

Choice and Priority Using Planguage:

A wide variety of specification devices and

analytical tools.

Copyright © 2006 by Tom Gilb.

Iver Holtersvei 2, NO-1410 Kolbotn, Norway, Tom@Gilb.com, www.Gilb.com, +47
66801697

Abstract:

• Planguage (the Planning language defined in Competitive
Engineering [CE]) has a variety of methods and tools to help us
identify and choose candidates for solving a defined problem.

• There is no single method or tactic for making a ‘best’ choice.
• There is no concept of finding a ‘perfect choice’ either.
• By rational application of a suitable set of methods, within the

time and resources available, a candidate solution can be found,
which is probably one of the most satisfactory available. It is
probably satisfactory enough. And, we will be able to say
something about the solution’s risks, uncertainties, issues,
dependencies, and side effects.

• We can substantially improve the probability of successful
choices. Only in some unreal world, if we had infinite time,
infinite knowledge, and static circumstances, could we hope to
make a ‘perfect’ choice.

• In the competitive world, the necessity is making very good
choices rapidly, under conditions of uncertainty, and risk of
change.

Available Tools
• The available tools in Planguage are:

o Requirement Specification RS (the problem formulation)
 A disciplined, thorough, and quantified way to specify

the problem to be solved. Planguage helps give an
accurate description of the nature of the best

choices. Many so-called requirements languages
have little or no facility to specify quantified qualities
and costs aspects of a problem.

Adaptability:

Type: Quality Requirement.

Scale: Time in hours needed to re-configure the defined [Base Configuration] to any

other defined [Target Configuration] using defined [Methods] and defined

[Reconfiguration

Staff].

Expert Reconfiguration: Defined As:

{Base Configuration1/4Novice Setup,

Target Configuration1/4Expert Setup,

Methods1/4Selection of Library Reconfiguration Process,

Reconfiguration Staff1/4Qualified Expert}.

=========================== Benchmarks ==========================

Past [Expert Reconfiguration, Version 0.3, Asian Market]: < 1 hour.

======================== Performance Targets =======================

Authority [Goals]: Federal Drug Administration.

Goal [Expert Reconfiguration, Deadline1/4Version 1.0]: < 0.5 hours.

Goal [Expert Reconfiguration, Deadline1/4Version 2.0]: < 0.1 hours.

=========================== Constraints ===========================

Fail [All USA Products]: < 0.7 hours.

Fail [Expert Reconfiguration, Deadline1/4Version 2.0]: < 0.5 hours.

Survival [Expert Reconfiguration, European Market]: < 1 Working Day.

 Example 1: a typical Planguage requirement specification with

multiple quantifications of benchmarks, targets and constraints

in a single requirement specification. Source CE page 55. The

numeric clarity given by this type of specification is a critical

cornerstone of making rational choices and prioritizations.

 These requirements tools include multiple
simultaneously required performance (including
qualities) requirements (how good the system is),
function requirements (what the system does),
resource constraints (budgets for time, people,
money, space, and other limited developments, and
operational resources), and all other constraints (like
legality, conformance to culture or standards), on the
solution of the problem.

 At a management problem level (organization,
process, marketing), somewhat differently from the
technical level, these problem formulations might be
called ‘objectives’ and ‘constraints’. They would
amount to the same basic concept: a definition of a
future desired state of a system. The problem is, how
to do reach those states?

•

Figure 1: the Planguage relation between requirements specification process and

the design engineering process. Source: CE, Fig. 1.5, pg.18, see note 1 for

decoding of acronyms. The defined processes and defined Rules noted above are

some of the specific tools in Planguage, defined in detail in [CE].

o Design Specification - DS (solutions)
 ‘Design Specifications’, in Planguage, are a

disciplined, thorough, and quantified (impact of
solution on requirement) way, to specify potential
and final solutions, for evaluation (choice and
priority) against the problem statements in the
requirements.


