
The Magazine for Agile Developers and Agile Testers

© Tyler Olson - Fotolia.com

October 2010

issue 4www.agilerecord.com	 free digital version	 made in Germany

14 www.agilerecord.com

Values for Value
by Tom Gilb & Lindsey Brodie

©
 M

ikhail Tolstoy - Fotolia.com

The Agile Manifesto (Agile Manifesto, 2001) has its heart in the
right place, but I worry that its advice doesn’t go far enough to
really ensure delivery of stakeholder value. For instance, its first
principle, “Our highest priority is to satisfy the customer through
early and continuous delivery of valuable software” focuses on
“the customer” rather than the many stakeholders whose views
all need consideration. It also places the focus on the delivery
of “valuable software” rather than the delivery of “value” itself
(If still in doubt about such a focus, the Agile Manifesto itself
states “working software”). These are the same problems that
have been afflicting all software and IT projects long before agile
appeared: too ‘programmer-centric’. Code has no value in itself;
it is perfectly possible to deliver bug-free code of little value. We
can deliver software functions, as defined in the requirements, to
the ‘customer’ – but still totally fail to deliver critical value to the
many critical stakeholders.
I should probably at this point mention that I do agree with many
of the ideals of the agile community. After all, my 1988 book,
‘Principles of Software Engineering Management’ (Gilb, 1988)
has been recognized as a source for some of their ideas. I also
count several of the ‘Agilistas’ as friends. It is just that what I see
happening in everyday agile practices leads me to believe a more
explicit formulation is needed. So in this article, I set out my set
of values – modified from the Agile values - and
provide ten associated guidelines for delivering
value. Feel free to update them and improve them
as you see the need.
Perhaps a distinction between ‘guidelines’, ‘val-
ues’ and ‘value’ is in place. ‘Guidelines’ or ‘prin-
ciples’ provide advice: ‘follow this guideline and
things will probably turn out better’. ‘Values’ are
deep-seated beliefs of what is right and wrong,
and provide guidance as to how to consider, or
where to look for value. ‘Value’ is the potential
perceived benefit that will result from some ac-
tion (for example, the delivery of a requirement) or
thing. For example, you might follow the guideline
of always buying from a known respected source.

Your values concerning financial affairs and the environment will
probably influence what you buy. Your perceived or actual ben-
efits of what you will gain from your purchases (say, more time,
lower costs, and increased satisfaction) reflect their value to you.
Here then is a summary of my values for building IT systems – ag-
ile or not! These values will necessarily mirror to some degree the
advice given in the principles set out in an earlier article (Gilb &
Brodie, 2010), but I will try to make a useful distinction between
them. I consider there are four core values – simplicity, commu-
nication, feedback, and courage.

Simplicity
1.	 Focus on delivering real stakeholder value
I believe in simplicity. Some of our software methods, like CMMI
(Capability Maturity Model Integrated) have become too com-
plicated. See for example, (CMMI, 2008). Agile is at least a
healthy reaction to such extremes. But sometimes the pendulum
swings too far in the opposite direction. Einstein was reputed to
have said (but nobody can actually prove it! (Calaprice, 2005)),
“Things” (like software methods) “should be as simple as possi-
ble, but no simpler”. My main argument with agile practice today
is that we have violated that sentiment. We have oversimplified.
The main fault is in the front end to the agile process: the require-

Part 2 of 2:
Some Alternative Ideas On Agile Values For Delivering Stakeholder Value
(Part 1, Value-Driven Development Principles and Values – Agility is the Tool, Not the
Master, last issue)

Figure 1. Value to stakeholders: most agile practices today usually fail to identify or clarify all the
stakeholders, and their stakeholder value!

15www.agilerecord.com

ments. The current agile practices put far too much emphasis
on user, use cases and functions. They say ‘value’ and they say
‘customer’, but they do not teach or practice this in a reasonable
way for most real projects. They are ‘too simple’.
I’ll return to discuss this point later, but one of the main failings
of the agile process is not recognizing that setting the direction –
especially stating the qualities people want and the benefits (the
received value) they expect when they invest in an IT system – is
key. Iterative and incremental development without such direc-
tion is much less effective.

