
Experiences
with Defect Prevention

by R. G. Mays
C. L. Jones
G. J. Holloway
D. P. Studinski

Defect Prevention is the process of improving quality
and productivity by preventing the injection of defects
into a product. It consists of four elements integrated
into the development process: (1) causal analysis
meetings to identify the root cause of defects and sug
gest preventive actions; (2) an action team to imple-
ment the preventive actions; (3) kickoff meetings to
increase awareness of quality issues specific to each
development stage; and (4) data collection and track-
ing of associated data. The Defect Prevention Process
has been successfully implemented in a variety of or-
ganizations within ISM, some for more than six years.
This paper discusses the steps needed to implement
this process and the results that may be obtained.
Data on quality, process costs, benefits, and practical
experiences are also presented. Insights into the na-
ture of programming errors and the application of this
process to a variety of working environments are dis-
cussed.

T o achieve quality software products, most de-
velopment processes rely on defect detection

and correction through inspections, walkthroughs,
and reviews early in the development cycle, and
through extensive testing. However, reliance on de-
tecting defects after they have been injected is costly.
The detection and correction of defects does not add
function to the end product. Inspections and testing
are also limited in effectiveness.

A much more effective approach involves preventing
defects from being injected during development.
Fewer defects during development permits more re-
sources to be devoted to developing new product
function, and higher product quality in the field
means greater customer satisfaction.

Whereas prevention is simple in concept, it was not
clear at the beginning of our work on the Defect
Prevention Process that software defects could be
prevented. However, our experience with this proc-
ess has shown that not only are defects preventable,
but significant reductions in errors can be achieved
with a modest investment. Software defects have
identifiable causes, such as an oversight or commu-
nications failure, and are preventable through im-
proved processes, methodologies, techniques, and
tools. A dramatic improvement in quality can be
achieved through defect prevention and with it a
corresponding improvement in overall productivity
and customer satisfaction.

The Defect Prevention Process”z uses causal analy-
sis, which is the determination of the specific cause
or causes of a defect. Causal analysis is usually
described in the quality control literature in terms of
quality-circle activities and usually in the context of
a manufacturing ~pera t ion .~-~ The causes of manu-
facturing defects are analyzed using cause-effect dia-
grams (also called Ishikawt or “fishbone” diagrams)
and Pareto charts. Crosby, for example, describes a
case history involving the use of causal analysis to
prevent defects on a manufacturing line.

Copyright 1990 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

4 MAYS ET AL IBM SYSTEMS JOURNAL. VOL 29, NO 1, 1990

Causal analysis of software defects is practiced in a
number of Japanese companies, usuqly in the con-
text of quality-circle activities. Hino describes the
analysis of 52 software defects by a quality circle
over an 1 1-month period, resulting in an estimated
100 defects prevented. The circle members estimated
that as many as 90 percent of their software defects
could be prevented through improved design tech-
niques and other preventive mechanisms. Similarly,
Sugaya’ reports that circle members are motivated
to look into the root causes of defects and propose
action plans to prevent them in the next release.

Nakajo, Sasabuchi, and Akiyama’ describe a joint
effort between Yokogawa Hewlett-Packard (YHP)

and Tokyo University that analyzed 523 defects from
three software projects at YHP. The defects were
analyzed in detail to determine both the human error
causing the defect and the underlying flaws in the
development process that affected the rate of human
errors. The defects were analyzed in terms of a fault
classification scheme, and the human errors were
determined from various documents and through
interviews with the developers. From this informa-
tion the underlying process flaws associated with the
errors were identified and a number of improve-
ments to the design process were proposed.

Within IBM, causal analysis has been used in the
Systems Integration Division (formerly the Federal
Systems Division) on the Space Shuttle Primary
Avionics Software System, the on-pgyd computer
software that controls the Shuttle. Defects are
analyzed to determine the cause of the error, how to
prevent the error, and how to remove similar defects
that may exist in the system. The primary focus of
the causal analysis has been on escapes from test and
inspections, and how to improve the effectiveness of
both tests and inspections.

The primary difference between these approaches to
causal analysis and prevention and the Defect Pre-
vention Process described in this paper is the inte-
gration of the defect prevention activities into the
development process. With Defect Prevention,
causal analysis is done by the development team
during the development cycle, as each stage of de-
velopment is completed, rather than by a quality
circle at some later time during development. Direct
causal analysis by the developer making the error
results in a more accurate determination of the cause
of the defect and more relevant preventive actions.
In contrast to a quality circle, the preventive actions
are implemented by an action team with specific

IBM SYSTEMS JOURNAL, VOL 29. NO 1. 1990

skills and authority to change the development proc-
ess. In addition, systematic feedback to the devel-
opers is provided by stage kickoff meetings and the
status of planned preventive actions is tracked in a
database.

The Defect Prevention Process discussed in this pa-
per was initially developed in the IBM Communica-
tions Programming Laboratory at Research Triangle
Park, North Carolina, where the development of
such communications products as the Virtual Tele-
communications Access Method (VTAM), the Net-
work Control Program (NCP), and NetView” is done.
To date, Defect Prevention has been implemented
in more than twenty-five organizations at seven IBM

development laboratories, involving system pro-
gramming, application programming, and micro-
code development. The process has been adopted as
part of a c2rporate-level Programming Process Ar-
chitecture. It is also taught in two internal courses
offered by IBM Corporate Technical Education.
These courses have now been presented at practically
every major software development laboratory within
the company.

In this paper, we summarize the Defect Prevention
Process and discuss our experiences with it, including
observed quality improvements, costs and benefits
of the process, and observations on the nature of
programming errors and preventive actions. As De-
fect Prevention has been implemented in different
organizations and in different laboratories, it has
been adapted, adjusted, and enhanced. Several ad-
aptations and enhancements were ma$: at the Myers
Corners Laboratory in Poughkeepsie, for example.
This paper describes the Defect Prevention Process
in a generalized form.

Throughout the paper we use the terms defect and
error interchangeably. A defect is also referred to in
the literature as a program fault, and refers to a flaw
or problem within the software. An error refers to
the underlying cause of the defect. The term “error”
implies a mistake that the developer has made. In
our experience, the cause of most defects can be
traced to human error.

The Defect Prevention Process

In the Defect Prevention Process, the various activi-
ties of Defect Prevention are integrated into the
development process. Causal analysis meetings and
stage kickoff meetings become part of each devel-
oper’s day-to-day activities, much like inspections
and reviews.

Figure 1 Causal analysis meeting

I PREVENTIVE
SUGGESTED

ACTIONS

In this section we describe the application of Defect
Prevention in a software development organization,
involving causal analysis, the action team, and stage
kickoff meetings. The application of the process in a
test organization, in information development, and
in other areas is described at the end of the section.

Causal analysis meetings. The software development
process is divided into a number of design, devel-
opment, and test stages, such as requirements and
planning, product-level design, component-level de-
sign, and code and unit test. '* Programmers generally
work together in teams to develop a portion of the
product release. At the end of each stage, an inspec-
tion, review, or other validation is conducted in
which defects are detected.

Once the defects from a stage have been corrected, a
meeting that we term a causal analysis meeting,
usually two hours in length, is held. The process is
illustrated in Figure 1. The development team mem-
bers review the defects, determine the root cause of
the programmer errors, and propose actions to help
prevent such errors in the future.

For each defect, the following questions are posed:

What is the category of cause of the error-com-
munication, oversight, education, or transcrip-
tion?

How was the error introduced or caused?
At what stage was the error created or injected?
How can we prevent this error in the future? How
can similar defects be detected and removed from
other parts of the product?

The causal analysis meeting is led by a person from
product development who has been trained as a
causal analysis leader. A chalkboard is used that is
divided into columns for the defect number, defect
abstract, cause category, cause abstract, process stage
where the defect was created, and suggested preven-
tive actions. A paper form is also used to record the
information written on the board.

The emphasis of the meeting is on gathering preven-
tive suggestions. The leader keeps the meeting mov-
ing and not bogged down in details about a defect
or cause, unless these details lead to better suggested
actions. If some information is unknown (for ex-
ample, the defect's cause), the leader may skip that
column. The leader may even decide to skip an entire
defect if it does not appear that any meaningful
actions will result. Of course, some defects will pro-
duce no suggested actions.

During the last half-hour of the meeting, the causal
analysis leader directs the team to take a broader
view of the defects and of the stage that the team
just completed. The following are typical questions
that can be asked at this point:

6 MAYS ET AL IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

Is there a trend in the errors that indicates a
broader problem? Are there additional suggestions
to address such a trend?
What went right during this last development
stage? What saved time? Can suggestions be made
to help other teams?
What went wrong during the latter stage? What
wasted time? Can any suggestions be made to
prevent or avoid these problems?
How can we improve our defect-detection meth-
ods, tools, communications, education, etc.?

B

Often this discussion portion of the meeting pro-
duces the most important suggestions. After the

A critical element of the process is
the action team whose purpose is

to ensure that preventive actions are
implemented.

b
meeting, the causal analysis leader records the data
from the meeting (suggested actions, defects, and
causes) in an action database for subsequent report-
ing and tracking.

The team leader may call a causal analysis meeting
before the development stage is over, when enough
errors have been collected for a meeting, usually
around twenty. Repeated causal analysis meetings
may be held, especially during the test stages. Such
interim causal analysis meetings allow immediate
feedback to the team to help them prevent additional
errors, as the stage progresses.

b The involvement of the developers who originated
the errors is critical, because the developer who
created the error is the best person to identify its
cause. Also, both the developer and the other team
members receive direct feedback about the errors
made. This direct feedback has a significant effect in
preventing similar errors by that team in the future.

It is also important to have everyone in the team
present for causal analysis because a synergism of

B
IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

ideas results from the group as a whole. It is typical
that preventive suggestions come from team mem-
bers other than the person who made the error. Some
portion of everyone’s defects should be analyzed. If
someone had no defects during a particular stage,
that person will likely be able to contribute signifi-
cant ideas toward preventing future errors. That
developer’s ideas naturally have the respect of the
other team members.

The action team. A critical element of the process is
the action team whose purpose is to ensure that
preventive actions are implemented. The action
team is illustrated in Figure 2 and consists of people
from the area who work part-time as action team
members.

The action team typically serves an entire product
development organization. Depending on the size of
the organization, the team may be smaller or larger.
For example, the action team for a small develop-
ment organization of 20 to 50 people might have
three or four members, whereas the action team for
an organization of 200 to 250 people might have
eight to ten members. The scope of the action team
should encompass the entire development organiza-
tion or that portion of a large organization that shares
the same development process. For a product devel-
opment area, a systems test organization, and an
information development organization, three sepa-
rate action teams would probably be required. In a
very large product area, several action teams might
be formed to serve thy3different second-line devel-
opment organizations.

