Delivery step level.  

• The essential ideas in a No Cure No pay Contract are:
•  

1 Payment is totally dependent on proven delivery of our Value Definition. 

• 2 Estimates, for delivering the value, will be made by the Contractor, in advance  

• 3 We will accept some level of cost overrun,
– compared to the estimates,
– when actual costs exceed the estimate.

• Example 100%. Above that, the Contractor pays such excess costs.

• 4 We will allow invoicing
– to be triggered based on a simple test of delivery. 

– Actual payment of the invoice is dependent on

• a trial period with continued success.
– For example 30 days.

No Cure, No Pay. © www.gilb.comFebruary 2, 2012 73

Sample Contract Addition; developed for The Law Society by TG

• Drop this into a Conventional Contract 
• Author Tom Gilb . 
•  
• Contract Design idea: designed to work within the scope of a present contract with minimum modification.

• An Evo step is considered a step on the path to delivering a phase. 
You can choose to declare this paragraph has priority over conflicting statements (30.1),

• or to clean up other conflicting statements in the initial contract basis. 
•  
§30. Evolutionary Result Delivery Management. 
• 30.1 Precedence. This paragraph has precedence over conflicting paragraphs. 
• 30.2 Steps of a Phase. The Customer may optionally undertake to specify, accept and pay for evolutionary usable increments of
delivery, of the defined Phase, of any size. These are hereafter called “Steps”. 
• 30.3 Step Size. Step size can vary as needed and desired by the Customer, but is assumed to usually be based on a regular
weekly cycle duration. 
• 30.4 Intent. The intent of this evolutionary project management method is that the Customer shall gain several benefits: earlier
delivery of prioritized system components, limited risk, ability to improve specification after gaining experience, incremental learning of
use of the new system, better visibility of project progress, and many other benefits. This method is the best known way to control
software projects [Larman03]. 
• 30.5 Specification Improvement. All specification of requirements and design for a phase will be considered a framework for
planning, not a frozen definition. The Customer shall be free to improve upon such specification in any way that suits their interests, at
any time. This includes any extension, change or retraction of framework specification which the Customer needs. 
• 30.6 Payment for Acceptable Results. Estimates given in proposals are based on initial requirements, and are for budgeting and
planning purposes. Actual payment will be based on successful acceptable delivery to the Customer in Evolutionary Step deliveries,
fully under Customer Control. The Customer is not obliged to pay for results which do not conform to the Customer-agreed Step
Requirements Specification. 
• 30.7 Payment Mechanism. Invoicing will be on a Step basis triggered by end of Step preliminary (same day) signed acceptance
that the Step is apparently as defined in Step Requirements. If Customer experience during the 30 day payment due period
demonstrates that there is a breach of specified Step requirements, and this is not satisfactorily resolved by the Company, then a
Stop Payment signal for that Step can be sent and will be respected until the problem is resolved to meet specified Step
Requirements.  
• 30.8 Invoicing Basis. The documented time and materials will be the basis for invoicing a Step. An estimate of the Step costs will
be made by  
• the Company in advance and form a part of the Step Plan, approved by the Customer.  
• 30.9 Deviation. Deviation plus or minus of up to 100% from Step cost and times estimates will normally be acceptable (because
they are small in absolute terms), as long as the Step Requirements are met. (The Customer prioritises quality above cost). Larger
deviations must be approved by the Customer in writing before proceeding with the Step or its invoicing. 
• 30.9 Scope. This project management and payment method can include any aspect of work which the Company delivers including
software, documentation and training, maintenance, testing and any requested form of assistance.