 Figure 2: Basic elements of choice and priority. The

requirements elements and the design solutions. Source CE Fig

2.1, pg.47.

 Ultimately the design solutions must include the set
of all solutions that will be applied to solve a defined
set of requirements. One solution alone from that set
of many solutions is almost impossible to pass final
judgement one. We can only pass judgement on a
complete set, a total solution.

o Impact Estimation (IE)
 Impact Estimation is a systematic discipline for

evaluating the numeric effects (‘impacts’) of
solutions on the requirements. IE looks at both
impacts on performance requirements (how good the
solution must be) and limited resources (what we
can spend to pay for the solution).



 Figure 3: A conceptual Impact Estimations table showing how

design alternatives rate in relation to various types of

requirements. Source CE, page 58. The large Planguage graphic

symbols are purely for teaching purposes here.


 It is a common misunderstanding that IE is the

major or only selection mechanism. This is not true.
It is the interplay of earlier (choice and elimination
mechanisms) and later (evolutionary feedback in

practice) mechanisms with IE that help us to finalize
our decisions about solutions.

o Evolutionary Project Management. (Evo).
 Evolutionary project management allows us to

systematically test our preliminary choices in a real
environment. We can test them very early in the
project life, so that disappointing choices can be
dropped at little penalty, and replaced with better
choices in fact.

 Evo gives us an environment, not available in earlier
models and methods, to see the effect of combining
a particular solution with both a real systems
environment, and other recent partial solutions to
the overall problem.



 Figure 4: Incremental deliveries of quality requirements

have the effect of changing the next step priority,

depending on the actual cumulative impact in relation to

constraint requirements (Fail level) and targeted

requirements (Goal). When a Goal level is reached then

the priority for that attribute is gone.

 Principles
 There are at least 100 principles formally stated in

Competitive Engineering (and about 124 in Gilb88,
and many more in other Gilb papers and slide
presentations, for example on Risk, many in papers
at INCOSE 2003-5, and earlier) they are the
heuristics that can be used to guide us in our
decision-making process. A key subset of these
principles for making choices will be explored here.

5. The Principle of ‘Deadline or die’

 There is no point in demanding a performance

requirement, if you would always give priority to

something else, for example, a deadline.

 Source: CE page 126 performance Principles.

 The principles are intended used in connection with

the other tools mentioned above.
 The principles stated in this paper are original to this

paper, and new formulations, but they have their
roots in Planguage, and previously stated principles.
They are somewhat more-focussed on our choice-
making problem than the more general principles in
CE.

• Of course anyone is able and welcome to use any alternative,
supplementary, or additional tools as they please. However this
paper is specifically written to clarify the toolset within Planguage
itself, and will limit itself to the Planguage set of methods as
described in Competitive Engineering.

Principles of Choice: principles for the decision-making framework

• The Top Ten Decision Framework Principles

1. More is Good: The more relevant information you specify about the
problem, the more likely you are to choose a good solution.

2. Aspects is Vital: The more you know about all aspects of a solution,
the less likely you are to choose it in error.

3. Many to Many: The more attributes of a solution that you match
against the problem requirement attributes, the better your decisions
will be.

4. Future is Different: Previous experiences with a solution are not a
certain guide to its attributes in your future.

5. Priority Decides: Information about priority of requirements makes it
easier to select suitable solutions.

6. Uncertainty is Certain: Information about uncertainty in requirements
and solution attributes allows you to make better choices with respect to
the uncertainty you can tolerate.

7. Totality Beats Subsets: It is the total set of solutions that must be
chosen to solve the total problem (the total set of requirements). Any
small change in a requirement, or a solution, can invalidate the entire
set of solutions chosen up to a certain point.

8. Feedback: The process of choosing solutions is necessarily iterative,
and iterative decision-making processes are more likely to provide
better solutions in less decision-making time, than straight line
processes.