If you want to address this failing, then the simplest thing you can
do is to identify and deal with the top few dozen critical stake-
holders of your system. To deal with ‘the user’ and/or ‘the cus-
tomer’ only is ‘too simple’. The ‘top few critical stakeholders’ can
be brainstormed in less than 30 minutes, and refined during the
project, as experience dictates. It is not a heavy ‘overhead’. It is
one of the necessities for project success.

The next step is to identify the primary and critical quality require-
ments of each stakeholder. As a rough measure, brainstorming
this to get an initial reasonable draft is an hour’s work for a small
group. For example:
End Users: Easy To Learn, Easy To Use, Difficult to Make Errors,
Fast System Response, Reliable.
Financial Admin: Up-to-Date, Accurate, Connectivity to Finance
Systems.
IT Maintenance: Easy to Understand, Easy to Repair, Defect-
Free.

Note: this is just a start! We need to define the requirements
well enough to know if designs will work and if projects are mea-
surably delivering value incrementally! The above ‘nice sounding
words’ are ‘too simple’ for success. For brevity, I’m not going to
explain about identifying scales of measure and setting target

quality levels in this paper, see (Gilb, 2005: especially Chapter
5) for further detail.
You can refine the list of quality requirements as experience dic-
tates. You can also often reuse lists of stakeholders, and their
known quality requirements in other projects within your domain.
Doing this is NOT a heavy project overhead. The argument is that
both exercises (identifying the stakeholders and their quality re-
quirements) save time and aid successful project completion. It
is part of ‘the simplest path to success’. There are, by implica-
tion, even simpler paths to failure: just don’t worry about all the
stakeholders initially – but they will ‘get you’ later.

Communication
Now we come to my second value, communication. I am sure
we all believe in ‘good communication’, and I suspect most peo-
ple are probably under the illusion that ‘communication is not
perfect, but it is pretty good, maybe good enough’. However, my
experience worldwide in the IT/software industry is that commu-
nication is typically poor.

2.	 Measure the quality of communication quantitatively
I have a simple way of measuring communication that never fails
to surprise managers and technical people alike. I use a simple
(5 to 30 minutes) specification quality control (SQC) exercise, on
‘good requirements’ of their choice. See (Gilb & Graham, 1993;
Gilb, 2005: Chapter 10) for further detail on this method.
SQC is a really simple way to measure communication. I just ask
the participants to look at a selected text of 100 to 300 words. I
prefer the ‘top level most critical project requirements’ (because
that will be most dramatic when they are shown to be bad!). I get
their agreement to 3 rules:

1.	 The text (words and phrases) should be unambiguous to
the intended readership

2.	 The text should be clear enough to test successful delivery

Figure 2. Some examples of stakeholders: the source is re-crear.org, a voluntary-sector client of the author

16 www.agilerecord.com

of it.
3.	 The ‘objectives’ should not specify proposed designs or ar-

chitecture for getting to our objectives.

The participants have to agree that these rules are logically nec-
essary. I then ask them to spend 5 to 30 minutes identifying any
words, terms or phrases, which fail these rules. And ask them to
count the number of such failures (the ‘specification defects’).
I then collect the number of defects found by each participant.
That is in itself enough. In most cases, everyone has found ‘too
many’ defects: typically 5 to 40 defects per 100-300 words. So
this written communication – though critical - is obviously ‘bad’.
Moreover, it gets even more serious when you realize that the
best defect finder in a group probably does not find more that
1/6 of the defects actually provably there, and a small team finds
only 1/3 of them! (Gilb & Graham, 1993).
The sad thing is that this poor communication is pervasive within
IT projects, and clear communication (we can define this as “less
than one defect per 300 words potentially remaining, even if un-
identified”) is exceptional. Clear communication is in fact only

the result of persistent management attention to reducing the
defects. One of my clients managed to reduce their level of major
defects per page from 82 to 10 in 6 months. The documentation
of most IT projects is at about 100-200 defects per page, and
many in IT do not even know it.