© Gilb.com

Decomposition Principles  
A Teachable Discipline

How to decompose systems into small evolutionary steps::
1• Believe there is a way to do it, you just have not found it yet!
2• Identify obstacles, but don't use them as excuses: use your imagination to
get rid of them!
3• Focus on some usefulness for the user or customer, however small.
4• Do not focus on the design ideas themselves, they are distracting, especially
for small initial cycles. Sometimes you have to ignore them entirely in the
short term!
5• Think; one customer, tomorrow, one interesting improvement.
6• Focus on the results (which you should have defined in your goals, moving
toward target levels).
7• Don't be afraid to use temporary-scaffolding designs. Their cost must be
seen in the light of the value of making some progress, and getting practical
experience.
8• Don't be worried that your design is inelegant; it is results that count, not
style.
9• Don't be afraid that the customer won't like it. If you are focusing on results
they want, then by definition, they should like it. If you are not, then do!
10• Don't get so worried about "what might happen afterwards" that you can
make no practical progress.
11• You cannot foresee everything. Don't even think about it!
12• If you focus on helping your customer in practice, now, where they really
need it, you will be forgiven a lot of ‘sins’!
13• You can understand things much better, by getting some practical
experience (and removing some of your fears).
14• Do early cycles, on willing local mature parts of your user community.
15• When some cycles, like a purchase-order cycle, take a long time, initiate
them early, and do other useful cycles while you wait.
16• If something seems to need to wait for ‘the big new system’, ask if you
cannot usefully do it with the ‘awful old system’, so as to pilot it realistically,
and perhaps alleviate some 'pain' in the old system.
17• If something seems too costly to buy, for limited initial use, see if you can
negotiate some kind of ‘pay as you really use’ contract. Most suppliers would
like to do this to get your patronage, and to avoid competitors making the
same deal.
18• If you can't think of some useful small cycles, then talk directly with the
real ‘customer’ or end user. They probably have dozens of suggestions.
19• Talk with end users in any case, they have insights you need.
20• Don't be afraid to use the old system and the old ‘culture’ as a launching
platform for the radical new system. There is a lot of merit in this, and many
people overlook it.http://www.gilb.com/tiki-download_file.php?fileId=41

2 February 2012 74

© Gilb.com

1 1 1 1 1 1 Unity  

–1% increase at least

–1 stakeholder

–1 quality or value
–1-week delivery
cycle

–1 function focus

–1 design used

2 February 2012 75

No Cure, No Pay. © www.gilb.com

12 Tough questions:© Tom Gilb  
  

• 1. Numbers 
Why isn’t the improvement quantified? 
 
2. Risk  
What is the degree of risk or uncertainty, and
why? 
 
3. Doubt 
Are you sure? If not, why not? 
 
4. Source 
Where did you get that information? How can
I check it out? 
 
5. Impact 
How does your idea effect my goals and
budgets, measurably? 
 
6. All critical factors  
Did we forget anything critical to survival?  
 
•  
 

• 7. Evidence 
How do you know it works that way? Did it
‘ever’? 
 
8. Enough 
Have we got a complete solution? Are all
requirements satisfied? 
 
9. Profitability first 
Are we planning to do the ‘profitable
things’ first? 
 
10. Commitment 
Who is responsible for failure, or success? 
 
11. Proof  
How can we be sure the plan is working,
during the project, early? 
 
12. No cure, no pay 
Is it ‘no cure, no pay’ in a contract? Why
not? 

•  
February 2, 2012 76

© Gilb.com

Rene Descartes on Focus

• “We should bring the whole
force of our minds
– to bear upon the most minute

and simple details
– and to dwell upon them for a

long time
– so that we become

accustomed to perceive the
truth clearly and distinctly.”

• Rene Descartes, Rules for the Direction of the Mind,
1628

2 February 2012 77

© Gilb.com

• That which remains quiet, is easy to
handle.

• That which is not yet developed is easy to
manage.

• That which is weak is easy to control.
• That which is still small is easy to direct.
• Deal with little troubles before they

become big.
• Attend to little problems before they get

out of hand.
– For the largest tree was once a sprout,

• the tallest tower started with the first
brick,

• and the longest journey started with the
first step.

