
The Magazine for Agile Developers and Agile Testers

October 2011

issue 8www.agilerecord.com free digital version made in Germany ISSN 2191-1320

41www.agilerecord.com

There is a continuous debate in Agile circles on the meaning of
“Done”.

In our view the answers offered are unfortunately the same levels
of immature and narrow thinking that characterize IT in general,
and Agile in particular (4).

The original Agile Manifesto had its heart in the right place. It
tried to hint that we preferred to deliver value to customers early
and iteratively! Wonderful, except, most Agile teachers, gurus,
coaches and practitioners do not seem to know what ‘value’ re-
ally means (hint, it does not mean bug free code, functions, or
stories, or use cases). And the terms ‘customer’ and ‘user’ are
far too narrow to encompass the larger set of project and system
stakeholders, that we are responsible for.

Agilistas did not merely formulate their laudable intent badly.
They never taught or practiced the delivery of real value to stake-
holders, in the way they should have, to potentially bring credit
to our profession. Well, what can you expect from ‘coders’ who
seem uninterested in delivering real system value to the real
stakeholders. (Yes we do hope someone feels angry at these
cheeky assertions, and who want to prove this wrong, or want to
show they have been an exception at value, unknown to us. Good
paper for Agile Record.com)

I fear I must initially define the concept of stakeholder value,
since so many Agilistas seem to think it is the same as deliver-
ing ‘code’, use cases, and functions to users. It is not. I will then
make the following assertion about the idea of ‘Done’.

 ■ ‘Done’ (for agile projects) means:

“no more value can be profitably delivered to stakeholders
with currently available resources”.

So what is this ‘value’ concept really about?

Here is our formal definition of value, from Competitive Engineer-
ing (3)

Value
Value is perceived benefit: that is, the benefit we think we get
from something.

Notes:

1. Value is the potential consequence of system attributes, for
one or more stakeholders.

2. Value is not linearly related to a system improvement: for
example, a small change in an attribute level could add im-
mense perceived value for one group of stakeholders for
relatively low cost.

3. Value is the perceived usefulness, worth, utility, or impor-
tance of a defined system component or system state, for
defined stakeholders, under specified conditions.

An IT system has a set of basic functions, defined as what it does.
These functions tend to exist, and to have existed for the organi-
zation or business independently of the IT system. A bank lends
money, and charges interest. A store takes orders and expedites
goods. The reason we build IT systems at all, is NOT to deliver
that basic functionality. We do have to replicate the functionality,
to serve the business or organization at all.

So real business or organizational functionality, has no value for
a stakeholder. They already have it, before the IT system. Banks
traded before IT! Movies sold tickets before IT!

Done should mean value delivered to
stakeholders

Gilb’s Mythodology Column

by Tom and Kai Gilb

42 www.agilerecord.com

There are other system attributes we want, when we make IT sys-
tems. These are called (in systems engineering) ‘performance
attributes’. They include all the quality attributes (how well the
system performs, ‘-ilities’).

I can safely assert that the only reason or justification for any IT
system, the only stakeholder values of it, are to be found in the
improved performance characteristics of the system. How fast,
how much, how well, how costly. This obvious point seems to
have escaped IT nerds’ attention.

Some of the nerds are confused conceptually. They think every-
thing they code is a function. But there are in fact two distinct
things we program:

 ■ Functionality: what the system does

 ■ Technical Solutions (aka design, architecture): which
result in specific performance levels.

For example:
we might code an encryption, to get a level of security,
we might design and program a screen to get usability,
we might write tighter code to increase responsiveness,
and we might ‘reduce technical debt’ to improve maintain-
ability or portability.

So, some of the code, the code that is intended to implement a
design, which is intended to result in specific performance im-
provements, will result in value to some stakeholders, like faster,
safer, easier, cheaper.

Let me summarize the ideas up to this point:

1. sufficient ‘business’ functionality is a minimum price for
replacing previous systems, with a consequent view to im-
proving stakeholder value, on that function platform. But,
that functionality itself gives no value the stakeholders don’t
already have.

2. IT systems must justify their investment and costs, in terms
of the increased value they provide to stakeholders, com-
pared to previous alternatives for doing the functions.

Now let’s take it one further step. It is not sufficient to automati-
cally credit the coding itself, of a design that intends to deliver
value (improved performance attributes, such as security, to
stakeholders). This is the fallacy we have with burn-down charts,
or with Scrum sprint velocity alone. We have to be able to quan-
tify and measure, in the real world, the effect that this well-in-
tended code and design has had in practice. Did it really improve
security, usability, maintainability or reduce operational costs in
the business? If not, it has no real stakeholder value. And this is
not necessarily the fault of the designer or the coder. The value of
a design in practice, depends on many factors in addition to the
code. It depends on people, environment, data, other organiza-
tions, laws, motivation, training, hardware, networks, etc.