3. Estimate expected results and costs in weekly steps and
get quantified measurement feedback on your estimates the
same week
My experience of humans is that they are not good at making
estimates for IT systems: for example, at estimating project costs
(Gilb, 2010a). In fact, rather than estimating, it is far simpler and
more accurate to observe what happens to the cost and quality
attributes of actual, real systems as changes are introduced.
One great benefit with evolutionary projects (which include both
iterative cycles of delivery and feedback on costs and capability,
and the incrementing of system capability) is that we can let the
project inform us about what’s actually happening, and we can
then relate that to our estimated quality levels and estimated
incremental costs: we can learn from unexpected deviation from

Figure 3. Extract from a case study at Confirmit.

17www.agilerecord.com

plans how good we are at estimating (Gilb, 2005: Chapter 10).
However, in order to support evolutionary project measurement,
we have to do better than the typical way of measuring – that is,
better than using the rate of user story ‘burn-down’. We have to
measure the real top-level stakeholder value that is being pro-
duced (or not). Yet most IT projects fail to specify upfront what
stakeholder value is expected. In such a situation, it is difficult
to learn.

To give an example of better communication, see Figure 3, which
is an extract from a case study at Confirmit (Johansen & Gilb,
2005). Using the Evo Agile method, 4 small development teams
with 13 developers in total worked on a total of 25 top-level
critical software product requirements for a 12-week period with
weekly delivery cycles. Figure 3 is a snapshot of cycle 9 of 12. If
you look at the “%” under “Improvements”, you can see that they
are on track to meeting the required levels for delivery – which
in fact they are very good at doing. This is a better way of track-
ing project progress than monitoring user story burn-down rates
- they are directly tracking delivery of the quality requirements of
their stakeholders.

Feedback
4.	 Install real quantified improvements for real stakehold-

ers, weekly
I value getting real results. Tangible benefits that stakeholders
want! I value seeing these benefits delivered early and frequently.
I have seen one project where user stories and use cases were
delivered by an experienced Scrum team, systems develop-
ment successfully delivered their code, but there was just one
‘small’ problem - the stakeholder business found that their sales
dropped dramatically as soon as the fine new system was deliv-
ered (Kai Gilb, 2009). Why? It was taking about 300 seconds for
a customer to find the right service supplier. Nobody had tried to
manage that aspect. After all, computers are so fast! The problem
lay in the total failure to specify the usability requirements quan-
titatively. For example, there should have been a quality require-
ment, ‘maximum
time to find the
right supplier will
be 30 seconds,
and average 10
seconds’. The sys-
tem needed bet-
ter requirements
specified by the
business, not the
Scrum team. As
it was, the project
‘succeeded’ and
delivered to the
wrong require-
ments: the code was bug-free, but the front end was not suf-
ficiently usable. It was actually a management problem, not a
programming problem. It required several levels of management
value analysis above the developer level to solve!
Stakeholders do not EVER value function (user stories and use
cases) alone. They need suitable quality attributes delivered, too.

Traditional agile practice needs to take this on board.
It is also very healthy to prove that you can deliver real value
incrementally, not just assume that user stories are sufficient –
they are NOT. Such real value delivery means that we must apply
total systems thinking: people, hardware, business processes -
much more than code.

5.	 Measure the critical aspects in the improved system,
weekly.

Some, in fact most developers seem to never ever measure the
critical aspects of their system! And we wonder why our IT system
failure rates are notoriously high!
Some developers may carry over to agile a Waterfall method con-
cept of measuring critical quality attributes (such as system per-
formance) only at the end of a series of delivery cycles - before
a major handover, or contractual handover. I think we need to
measure (test) some of the critical quality attributes every weekly
cycle. That is we measure any of the critical quality attributes that
we think could have been impacted, and not just the ones we are
targeting for improvement in the requirements.
Measurement need not be expensive for short-term cycles. We
can use appropriate simplification methods, such as sampling, to
give early indications of progress, the order of magnitude of the
progress, and any possible negative side effects. This is known
as good engineering practice.
The Confirmit project (Johansen & Gilb, 2005), for example, sim-
ply decided they would spend no more than 30 minutes per week
to get a rough measure of the critical quality attributes. So they
measured a few, each week. That worked for them.