The action team members each serve in a role on
the team. One member might have responsibility for
process definition and documentation, another for
tool requirements and implementation, another for
education. Others represent design, development,
and test. A manager also serves on the action team
to handle actions that require communication with
other managers in the organization or negotiations
with other organizations. Each team member is re-
sponsible for ensuring that the actions assigned to
him or her are implemented, either by doing the
work directly or by reassigning it to someone else in
the organization.

The action team meets regularly to review the new
actions that have been proposed, to decide which
ones are to be implemented and how to implement
them, to assign the new actions, and to discuss the
status of actions that are currently open. Closed

MAYS ET AL 7

t I

TOOLS
PRODUCT CHANGES

TECHNICAL CLASSES
NEWSLETTERS
AWARDS, RECOGNITION

I
ACTION TEAM

/ /” REPORTS

ACTION TEAM I.
-

IMPLEMENTED
ACTIONS

ACTION
STATUS CHANGES

PROCESS DOCUMENTATION CHANGES
COMMON ERROR LISTS
CHECKLISTS, GUIDELINES
TEMPLATES
TECHNICAL WRITE-UPS

actions are also reviewed to ensure that the work has
been properly completed.

An action team for a large product area (1 50 to 200
persons) may handle several hundred actions each
year. An action database and the supporting data-
collection tool are essential to keep track of the open
actions. The action team uses reports from the action
database to guide their meetings. Listings of the new
actions and open actions are printed out prior to
each meeting. Changes in action status, including
the new action assignments, are entered after the
meeting.

Preventive actions fall into several categories:

Process improvements, refinements, or documenta-
tion are actions that improve existing processes, de-
fine new processes, or improve process documenta-
tion. Such actions might modify the design change
process, define a new test-error fix process, or add
new items to a common error list or checklist.

Tools are actions that develop new tools or enhance
existing tools that support the process. This might
include writing a tool to trace save area utilization
or adding a new check to the module checker tool.

Education actions improve knowledge about prod-
uct and nonproduct-related technical areas. Educa-
tion might include such things as developing a class

8 MAYS ET AL IBM SYSTEMS JOURNAL, VOL 29. NO 1. 1990

in hardware subtleties, organizing a seminar series
on the components of the product, preparing a tech-
nical write-up on a complex aspect of the product,
and writing a newsle’ter article on repetitive errors.

Product changes are actions to improve the product
so that developing and enhancing it are less error
prone. This might include improving documentation
of product macros, implementing a design change to
improve an internal interface, and rewriting an error-
prone part of the product.

Communications improvements are actions that im-
prove communications procedures within the prod-
uct organization or with other organizations. Here
we think of implementing the automated notifica-
tion of design changes to all interested parties, ap-
pointing a liaison or focal point to handle commu-
nication with another organization, and holding
weekly team technical meetings.

Many actions require saving documentation and
information for on-line access by people in the prod-
uct organization. These materials are placed in re-
positories, that is, on-line files that can be accessed
by everyone in the area. These materials might in-
clude the documentation of the area’s process, pro-
cedures, and methodologies, product technical write-
ups and documentation, common error lists, inspec-
tion checklists, coding guidelines, performance
guidelines, a checklist for new-hire education, project
management guidelines, and tools documentation.
Usually there is so much information that an index
is also required.

Not all suggested actions are implemented. The ac-
tion team may decide that an idea is not cost justi-
fied; it may be deemed impractical or simply a bad
idea. A suggestion might fall outside the scope of the
team. Also, an action may already have been imple-
mented or may duplicate a suggestion already re-
ceived. When an action is rejected, the rationale for
rejection is documented and the suggester is notified.
However, the suggester may request the action team
to reconsider a rejected action.

The action team is involved in a number of activities
in addition to actual implementation of actions.
Usually a preliminary investigation of the action
must be done so that all of the relevant aspects of
the action are understood. The action team member
will typically assign a priority to the action so that it
is clear which actions of those assigned should be
addressed first.

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

Sometimes an action team member does not have
the knowledge to implement an action. The member
then asks an appropriate person in the organization
to implement the action. A negotiation with the

The action team is involved in
feedback to the organization.

person’s manager may be required to allocate time
for implementation. The action team member con-
tinues to have responsibility to see that the action is
implemented and follows up with the implementer
until the item is closed.

The action team is also involved in feedback to the
organization. Product developers must understand
that their suggestions are taken seriously and that
they are implemented. An action is not considered
finished until there is some form of feedback to the
product area about its completion. Feedback on
completed actions may be done, for example,
through newsletter articles, on-line news bulletins,
or at area meetings. In some product areas, informal
awards are presented at periodic area meetings to
people who have made significant contributions to
defect prevention, either in terms of effective sugges-
tions or implementation of actions.

The action team also reports on the status of its
activities to management. These reports may include
such items as statistics on defect distribution by
cause, action distribution by action category, cost of
the process in terms of causal analysis meetings,
kickoff meetings, action team meetings and action
implementation, and total projected cost of actions
left to be implemented. This kind of information
may also be presented at area meetings.

Stage kickoff meetings. Stage kickoff meetings are
used at the beginning of each development stage to
prepare the development team for the work of the
stage. The place of the stage kickoff meeting as the
primary means of feedback for the Defect Prevention

MAYS ET AL 9

Figure 3 Stage kickoff meeting

FEEDBACK AT
START OF STAGE

KICKOFF
PACKAGE FOR
STAGE

TOOLS
PRODUCT CHANEiES

TECHNCAL CLASSES

AWARDS, RECOGNITION
NEWSLETTERS

t

PROCESS DOCUMENTATON CHAN(3ES

CHECKLISTS, GUIDELINES
COMMON ERROR LISTS

TEMPLATES
TECHNICAL WRITE-UPS

Process is shown in Figure 3. The information pre-
sented during the kickoff is updated by the action
team as actions are implemented.

Kickoff meetings typically take one to two hours and
are led by the technical team leader, who is some-
times called the chief programmer. The emphasis in
the meeting is on technical aspects of the develop-
ment process and on quality. Information presented
during the meeting includes:

A description of the process for this stage, includ-
ing specific procedures, methodologies, tech-
niques, tools, guidelines, conventions, checklists,
etc.
The inputs available for this stage
Examples of outputs that should be produced
Validation methods that will be used (e.g., inspec-

The common error list, a list of the errors com-
tions, reviews)

monly created during this stage

10 MAYS ET AL IBM SYSTEMS JOURNAL, VOL 29. NO 1, 1990

The team assignments
The schedule that will be followed

The process description, procedures, and methodol-
ogies for the stage are reviewed. Portions of the
process document may even be read, word for word.
This serves to educate the team, if they have never
read the process, or to re-educate the team periodi-
cally and to point out recent revisions to the process.
The process is thus repeatedly reinforced in the team.

B

Reviewing the common error list is
important for preventing errors.

Il

Because of the constant improvements through
causal analysis and the review and discussion during
kickoffs, the process document is an active docu-
ment, representing the actual process used by the
organization.

The inputs to the stage (e.g., the design document)
are reviewed so that concerns may be raised about
their completeness, for example. Samples of outputs
of the stage may also be presented so that the team
understands the kinds of outputs required for that
stage. For example, the team might review what the
appropriate level of detail is for the design stage.

Reviewing the common error list for the stage is
important for preventing errors. The list contains
brief descriptions-sometimes with examples-of
errors that have been identified during causal analy-
sis as chronic and repeating. (See Appendix A for a
sample common error list.) A review of the list serves
as a reminder to the developers and reduces the
probability of making these errors.

Some development projects are not organized into
specific teams, for example, when developers work
individually on separate parts of the product. In such
cases, developers whose development schedules rea-
sonably coincide can be formed into ad hoc teams
which then conduct stage kickoff meetings, inspec-
tions, and causal analysis together. Other developers,

b

B

1
IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

for example, who develop fixes for field errors do not
follow distinct, development stages, and a stage kick-
off meeting is not relevant. Such developers should
participate in periodic process reviews, occurring
perhaps every three or four months, instead of stage
kickoffs to reinforce their knowledge of the process,
procedures, and common errors, and to learn of
recent process revisions.

Additional aspects of the process. Field errors or
Authorized Program Analysis Reports (APARS) are
reported continuously and thus do not fit a devel-
opment stage. Special APAR causal analysis meetings
are held by the department with responsibility for
the component where the APAR defect occurred, as
shown in Figure 4. The causal analysis meetings are
held whenever ten to twenty APARS have been re-
ceived.

During causal analysis, the cause of the APAR may
not be accurately determined for a variety of reasons.
Nevertheless, good preventive suggestions can still
be made. Developers doing APAR causal analysis can
sometimes become bogged down in trying to under-
stand the details of a problem. Provided the team
remembers not to spend excessive time on each APAR

problem, APAR causal analysis proceeds like other
causal analysis meetings.

In organizations that have followed the Defect Pre-
vention Process, developers begin to make miscella-
neous suggestions for improvements outside a causal
analysis meeting. Developers typically suggest new
tools or tool enhancements, and these suggestions
are handled by the action team along with the sug-
gestions from causal analysis.

The Defect Prevention Process involves everyone in
the development organization over time, as shown
in Figure 5. Developers follow the cycle of stage
kickoff (KO) meeting, work, inspection or review,
and causal analysis (CA) meeting for each stage of
product development. The action team (AT) meets
usually every two weeks to assign the new suggestions
and to report to the rest of the team on the progress
of actions being worked on.

If the action team can implement its actions quickly,
later teams in a development project will benefit
from earlier teams’ experiences. A later development
team in its kickoff meeting will be able to review
process improvements and common errors that ear-
lier teams suggested in their causal analysis. Consider
Team 3 in Figure 5. That team can learn information

MAYS ET AL 11

Figure 4 The Defect Prevention Process

KICKOFF
PACKAGE FOR
STAGE

FE
51:

FIELD ERRORS
W A R S)

r

L
REPOSITORIES

I
I

!

PRODUCT CHiU’JQES
TOOLS
TECHNICAL CLASSES
NEWSLETTERS
AWARDS. RECCGNITION

SUGGESTED
ACTtONS I SUGGESTIONS

MISCELLANEOUS

4 i

PROCESS WCUMENTATDN CHANGES
COMMON ERROR LISTS
CHECKLISTS, OUIDEUNES
TEMPLATES
TECHNICAL WRITE-UPS

in their code kickoff that resulted from suggestions
from Team 1’s code causal analysis.

The key elements of Defect Prevention. There are
four key elements in the Defect Prevention Process:
(1) systematic causal analysis, (2) a management-
supported action team, (3) stage kickoff meetings,
and (4) a database and tools for data collection and
tracking of actions. A Defect Prevention plan that
omits one or more of these elements will likely be

ineffective. Several similar processes-release post-
mortems, informal causal analysis, and quality cir-
cles-use some of the elements of defect prevention
but are not, in our view, as effective in preventing
errors as the process described in this paper.