– From Lao Tzu in Bahn, 1980 (also quoted in Gilb, Principles of Software Engineering
Management page 96), Penguin book

Tao Te Ching (500BC)

2 February 2012

© Gilb.com

‘No Cure, No Pay’ Contracting, and
Project Management: References

• Slides: No Cure
• http://www.gilb.com/tiki-

download_file.php?fileId=85

• Paper No Cure
• http://www.gilb.com/tiki-

download_file.php?fileId=38

• 12 Tough Questions
• A full paper is available
• http://www.gilb.com/tiki-download_file.php?

fileId=24

• Decomposition by Value

• Decomposition of Projects: How to
Design Small Incremental Steps
INCOSE 2008 Paper

– http://www.gilb.com/tiki-
download_file.php?fileId=41

• Decomposition Slides Aug 2010
– http://www.gilb.com/tiki-

download_file.php?fileId=350

• 111111 Unity Method slides 10
minute Talk

– http://www.gilb.com/tiki-
download_file.php?fileId=451

2 February 2012 79

http://www.gilb.com/tiki-download_file.php?fileId=85
http://www.gilb.com/tiki-download_file.php?fileId=85
http://www.gilb.com/tiki-download_file.php?fileId=38
http://www.gilb.com/tiki-download_file.php?fileId=38
http://www.gilb.com/tiki-download_file.php?fileId=24
http://www.gilb.com/tiki-download_file.php?fileId=24
http://www.gilb.com/tiki-download_file.php?fileId=41
http://www.gilb.com/tiki-download_file.php?fileId=41
http://www.gilb.com/tiki-download_file.php?fileId=350
http://www.gilb.com/tiki-download_file.php?fileId=350
http://www.gilb.com/tiki-download_file.php?fileId=350
http://www.gilb.com/tiki-download_file.php?fileId=451
http://www.gilb.com/tiki-download_file.php?fileId=451
http://www.gilb.com/tiki-download_file.php?fileId=451

© Gilb.com

 Specification Quality Control: SQC

2 February 2012 80

© Tom@Gilb.com www.gilb.com

Case:  
Real Agile Spec QC

• of System Requirements Specification

(SRS) of 82 pages for a major US

corporation.

81February 2, 2012

© Tom@Gilb.com www.gilb.com

Framework
• Demonstration of power of Agile Inspection

– 8 Managers
– 2 hours
– 4 real requirements specifications offered ,

• One 82 page ‘System Requirements Specification’
actually used

82February 2, 2012

© Tom@Gilb.com www.gilb.com

• 1. Unambiguous to
intended Readership

• 2. Clear enough to test.

• 3. No unintentional Design

We Introduced best-practice Rules
for	Requirements

83February 2, 2012

© Tom@Gilb.com www.gilb.com

We explained the definition of  
Spec Defect (1)

•A ‘Specification Defect’ is a
violation of a Specification
Rule

–(violation of a ‘standard’)
– Note: If there are 10 ambiguous terms in

a single requirement

 then there are 10 defects!

84February 2, 2012

© Tom@Gilb.com www.gilb.com

We further explained the definition of  
Spec Defect (2)

•A ‘Specification Defect’ is a also a ‘Potential Defect’

–In the next level of specification

•Like in Design, test plans, code or test scripts.

–With about 1/3 chance (potential) of becoming a

downstream real defect.

–In ‘code’ we call this a ‘bug’ (a potential malfunction).

–If we discover the bug in test or operation we call it a

‘malfunction’

85February 2, 2012

© Tom@Gilb.com www.gilb.com

The definition of Major defect
•Major:

– a Defect that potentially

 costs more
– to find and fix

– later in the development process

– than it would cost now.

– We need to get rid of it NOW!

86February 2, 2012

© Tom@Gilb.com www.gilb.comHalf-day Inspection Economics. Gilb@acm.org

The downstream alternative cost of quality 
 at a UK Defence Electronics Factory. 

 9 to 1 more  
(all types of documents for electronics).

Source: Trevor Reeve, Case Study Chapter in "Software Inspection”, Gilb client.

Philips MEL became "Thorn EMI", then Racal. Crawley UK. 1999 Raytheon

Mean time to find and correct a Major
if not fixed at Inspection was 9.3
Hours.

Number of
defects of the
1,000 sampled
Majors ------>

That we

manually
estimated

downstream
costs to fix

 0 10 30 50 70

Estimated hours to find and
correct later in test, or in field

It cost about 1 hour
to find and fix a
Major at time of
Inspection

Trevor Reeve

87February 2, 2012

© Tom@Gilb.com www.gilb.com

Agree with
Management on

Exit level
• Exit Conditions: (when Requirements

can go forward to Design, Test, etc.

with little risk)

– Maximum 1 Major Defect/ (Logical)

Page, estimated remaining

– Logical Page = 300 Non-

commentary words.