6.	 Analyze deviations from value and cost estimates
The essence of ‘feedback’ is to learn from the deviation from
your expectations. This requires using numbers (quantification)
to specify requirements, and it requires measuring numerically,
with enough accuracy to sense interesting deviations. To give an
example, see Figure 4, which is from the Confirmit case study
previously mentioned.

Figure 4. Another extract from the Confirmit case study

In this case when the impact of the ‘Recoding’ design deployed
in Step 9 was almost twice as powerful as expected (actual 95%
of the requirement level was met as opposed to the 50% that
was estimated), the project team was able to stop working on

18 www.agilerecord.com

the Productivity attribute and focus their attention for the 3 re-
maining iterations before international release on the other re-
quirements, like Intuitiveness, which had not yet met their target
levels. The weekly measurements were carried out by Microsoft
Usability Labs. This feedback improved Confirmit’s ability to hit
or exceed almost all value targets, almost all the time. I call this
‘dynamic prioritization’.
You cannot learn about delivery of the essential stakeholder
quality attributes any other way – it has to be numeric. However,
numeric feedback is hardly mentioned, and hardly practiced in
agile systems development. Instead, we have ‘apparent numer-
acy’ by talking about velocity and burn-down rates – these are
indirect measures.
All the quality attributes (‘-ilities’, like reliability, usability, secu-
rity) or work capacity attributes (throughput, response time, stor-
age capacity) are quantifiable and measurable in practice (Gilb,
2005: Chapter 5), though few developers are trained to under-
stand that about the ‘quality’ requirements (For example, ask
how they measure ‘usability’).

Courage
Courage is needed to do what is right for the stakeholders, for
your organization, and for your project team – even if there are
strong pressures (like the deadline) operating to avoid you doing
the right thing. Unfortunately, I see few signs of such courage in
the current agile environment. Everybody is happy to go along
with a weak interpretation of some agile method. Many people
don’t seem to care enough. If things go too badly – get another
job. If millions are wasted – who cares, ‘it’s not my money’. But
if the project money were your money, would you let things con-
tinue as they are? Even when your family home is being fore-
closed on, and you cannot feed or clothe your children very well,
because your project is $1 million over budget?

7.	 Change plans to reflect quantified learning, weekly
One capability, which is implicit in the basic agile notion, is the
ability to change quickly from earlier plans. One easy way to do
this is to have no plans at all, but that is a bit extreme for my
taste.
The feedback we get numerically and iteratively should be used
to attack ‘holy cows’. For example, say the directors, or other
equally powerful forces in the organization, had agreed that they
primarily wanted some particular quantified quality delivered
(say, ‘Robustness’), and it was clear to you from the feedback
that a major architectural idea supported by these directors was
not at all delivering on the promise. Courage would be to attack
and change the architectural idea.
Of course, one problem is that these same directors are the
main culprits in NOT having clear numeric critical objectives for
the quality values of the system. The problem is that they are not
even trained at Business School to quantify qualities (Hopper &
Hopper, 2007), and the situation may be as corrupt or political
as described in ‘Plundering the Public Sector’ (Craig & Brooks,
2006).
In my experience, however, the major problem is closer to the
project team, and is not corruption or politics, or even lack of
caring. It is sheer ignorance of the simple fact that management
must primarily drive projects from a quantified view of the top
critical objectives (Gilb, 2008b). Intelligent, but ignorant: they
might be ‘champions’ in the area of financial budgets, but they
are ‘children’ when it comes to specifying quality.

