
The Magazine for Agile Developers and Agile Testers

© iStockphoto.com/ThomasVogel

January 2011

issue 5www.agilerecord.com	 free digital version	 made in Germany	 ISSN 2191-1320

5www.agilerecord.com

Planguage (Planning Language) is a comprehensive, but not ex-
haustive, set of tools for planning systems engineering. It encom-
passes language constructs to capture system requirements,
designs and delivery increments. It also includes well-defined
processes for some of the systems engineering processes, prin-
cipally requirements specification, quality control, and project
management.

Planguage has been developed over many years in industry. The
guiding principles were to support quantified requirements and
the evolutionary delivery of such requirements. As such, Plangua-
ge provides a strong capability to underpin and improve existing
agile practices. It achieves this through providing enhanced mea-
surement of progress, from setting the objectives to supporting
testing to evaluate deliverables. Also by supporting system de-
livery being achieved as a series of small, early, high-value evo
steps.

This paper discusses certain agile aspects of Planguage but does
not describe all its details. If the reader is encouraged to find out
more about Planguage, then they should see (Gilb 2005).

Defining Agile
The term ‘agile’ within Planguage is considered to primarily mean
‘adapting successfully to new circumstances’. Traditional dictio-
nary definitions such as ‘moving quickly and lightly’ (Webster)
define only one way in which to be agile, they do not cover all
the possible means for being agile, in terms of adapting to cir-
cumstances. Indeed, some of the alternative and supplementary
means of ‘adapting successfully’, may involve the opposite ideas
to being quick and light. For example, ideas such as being con-
servative enough to make sure things will actually work success-
fully, rather than changing too quickly to an untested way. Simply
being quick and light are not necessarily the right strategies for
meeting the requirements of a project or organization, especially
if there are no new circumstances.

The previous point highlights one of the dominant characteristics
of Planguage. Planguage emphasizes the ‘ends’, rather than the
‘means’. This alone can be seen as key to the agility of Plan-
guage as every aspect of a system is subject to consideration
for change (all lower priority requirements, designs, deliverables,
systems engineering processes and project management pro-
cesses) in order to give maximum effect to the satisfaction of the
higher prioritized objectives, when responding to new informati-
on and situations.

The key principles of agile as defined by the agile community
(Agile Principles 2001) include “early and continuous delive-
ry of valuable software”, “welcoming changing requirements”,
“delivering working software frequently”, “business people and
developers must work together daily”, and “working software is
the primary measure of progress”. Planguage with its focus on
‘ends’ can support these principles. What Planguage demands in
addition though is that progress is measured through quantified
requirements and results.

In some respects, agility in Planguage can be though of as being
quantified by the efficiency concept. Agility is the effectiveness of
meeting a defined set of requirements, in relation to the cost and
timescales. The lower the cost and timescales of meeting all the
requirements, the more agile the method. As such, Planguage
focuses on understanding the objectives as quantified, measu-
rable requirements, and on identifying and delivering high-value
evo steps to deliver early stakeholder value and obtain feedback
from real deployment. So, the key question is not whether a given
method is light or heavy! The only rational question is, ‘What is
the smartest way to satisfy the requirements?’ Many in the agi-
le community have never understood this notion, and therefore
they seem to embrace lightness itself, even if that is too light for
purpose.

©
 O

rlando Florin R
osu - Fotolia.com

Agile Aspects of Planguage
for Cost-Effective Engineering
by Tom Gilb & Lindsey Brodie

6 www.agilerecord.com

Requirements Language Agility
Specification of Planguage Requirements

In order to aid communication amongst the stakeholders, Plan-
guage defines a very comprehensive set of statements and ex-
pressions to specify information about a requirement. Over 90%
of a typical Planguage requirement specification can be additio-
nal information filling in the background details, such as the rela-
tionships, priorities, risks, dependencies and change control. The
Planguage user is at liberty to specify what is mandatory, what is
optional, and what is discouraged, for any type of requirement
specification according to its potential different system contexts.
A specification can grow and be modified over time, as a project
develops and obtains more information and insights. For examp-
le a requirement can start life as a simple name, like ‘Agile’. It
can then have its overall aim defined:

Ambition: to be more effective than competitors in meeting our
requirements efficiently.

It can then be improved by adding initial attempts at quantifica-
tion, such as:

Scale: % Product Cost to meet requirements compared to Bench-
mark.

Past [This Organization, New Product Development, End of Last
Year]: 100%.

Goal [This Organization, New Product Development, End of This
Year]: 95%.