A release postmortem is an analysis of the develop-
ment experiences of the release of a product, usually
compiled at the end of the release. Frequently, a
general causal analysis is done, answering questions

12 MAYS ET AL IBM SYSTEMS JOURNAL, VOL 29. NO 1. 1990

such as “What difficulties did we encounter during
the release? How can we avoid them in subsequent
development projects? What activities improved our
process? How can we make them permanent?” There
are several differences between postmortems and the
Defect Prevention Process. Postmortems are typi-
cally done after the release has been completed, with
the result that any suggestions for improvement are
delayed at least until the next development project.
The causal analysis in a postmortem does not ana-
lyze specific defects but is more general. Suggestions
for improvements that address specific types of errors
are frequently overlooked. Recommendations for
improvement are frequently lost in the subsequent
activity of the next project or in reorganizations that

may follow the completion of the project. Usually
no formal mechanism exists to ensure that recom-
mendations are implemented.

The causal analysis meetings described in this paper
are in effect minipostmortems performed by each
team at the end of each development stage. They
focus on a sampling of specific errors and their
causes. With the use of an action team and a database
of suggested actions in the Defect Prevention Proc-
ess, the shortcomings of the postmortem process are
overcome.

Informal causal analysis is sometimes done by a
developer to gain insight into the causes of errors

~ ~

Figure 5 Defect Prevention time line
~ ____ ~~~~

MONTH

TEAM 1

TEAM 2

TEAM 3

TEAM 4

ACTIW
TEAM
MEETINQS

KO - KICKOFF
CA - CAUSAL ANALYSIS
AT * ACTION TEAM

IBM SYSTEMS JOURNAL, VOL 29. NO 1, 1990

and to suggest preventive actions. The results of this
sort of work can be very beneficial. However, this
approach has several difficulties. Frequently the
analysis is done long after the defects have been
created (typically after all tests have completed) so
that improvements are delayed. The defect causal
analysis is done by someone other than the devel-
opers who created the defects, with the result that
the analyst must guess the cause of the defect. As
with postmortems, there is usually no formal mech-
anism to ensure that the recommendations have
been implemented. The developer doing the causal
analysis may be shifted to “more productive” work,
effectively ending the opportunity to improve the
process.

A quality circle or quality improvement team”5,‘4 is
a group of developers, usually members of the same
department, who meet regularly to discuss problems
and ways of overcoming them. Quality circles fre-
quently undertake to implement improvements in
their work practices, tools, and process. As part of
their activities a quality circle may do causal analysis
and implement the suggestions. As with postmor-
tems and informal causal analysis, any activity that
eliminates the underlying causes of errors is benefi-
cial. However, quality circles frequently have short-
comings that inhibit their effectiveness.

Quality circles usually do not do causal analysis of
specific defects but rather pursue problems that are
perceived by the circle to be the most important.
This practice tends to ignore the many defects that
are created regularly, while ultimately leading ironi-
cally to the perception that the circle has run out of
things to work on. A quality circle is frequently
limited to changing what its members are able to
change. Thus a major process change affecting the
entire development organization or a large tool de-
velopment project would probably not be under-
taken. The implementation of improvements is usu-
ally done on the members’ own time. Management
“funding” for quality-circle improvement activities
is usually inconsistent and may evaporate over time.

Despite these shortcomings, quality circles can be
used very effectively to complement the Defect Pre-
vention Process. A quality circle can, for example,
take on the task of doing periodic APAR causal analy-
sis. In addition, the action team may request a
quality circle to implement a specific action, such as
writing a summary of a technical topic. In any case,
quality circles should be encouraged wherever they
continue to be effective.

14 MAYS ET AL

Defect Prevention in test and other organizations.
Thus far we have described the operation of the

Defect Prevention has also been
effective in test and other

organizations.

Defect Prevention Process for a software develop-
ment organization. Defect Prevention has also been
effective in test and other organizations. Each differ-
ent organization uses different processes and creates
different kinds of errors. Defect Prevention can be
applied to the errors arising from each particular
process.

The test process usually has three major steps that
are taken for each test: test planning, which defines
the people, hardware and tool requirements, and the
schedules for the test; test preparation, which devel-
ops and documents the detailed test cases (also called
test scenarios); and test execution, which involves
the actual execution of the test cases and correction
of the problems found. When Defect Prevention is
applied to test, the basic four elements of the process
are followed. The major types of errors that are
analyzed in test are:

Test-planning and test-case errors-for example,
required hardware is missing from the planned
hardware configuration, or a test case fails to test
an important product function
Build and test-environment errors-for example,
the test product had the wrong level of a module,
data sets needed for the test were missing or had
the wrong name
Test-execution errors-sometimes called user er-
rors, these are errors made by the tester in setting
up the test or in interpreting the results-for ex-
ample, the tester entered the input commands
incorrectly or interpreted the presence of an error
message as a problem
Duplicate errors- failure to recognize that a prod-
uct defect manifesting a certain symptom is really
a duplicate of another error that was found earlier,
possibly with different symptoms (duplicate errors

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

D

are analyzed from the perspective of “Could we
have recognized this error as a duplicate of the
previous error?” and “What can we do to identify
duplicates of this type in the future?”)
Recreate requests-a request to recreate a program
problem because not enough information was col-
lected when the first failure occurred to permit
problem diagnosis (recreate requests are analyzed
from the perspective of “What caused our failure
to collect the needed information?” and “What
diagnostic tools would help collect the required
information or permit accurate first-failure data
capture?”)
Test escapes-product defects that a particular test
failed to find but which were found in a later test
or by a customer (test escapes are product defects

D

Product planners (persons who specify new product
requirements and formulate product development
plans) analyze errors and plan changes that have
occurred in the requirements and planning process.
These errors include incomplete or erroneous re-
quirements, late requirements, changes in product
or market strategy, errors in estimating release size,
and difficulties in project management. The root

The process is also applicable
outside software development.

but are analyzed from the perspective of “Should
the test have caught this error?”; “Why was the
error not caught?”; and “What can we do to catch
this sort of error in the future?”) D

Since the test organization analyzes product errors
as test escapes, a given field error (APAR) can be
analyzed multiple times, both from the developer’s
perspective (“Why was the error first introduced?”)
as well as from the test perspective (“Why did it get
through the target test?”).

Information developers (programmers who develop
product manuals and related documentation) ana-
lyze errors in their books. The errors can be mani-
fested during inspections or reviews of various book
drafts, testing, or from field errors (documentation
APARS) and reader comments. Other errors that occur
during the planning stage or during production of
books can also be analyzed and prevented.

Software service programmers (those who diagnose
customer problems and develop fixes for APARS)

analyze errors that result in bad APAR fixes. As with
product developers, the root cause of the program-
ming error is examined. Other errors from the service
perspective include test escapes, those occurring in
the fix packaging and in the install process, and those

6

D in diagnosing customer problems.

Human factors specialists (persons who analyze, test,
and improve product usability characteristics) ana-
lyze customer user errors, that is, difficulties cus-
tomers have had using our products. Frequently
these problems are caused by usability problems in
the product. The analysis results in suggestions for
product usability improvements that are then in-
cluded in subsequent product release plans.

cause of the error is determined, and actions for
improving the process or anticipating changes earlier
are implemented.

Our experience with the Defect Prevention Process
shows that it is widely applicable to different proc-
esses and organizations involved in software devel-
opment. Moreover, the process is also appljcable
outside software development, for example, to man-
agement practices, hardware design, hardware devel-
opment, and manufacturing.

Management’s role in Defect Prevention. Even
though the Defect Prevention Process emphasizes
the direct involvement of developers in improving
the development process, management’s role is crit-
ical too. We see this role as being a fourfold one:

Support and encourage the Defect Prevention ac-

Allocate the resources needed for the action team
Authorize the action team to improve the devel-
opment process as needed to achieve prevention
Monitor the results of the Defect Prevention Proc-
ess to ensure its continued effectiveness

tivities

A manager serves on the action team and is key to
its success. This team member provides management
focus on such actions as communicating issues to
other managers in the organization, negotiating with
other managers for the use of someone’s services to
implement an action, and negotiating with other
organizations. Because the action team is drawn

Figure 6 Defect rate comparison

1

// I PER THOUSAND LINES
A DEFECTS

// I OF CODE

,/ I

/ /- / , / /
/ /

~"""""-L""""-~"""""-~"-""""~"""""-~

CLD MLD CODE UT/FVT PVTISVT

DEVELOPMENT STAGE

CLD COMPONENT-LEVEL DESIGN FVT = FUNCTION VERIFICATION TEST
MLD = MODULE-LEVEL DESIGN
UT = UNIT TEST

PVT = PRODUCT VERIFICATION TEST
SVT - SYSTEM VERIFICATION TEST

from many different areas of the organization, the
team members would not be expected to report to
the action team manager. The team manager may
or may not direct the action team's activities. Fre-
quently it is the process representative who chairs
the action team meetings and coordinates the team's
activities.

We recommend that managers not participate di-
rectly in causal analysis meetings because the pres-
ence of the developers' manager is sometimes viewed
as inhibiting the free discussion of errors. A similar
rationale was cited by Michael Fag$? in regard to
management use of inspection data. On the other
hand, managers may choose to conduct their own
causal analysis to evaluate problem areas in their
own work.

Benefits and costs of Defect Prevention

In this section we describe the benefits of the Defect
Prevention Process, including quality and process
improvements, and the costs of implementing the
process.

Defect rates during development. The role of Defect
Prevention in reducing defects introduced during
development has been a significant one. One product
was studied in detail. Historical data are available
for eight releases of this product prior to the intro-
duction of the Defect Prevention Process, which was
introduced fully during two recent releases. Defect
rates experienced during development are compared
graphically in Figure 6 and are listed in Table 1. All
of the numbers represent defects per thousand lines

16 MAYS ET At IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

of new and changed source instructions (KLOC) that
were discovered in inspections, reviews, and testing
in each development stage. The data for unit test
and function verification test and those for product
verification and system verification test have been
combined, because some of the earlier releases did
not perform these tests separately. To date we have
seen a 54 percent reduction in defects during the
development cycle over history.

There are significant differences in the way lines of
code are counted in the industry. For example, does
one count macro expansions or comments? The
method used with the product being discussed results
in line of code counts lower than and error rates
correspondingly higher than those cited by others in
the industry. What is important is not the absolute
defect rate but rather the relative improvement in
the defect rate experienced by this product.