?
Is 1,000 Majors per

page OK

100, 10, 1

88February 2, 2012

© Tom@Gilb.com www.gilb.com

 The notion of ‘numeric exit’:  
When are requirements ‘good enough’ to build tests on ?

• A major defect in requirements has 33% chance of
causing a bug or worse.

• Most IT shops are ‘uncontrolled’: have no
standards enforced, no QC of requirements

• They have about 100 ±50 major defects per page
– 33 ± 10 potential bugs per page

• This is deemed completely unacceptable by
managements, and in relation to cost and quality
options

• This (max. 1 major/page) should be your
requirements process exit standard, and also your
test planning entry standard

89February 2, 2012

© Tom@Gilb.com www.gilb.com

The assigned checking
process

• You have up to 30
minutes
– check 1 sample
requirements page (from an
82 page document)

• Count all potential
Rule Violations
– = Defects

• Classify Defects as
Major or minor

90February 2, 2012

© Tom@Gilb.com www.gilb.com

Report  
Page 81

Total, Majors, Design
 24, 15, 5
 44, 15, 19
 55, 20, 4
 22, 4, 2

91February 2, 2012

© Tom@Gilb.com www.gilb.com

Report  
Page 82

Total, Majors, Design
 41, 24, 1
 33, 15, 5
 44, 30, 10
 24, 3, 5

92February 2, 2012

© Tom@Gilb.com www.gilb.com

180
60
120

Total, Majors, Design
 41, 24, 1
 33, 15, 5
 44, 30, 10
 24, 3, 5

Defect Density Estimation
•Total for group (page 82)

– Rough Est. 30 x 2 = 60 Majors
– assume 60 ±10 are unique.

• If checking is 33.33% effective,

– total in page = 3 x 60 = about 180±30 Of

which 2/3 (or 120) were not yet found.
–. If we fix all we found (60),
– then the estimated remainder of Majors

would be 120 (not found)
– +10 “not fixed correctly”
– = 130 Majors remaining.

93February 2, 2012

© Tom@Gilb.com www.gilb.com

Conclusions
• Human defect removal by Inspections/reviews/SQC is

• a hopeless cause: not worth it.
• Spec QC can be used, in spite of imperfect effectiveness,

• to ‘accurately enough’ estimate ‘major-defect-
level’ density.

• EXPERIENCE AND CONSEQUENCES:
•This measurement can be used to motivate engineers to

• dramatically (100x! Over about 7 learning cycles)
• reduce their defect insertion
 (rule violation)

– to a practical exit level
» (like less than 1.0 Majors/page)

94February 2, 2012

© Tom@Gilb.com www.gilb.com

Extrapolation to 
 Whole Document

•Average: 150 Majors/page

• Page 81: 120 majors/page

• Page 82: 180 Majors/page

•Total in whole document:

– 12,300 Majors

• 150 Majors/page x 82 pages.

95February 2, 2012

© Tom@Gilb.com www.gilb.com

Estimated Project
Loss

• If a Major has
– 1/3 chance of causing loss

• And each loss caused by a Major is

• avg. 10 hours
– then total project Rework cost is
– about 41,000 hours loss.

•(This project was over a year late)

– 1 year = 2,000 hours x 10 people

96February 2, 2012

© Tom@Gilb.com www.gilb.com

Agile Spec QC Procedure
P1: Identify Checkers: Two people, maybe more, should be identified

to carry out the checking.
P2: Select Rules: The group identifies about three rules to use for

checking the specification. (My favorites are clarity (‘clear
enough to test’), unambiguous (‘to the intended readership’) and
completeness (‘compared to sources’). For requirements, I also
use ‘no optional design’.)

P3: Choose Sample(s): The group then selects sample(s) of about
one ‘logical’ page in length (300 non-commentary words).
Choosing such a page at random can add credibility – so long
as it is representative of the content that is subject to quality
control. The group should decide whether all the checkers
should use the same sample, or whether different samples are
more appropriate.