The value of a coded design can be destroyed by any one of these
factors alone!

The consequences of this fact are:

1. Designers need to consider, and to manage, all factors that
determine real value generation.

2. This means they cannot be software engineers alone, they,
or someone else must in fact be a systems engineer, or sys-
tems architect. Code alone does not give sufficient control
over value actually delivered.

3. The primary method of delivering any value must be the
systems architecture, and follow-up measures of its effects.
Programmers cannot do much more than be good sub-sup-
pliers of one of many components of the system.

So. let us conclude:

We software/IT people need to acknowledge that we are not
done, until our software component’s attributes have success-
fully helped the system to deliver the stakeholder values that the
software was intended to contribute to?

We need to get a lot more professional at consciously defining
the necessary software attributes themselves (like security, us-
ability, maintainability), at design engineering the attributes into
the software, and at measuring in test, that we have succeed in
our own components performance attributes. We are light years
away from having this software culture.

But even this capability to really engineer reliability, security, us-
ability, maintainability etc. into our software is just one necessary
stage in delivering the results to stakeholders that they expect
from computer technology; like productivity, cost savings, useful
knowledge systems. We as software engineers, need to learn
to partner with the overall systems engineering effort to build
complete systems. There are serious efforts and practices in this
direction (INCOSE.org, (5)) but agile culture does not know about
this, care about this, or even reject it explicitly. Unfortunately
some areas where agile is being used or explored, and where
we work, such as military, health systems, electronics, aviation,
and banking are quite serious systems, and need more serious
engineering approaches than the agile community has ever tried
to offer.

The agile programmers, the Scrum ‘Masters’ (LOL), and Product
Owners are simply not trained, educated or managed to deliver
serious stakeholder value. So agile methods, as they stand, must
die or change. We suspect Agile Culture is suicidal and would pre-
fer to die out rather than mature, to meet real world challenges.

Iteration, feedback and change (fundamental agile ideas) are
powerful concepts for managing software and systems, but right
now they are flying blind regarding systematic delivery of soft-
ware value, which drives systems and stakeholder values. The
change is not going to happen through intelligent leadership from
programmers. We need intelligent technical management to step
up and demand far more from software development.

43www.agilerecord.com

We are not ‘done’ until we are considered ‘great’ at delivering
real expected value to stakeholders. We are not even near, are
we?

1. Agile Principles Revised -for stakeholder value focus
http://www.gilb.com/tiki-download_file.php?fileId=431
Agile Principles in AgileRecord.com, no. 3, 2010

2. Agile Values Revised – for stakeholder value focus
http://www.gilb.com/tiki-download_file.php?fileId=448
Agile Values in AgileRecord.com, no. 4, 2010

3. Competitive Engineering, Glossary
CE Full Glossary
http://www.gilb.com/tiki-download_file.php?fileId=386

4. http://frank.vanpuffelen.net/2007/08/scrum-utilization-
vs-velocity.html
This is a random example of the narrow mentality that
prevails

5. Gilb, Tom, Competitive Engineering, A Handbook For
Systems Engineering, Requirements Engineering, and
Software Engineering Using Planguage, ISBN 0750665076,
2005, Publisher: Elsevier Butterworth-Heinemann.

Tom Gilb and
Kai Gilb have,
together with
many profession-
al friends and
clients, person-
ally developed
the methods
they teach. The
methods have
been developed
over decades of
practice all over
the world in both
small companies

and projects, as well as in the largest companies and
projects.

Tom Gilb
Tom is the author of nine books, and hundreds of pa-
pers on these and related subjects. His latest book
‘Competitive Engineering’ is a substantial definition of
requirements ideas. His ideas on requirements are the
acknowledged basis for CMMI level 4 (quantification, as
initially developed at IBM from 1980). Tom has guest
lectured at universities all over UK, Europe, China, In-
dia, USA, Korea – and has been a keynote speaker at
dozens of technical conferences internationally.

Kai Gilb
has partnered with Tom in developing these ideas,
holding courses and practicing them with clients since
1992. He coach managers and product owners, writes
papers, develops the courses, and is writing his own
book, ‘Evo – Evolutionary Project Management & Prod-
uct Development.’

Tom & Kai work well as a team, they approach the art
of teaching the common methods somewhat differently.
Consequently the students benefit from two different
styles.

There are very many organizations and individuals who
use some or all of their methods. IBM and HP were two
early corporate adopters. Recently over 6,000 (and
growing) engineers at Intel have adopted the Planguage
requirements methods. Ericsson, Nokia and lately Sym-
bian and A Major Mulitnational Finance Group use parts
of their methods extensively. Many smaller companies
also use the methods.

> About the authors