The historical data are summarized in Table 1. The
defect rates shown are the weighted means of the
data for the eight releases, and the standard deviation
is a weighted standard deviation. In the two recent
releases, error data for each development team in
each stage were collected. The size of each team's

code is given. For some teams, the module-level
design (MLD) stage was combined with the code stage
(indicated by n/a in the MLD column). The test stage
results have been combined to maintain consistency
with the historical data.

Teams A to D represent one release (28KLOC) and
teams E to J represent the other (36.3KLOC). The
product verification and system verification tests
(PVTlSvT) for the second release have not completed,
as of this writing. The differences between history
and Teams A to J for the individual stages and the
overall defect rate were analyzed using the Student
t-test. The overall difference and the differences for
MLD through PVTISVT are significant (p < 0.05). The
difference for the component-level design (CLD) stage
is not significant because of the large variability in
the historical data which have a mean of 7.9 and a
standard deviation of 8.4.

There are clear differences among the various teams,
which are due to such individual differences in the
team members as level of experience and knowledge
of the product. There are also differences in com-
plexity of the function being developed. Team D, for
example, had relatively higher defect rates compared

Table 1 Defect rates, historical and with the Defect Prevention Process, per thousand lines of code (KLOC)

Historical Defect Rates for N = 8 Releases

Product
Unit Test/ Verification

Component- Module- Function TestlSystem
Level Level Verification Verification

Design Design Test Test
Weightzd mean (CLD) (MLD) CODE (UT/FVT) (PVr/SVr) TOTAL

Standard deviation (N = 8) 7.9 18.6 20.8 17.4 3.3 68.0
Total size = 125.4K 8.4 9.7 6.0 5.5 1.4 23.3

Using Defect Prevention Process

SIZE
TEAM A 8.7K
TEAM B 4.2K
TEAM C 8.OK
TEAM D 7.1K
TEAM E 9.3K
TEAM F
TEAM G

7.6K

TEAM H
6.8K

10.1K
TEAM I 1.2K
TEAM J 1.3K

Weighted mean
Total size = 64.3K
Percent reduction over history
Significant (p < 0.05)

CLD

3.0
1.9
0.4
8.6
8.2
2.9
2.4
2.5
1.7
0.0
3.7

53%
no

-

MLD
10.7

n/a
2.0
9.2
3.7

n/a
nla
14.8
1.3

6.9

63%

Yes

- n/a

CODE
7.0
7.4
7.0

14.4
15.5
9.7

17.8
13.4
5.0
3.1

11.4

45%

-

yes

UT/FVT PVr/SVr TOTAL
10.5 1.8
12.1
9.3
9.2
4.4
6.8
8.8
5.1
9.2

- 0.8
8.7 1.8 32.5

- -

IEM SYSTEMS JOURNAL, VOL 29, NO 1. 1990 MAYS ET AL 17

Table 2 Total cost of the process in 1987

Produel 1 Product 2

Cost of Defect Prevention 0.82 0.86

Total size of organization 227 187

Percent of total resources 0.4% 0.5%

(Penon years)

(People)

with Teams A to C. Their product function was
particularly complex, involving complex timing sit-
uations in a part of the product that team members
had little experience with. In addition, the expert in
that component was not readily available to answer
questions.

The field defect rate for the first release for Teams A
to D can only be projected at this point. However,
the number of field defects (total valid unique APARS)

that have occurred since the release was made avail-
able to customers is tracking at a level that represents
a reduction of 60 percent compared to the field defect
rates of the eight prior releases.

One might argue that the observed reductions in
error rates are due to other factors. For example, a
reduction in error rate might be due to a reduction
in the effectiveness of defect detection activities, such
as inspections, reviews, and testing. This is not valid
in the case of these releases for two reasons: (1) The
effectiveness of inspections, reviews, and tests as
determined by such other measures as inspection
preparation time, inspection rates, and test coverage
appears to be at least as good as the historical releases.
(2) The error reductions persist throughout the re-
lease and into the field.

We are confident that the error reductions we have
observed are caused by fewer defects injected during
development, as a consequence of the practice of the
Defect Prevention Process. No clear trend toward
continued cumulative error reductions can be ob-
served in this small sample of team results. Nonethe-
less, we believe that further reductions in defect rates
will be experienced as the cumulative effects of con-
stant improvements occur over time.

Costs and direct savings to the organization. The
costs of the Defect Prevention Process come from
the different activities of the process. The following
cost figures are typical of a software development
organization:

18 MAYS ET AL

Stage kickoff meetings- 1 to 2 hours per team per
stage, where a team comprises typically 3 to 7
persons
Causal analysis meetings-2 hours per meeting,
usually with 1 to 2 meetings per team per stage.
There is typically 0.5 to 1 hour of data-entry time
required by the causal analysis leader at the end
of the meeting
Action team meetings-require 1 to 2 hours every
other week
Action implementation-usually averages about
24 person hours per action. The average time spent
by action team members is approximately 10 per-
cent of their time.

Two product areas have kept detailed data on the
number of hours spent in each of these activities.
The average costs of each activity, in person hours,
for the two products are shown in Figure 7. The
major difference between the two products is in the
average cost of action implementation, which is
about 16 versus 42 person hours per action. This
cost varies from product area to product area, de-
pending on the level of sophistication and maturity
of the area’s process. In the case of Product 2,
considerably more effort was spent on tools actions
than in Product 1, which accounts for the difference
shown.

The total cost of the process for both product areas
in 1987, including action implementation, is given
in Table 2. For both areas, causal analysis was done
on only about a third of the defects. At these levels
of effort, a product area of 150 to 200 people can
expect to spend less than one person year per year
on Defect Prevention, or about one-half percent of
the area’s resources.

An analysis of cost savings for a typical product area
identified the following factors where savings will be
realized:

Less developer efort is required to fix design and
code errors found in inspections; inspections also
take less time when there are fewer errors.
Less developer efort is necessary to investigate test
errors, analyze diagnostic materials, code fixes,
inspect and unit test fixes, integrate fixes, and
answer problems.
Less test efort is needed to investigate problems,
prepare diagnostic materials such as dumps and
traces, analyze and write up the problems, recreate
the problems as necessary, and rerun the tests after
the fix has been applied.

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

Figure 7 Cost of Defect Prevention activities

KGKOFF
MEETING

I I I

I !

CAUSAL
ANALYSIS
MEETINQ

T M
ACTION

MEETING

ACTION
IMPLEMENTATION

I
I
I
I
I
I
I
I
I
I
I
I

"_"
T - 1-

I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I

I
I

I I I
I I
I

I
I I

I I I
I I I

I I I
I I I
I I I

42.4

I I I I I I I I
I I I I I I I I

I I

0
I
5

I
10

I
15

I
20

I
25

I
30

I
35 40

PERSON HOURS

I
I

I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1
45

Less time is wasted when a test is blocked because
of unresolved product defects.

An estimate was made of the savings from the first
two factors only. Assuming a 50 percent reduction
in errors throughout the development cycle, taking
into account the cost of fixing errors from inspections
and during tests, the total savings in developer time
would be at least 2.2 person years. Given a cost for
all Defect Prevention activities of about 0.85 person
years per year, this represents a net savings of more
than 1.3 person years per year. This is the direct
savings that a development area would receive from
this process. Savings in tester effort, from the other
two factors, would be additional. In addition to
quantitative quality improvements, we have noticed
a number of positive secondary effects in organiza-
tions that follow this process. These effects have
included process impacts, improved team commu-
nications and increased quality awareness.

Process impacts. The development process, in the
broad sense, covers the defined steps followed to

develop a software product. These include the re-
quired work products at each step and the specific
methodologies, practices, techniques, tools, and
guidelines used. The development process gradually
changes over time. The process for a newly formed
organization may start off fairly simply, but it
changes as problem areas are identified and corrected
and as new practices are tried out. With continued
focus on refining and impmzing the process, it
reaches a degree of maturity.

Ordinarily, an organization's processes change very
slowly. Process change, even when recognized as
needed, is frequently difficult to accomplish because
there is no established way to effect a change. Even
the idea that the process should change is frequently
not recognized or accepted. Also, the organization's
process may not be documented or the documenta-
tion may be out of date and not reflect the organi-
zation's actual practices. The Defect Prevention
Process affects the development process in a number
of ways and supplies some of the methodology and
structure that has heretofore been missing.

IBM SYSTEMS JOURNAL, VOL 29, NO 1 , 1990 MAYS ET AL. 19

The process becomes self-correcting. Wherever cur-
rent practices lead to problems or errors, the prac-
tices are scrutinized through causal analysis and
corrected through suggested actions. If the process

Process documentation becomes
up-to-date and is actively used by

the organization.

correction does not eliminate the problem, the proc-
ess is automatically reviewed in subsequent causal
analysis and further or different corrections are pro-
posed. The process is constantly fine-tuned.

Process change is accelerated. Process deficiencies
are pointed out and corrections are implemented
rapidly by the action team. Those deficiencies which
cause the most errors or problems receive the most
focus. The action team becomes the focal point in
the organization for process change.

Process documentation becomes up-to-date and it is
actively used by the organization. The process is
repeatedly reviewed in the stage kickoff meetings.
The level of adherence to the process increases as a
result. If the area’s process is undocumented, one of
the first actions is for the action team to document
it. If the process documentation differs from practice,
this fact is brought up and corrected. Process changes
are continuously fed back to the developers.

At some point during the adoption of the Defect
Prevention Process-perhaps after a year of causal
analysis and stage kickoff meetings-developers be-
gin to make miscellaneous suggestions for improve-
ment. A miscellaneous suggestion is not related to
any specific defect or causal analysis meeting, but it
is an idea that a developer has had to improve the
way work is done. The presence of miscellaneous
suggestions signals a fundamental change in the or-
ganization. Developers are now taking an active role
in improving the processes they fol!ow, acting to
prevent errors before they occur. Developers come
to realize that they can influence their process, their
working environment, their tools, their educational

20 MAYS ET AL.

opportunities, and even the way they are managed.
The developers are now empowered by the system
with the ability to change it.

During software development, inspections play a key
role in detecting defects that have occurred. How-
ever, there is a danger that inspections can be relied
on too heavily for defect removal. The key is the
prevention of defects in the first place.

Because an inspection is held at the end of each
development stage, developers may be inclined to
think that being careful with their work is not a high
priority because the inspection will catch the errors
anyway. However, our experience shows that good
inspections are typically 60 to 80 percent effective.
This leaves the potential for quite a few errors still
in the work product. Successful teams are concerned
with preventing errors and thus tend to do much
more self-checking and informal peer review as they
go through each stage.

On the other hand, inspections and tests are still
critical to the quality of the final product, and we
are not suggesting the elimination of these steps. In
fact, early detection of defects through inspections
drives the causal analysis process.