With Past and Goal, a notion of where the system is currently
and where it should be at some future time is introduced, and
of course these are measurable so we can understand our pro-
gress. To increase clarity, other details might be added:

Product Cost: defined as: Product Development Cost as a per-
centage of real or projected system costs over product lifetime.

Authority: Corporate Policy paragraph 6.3.

Dependencies: Mandated policies such as safety, security, and
ethics.

Risks: R1: Long-term effects of changes to the development pro-
cess might be hidden for too long.

Issues: I1: How long a life cycle scope shall we include? In par-
ticular, does it include on-going costs when product is not sold?

Such specification provides a lightweight means of capturing and
communicating the key aspects of a system. The use of Plan-
guage templates ensures that the main specification details are
considered and aids readers to find the information that they are
seeking rapidly.

Reuse Aspects
Reuse contributes to agility because you do not have to take the
effort to redefine things from scratch, and the reused items are
more likely to be safe to use than quickly made-up definitions.
Planguage provides many opportunities for reuse of specifica-
tions, for example, tag definitions and concepts.

Concepts: Planguage currently defines over 640 concepts in
the Planguage Concept Glossary (Gilb 2010). These are basic
systems engineering concepts, such as ‘Quality’, ‘Requirement’,
‘Constraint’ and ‘Goal’. They are assigned a specific meaning that
is consistent with the rest of Planguage. They are then referred to
by a tag, preferably but not always, with a leading capital letter in
order to announce that they are formally defined. These concepts
are reused constantly and frequently. Many of them provide the
core language for specification, such as ‘Scale’, ‘Goal’ and ‘Ambi-
tion’ (see the previous example specifying ‘Agile’).

Templates: Planguage provides templates to aid users with their
specification. These templates are often adopted and modified
at the corporate level by my clients and readers. The template
definitions are fairly stable over time, and apply to all projects. By
contrast, many corporations have no standard definitions of the
most basic concepts, and they offer nothing to be systematically
reused by their engineers. This tends to lead directly to ambiguity
and wasted effort.

Tag Definitions: Almost any set of words or symbols can be name
tagged with a unique tag. Whenever this tag is referred to, we
are reusing the initial definition of the tag. This reuse principle
applies as many levels of specification from Planguage definition,
through to user-specific definitions. The symbol indicating that
we are reusing a predefined specification is the use of words with
leading capital letters, for example, ‘Product Development Cost’.

Define Once: One of the suggested basic formal (reusable!) rules
of Planguage is that planning objects such as requirements and
designs should have only one specification, which is tagged and
reused whenever needed.

”R3: Unique: Specifications shall exist as one official ‘master’
version only. Then they shall be re-used, by cross-referencing,
using their identity tag. ‘Duplication’ (copy and paste) should be
strongly discouraged.” (Gilb 2005, Section 1.4).

Process Reuse: Fundamental processes such as clear techni-
cal specification, quality control of a specification, or quantifying
quality ideas, are designed to be reused in several contexts, such
as in requirement or design specification.

Tailoring Aspects
One thing that makes reuse more interesting and practical, is
when the reused specification can be tailored to adapt to the
local circumstances. Of course reuse is not the only benefit with
such tailoring, more accurate specification can also be achieved
that better reflects the real requirements and so saves effort.
Planguage gives many such options. Consider for example, the
use of scale qualifiers and qualifiers.

Scale Qualifiers

For a given scale, any useful number of scale qualifiers can be
defined in the scale definition. These must and can be further
defined in any statements that refer to the scale (such as Past,

7www.agilerecord.com

Goal, Meter). This tailors these particular statements to parti-
cular circumstances of interest, such as the type of customer,
market, type of use of product, etc. For example, Task is a scale
qualifier in the scale below.

Scale: Time to learn a defined [Task].

Scale qualifiers are generic; each scale qualifier needs to be ex-
plicitly assigned a corresponding ‘scale variable’ (unless a de-
fault is being used) when the scale is used in other parameter
statements (such as any benchmarks or targets). For example:

Goal [Task = Setup]: 10 minutes.

 ‘Setup’ is a scale qualifier defining the Scale qualifier ‘Task’ that
was previously undefined in the original scale definition.

The purpose of scale qualifier, and their consequent definitions,
is to allow a scale specification to be more generalized and flexib-
le; this consequently makes a scale specification more reusable
and agile.