One lesson I have learned, which may surprise most people, is
that it seems if you really try to find some value delivery by the
second week and every week thereafter, you can do it. No matter
what the project size or type. The ‘big trick’ is that we are NOT
constructing a large complex system from scratch. We invariably
leverage off of existing systems, even those that are about to be

Figure 5. Concepts of weekly delivery cycles with stakeholder feedback. From HP, a client applying the Evo
method on a large scale (Cotton 1996; May & Zimmer 1996; Upadhyayula, 2001)

20 www.agilerecord.com

retired, which need improvement. We make use of systematic
decomposition principles (Gilb, 2010b; 2008a; 2005: Chapter
10). The big trick is to ignore the ‘construction mode’ that most
developers have, and focus instead on the ‘stakeholder value de-
livery’ mode.

Figure 6. Evo decomposition policies

See Figure 6 (Gilb, 2010b) for my advice to top managers, when
they ask me how they can support deploying the Evo method,
and getting rapid results: put in place these decomposition poli-
cies as guidance. Demand this practice from your development
teams. If they complain, re-train or re-place. No excuses! They will
just delay necessary results if not led by management. History is
clear.

8.	 Immediately implement the most-valued stakeholder
needs by next week

Don’t wait, don’t study (analysis paralysis), and don’t make ex-
cuses. Just do it! This attitude really is courageous. In develop-
ment environments, where managers are traditionally happy to
wait years with no results at all, it takes courage to suggest we
should try to start delivering the value stream immediately and
continuously. It is rather revolutionary. Yet surely no one would
argue it is not desirable?
Part of being courageous is having the courage to say you are
sure we will succeed in finding small (weekly) high-value delivery
increments. The issue is that most people have no training and
no theory for doing this. Most people have never seen it happen
in practice. Agile developers have now a widely established prac-
tice of delivery of functionality (user stories) in small increments.
That is a start, culturally, towards breaking work down into small-
er timescales. But as I pointed out earlier (several times!), func-
tions are not the same thing as value delivery to stakeholders.
Assuming you can deliver reasonable value for the effort spent
(the costs) - week after week – a surprising thing happens:
•	 People cease to care about ‘the deadline’
•	 People cease to ask for estimates of the monetary budget
•	 You are strongly encouraged to keep on going, until value is

less than costs
•	 You end up delivering far more real value than other projects

do, well before ‘the deadline’ (that would have been set, and
would have been overrun)

•	 Management shifts focus from budget and costs to return
on investment (ROI)

I sometimes simplify this method by calling it the ‘1.1.1.1.1.1’
method, or maybe we could call it the ‘Unity’ method:

Plan, in 1 week
To deliver at least 1%

Of at least 1 requirement
To at least 1 real stakeholder
Using at least 1 design idea,

On at least 1 function of the system.
The practical power of this simple idea is amazing. If you really
try, and management persists in providing encouragement and
support, it almost always works. It sure beats waiting for weeks,
months, and years, and ‘nothing happens’ of any real value for
stakeholders.
As a consultant, I always have the courage to propose we do this,
and the courage to say I know our team will find a way. Manage-
ment is at least curious enough to let us try (it costs about a week
or two). And it always works. Management does not always actu-
ally go for real delivery the second week. There can be political,
cultural and contractual constraints, but they get the point that
this is predictably doable.
Delivering value to ‘customers’ is in fact what the agile people
have declared they want to do, but in my view they never really
took sufficient steps to ensure that. Their expression of value is
too implicit, and (of course!) the focus should be on all the stake-
holders.

9.	 Tell stakeholders exactly what quantified improvement
you will deliver next week (or at least next release!)

Confirmit used impact estimation (IE) [4, 10, 19] to estimate what
value would be delivered the next week (see Figure 3). I think
they did not directly tell the affected stakeholders what quality
levels they predicted. However, most of the stakeholders got to
see the actual delivered results each quarter. And the results
were incredibly good. In fact, once Confirmit realized they could
continually get such great improvements, they did brag about it
numerically on their website!
Since it is quite unpredictable to fully understand what precise
quality improvements are going to result and when, it is perhaps
foolhardy (rather than courageous) to announce to your stake-
holders precisely what they are going to get weekly/fortnightly/
monthly in the next cycle. However, based on your understanding
of the improvements you are getting each cycle, it is safe to an-
nounce what improvements in value you were going to deliver in
the next major release!