Improved communications and quality awareness. A
significant effect of Defect Prevention on the quality
of individual development teams is improved com-
munications. We have found that teams that have
historically had good esprit de corps do more pro-
ductive and higher quality work. The causal analysis
meetings confirm this relationship. Teams that
achieve high quality invariably attribute this at the
causal analysis meeting to “improved communica-
tions” or “good communications.”

The improved communication occurs mostly among
team members. The Defect Prevention Process en-
courages such communication. For example, during
the stage kickoff meetings, the most important items
tend to be the reviewing of common errors, discuss-
ing preventive techniques, and understanding the
need for the entire team to be more conscious of
“trivial” mistakes. During the stage, the developers
do not work as individuals but as a team. Whatever
education sessions the team needs are sought. A VM

communications network is used to transmit mes-
sages to the entire team whenever something needs
to be communicated. The developers continually
verify their ideas with other team members and ask
many questions.

IBM SYSTEMS JWRNAL, VOL 2 9 , NO 1. 1990

These sound like and are very basic work techniques.
However, they need to be continually reinforced.
The natural tendency for developers is to receive a
work assignment and work on that task alone. Com-
munications must be continually encouraged. An
adjunct to improved communications is improved
morale. We have observed improvements in team
morale in several areas that have adopted Defect
Prevention.

D

Another effect of using this methodology is that
quality awareness is greatly increased. The Defect
Prevention Process requires that the people who
create errors be involved in analyzing their cause.

Higher product quality translates into
higher customer satisfaction.

This increased involvement in quality makes a dif-
ference. The result is a much more active participa-
tion by the people in suggesting preventive actions
and ideas.

After repeated causal analyses, developers become

someone else’s error is described, the developer asks
whether similar errors exist in his or her own work.
If a team member has difficulty with a particular type
of error, other team members offer help in avoid-
ing that error or assistance in reviewing the work.

Net benefits of the process. In addition to process
and quality improvements during development,
other benefits of the Defect Prevention Process in-
clude:

1 aware of the types of errors and their causes. When

Greater effectiveness of inspections and tests be-

Shorter test elapsed time. We have observed that
tests of products that have used Defect Prevention
typically complete on or ahead of schedule, some-
times using fewer testers and other resources than
planned.
Cumulative improvements in the development
process. The investments that a product area
makes in improving its development processes are
cumulative. The area keeps earning dividends

1 cause there are fewer defects

from the preventive actions which were imple-
mented in prior years.

Our experience shows that the investment required
for effective defect prevention is very small, less than
a person year per year or about one-half percent in
a 150 to 200 person organization. At this level of
investment, the organization receives a direct return
of at least double and possibly triple the cost, assum-
ing a reduction in errors equivalent to what we have
seen in other product areas. At this rate, the average
cost of a single APAR would fund the Defect Preven-
tion Process for more than two months.

However, the most significant benefit of the process
is higher product quality in the field. Our experience
to date shows that the error reductions seen in de-
velopment continue in the field at the same level of
reduction or better. Here the benefits of the process
both to our customers and the company are substan-
tial. Fewer APARS result in fewer customer problems,
fewer customer calls, fewer fixes to be developed,
certified, tested, and distributed. Because the impact
of field errors on the customer can be significant,
higher product quality translates into higher cus-
tomer satisfaction.

Process details

In the development of the Defect Prevention Process
over the past six years, there have been a number of
refinements and enhancements, including adjusting
the resource allocation for Defect Prevention activi-
ties and various considerations to begin the process.

Resource allocation in the process. Organizations
implementing this process find that they have so
many good ideas and opportunities for improvement
that they cannot implement them all. Thus manage-
ment must decide how much people time resource
to devote to this process. Clearly, the more resources
devoted to the process, the more defects will be
prevented. Resources are generally constrained in
the areas of causal analysis and action team effort.
The volume of defects available for causal analysis
can be large, and it may not be feasible for the
organization to do causal analysis of all the defects,
although this is the ideal. The action team may find
itself after a while with a substantial backlog of
actions still to be completed. As more causal analysis
is done, more actions are suggested. Thus the backlog
grows.

Management can allocate more resources to the
process by authorizing more causal analysis meet-

1
IBM SYSTEMS JOURNAL, VOL 29. NO 1. 1990

ings, by adding additional members to the action
team, and by permitting a larger percentage of time
to be spent by action team members (e.g., 50 percent
rather than 10 percent). In addition, management
may provide additional resources to the action team
on a temporary basis.

Conversely management may choose to limit the
resources in each area of the process to a specific
level. For example, development teams may be re-
quired to hold only one two-hour causal analysis
meeting for each stage. We recommend the following
minimum level of resource allocation:

A stage kickoff meeting for each development
team at each stage
One causal analysis meeting for each development
team at each stage to ensure coverage of errors
from each team and to provide feedback to all
developers
An action team of three to six members, depend-
ing on the size of the organization-three mem-
bers for an organization of 30 or fewer persons
and six members for a 120 to 150 person organi-
zation
Action team participation at 10 percent of each
member’s time

If causal analysis meetings are limited in this way to
one meeting per team per stage, an appropriate
sampling of errors can be examined in a timely
manner. If a particular type of error is missed by one
team, it will likely be considered by another team at
a later time. The team leader may select an appro-
priate number of errors-say twenty-for consider-
ation at the meeting. We recommend that the selec-
tion or screening of errors be done with care. Select
an equal number from each developer so that every-
one’s errors are analyzed. Select the errors so that a
truly representative sample is presented. Do not omit
errors because they seem obvious or trivial. Most
errors are trivial in nature, and trivial errors need to
be addressed with particular attention because they
are so numerous. Omit obvious duplicate errors,
because they waste time. However, make a note of
how many duplicates occurred when the error is
presented in the meeting. This lets the team know
the magnitude of the problem.

Alternatively, the team leader can separate the errors
into groups of related defects. The leader can then
select a representative sample of each type of error.
For example, one team leader reviewed more than
one hundred errors that had accumulated for the

22 MAYS ET AL

team, sorting them by cause category. The team was
then able to do causal analysis on sample errors from
each error group in two meetings, producing 30
suggested actions. As with random selection, selec-
tion by categorization should be done with care to
present a truly representative sampling of errors,
including errors from each person on the team. If
screening of this sort is done, we recommend that a
summary of the error groups also be presented to
the team so that they can understand the distribution
of errors.

Even though causal analysis is done only on a sample
of the errors from a stage, the leader should hold the
meeting as soon after the errors have been docu-
mented as possible. Otherwise the developers have
difficulty remembering the causes of the errors. Also,
the developers miss timely feedback on the causes of

An advocate is needed to sponsor
and promote the process until it is

established.

early errors that can reduce the possibility of repeat-
ing the errors later.

Startup considerations. In order to start this process
in an organization, an advocate is needed to sponsor
and promote the process until it is established.
Ideally there are two advocates, one a technical
person and the other a manager. Advocates facilitate
the startup through the education of developers and
management about Defect Prevention, about the
benefits and cost of the process, and so on. The
initial education addresses any skepticism about the
process within the organization. Another duty of the
advocate is that of performing or assisting in initial
activities, such as action team selection, setting up
kickoff packages, holding initial causal analysis meet-
ings, and implementing the initial actions. The advo-
cate also maintains focus on the process throughout
the startup period (which may be a year or longer)
by reminding people of their responsibilities, seeing
that meetings are held, and presenting initial results
to management. The advocates should be correctly
positioned within the organization. Ideally both the

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

technical and management persons performing that
function are in relatively high positions. The persons
should have credibility within the organization and
be able to influence their peers.

Management funding. Another requirement for start-
up is management commitment to the process. The

There is a continuing need for
management’s support and funding

of the process.

Defect Prevention Process can be done with rela-
tively small impact on the resources of the organi-
zation, but there is a continuing need for manage-
ment’s support and funding. Management must
fund the resources of the action team and must
authorize the action team to change and improve
the development process. The action team must be
viewed as a dedicated resource that will be protected
from resource cuts and schedule pressures. Fre-
quently the action team members’ responsibilities
are put in their performance plans at an agreed upon
level of effort.

We recommend that the Defect Prevention Process
first be started as a pilot project, such as a portion of
the release of a product involving several teams. The
pilot project allows the participants to become used
to the process without excessive stress. Initial adap-
tation of the process to one area can be accom-
plished, and the process can then be gradually ex-
panded to encompass the entire organization.

Action team startup. Selection of action team mem-
bers is important to the success of the process. Action
team members should be persons in the area who
are motivated, who can get things done, and who
are dedicated to improving the area’s processes. The
best action team members are not necessarily the
technical leaders in the area. A positive attitude and
a willingness to work are more important than tech-
nical expertise. The action team manager should
likewise be motivated and willing to improve the
development process and should be able to represent
the team’s perspective to management.

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

During the startup period it is important to establish
the credibility of the process. This can be accom-
plished by implementing some of the initial preven-
tive actions quickly and publicizing them. Devel-
opers need to feel that their efforts in making sug-
gestions for improvement are being taken seriously
and that change to the development process is pos-
sible.

Initial meetings. The initial causal analysis and stage
kickoff meetings should include an introductory sec-
tion that reviews the Defect Prevention Process and
describes the format of the meeting. Developers will
initially be uneasy because the meetings are new. A
review of the meeting content will help set them at
ease. At the end of these initial meetings it is also
good to ask for comments from the participants
about the meeting and the process.

In causal analysis there may be an initial sensitivity
and defensiveness because developers are being
asked to openly discuss their mistakes. Thus it is
important to ensure that the atmosphere ofthe meet-
ing is nonthreatening. The causal analysis leader
should keep the meeting light, with the focus on
suggested improvements rather than a developer’s
error. Developers who are new to development fre-
quently do not realize that everyone makes mistakes.
A good strategy can be to present errors from every-
one, beginning with the more experienced devel-
opers.

During the startup period, there is typically a flood
of suggestions, with sometimes three or more sug-
gestions for every defect analyzed. This is usually
because there are many suggested improvements that
developers have already considered but that have
had no channel for implementation. As time goes
on, the rate of suggestions slows because ideas that
have been offered previously will also apply to defects
analyzed later. Thus an initial two-hour causal analy-
sis meeting may cover about seven defects and pro-
duce 20 suggestions, many of which will be fairly
easy to implement. After perhaps 15 causal analysis
meetings, a typical meeting will cover 15 to 25 errors
and produce five to seven suggestions. Often these
later suggestions are more creative actions that may
take longer to implement.

The nature of programming errors

Over the past six years, we have participated collec-
tively in dozens of causal analysis meetings, involv-
ing many widely varied software products, including

systems software, applications, and microcode. The
study of the specific causes of errors gives a unique
perspective on the nature of programming errors and
the types of actions needed to prevent them.