P4: Instruct Checkers: The SQC team leader briefly instructs the
checkers about the rules, the checking time, and how to
document any defects, and then determine if they are major
defects (majors).

P5: Check Sample: The checkers use between 10 and 30 minutes to
check their sample against the selected rules. Each checker
should ‘mark up’ their copy of the document as they check
(underlining issues, and classifying them as ‘major’ or not). At the
end of checking, each checker should count the number of
‘possible majors’ (spec defects, rule violations) they have found
in their page.

P6: Report Results: The checkers each report to the group their
number of ‘possible majors.’ Each checker determines their
number of majors, and reports it.

P7: Analyze Results: The SQC team leader extrapolates from the
findings the number of majors in a single page (about 6 times**

the most majors found by a single person, or alternatively 3
times the unique majors found by a 2 to 4 person team). This
gives the major-defect density estimate. If using more than one
sample, you should average the densities found by the group in
different pages. The SQC team leader then multiplies the
‘average major defects per page density’ by the ‘total number of
pages’ to get the ‘total number of major defects in the
specification’ (for dramatic effect!).

P8: Decide Action: If the number of majors per page found is a large
one (ten majors or more), then there is little point in the group
doing anything, except determining how they are going to get
someone to write the specification ‘properly’, meaning to
acceptable exit level. There is no economic point in looking at
the other pages to find ‘all the defects’, or correcting the majors
already found. There are simply too many majors not found.

P9: Suggest Cause: The team then chooses any major defect and
thinks for a minute why it happened. Then the team agrees a
short sentence, or better still a few words, to capture their
verdict.

97February 2, 2012
Formal SQC Procedure

© Tom@Gilb.com www.gilb.com

The formal Agile SQC Process 
Sources

• Cutter 5 pg Paper
• http://www.gilb.com/tiki-download_file.php?

fileId=64
• INCOSE SQC Paper http://www.gilb.com/tiki-

download_file.php?fileId=57

• Agile SQC Slides with Standard for Process
• http://www.gilb.com/tiki-download_file.php?

fileId=239

98February 2, 2012

http://www.gilb.com/tiki-download_file.php?fileId=57
http://www.gilb.com/tiki-download_file.php?fileId=239

© Gilb.com

Quantified Software Process Control:
Numeric XE

2 February 2012 99

© Tom@Gilb.com www.gilb.com 100

You should have NUMERIC exit and entry quality levels from both
test processes and related development processes

• Entry and Exit Condition example:
• Maximum estimated 1.0 Major defects per logical page remaining.
• This was the MOST important lesson IBM learned about software

processes (source Ron Radice, co-inventor Inspections, Inventor of CMM)
• No ‘Garbage In’ to Test Planning!

February 2, 2012

© Gilb.com

Life Cycle
Engineering of

System and Product
Adaptability

2 February 2012 101

© Tom@Gilb.com www.gilb.com

 Quantify Maintainability Requirements:

•Long term thinking
•about maintenance and
change capabilities:

•avoid short sightedness.

102February 2, 2012

© Tom@Gilb.com www.gilb.com

 A ‘Bad’ Requirement 
“Rock solid robustness”• “While robustness is an

essential H-project requirement
in all its uses, it is especially critical in our
applications where the much longer job durations
afford software defects (e.g. memory leaks) a greatly
expanded opportunity to surface.
• In this regard,
•H-project will provide the following features or
attributes:

– Minimal down-time
• A critical H-project objective is to have minimal
downtime due to software failures.
•This objective includes:

– Mean time between forced restarts >
14 days

• H-project’s goal for mean time between forced
restarts is greater than 14 days.
• Comment: This figure does not include restarts
caused by hardware problems, e.g. poorly seated
cards or communication hardware that locks up the
system. MTBF for these items falls under the domain
of the hardware groups.

– Restore system state < 10 minutes
• Log scripts and test scripts, subsystem tests

– Built-in testability
• H-project will provide the following features and
attributes to facilitate testing.

– Tool simulators ….”