Qualifiers

Qualifiers are sets of parameters that enable tailoring of specifi-
cations. They can contain any number of interesting parameters
(usually from 1 to 6), and they can be as tailored as a project
needs. For example:

Goal [User = Engineer, Maturity = Novice, Task = Calculation,
Market = Europe, Deadline = Release 9.0]: 60%.

The format is

<parameter Name> [<set of qualifiers>] <specification that is
valid when all qualifiers are ‘true’>.

The qualifiers allow much more detailed specification than we
would tend normally to try to do. They invite you to specify many
interesting variations. Instead of just one requirement, we end up
with a set of requirements for specific contexts, that is for specific
categories, localities, conditions and delivery intervals. The requi-
rement becomes a ‘curve of improvement in a multi-dimensional
space’. Note the system space is described by the qualifiers. This
allows projects to be divided up into many smaller evolutionary
delivery steps that correspond to each specification variant, or to
increments of improvement levels between such required points.
This in turn directly allows the project to be far more sensitive to
being effective earlier in delivering specific requirements. This
directly lays the basis for more-sensitive agile reactions to any
deviations from the planned trajectory.

Mid-Development Agility
Agility is about obtaining useful feedback on progress and devi-
ation, as early and frequently as possible, and making sure that
the information is acted on quickly. Specifications such as the
example below help deal with ‘midway progress’:

Usability.Intuitiveness:

Ambition: Radical improvement in the intuitiveness of the pro-
duct, compared to the existing product and competitors’ pro-
ducts.

Scale: Percentage probability that the defined [Tasks] can be
successfully completed by the defined [Users] without any refe-
rence to training, handbooks and help desks.

Past [Release 8.5, Tasks =Normal Mix, Users = Beginners, Feb-
ruary 2005]: 30%. ‘The benchmark’

Fail [Release 9.0, Tasks =Normal Mix, Users = Beginners]: 50%.
‘A constraint level’

Goal [Release 9.5, Tasks =Normal Mix, Users = Beginners]: 80%.
‘A target level’

To give an example, in one customer case (Johansen and Gilb
2005) when the project was midway between start and product
version release, the client could measure that the project had
reached about 50% of the intuitiveness requirement. So they
knew they had kept within the worst case constraint (Fail le-
vel), and knew that they were on track to reach their 80% target
(which they in fact did). Their website could brag “Up to 175 per-
cent more intuitive user interface” (Confirmit 2010).

Background Specification
Numerous background requirement specifications can make a
contribution to the ability of project management to see prob-
lems, to sense emerging problems, and to react to problems. For
example:

Risks: R1: Lack of skilled specialists can threaten deadline.

Issues: I1: The mandatory duration of the software leasing con-
tract can seriously impact our ability to reduce costs if the volu-
me of sales is lower than expected.

Dependencies: D1: The software outsourcer must be able to turn
around the most-critical changes within a week.

Authority: The local national authority or possibly super-national
authority (such as European Union) law may restrict freedom to
choose sub-suppliers.

Again this is all about capturing the necessary information in a
lightweight way. The use of templates helps achieve this.

The Requirement Specification Object Database
Planguage does not think in terms of specification documents or
specifications, as such. However, the requirement specifications
are themselves primarily reusable objects, containing all the
collected information about a requirement, in a highly organized
format. Requirements (and designs and other specifications) are
essentially regarded as a database of project information. We
can systematically extract whatever views of the requirements
we need for the purpose at hand.

8 www.agilerecord.com

Each requirement has its own set of specification management
information, such as:

Type:

Version:

Specification Owner:

Specification Implementer:

Test Specifications:

Last Change Date:

Stakeholders:

These parameters essentially allow you to manage change and
analysis at the level of the single requirement object. They help
you know exactly who to communicate with about requirement
changes when you are in a hurry.

High Level Requirements Give Agility
Planguage is especially adamant that we capture the ‘real requi-
rements’. These are the requirements really needed by defined
stakeholders. Too many ‘requirements’ are actually design (the
‘means’) assumed to be the way to satisfy the real objectives

(the ‘ends’) and they are often completely un-stated, or poorly
defined. For example, a requirement to implement a password (a
design for security) is specified, instead of a specification of how
much security (the real requirement) is needed.

The key is an emphasis on quantification of all the qualitative re-
quirements (like security, adaptability and usability) (Gilb 2005,
Chapter 5, How to Quantify: Scales of Measure). Once people
have learned how to quantify qualitative requirements, they can
be specific about their requirements; and do not have to stoop
to the wrong level of articulation (design) in order to specify their
needs. This dramatically promotes agility, in that we are then free
to chose and re-choose any design idea that best satisfies our
quality objectives. We are not locked into the initial design ideas,
falsely stated as ‘requirements’.