Error cause categories. For many years, software
engineers have tried to categorize errors in order to
determine what areas to address to improve quality.
A number of different error taxonomies have been

Error classification schemes may be
helpful to identify broad error-prone areas and ac-
tivities, but they do not address the variety of specific
causes for errors.

In our view, error classification schemes obscure the
details of the error and its cause. As a result, these
schemes generally do not lead to thorough preventive
measures. It may be misleading to try to identify
preventive actions by considering the percentage of
errors caused by the quality of;pecifications,’* mis-
under$andings of the design, or data definition
faults. Preventive actions, derived solely from error
classifications, will not be specific enough. The thor-
ough analysis of each error during causal analysis
provides a much better understanding of specifically
why an error occurred and how to prevent its recur-
rence.

We have found one error classification scheme to be
useful. During causal analysis, we ask that each error
be categorized into one of four basic cause categories.
In addition, we ask for a description of the specific
cause of the error. The cause category helps the team
identify the specific cause by focusing the discussion.
It is the specific cause, however, that triggers the
suggestions for prevention. The four basic cause
categories follow.

Oversight. In this category, the developer failed to
consider all cases and conditions. Usually some de-
tail of the problem or process was overlooked. The
developer forgot, had difficulty checking thoroughly,
or did not have enough time to be thorough. To
identify the specific cause, we ask “What was over-
looked? What was not considered thoroughly?” Ex-
amples: Developer failed to consider the end-node
case of the message flow. Developer did not realize
the value of a specific variable could exceed a maxi-
mum value.

Education. In this category, the developer did not
understand some aspect of the product or the proc-
ess. This category is further divided into education
in base code, education in new function, and other

24

education, depending on what was not understood.
To identify the specific cause, we ask “What exactly
was not understood?” Examples: Developer did not
understand where specific fields were located in a
control block structure (base code education). De-
veloper did not understand the purpose of a specific
new bit (new function education). Developer did not
understand how character fields are initialized by the
compiler (other education).

Communications failure. Here, the developer did not
receive the required information or the information
was incorrect. To identify the specific cause, we ask
“What was not communicated, from whom to
whom?” Examples: A requirement specification did
not list all environments the new function had to
work in. The design group failed to communicate
last-minute changes to development.

Transcription error. In this category, the developer
knew what to do and understood the item thoroughly
but simply made a mistake. Transcription errors are
typically caused by some problem in a procedure-
for example, typing or copying a list of items. To
identify the specific cause, we ask “What procedure
was being used?” Examples: The developer trans-
posed letters in typing. The developer omitted an
item when manually copying a list.

An error may have multiple causes and multiple
cause categories. In these cases, there is usually a
chain of causes (z was caused by y, which was caused
by x). All of the causes can be recorded and consid-
ered for preventive suggestions, although the root
cause is usually the most important to address.

A fifth cause category, that a defect may be caused
by a flaw in the process, is used by some organiza-
tions following Defect Prevention. There is a debate
as to the appropriateness of the process-cause cate-
gory, because it fails to distinguish the human ele-
ment of the cause from process flaws that affect
human performance. Nakajo et al.9 clearly draw this
distinction between human errors and contributory
process flaws. The use of the process-cause category
circumvents consideration of the human contribu-
tion to the error and insulates the developer from
taking responsibility for his or her own mistakes. In
the authors’ view, process flaws should be considered
after human causes have been identified, ideally
when proposing preventive actions. Therefore, the
process-cause category should be used with caution.

The pinhole effect. We characterize the variety of
specific error causes as the pinhole effect. Envision a

Figure 8 Errors analyzed by development stage introduced

MLD 17% I CLD 12% I PLD 8%

CODE 68% PLD 3%

CLD 33%

MLD/CODE 50%

STAGE

PLD = PRODUCT-LEVEL DESIGN
CLD = COMPONENT-LEVEL DESIGN
MLD = MODULE-LEVEL DESIGN

balloon filled with water, representing the develop-
ment process. Water is leaking from the balloon, not
from gaping holes (Le., from large, obvious groupings
of errors), but from thousands of small pinholes.
Thus, product defects result from numerous diverse
programming errors.

We have observed that most error causes are trivial,
as for example, misspelling a word or forgetting to
reinitialize a variable. While an error may have a
trivial cause, it may have very severe consequences.
Figure 8 shows the distribution of test and field errors
for one product, by the stage in which the error was
injected. The bulk of the errors found in the various
test stages were coding errors. Upon analysis, these
errors were considered to be simple mistakes that

could be avoided through preventive actions and
attention to detail.

A second observation from these data is that the
theory that design errors explode into multiple code
errors is not true. A design error is typically counted
as a single error regardless of the number of lines of
code affected. As a project progresses through the
various development stages, errors are created that
are unique to each stage. That is, as more detail is
added to the design and subsequently to the code,
more errors are injected.

Process- or product-sensitive errors versus generic
errors. Many errors are specific to the particular

development process and to the maturity of that
process. The term process broadly includes the de-
velopment stages, tools, procedures, methodologies,
and techniques used by the developers. For example,
a project whose basic architecture or specifications
change while development proceeds may be expected
to have many errors due to late changes overlooked
or not thoroughly handled. A product that has sig-

The key to reducing errors is
attention to detail.

nificant dependencies on another product that is
being developed at the same time will probably have
errors due to failures in communications between
the two groups. A product area that has a weak
education program or an influx of new people into
the area will probably have a large number of edu-
cation-type errors.

In addition, some errors are specific to the product
being developed, usually due to its architecture or
design. For example, one communications product
has two recumng errors caused by its design and
which was dictated by the constraints of the hardware
on which it runs: (1) overwriting registers because
the linkage and save area conventions were con-
strained for performance reasons, and (2) confusion
over WXTRN (weak external reference) versus EXTRN

because memory constraints required that only se-
lected parts of the product be linked at product
generation time. Another product, a high-perform-
ance operating system, has recumng errors in defin-
ing the scope of registers with USING and DROP due
to an unusual program segmenting scheme which
was selected for hardware performance considera-
tions in early versions of the product.

On the other hand, certain errors are truly generic,
that is, common to all developers regardless of the
process, programming language, or type of product.
Many of these are given in the code common error
list in Appendix A. Other examples include:

Failure to consider all possible external factors,
configurations, and environments under which the
program will run
Failure to investigate thoroughly impacts of a
change
Failure to communicate a change or impact to
other team members

The nature of preventive actions

Given that programming errors have a large variety
of specific causes that are frequently trivial in nature,
it is clear that the key to reducing errors is attention
to detail. This means attention to the multitude of
product details that present themselves during de-
velopment, as well as rigorous adherence to the
established development processes. The potential for
prevention is extremely high, particularly in address-
ing trivial errors. In our view, high product quality
and high customer satisfaction are attainable for
software development through attention to detail,
rigorous process adherence, and development auto-
mation, which reduces the amount of tedious detail
work required of programmers.

Just as errors tend to be sensitive to an organization’s
process and the product it produces, the types of
preventive actions are also typically product- or or-
ganization-specific. Each organization has a different
level of sophistication or maturity of its processes
and tools. The improvements for one organization
may be based on its current level of maturity. Many
of these improvements may not be relevant to an-
other product area.

Figure 9 shows the profile of actions for two product
areas for the period 1987 to 1988, giving the break-
down of actions by type. Both products had a signif-
icant percentage of actions to enhance their process.
A large number of these actions involve simple ad-
ditions to common error lists and other process
documentation. The two products differed in the
profile of the other types of actions. Product 1 had
fewer tool actions and more product changes and
education actions. Product 2 had more effort spent
on improving its set of tools. This reflects the differ-
ences in the specific needs of the two areas.

Thus, we see that it is critical for each product to use
causal analysis to determine what actions will help
to improve its processes and tools. Preventive solu-
tions to generic errors, of course, should be shared
across all development groups, usually in the form

Failure to consider all error conditions or error of generic tools. Our experience, however, has been
paths that most preventive actions are product specific.