• GILB COMMENT:
– For once a reasonable
attempt was made to quantify the
meaning of the requirement!
– But is could be done much
better
–
– As usual the set of designs to
meet the requirement do not
belong here.
–And none of the designs make any
assertion about how well (to what
degree) they will meet the defined
numeric requirements.
– And as usual another
guarantee of eternal costs in
pursuit of a poorly defined
requirement is most of the content.

Real case of requirement for project costing over $100,000,000 without delivering testable results 103February 2, 2012

© Tom@Gilb.com www.gilb.com

Better Testable Definition  
of the Requirement:

Rock Solid Robustness:
Type: Complex Product Quality
Requirement.
Includes: { Software Downtime,
Restore Speed, Testability, Fault
Prevention Capability, Fault
Isolation Capability, Fault Analysis
Capability, Hardware Debugging
Capability}.

104February 2, 2012

© Tom@Gilb.com www.gilb.com

Defining One Component Clearly:

Software Downtime:
Type: Software Quality Requirement.
Ambition: to have minimal downtime due to software failures <-
HFA 6.1
Issue: does this not imply that there is a system wide downtime
requirement

Scale: <mean time between
forced restarts for defined
[Activity], for a defined [Intensity].>
Fail [Any Release or Evo Step, Activity = Recompute, Intensity
= Peak Level] 14 days <- HFA 6.1.1
Goal [By 2008?, Activity = Data Acquisition, Intensity = Lowest
level] : 300 days ??
Stretch: 600 days

105February 2, 2012

© Tom@Gilb.com www.gilb.com

Defining a Second Component Clearly:

Restore Speed:

Type: Software Quality Requirement.

Ambition: Should an error occur (or the user otherwise
desire to do so), Horizon shall be able to restore the system to
a previously saved state in less than 10 minutes. <-6.1.2 HFA.

Scale: Duration, from
Initiation of Restore, to
Complete and verified state of
a defined [Previous: Default =
Immediately Previous] saved
state.
Initiation: defined as {Operator Initiation, System
Initiation. Default = Any.

Goal [Initial and all subsequent released and Evo
steps] 1 minute?

Fail [Initial and all subsequent released and Evo steps]
10 minutes. <- 6.1.2 HFA

Catastrophe: 100 minutes. 106

www.Gilb.com

Testability:
Type: Software Quality Requirement.
Version: 20 Oct 2006-10-20
Status: Demo draft,
Stakeholder: {Operator, Tester}.
Ambition: Rapid-duration automatic testing of <critical complex tests>, with extreme operator setup and initiation.

Scale: the duration of a defined [Volume] of testing, or a
defined [Type], by a defined [Skill Level] of system operator,
under defined [Operating Conditions].
Goal [All Customer Use, Volume = 1,000,000 data items, Type = WireXXXX Vs DXX, Skill = First Time Novice, Operating
Conditions = Field, {Sea Or Desert}. <10 mins.

Design Hypothesis: Tool Simulators, Reverse Cracking Tool, Generation of simulated telemetry frames entirely in software,
Application specific sophistication, for drilling – recorded mode simulation by playing back the dump file, Application test harness
console <-6.2.1 HFA

Testability:

February 2, 2012 107

© Tom@Gilb.com www.gilb.com

Broader Maintainability Concepts

February 2, 2012 108

© Tom@Gilb.com www.gilb.com

The ‘Maintainability’ Breakdown into Sub-problems

1. Problem Recognition Time.
 How can we reduce the time from

bug actually occurs until it is
recognized and reported?

2. Administrative Delay Time:
 How can we reduce the time from

bug reported, until someone begins
action on it?

3. Tool Collection Time.
 How can we reduce the time delay

to collect correct, complete and
updated information to analyze the
bug: source code, changes, database
access, reports, similar reports, test
cases, test outputs.

4. Problem Analysis Time.
 Etc. for all the following phases

defined, and implied, in the Scale
scope above.

5. Correction Hypothesis Time
6. Quality Control Time
7. Change Time
8. Local Test Time
9. Field Pilot Test Time
10. Change Distribution Time
11. Customer Installation Time
12. Customer Damage Analysis

Tim
13. Customer Level Recovery

Time
14. Customer QC of Recovery

Time

February 2, 2012 109

© Tom@Gilb.com www.gilb.com

Maintainability components, 
 derived from a hardware

engineering view,  
adopted for software. 