9. Stakeholders: Failure to identify all critical and profitable stakeholders
for the solution results, can invalidate your entire decision-making
process.

10. Trust but Verify: all specifications need ultimately to be put to tests of
credibility. Ask for sources, evidence, uncertainty, and how we are going
to verify in time that specifications are true.

Heuristics: heuristics for decision-making, for making specific
choices

• The Top Ten Choice-Making Principles.
1. Best Choice: In general the best choice will satisfy all the

performance Goal levels, at minimum resources, within stated
constraints.

2. Constraint Priority: Constraints have different priorities, so instead
of dropping an otherwise promising solution, because it violates a
stated constraint, consider removing a lower-priority constraint itself.

3. Initial Choice of Candidate Solutions: scan solution candidates to
find the few that give most impact to your highest priority performance
requirement.

4. Tried and True: when decision-making time is limited we should
prefer solutions that are well-understood in terms of performance and
costs. This is a conventional engineering paradigm.

5. Sufficient beats Maximum: solutions should not be chosen for
having a maximum (of other choices) performance impact. They
should be chosen for having sufficient impact to bring us to the
specified goal levels of performance on time, with respect to all other
selected solution’s effect on those performance requirements. They
should fill the remaining gap to the goal. They should not assume they
are they only solution. Once we are at our goal levels, there is no
stakeholder value in being better. So we need to avoid overdoing the
solution power – except when that incremental power is free of costs.

6. Multiple Impacts are Best: when you have a set of promising
candidate solutions picked out by other heuristics, an Impact
Estimation Table will give you advice on the generally best solution in
terms of impacts on all performance requirements, and on all resource
budgets. Only ‘acceptable’ and ‘promising’ solutions will make it to the
IE table evaluation. This is usually based on one or few dimensions of
evaluation. The IE Table allows you to do a broader evaluation in more
critical dimensions, including all positive and negative side effects.

7. Trial and Error: one or more of the best-looking candidate solutions
from an Impact Estimation process evaluation, can be scheduled for
early practical trials, by integrating them evolutionarily into a
developing, or old, system. The expected performance and cost
impacts can be measured, and compared to expected IE Table values.
You can thus in practice make a final judgement on the solution, and
get even more reliable data on the solution, when it is retained, for
scaling up.

8. Simplified Impact Estimation: there are many possibilities for
simplifying the Impact Estimation process, basically using lower
credibility impact data (guesses, rough estimates, outside sources,
round number estimates, +++ type estimates, 0 to 9 estimates,
subjective judgement). This simplified process will reduce the cost of
looking at a large number (5-50) alternatives quickly, at some risk of
losing some better solutions. But it will allow you to quickly get down

to few (1 to 5) solution alterative where performance and cost data
can be studied at higher levels of credibility – using more time per
alternative.

9. Where to Look? Performance!: look for options using the highest
priority performance goal as a guide. Look at any source such as
expert designers, web info, engineering and management literature,
and tried and true solutions in the business.

10. When to Stop? Satisfaction: you can stop looking for other
solutions only when you have in fact measurably delivered real
systems with the goal level of performance attributes reached, within
the resource and other constraints. Requirements Satisfied. Of course
by then, someone will raise the stakes – so the search for better
solutions, in a competitive world, is eternal.

Process: a systematic path for decision-making.
• Stakeholder identification
• Stakeholder values analysis
• Constraints analysis
• Draft Requirements Specification: Pretty Good levels
• Requirements Review
• Design Solution Brainstorm
• Weeding Out Solutions based on too costly or impressive

performance match
• Impact Estimation simplified (if many solution alternatives)
• Impact Estimation in detail (for a chosen few most-promising

solutions)
• Select a solution for early Evoutionary implementation and

analysis in practice (old or new system)
• Adjust detailed Impact Estimation values based on experience
• Ask if Goals reached and constraints not violated. No. go up and

continue the process, step 6 or below.
• YES. You are done.