26 MAYS ET AL IBM SYSTEMS JOURNAL, VOL 2 9 , NO 1, 1990

1

Figure 9 Action profiles for two products for 1987-1988

ENHANCEMENTS 53%
PROCESS OTHER 4%

EDUCATION 12% I

(NEW/CHANGED) 18% CHANGES 13%
TOOLS I PRODUCT

PROCESS
ENHANCEMENTS 44%

OTHER 6%

I TOOLS
(NEW/CHANGEDl 38%

TOTAL: 317 SUGGESTED ACTIONS TOTAL: 335 SUGGESTED ACTIONS

~~~ 

EDUCATION 4% 

PRODUCT 
CHANGES 8% 

Types of preventive  actions. Different  types of pre- 
ventive actions address the different cause  categories 
of oversight, education, communications,  and  tran- 
scription. 

Oversights can be prevented by actions that remind 
the developer or  that  automate  the process so that 
the developer cannot overlook detail. Example tech- 
niques include the following: 

Checklists and  common error lists 
Cross-reference and product-logic documentation 

Tools that  add  automatic checks, such as compi- 

Templates or skeletons that guide the creation of 

available on line 

lers and post-compile module checkers 

a work product 

Permanent reminders and warnings in product 

Reminders in the form of newsletters, memo- 
documentation 

randa, and reminder notes 

Some developers also  find that holding work  sessions 
with their peers to review and check one another's 
work  is  very helpful in preventing oversights. Often 
the vocalization of a design approach to  a peer 
identifies  holes in one's thinking. Such work  sessions 
are not considered formal reviews or inspections 
because the work product has not been completed, 
and  the errors uncovered have not been counted in 
the error rates. 

If schedule pressure is the cause of oversights, man- 
agement should adjust their planning rates to allow 

IBM SYSTEMS JOURNAL,  VOL 29, NO 1.  1990 



more time in the schedule to  do the work  properly. 
The presence of a large number of oversights  caused 
by lack  of time can be  used to justify such adjust- 
ments by management. 

Education errors can be  prevented by providing the 
appropriate level  of education at the right time, such 
as the following: 

Seminars and classes  related to the product 
New-hire education checklist 
Tutorial articles in the product-area newsletters 
Education sessions on the new  release functions 

Communications failures can be  prevented by proc- 
ess changes and the use of tools,  such  as: 

Liaison to receive communications from other 
areas where the product has  dependencies and to 
pass on the information to others in the product 
area 
Use  of a conference  disk to pass information to 
interested  parties  in a product area 
Enhanced problem-tracking tool to include auto- 
matic notification of changes to affected  parties 

Transcription errors can frequently  be  prevented 
through such tools as the following that automate  an 
error-prone procedure: 

Code  spelling  checker 
Tool that maintains a release’s component list and 
automatically includes it in the design and speci- 
fication documents and in the build process 
Variable-not-declared  warning in the compiler to 
check  for names that have  been  misspelled 

As with  oversights, a work  session  with a team mem- 
ber can frequently  help prevent transcription errors, 
where an automated procedure is not available. 

Defect extinction. The Defect Prevention Process 
makes  it  possible to achieve complete extinction of 
programming defects. This can be compared with 
the biological phenomenon of extinction, which in- 
volves  two simple facts: (1) Offspring are no longer 
being produced, and (2) all  existing members of the 
species  have  expired. In the same way, there are two 
simple requirements to make programming defects 
extinct: ( 1) The cause of the defect  has  been  removed, 
so that no new defects are produced, and (2) all 
existing instances of that defect  have  been  removed. 

28 MAYS ET AL 

Simply  preventing future errors is not enough.  When 
several  defects  of a given  type are detected, it is  likely 
that additional defects of the same type exist in the 

Product  enhancements  and  tools  are 
the two most  effective  approaches 

in  preventing  future  instances 
of a  defect. 

product as  yet undetected. To achieve true extinction 
these  existing  defects must be identified and re- 
moved. Thus effective prevention of future defects 
and the systematic  removal of existing  defects are 
the two  goals  of  defect extinction. 

We  have found that product enhancements and tools 
are the two  most effective approaches in preventing 
future instances of a defect, and source scanning 
tools  are the most  effective  way to discover and 
remove  defects that already  exist in a product. 

In general, tools are the most  effective type of  pre- 
ventive action. They help identify  predictable errors 
and prevent them automatically. They can perform 
an error-prone human task, providing 100 percent 
accuracy, independently of the programmer’s  skill. 
Tools  should  be  considered if other attempts to 
prevent an error have not been  sufficiently  effective. 
The tool may not actually prevent the error but may 
enhance our ability to detect the error or to detect it 
earlier in the cycle. For example, a tool may  be used 
in unit test rather than in systems  test. 

Some  specific  examples of these approaches to defect 
extinction are the following: 

Module checker tools. These  are tools that audit the 
product source  code  with  specific  checks  whenever a 
module is compiled, producing additional diagnostic 
messages at the end of the compiler  listing. The 
checks can be  specific to the product being  developed 
or generic and applicable to all products using that 
language. The module checker output is  generally 
required at code  inspections. 

BM SYSTEMS JOURNAL, VOL 29. NO 1.  1990 

1 



Module  checker  tools  have  been written for both 
assembler and high-level  languages. The checks are 
usually  derived  from errors noted in causal  analysis 
or from  project standards that the area wishes to 
enforce. The module checker must be able to distin- 
guish instances of  new code  from  existing or base 
lines of code, so that checks can be limited only to 
new code.  Otherwise, extraneous diagnostic mes- 
sages are printed for the base  code and developers 
may  ignore or overlook  valid messages from the new 
code. A module checker can distinguish new code 
from  base  code if the product uses change flags on 
the new and changed lines of code. 

The following are examples of module checker 
checks. The first three examples are instances of 
product-specific  checks, and the remainder are ge- 
neric  checks. 

D 

D A specific  keyword must be  coded  only  once on a 

particular product macro. 
%INCLUDES must specify a specific  project  library. 
Register  basing  must  be  specified  only after ini- 
tialization of the base  register;  variables must be 
referenced  only  after their register  basing  is  speci- 
fied. 
Return codes  must  be  tested  for  successful com- 
pletion  after  each module or macro invocation. 
The indentation ofthe code in IF-THEN-ELSE blocks 
must be consistent  with its nesting  level. This 
check  would  detect  cases  of a missing DO-END 

group on a THEN or ELSE leg. 
B 

Product  enhancements. A product itself  may  be a 
cause of errors. For example, a product interface 
may  be error prone, because of a design  flaw. A 
macro’s  sequence of parameters may  be counter- 
intuitive. The choice of variable names in a control 
block  may  be  confusing. The most  effective approach 
to preventing  such errors is to correct the product. 

An example of a product enhancement involved a 
macro that required the programmer to initialize a 
field after invoking the macro. If the initialization 

out checking that the macro had  succeeded,  subse- 
quent processing  would  fail. The preventive solution 
involves the following  two  steps: (1) Move the ini- 
tialization of the field into the macro itself by adding 
a keyword to the macro that specifies the initial field 
value to be  used; and (2) ensure that the new  keyword 
is required  for new  uses  of the macro but that existing 
uses  of the macro in the product are not affected. 
This was done via the module checker. 

rn were omitted, or if the initialization were done with- 

0 
IBM  SYSTEMS JOURNAL, VOL 29, NO 1.  1990 

Source scanning tools. A tool that can scan the entire 
source  code of a product is  very  useful for discovering 
and removing  existing  defects. The scans are gener- 
ally identified through causal  analysis. Errors that 
can  be  identified through specific syntactic elements 
in the code are the best candidates for scanning. If 
the error cannot be  identified  exactly through the 
source  code, the scanning tool may be able to select 
and subset the possible instances where the error 
may  have  occurred. Additional analysis  would then 
be needed to determine whether the error actually 
was present. 

Scanning  tools  have  been  developed  for both assem- 
bler and high-level  languages. For high-level lan- 
guages, the ability to treat an entire source statement 
is  useful,  because  source statements can span two or 
more lines of text. Frequently a scan requires several 
search terms connected with  Boolean AND, OR, or 
NOT logic.  It  is  also  useful to have the option to 
display a specified number of statements before and 
after the found statement, to be  able to search either 
by text  string or token, and to search independently 
of upper- and lowercase text. 

Examples of scanning code  include: 

Incompatible keyword combinations on a specific 

Macro  or module call but the return code was not 

Register  as the length parameter of an assembler 

product macro 

checked 

storage-to-storage instruction 

Preventing  chronic errors. Most programming errors 
are  made by developers  repeatedly. Of these, some 
errors are noticeably more frequent than the rest, 
perhaps  those  caused by some general problem in 
the product or the process.  These are the area’s 
chronic, errors. Usually the chronic errors become 
evident  after  only a few causal  analysis  sessions. By 
collecting data on the frequency of these errors, an 
ever  stronger  case can be  built to implement effective 
preventive actions, and management can make rea- 
soned  decisions on how to allocate  resources. Once 
preventive actions are put in place,  if the chronic 
error continues, stronger actions may be justified. 

As an example of a chronic error, consider the 
following: Approximately a third of the defects ana- 
lyzed in one product area were due to lack  of under- 
standing of various  aspects of the product or envi- 
ronment. This fact  was  used to justify a full-time 
education coordinator for the product area. The 

MAYS ET AL. 29 



coordinator developed a comprehensive education 
plan and many of the courses and seminars identified 
in  causal  analysis  have  been made available. In an- 
other case  of chronic error, a product that  must do 

use the storage, and then free it, will invariably have 
many errors in failing to free the storage on certain 
paths. Less frequently, the error of  freeing the wrong 
amount of storage will also occur. A tool was  devel- 
oped in one product area to trace storage GETS and 
FREES to ensure that  the storage  is  always  freed. Such 
a tool  does not prevent the error and will not be able 

CETMAIN/FREEMAIN-type logic, that is,  get  Storage, 

Action teams  usually  find  it 
necessary  to  prioritize  their  actions 

so their  efforts  have  the  largest 
return  to  the  organization. 

to catch all instances of failure to free  storage on all 
paths in the product. However, it tends  to catch a 
very  high percentage of this type of error compared 
to ordinary testing techniques. 

Relative return on investment of actions. Action 
teams usually  find it necessary to prioritize their 
actions so their efforts  have the largest return  to  the 
organization. One method of prioritization devel- 
oped is that of the relative return on investment. An 
action’s  relative return on investment begins  with an 
estimate of the action’s effectiveness. The percentage 
effectiveness  is a conservative estimate of the per- 
centage of similar errors the action will prevent. The 
percentage  effectiveness  is  generally  assigned  by an 
individual action team member or by consensus of 
the entire action team. 

Percentage  effectiveness  varies for different types  of 
actions. For example, changes to  the development 
process are generally in the 30 to 70 percent effec- 
tiveness  range. Tool and product changes tend to- 
ward 70 to 100 percent effectiveness, and  a newsletter 
article might  be 10 to 30 percent effective. Estimating 
percentage  effectiveness  is not intended to be  precise, 
but rather an approximation to produce a numerical 

estimate of  defects prevented and  to project the 