With Scale
Templates  

February 2, 2012 110

© Tom@Gilb.com www.gilb.com

DoDef. Persinscom Impact Estimation Table: MULTIPLE -ilities

Requirements

Designs

R! D Impacts

February 2, 2012 111

© Tom@Gilb.com www.gilb.com

Notice that Maintainability in the narrow sense  
 (fix bugs)  

 is quite separate from other ‘Adaptability’ concepts.
 This is normal engineering,

Which places fault repair
together with reliability and
availability;

Those 3 determine the
immediate operational
characteristics of the system.

 The other forms of adaptability are
more about potential future
upgrades to the system, change,
rather than repair.

Change and repair, have in
common that

 our system architecture has to
make it easy to change,
analyze and test.

The system itself is unaware of
whether we are correcting a

fault or improving the
system.

The consequence is that
much of the maintenance-

impacting ‘design’ or
‘architecture’

 benefits
 most of the types of

maintenance (fix and adapt).
February 2, 2012 112

© Tom@Gilb.com www.gilb.com

Here are a generic set of definitions for the
‘Adaptability’ concepts.

Adaptability: ‘The
efficiency with which a
system can be
changed.’

Gist: Adaptability is a
measure of a system’s
ability to change.

Includes: { a set of scalar
variables, such as
Portability}.

 Note: probably not
simple enough to
define with a single
Scale.

Type: Complex Quality
Attribute.

February 2, 2012 113

© Tom@Gilb.com www.gilb.com

Flexibility:
Gist: ‘Flexibility’ concerns

the
 ‘in-built’ ability of the
system
to adapt,
or to be adapted,
 by its users,
 to suit conditions

 (without any
fundamental system
modification

 by system
development).

Type: Complex Quality
Requirement.

Includes: {Connectability,
Tailorability}.
See next 2 slides!

Possible Synonyms:
Resilience,
Robustness

February 2, 2012 114

© Tom@Gilb.com www.gilb.com

Connectability:  
 ‘The cost to interconnect the system to its environment.’

Gist: The cost of connecting one set of interfaces
to defined environments with other interfaces

Part Of: Flexibility.

Scale: the Effort needed

to connect a defined [Home
Interface]

 to a defined [Target
Interface]

 using defined [Methods]

with minimum allowed
system [Degradation].

February 2, 2012 115

© Tom@Gilb.com www.gilb.com

Tailorability:  
 Gist: The cost to modify

the system to suit
defined future
conditions.

Part Of: Flexibility.
Type: Complex Quality

Requirement.
Includes: {Extendibility,

Interchangeability}.

February 2, 2012 116

Multiple Attributes of Wool Fiber !

© Tom@Gilb.com www.gilb.com

Extendibility: Scalability

Extendibility:
Part Of: Tailorability.
Synonym: Scalability.

Scale: The cost to add
to

 a defined [System]
 a defined

[Extension Class]
 and defined

[Extension Quantity]

 using a defined
[Extension Means].

‘‘In other words, add such things as
a new user or

a new node.’’

Type: Complex Quality Attribute.

Includes: {Node Addability,
Connection Addability,
Application Addability,
Subscriber Addability}.

February 2, 2012 117

© Tom@Gilb.com www.gilb.com

Interchangeability:  
‘The cost to modify use of system components.’

Interchangeability
Gist: This is concerned with the

ability to modify
the system, to switch from using

a certain set of
system components, to using

another set.
Part Of: Tailorability.
Type: Elementary Quality

Attribute.

“For example, this could be a
daily occurrence

switching system mode from day
to night use.”

Scale: the Effort needed to
 Successfully,
 without Intolerable Side

Effects,
 replace a defined [Initial Set]

of components,
 with a defined [Replacement

Set] of system
components,

 using defined [Means].

February 2, 2012 118

© Tom@Gilb.com www.gilb.com

Upgradeability 1/2:  
 ‘The cost to modify the system fundamentally;  

either to install it, or to change out system components.’

Upgradeability:
Gist: This concerns the ability of the system to be modified by

the system developers or system support in planned stages (as
opposed to unplanned maintenance or tailoring the system).