10.	 Use any design, strategy, method or process that works
well quantitatively in order to get your results

Be a systems engineer, not a just a programmer (a ‘softcrafter’
(Gilb, 1988)). Have the courage to do whatever it takes to deliver
first-class results!
In current agile software practices, the emphasis is on program-
ming, and coding. Design and architecture often mean only the
program logic and the application architecture. Agile developers

Policies for Evo Decomposition

•	 PP1: Budget: No Evo cycle shall exceed 2% of total
budget before delivering measurable results to a
real environment.

•	 PP2: Deadline: No Evo cycle will exceed 2% of total
project time (that’s one week, for a one-year proj-
ect) before it demonstrates practical measurable
improvement, of the kind you targeted.

•	 PP3: Priority: Evo cycles which deliver the most
‘planned value’ to stakeholders, for the ‘resources
they claim’, shall be delivered first, to the stake-
holders. Do the juicy bits first!

21www.agilerecord.com

often do not include in their design aspects such as maintenance,
system porting, training, motivation, contractual deals, working
practices, responsibility, operations and all other elements of a
real system. They seem narrowly focused on their code. In fact,
as I have discussed earlier, they focus on the code

functionality, and not even the code qualities! Listen to them
write, speak, and tweet – it is all about code, user stories and
use cases. In order to get competitive results, someone else – a
real systems engineer - will have to take over the overall respon-
sibility.

Summary
Agile development embraces much that is good practice: moving
to rapid iteration is a ‘good thing’. However, it fails to worry suf-
ficiently about setting and monitoring the direction for projects,
and instead concentrates on programmer-focused interests,
such as use cases and functions. It fails to adequately address
multiple stakeholders and achievement of real, measured stake-
holder value. Instead it has ‘solo’ product owners and implicit
stakeholder value. Here in this article, I have presented some
ideas about what really matters and how agile systems develop-
ment needs to change to improve project delivery of stakeholder
value.
Systems engineering is still a young discipline. The software com-
munity has now seen many failed fads come and go over the last
50 years. Maybe, it is time to review what has actually worked.
After all, we have many experienced intelligent people: we ought
to be able to do better. I think we need to aim to get the IT project
failure rate (challenged 44% and total failure 24%) down from
about 68% (Standish, 2009) to less than 2%. Do you think that

might be managed by my 80th birthday? ■

Acknowledgments
Thanks are due to Lindsey Brodie for editing this article.

References
Alice Calaprice (Editor) (2005) “The New Quotable Einstein”,
Princeton University Press.

Agile Manifesto (2001). See http://agilemanifesto.org/princi-
ples.html [Last Accessed: September 2010].

Todd Cotton (1996) “Evolutionary Fusion: A Customer-Oriented
Incremental Life Cycle for Fusion.” See http://www.hpl.hp.com/
hpjournal/96aug/aug96a3.pdf

Daniel Craig and Richard Brooks (2006) Plundering the Public
Sector, Constable.

Kai Gilb (2009) A Norwegian Post case study. See http://www.
gilb.com/tikidownload_file.php?fileId=277

Tom Gilb (2010a) Estimation or Control. Draft paper, see http://
www.gilb.com/tiki-download_file.php?fileId=433

Tom Gilb (2010b) Decomposition. A set of slides, see http://
www.gilb.com/tiki-download_file.php?fileId=350

Tom Gilb (2008a) “Decomposition of Projects: How to Design
Small Incremental Steps”, Proceedings of INCOSE 2008. See
http://www.gilb.com/tiki-download_file.php?fileId=41

Figure 7. A ‘Competitive Engineering’ view of systems engineering (Gilb, 2005). This shows a set of processes and artifacts needed within systems engineering.