return on investment. 

An action’s return on investment (ROI) is the value 
of preventing a type of  defect  versus the cost of 
preventing it. An absolute return on investment 
cannot be calculated because the exact number of 
defects prevented cannot be calculated. However, an 
action’s relative ROI can be estimated from the  num- 
ber of known defects that an action addresses times 
its estimated effectiveness. For example, a tool en- 
hancement that prevents three known product de- 
fects at 70 percent effectiveness and costs two pro- 
grammer days to  implement has a relative ROI of 
(3  X 0.7)/2 or 1.05 defects  per programmer day. 
Adding an item to  a  common error list that addresses 
two known defects at 30 percent effectiveness and 
which requires 10 minutes (0.02 programmer days) 
to implement has a relative ROI of (2 X 0.3)/0.02 or 
30 defects  per programmer day. Adding the item to 
the  common error list  is worth doing, even though 
it is only 30 percent effective. 

A basic assumption of this method is that error types 
that occur in a product in one release, on average 
are repeated in  the next release. This assumption is 
not precise. The relative ROI is an educated estimate 
of what  today’s preventive action can accomplish for 
the next  release of a product. 

Concluding remarks 

Significant quality and productivity improvements 
can be attained through systematic causal analysis of 
errors, implementation of preventive actions, and 
feedback to developers. The Defect Prevention Proc- 
ess  uses the actual errors that have occurred and 
corrects their cause, relying on actual defect data 
rather than conjecture. Reductions in defects by 
more than 50 percent have been achieved at  a cost 
of about one-half percent of the product area’s  re- 
sources. Corresponding productivity improvements 
are realized through the improvements in quality. 

Equally  significant are the changes we have observed 
in  the product areas themselves.  Process change is 
accelerated and  the area’s  processes become self- 
correcting. Communication  among  team members 
improves and quality awareness increases. 

Defect Prevention has been  successfully applied to 
test, information development, software service, and 
human factors, as well as to software design and 
development. We  feel that it can be applied generally 

IBM SYSTEMS JOURNAL, VOL 29, NO 1. 1990 



across  all organizations involved in product devel- 
opment, including hardware design, hardware devel- 
opment, and manufacturing. 

The investment required for the Defect Prevention 
Process  is  very modest. However, the benefit result- 
ing from higher product quality in  the field is sub- 
stantial, both to a company’s customers and  to  the 
company itself. In today’s technological and com- 
petitive climate, we cannot afford to ignore defect 
prevention. The systematic causal analysis of errors 
and the resultant attention to detail in all aspects of 
the development process constitute the most prom- 
ising approach available for achieving high product 
quality and high customer satisfaction. 

Acknowledgments 

The authors wish to thank Florence Gans for her 
considerable  assistance in compiling product error 
statistics and Ben Sun for his assistance with statis- 
tical analysis. We  wish to acknowledge the contri- 
bution of Ken de Lavigne  of the IBM Corporate 
Technical Education Center, Joanne Wojtusiak of 
Skylight Communications, and Jacques Jimenez of 
Pattern, Inc. in working  with the  authors  to develop 
and present the Defect Prevention Process course to 
developers from every major programming center 
within the company. We are grateful to Katsutoshi 
Shintani for translating and summarizing the  Japa- 
nese  language  papers. We also appreciate the 
thoughtful comments from Ken de Lavigne, Ron 
Phillips, Florence Gans, and  Joanne Wojtusiak in 
reviewing this paper. 

Appendix A: Excerpts  from a code  common 
error  list 

Initialization 

Bits,  bytes, pointers, or registers are not reset after 

Initialize  all  variables  before  usage;  never assume 

Initialize  all  fields of a control block; do not leave 

processing (occurs very frequently). 

zeroes. 

garbage. 

Data definition 

When defining a counter, make sure its value 
range  is  sufficient; anticipate possible future size 
changes. 
Control block or variable declare not properly 
aligned. 

IEM SYSTEMS JOURNAL,  VOL 29, NO 1, 1990 

Variable name misunderstood or confused with 

Do not assume control block bit meanings. 

Interfaces 

Consider all permutations of parameter values. 
Parameters passed in wrong order. 
Omitted double parentheses for a pointer in a 

another variable name. 

macro call. 

Program Logic 

Moved code (copied code) is very error prone; 
deleted code is also very error prone; check all 
paths, instructions, and variable names (occurs 
very frequently). 
Reset bits in the wrong  place  in the code. 
Loop logic errors: Initialize all flags and  counters 
before entering loop. Consider all flags on each 
iteration. Consider three loop cases:  first  pass,  last 
pass, and middle iterations. Increment counters 
and update pointers on each iteration. 

Programming language/compiler 

DO WHILE is  used instead of DO UNTIL. 

OR is  used instead of AND in a complex IF state- 

Tested OFF instead of ON. 

X‘10’ should have  been X‘OA’. 
Indented statements as a DO group but  omitted 

ment. 

the DO-END. 

Assembler 

Register clobbered (occurs very frequently). 
No addressability established. 
Assembler  half-word  usage; make sure data will 
always  fit in two  bytes and  that high-order bytes 
are cleared. 

NetView is a  trademark of International Business Machines  Cor- 
poration. 

Cited  references 

I .  C. L. Jones, “A Process-Integrated Approach to Defect Pre- 
vention,” IBMSJistems Journal 24, No. 2, 150-167 (1985). 

2. R. T. Phillips, “An Approach to Software Causal Analysis and 
Defect Extinction,” IEEE Gluhecom ’86 1, No. 12, 412-416 
(December 1986). 

3. A. V. Feiaenbaum. Turd Olralitv Cunrrul. McGraw-Hill Book 



4. K. Ishikawa, What Is Total  Quality Control? The Japanese 
Way, translated by D.  J.  Lu,  Prentice-Hall,  Inc., Englewood 
Cliffs,  New Jersey (1985). 

5. J.  M.  Juran  and F. M. Gryna,  Jr., Quality Planning and 
Analysis, McGraw-Hill Book Co., Inc., New York (1980). 

6. P. B. Crosby, Quality Is Free, McGraw-Hill Book Co., Inc., 
New York (1979). 

7. K.  Hino, “Analysis and  Prevention of Software Errors  as  a 
QC Activity,” Engineers (Japanese), 6-10 (January 1985). 

8. H. Sugaya, “Analysis of  the  Causes  of Software Bugs,” Nikkei 
Computer (Japanese), 167-176 (August 19, 1985). 

9.  T.  Nakajo,  K.  Sasabuchi,  and  T.  Akiyama, “A Structured 
Approach to Software Defect Analysis,” Hewleit-Packard 
Journal40, No. 2, 50-56 (April 1989). 

IO. B. G. Kolkhorst  and A. J.  Macina,  “Developing  Error-Free 
Software,” IEEE Aerospace Electronic Systems  Magazine 3, 
No. 1 I ,  25-31 (November 1988). 

I I .  A. Spector and D. Gifford, “The  Space  Shuttle  Primary  Com- 
puter System,” Communications of the  ACM 21, No. 9, 874- 
900 ( 1984). 

12. R. A. Radice, N. K. Roth, A. C.  O’Hara,  Jr.,  and W.  A. 
Ciarfella, “A Programming Process Architecture,” IBM Sys- 
tems Journal 24, No. 2, 79-90 ( 1  985). 

13. J. L. Gale,  J. R. Tirso,  and C. A. Burchfield, “Implementing 
the Defect Prevention Process in  the  MVS  Interactive  Pro- 
gramming  Organization,” IBM Systems Journal 29, No. I ,  
33-43 (1990, this issue). 

14. B. K. Lee, “Implementing  a  Quality Circle Programme  for 
Computer Professionals,” Computer  System  Science  and  En- 
gineering 1, No. I ,  65-67 (1985). 

15. M. E. Fagan, “Design and  Code  Inspections to Reduce  Errors 
in Program  Development,” IBM Systems Journal 15, No. 3. 
182-2 I I (1976). 

16. R. A. Radice, J. T. Harding, P. E. Munnis,  and  R. W. Phillips, 
“A Programming Process Study,” IBM Systems  Journal24, 

17. W. S. Humphrey,  “Characterizing  the Software Process: A 
Maturity  Framework,” IEEESoftware5, No.  2,73-79  (March 
1988). 

18.  A. Endres, “An Analysis of Errors  and  Their  Causes  in System 
Programs,” IEEE Transactions on Software Engineering 
SE-1, No.  2, 140-149 (June 1975). 

19. B. W. Boehm, R. K. McClean,  and  D. B. Urfrig, “Some 
Experiences with Automated Aids to  the Design of Large-scale 
Reliable Software,” IEEE Transactions on Software Engineer- 
ingSE-1, No. I ,  125-133 (1975). 

20. D. M. Weiss, “Evaluating Software Development by Error 
Analysis: The  Data  from  the  Architecture Research Facility,” 
Journal oJSystems  and  Software 1, No. 1, 57-70 (1979). 

2 I .  T. J.  Ostrand  and  E.  J.  Weyuker, “Collecting and Categorizing 
Software Error  Data  in an Industrial  Environment,” Journal 
ofsystems and  Software4, No 4, 289-300 (1984). 

22. J. S. Collofello and L.  B. Balcom, “A Proposed Causative 
Software Error Classification Scheme,” AFIPS Conference 
Proceedings: 1985 National  Computer Conference 54, 537- 
545 (1985). 

NO. 2, 91-101 (1985). 

Robert G. Mays IBM Communication  Systems,  P.O. Box 12195, 
Research Triangle  Park,  North Carolina 27709. Mr. Mays is an 

advisory programmer  in  the  Productivity  Support  Programs  De- 
partment,  Communications  Programming  Laboratory.  He  joined 
IBM in 1981 and is currently  working  on projects related to 
software process technology and  development,  including software 
design methodology, development  methods  for  enhancing existing 

32 MAYS ET AL. 

code  products,  and  understandability  in software development. 
His current focus is the  development  and  promotion  of  the Defect 
Prevention Process throughout IBM. Past assignments  have  in- 
cluded requirements process development  and system planning 
for  communications  management projects. Mr. Mays received his 
B.S. degree in  chemistry  in 1968 from  the Massachusetts Institute 
of Technology  and is a  member  of  the Association for  Computing 
Machinery and  the IEEE Computer Society. 

Carole L. Jones IBM Communication  Systems,  P.O. Box 12195, 
ResL,arch Triangle  Park,  North Carolina 27709. Ms. Jones received 
her B.S. in mathematics  from  Youngstown  State University in 
1966. She  joined IBM in  DOS  development at Endicott, New 
York, working in  both  the  development  and  advanced testing 
areas. She  transferred to Research Triangle  Park (Raleigh) in 1970 
and has held a variety of  technical  jobs  in design, development, 
and testing of both systems software products  and  applications 
products.  In 1980 Ms. Jones  assumed  the responsibility of process 
coordinator  for  the  NCP  products  and,  in  that capacity, she was 
instrumental in developing  and  applying  the  concepts  ofthe Defect 
Prevention Process as  an integral part  of  the  programming devel- 
opment process. She is currently  a  senior  programmer  in  the 
Network Management Services area  of  the  Communications Pro- 
gramming  Laboratory  with process and  quality responsibilities. 

Gerald J.  Holloway IBM Communication  Systems, P.O. Box 
12195, Research Triangle  Park,  North Carolina 27709. Mr. Hol- 
loway, known  as Lucky Holloway, is an advisory programmer  in 
the Systems Test  organization in the  Communications  Program- 
ming  Laboratory. He received his B.S. in physics from  the  Uni- 
versity of Wisconsin in 1974 and  joined IBM in Kingston in the 
test area  of Virtual Telecommunications Access Method  (VTAM). 
In 1981  he transferred to  the design area  of  Network  Communi- 
cations  Control Facility (NCCF).  In  that capacity he began initial 
efforts toward  optimizing  the design process and  its quality. In 
1983 Mr. Holloway moved to  the IBM Research Triangle Park 
site and  initiated  a  quality  team to pursue defect extinction  in 
NCCF design and  development. Later he worked in network 
management  support to integrate defect extinction  into  the  entire 
Network Management  product  area. Recently Mr. Holloway ac- 
cepted a position in  the Systems Test  organization to integrate the 
Defect Prevention Process throughout  that  organization. 

Donald P. Studinski IBM Communication  Systems, P.O. Box 
12195, Research Triangle  Park, North Carolina 27709. Mr. Stu- 
dinski joined IBM Communications  Products Assurance in 1983 
and was involved in product  assurance for the Network Control 
Program (NCP)  and System Support  Programs (SSP) products. In 
1987 he joined Teleprocessing Access Methods  (TPAM) process 
control. In that capacity, he has  implemented  and  supported  the 
Defect Prevention Process throughout  the  TPAM  organization. 
He is also actively involved in  promoting Defect Prevention 
throughout IBM. Mr.  Studinski received his B.S. in  computer 
science from  Louisiana  State University, Baton Rouge. 

Reprint  Order No. (3321-5383. 

IBM SYSTEMS JOURNAL, VOL 29. NO 1, 1990 