Type: Complex Quality Requirement.
Includes: {Installability, Portability, Improveability}.

February 2, 2012 119

© Tom@Gilb.com www.gilb.com

Upgradeability 2/2 :  
 ‘The cost to modify the system fundamentally;  

either to install it, or to change out system components.’

• Portability:
• Gist: The cost to move from

location to location.
• Scale: The cost to transport a

defined [System] from a defined
[Initial Environment] to a defined
[Target Environment] using
defined [Means].

• Type: Complex Quality
Requirement.

• Includes: {Data Portability,
Logic Portability, Command
Portability, Media Portability}.

• Improveability: ‘The cost to
enhance a system.

• Installability
• Gist: The ability to replace

system components with
others, which possesses
improved (function,
performance, cost and/or
design) attributes. ‘The
cost to install the system
in defined conditions.’

• Scale: The cost to add
to a defined [System] a
defined [Improvement]
using a defined
[Means].

February 2, 2012 120

© Tom@Gilb.com www.gilb.com

The Software Architect Role in Maintainability

The role of the software
architect is:

• to participate in clarification
of the requirements that
will be used as inputs to
their architecture process.

• to insist that the
requirements are testably
clear: that means with
defined and agreed scales
of measure, and defined
required levels of
performance.

• to then discover appropriate
architecture,

– capable of delivering those
levels of performance,
hopefully within resource
constraints, and

• define the architecture in
such detail , that we can

estimate the probable impact
of the architecture,

– on the requirements (Impact
Estimation) so that the intent
cannot be misunderstood by
implementers,

– and the desired effects are
bound to be delivered.

• then later, monitor the
developing system as the
architecture is applied in
practice,

• and make necessary
adjustments.

– • finally monitor the
performance
characteristics
throughout the lifetime
of the system,

– and make necessary
adjustments to requirements

– and to architecture,
– in order to maintain needed

system performance
characteristics.

February 2, 2012 121

© Tom@Gilb.com www.gilb.com

Architecture Level Impact Estimation Table 
You can consider Maintainability together with other objectives!

• See PPT Notes

February 2, 2012 122

© Gilb.com

Maintainability Engineering Sources

• Gilb ACCU ‘Designing Maintainability’
– 90 minutes Slides.ppt (10.41 Mb)
– http://www.gilb.com/tiki-download_file.php?

fileId=171
• Maintainability Paper

– http://www.gilb.com/tiki-download_file.php?
fileId=138

• Competitive Engineering, Chapter 5, Scales of
Measure
– http://www.gilb.com/tiki-download_file.php?

fileId=26

2 February 2012 123

http://www.gilb.com/tiki-download_file.php?fileId=171
http://www.gilb.com/tiki-download_file.php?fileId=171
http://www.gilb.com/tiki-download_file.php?fileId=171
http://www.gilb.com/tiki-download_file.php?fileId=138
http://www.gilb.com/tiki-download_file.php?fileId=138
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26

© Gilb.com

DZIĘKUJĘ ZA UWAGĘ - thank you for your attention  
Next slide special offer!

2 February 2012 124

Ask me for free digital copy!  
(tom@gilb.com) Subject: ‘BOOK’  

The Architecture Language: ‘Planguage’

I will then also
send you, slides
link, recent
papers

You can view
papers, these
slides (“Super
Methods”) and
2 chapters of
the CE book at
www.GILB.com
/downloads

mailto:tom@gilb.com

© Gilb.com

Bio Gilb

• Tom Gilb was born in California in 1940, but
‘escaped’ to Europe at 15. He joined IBM Norway
in 1958, and started his consultancy in 1960. He
has published 9 Books, including ‘Principles of
Software Engineering’ (1988, 20th Printing now,
cited as major Agile inspiration), ‘Software
Inspection’ (14th Printing) and Competitive
Engineering (2005, 3rd Printing). He is a frequent
contributor to the Polish ‘Core Magazine’ (http://
www.coremag.eu/) . He consults with CIO/CTO/
CEO level management worldwide on software
and systems productivity and quality. More at
www.Gilb.com

2 February 2012 126

http://www.coremag.eu/