22 www.agilerecord.com

Tom Gilb (2008b) “Top Level Critical Project Objectives”.
Set of slides, see http://www.gilb.com/tiki-download_file.
php?fileId=180

Tom Gilb (2005) Competitive Engineering, Elsevier Butterworth-
Heinemann. For Chapter 10, Evolutionary Project Management,
see http://www.gilb.com/tiki-download_file.php?fileId=77/ For
Chapter 5, Scales of Measure, see http://www.gilb.com/tiki-
download_file.php?fileId=26/

Tom Gilb (1988) Principles of Software Engineering Manage-
ment, Addison-Wesley.

Tom Gilb and Lindsey Brodie (2010) “What’s Fundamentally
Wrong? Improving our Approach Towards Capturing Value in
Requirements Specification”. See http://www.requirementsnet-
work.com/node/2544#attachments [Last Accessed: September
2010].

Tom Gilb and Dorothy Graham (1993) Software Inspection, Ad-
dison-Wesley.

CMMI (2008) “CMMI or Agile: Why Not Embrace Both!”, Software
Engineering Institute (SEI). See http://www.sei.cmu.edu/pub/
documents/08.reports/08tn003.pdf [Last Accessed: Septem-
ber 2010].

Kenneth Hopper and William Hopper (2007) “The Puritan Gift”, I.
B. Taurus and Co. Ltd..

Trond Johansen and Tom Gilb, From Waterfall to Evolutionary
Development (Evo): How we created faster, more user-friendly,
more productive software products for a multi-national market,
Proceedings of INCOSE, 2005. See http://www.gilb.com/tiki-
download_file.php?fileId=32

Elaine L. May and Barbara A. Zimmer (1996) “The Evolution-
ary Development Model for Software”, Hewlett-Packard Journal,
August 1996, Vol. 47, No. 4, pages 39-45. See http://www.gilb.
com/tiki-download_file.php?fileId=67/

The Standish Group (2009) “Chaos Summary 2009”. See
http://www.standishgroup.com/newsroom/chaos_2009.php
[Last Accessed: August 2010].

Sharma Upadhyayula (2001) MIT Thesis: “Rapid and Flex-
ible Product Development: An Analysis of Software products at
Hewlett Packard and Agilent”. See supadhy@mit.edu. http://
www.gilb.com/tiki-download_file.php?fileId=65

Tom Gilb
 (born 1940, California) has

lived in UK since 1956,
and Norway since 1958.
He is the author of 9 pub-
lished books, including
Competitive Engineering: A
Handbook For Systems En-
gineering, Requirements
Engineering, and Software
Engineering Using Plan-

guage, 2005. He has taught and consulted world-wide
for decades, including having direct corporate methods-
change influence at major corporations such as Intel,
HP, IBM, Nokia. He has had documented his founding
influence in Agile Culture, especially with the key com-
mon idea of iterative development. He coined the term
‘Software Metrics’ with his 1976 book of that title. He
is co-author with Dorothy Graham of the static testing
method ‘Software Inspection’ (1993). He is known for
his stimulating and advanced presentations, and for
consistently avoiding the oversimplified pop culture that
regularly entices immature programmers to waste time
and fail on their projects. More detail at www.gilb.com.

Lindsey Brodie
is currently carrying out
research on prioritiza-
tion of stakeholder value,
and teaching part-time
at Middlesex University.
She has an MSc in Infor-
mation Systems Design
from Kingston Polytech-
nic. Her first degree was
Joint Honours Physics and

Chemistry from King’s College, London University. Lind-
sey worked in industry for many years, mainly for ICL.
Initially, Lindsey worked on project teams on customer
sites (including the Inland Revenue, Barclays Bank, and
J. Sainsbury’s) providing technical support and develop-
ing customised software for operations. From there, she
progressed to product support of mainframe operating
systems and data management software: databases,
data dictionary and 4th generation applications. Hav-
ing completed her Masters, she transferred to systems
development - writing feasibility studies and user re-
quirements specifications, before working in corporate
IT strategy and business process re-engineering. Lind-
sey has collaborated with Tom Gilb and edited his book,
“Competitive Engineering”. She has also co-authored a
student textbook, “Successful IT Projects” with Darren
Dalcher (National Centre for Project Management). She
is a member of the BCS and a Chartered IT Practitioner
(CITP).

> About the author