Impact Estimation
Space does not permit a full description of Impact Estimation (IE)
(Gilb 2005, Chapter 9), which is one of the main Planguage me-
thods. However, see Figure 1 for an overview of how the method
operates: it places the designs in a matrix against the system
objectives and demands the designer consider how well each de-
sign meets each of the objectives. Further when the chosen de-

Figure 1: An example of an IE table. This
shows an initial proposed set of designs,
ordered by increment, and their impacts on a
selected set of the system quality require-
ments. For requirement R1, the current time
taken for a customer to submit a request is
30 minutes and the goal is to reduce this
time to 10 minutes. Note the cumulative
performance to development cost ratio at
the bottom of the table, which measures
comparative cost-effectiveness of the dif-
ferent designs by summing the percentage
increases in impacts up to 100% and dividing
by the design cost. This IE table example was
developed by Lindsey Brodie.

9www.agilerecord.com

signs are implemented, the actual results can be input and any
deviations in the original estimates assessed. The designer can
then reconsider the system design in the light of this feedback.

Conclusions
Planguage not only supports the principles of the agile communi-
ty, it goes a step beyond by providing a method that supports ef-
fective specification and focuses on measurable result delivery.
Communication is at the heart of Planguage and by capturing the
system quality requirements in a measurable way, unambiguous
progress can be tracked throughout a project’s lifetime. ■

References
Agile Principles (2001). Available from: http://agilemanifesto.
org/principles.html [Accessed 20 December 2010].

Confirmit (2010). Available from: http://www.Confirmit.com [Ac-
cessed 21 December 2010].

Gilb, T. (2004) What is missing from the conventional agile and
extreme methods? Slides presented as keynote at XP Days,
2004, London.

Gilb, T. (2005) Competitive Engineering: A Handbook For Sys-
tems Engineering, Requirements Engineering, and Software
Engineering Using Planguage, Elsevier Butterworth-Heinemann.
ISBN 0750665076.

Gilb, T. (2010). Planguage Glossary Concepts. Available from
http://www.Gilb.com.

Johansen, T. and Gilb, T. (2005) From Waterfall to Evolutiona-
ry Development (Evo) or how we rapidly created faster, more
user-friendly, and more productive software products for a com-
petitive multi-national market. Paper presented at INCOSE, July
2005, Rochester NY. See also http://www.confirmit.com/news/
release_20041129_confirmit_9.0_mr.asp

Tom Gilb
 has been an independent

consultant, teacher and
author, since 1960. He
mainly works with multina-
tional clients helping im-
prove their organizations,
and their systems engi-
neering methods.
Tom’s latest book is ‘Com-
petitive Engineering: A

Handbook For Systems Engineering, Requirements En-
gineering, and Software Engineering Using Planguage’
(2005).
His other books include ‘Software Inspection’ co-au-
thored with Dorothy Graham (1993), and ‘Principles of
Software Engineering Management’ (1988). His ‘Soft-
ware Metrics’ book (1976, Out of Print) has been cited
as the initial foundation of what is now CMMI Level 4.
Tom’s key interests include business metrics, evolution-
ary delivery, and further development of his planning
language, Planguage. He is a member of INCOSE and is
an active member of the Norwegian chapter, NORSEC.
Email: Tom@Gilb.com
URL: http://www.Gilb.com

Lindsey Brodie
is currently carrying out
research on prioritiza-
tion of stakeholder value,
and teaching part-time
at Middlesex University.
She has an MSc in Infor-
mation Systems Design
from Kingston Polytech-
nic. Her first degree was
Joint Honours Physics and

Chemistry from King’s College, London University. Lind-
sey worked in industry for many years, mainly for ICL.
Initially, Lindsey worked on project teams on customer
sites (including the Inland Revenue, Barclays Bank, and
J. Sainsbury’s) providing technical support and develop-
ing customised software for operations. From there, she
progressed to product support of mainframe operating
systems and data management software: databases,
data dictionary and 4th generation applications. Hav-
ing completed her Masters, she transferred to systems
development - writing feasibility studies and user re-
quirements specifications, before working in corporate
IT strategy and business process re-engineering. Lind-
sey has collaborated with Tom Gilb and edited his book,
“Competitive Engineering”. She has also co-authored a
student textbook, “Successful IT Projects” with Darren
Dalcher (National Centre for Project Management). She
is a member of the BCS and a Chartered IT Practitioner
(CITP).

> About the author