The Theory of Priority in short
• Priority: defined as: the thing we choose amongst alternatives.
• Principles of Priority: (from Gilb and Maier)

1. Priority is what has first claim on limited resources.

2. Priority needs to be determined periodically, not simply at the

beginning of a project.

3. Prioritization is aided by rich specification. More-objective

requirement statements (fact based, citing the supporting

evidence, measurement based from past relevant

experience) are better than more-subjective statements

(such as opinions without facts or measures).

4. Stakeholder requirements (or ‘objectives’) are the major basis for

determining priorities.

5. Benefit to Cost Ratios for design impacts help to realistically

determine the current priority design (or ‘strategy’).

6. Priority decisions should be based on a detailed, rich, realistic set of

information about the options

7. Constraints are your first priority. Stay within constraints before

optimizing towards targets.

8. Targets are your second priority. But when all targets are reached

– stop using resources.

9. The ‘most threatening’ gap to reaching a requirement level has

highest priority, other things being equal. By ‘most

threatening,’ is meant the one threatening the biggest risk

in terms of consequences to the organization

10. Priority should be determined based on risks, benefit and cost.

References

 CE: Gilb, Tom, Competitive Engineering, A Handbook

For Systems Engineering, Requirements Engineering,
and Software Engineering Using Planguage, ISBN
0750665076, 2005, Publisher: Elsevier
Butterworth-Heinemann.


 Gilb and Maier 05:

 Tom Gilb and Mark W. Maier

 Managing Priorities: Key to Systematic Decision Making.

Presented Orally and in Proceedings (CD) of INCOSE

Annual Conference, Rochester, NY, USA 2005

 Gilb88:

 Tom Gilb, Principles of Software Engineering

Management, Addison Wesley, UK, 1988. 20th Printing in

2005.



 Notes:

 1. (reference Figure 1)

 Notes:

 Iteration of the processes has been allowed for by including existing specifications as

potential inputs. Qualifying square brackets have been used around descriptive words,

which are added to assist understanding. The aim is to show how the rules and process

descriptions discussed in this book fit together. This diagram shows procedure steps P1 and

P2 of the Generic Project process (Process.GP). These same processes are used during

Manage Evolutionary Project (Process.GP.P3) – that is during Evolutionary Project

Management – in order to update the requirements, the ideas and the Evo plan (see Figure

1.6 in CE). A standing rectangle is the Planguage graphic symbol for a specification or

document, and a rectangle with an arrow up on the left side is the Planguage graphic for a

‘process’.

 The abbreviations used in this figure (and in the rest of the CE book) are as follows:

 GP Generic Project RR Resource Requirements

 GS Generic Specification DS Design Specification

 RS Requirement Specification DE Design Engineering

 FR Function Requirements IE Impact Estimation

 SR Scalar Requirements EVO Evolutionary Project Management

 PR Performance Requirements SM Strategic Management

 SD Scale Definition DC Delivery Cycle





Author Bio
Tom has been an independent consultant, teacher and author, since
1960. He mainly works with multinational clients; helping improve their
organizations, and their systems engineering methods.
Tom’s latest book is ‘Competitive Engineering: A Handbook For Systems
Engineering, Requirements Engineering, and Software Engineering Using
Planguage’ (Summer 2005).
Other books are ‘Software Inspection’ (with Dorothy Graham, 1993), and
‘Principles of Software Engineering Management’ (1988). His ‘Software

Metrics’ book (1976, OoP) has been cited as the initial foundation of what
is now CMMI Level 4.
Tom’s key interests include business metrics, evolutionary delivery, and
further development of his planning language, ‘Planguage’. He is a
member of INCOSE and is an active member of the Norwegian chapter
NORSEC. He participates in the INCOSE Requirements Working Group,
and the Risk Management Group.

Email: Tom@Gilb.com
URL: http://www.Gilb.com

Version Nov 9 2005

