

Plicons: A Graphic Planning Language for

Systems Engineering

Copyright © 2006 by Tom Gilb. .

Iver Holtersvei 2, NO-1410 Kolbotn, Norway, Tom@Gilb.com, www.Gilb.com, +47 66801697

Abstract:

• A Pictorial language (Planguage Icons = Plicons) for representing
systems engineering problems (requirements) and solutions
(designs) has been developed, and continues development, by
the author. It differs from most all other published software
engineering and systems engineering languages in several key
respects.

• The main, but not only, differentiating characteristic is that it
allows us to model quantified system performance properties and
resources graphically; whereas most all other graphic languages
are limited to things like functions, logic flow, use cases; and
invariably avoid any representation at all for quantifiable
qualities and costs.

Introduction

• “Clearly, any model’s practical value is directly proportional to its
accuracy. If we cannot trust the model to tell us true things
about the software system it represents, then the model is worse
than useless—it can foster false conclusions.” [UML.Selec].

• I agree with Selec. And any attempt to model systems
engineering products without considering critical performance
and cost characteristics results in graphical models we cannot
trust.

• Here is a list from UML 2.0 [UML.Selic] of the scope of the
Unified Modelling Language, and there is no notion of modelling
the essential performance (including qualities) and cost
attributes of a system.

o Language Unit Purpose: URL Categories
 Actions (Foundation) modeling of fine-grained actions

 Activities Data and control flow behavior modeling

 Classes (Foundation) modeling of basic structures

 Components Complex structure modeling for component technologies

 Deployments Deployment modeling

 General Behaviors (Foundation) common behavioral semantic base and time

modeling

 Information Flows Abstract data flow modeling

 Interactions Inter-object behavior modeling

 Models Model organization

 Profiles Language customization

 State Machines Event-driven behavior modeling

 Structures Complex structure modeling

 Templates Pattern modeling

 Use Cases Informal behavioral requirements modeling

• Here is an example of some of our primary Planguage graphic

icons for performance and cost attributes.

Illustration 1: Some fundamental Graphical Icon Concepts, <- CE book Fig. 4.10

o Explanation: A Scale icon is drawn as a line with an arrowhead, connected to a function

oval symbol. Performance scales are to the right from the function oval (O->), and

resource scales are at the left of the oval with arrowhead connected to the oval (->O).

The performance and resource attribute icons must both include a function icon (an oval)

to distinguish them from each other. The arrow in a performance attribute points away

from the function oval. For a resource attribute, the arrow points towards the function

oval. Three graphical performance attributes showing the icons for scalar performance

attribute levels: three analytical benchmarks, three future requirement targets and two

future requirement constraints, respectively. Usually an attribute would have a mix of

whatever benchmark, target and constraint levels were relevant.

Why are Planguage Icons different or a unique contribution to graphical
languages

• The primary Plicon distinction is the ability to represent
performance and resource attributes of a system – most other
diagrammatic languages seem entirely focussed on the function
of a system, or other UML classes of representation (see list
above) and illustrate little or nothing about performance and
resource management.

Table: Some fundamental performance and cost attribute keyed icons. <- CE p.134.

Scale ‘-|-|- is directly derived from Blissymbolics [Bliss]

• A second characteristic of Plicons (Planning Language Icons, or
Planguage Icons) is that they are designed to be applicable to a
very broad range of systems engineering activity – the entire
development and operational life cycle. Most other graphical
languages seem to focus on requirements or design stages.

Figure: The process symbol defined the PDSA cycle explicitly. <- CE p.307

• A third characteristic is that the individual icon elements

reference a Planguage-defined concept, they are clearly defined,
and consciously integrated with all other defined Planguage
concepts.

• Here is an example of definition and integration.

•

Example of a Planguage concept with keyed icons [CE, pages 344-5,
Concept Glossary].

• Here are some more Plicon characteristics:

o Drawn and Keyed Plicons: plicons are defined with both a
drawn format and a keyable format (keyable from a
conventional computer keyboard). The two formats are
designed to be as recognizably close as possible; while still
considering convenience of keying the icon in practice.

Illustration from CE, p.361 of defining both Keyed and Drawn Icons for ‘Function’.

• Mixed Graphic and other Planguage notation: The Plicons can be

integrated with any of the formally defined Planning Language
(Planguage) structures, grammar, defined concepts, or text
notations available in Planguage; whether it be from Planguage
or more locally defined user or project definitions or notation.

Example of mixed keyed icons and text in CE. [CE p431].

• Optionality: the Plicons can be used at the specification writers

discretion, mixed with any other Planguage notation, or not at
all.

(Design Specs)---Quality--> ^ (Requirement Specs)---->{Clarity,

Detail, Precision}--->

Design spec quality is impacted by these three requirement spec qualities.

 (Requirements Spec)  ^[Initial Design: ^[Constraint Filtering] 

^[Feasibility]  ^[Benefit/Cost Optimize]]  (Design Specs)

Designs should go through two initial processes. Constraint filtering and

feasibility. Then be optimized for Benefit/Cost.

(Initial Design Specs, Requirements)  ^[Evo Process {Build, Try,

Study, Adjust Specs}]  (Field Results).

Initial specs need adjustment early and frequently by being applied in reality.

(Cost Requirements)  ^[Design-to-Cost]  (Design Spec)

We need to ‘Design to Cost’, not ‘Cost a Design’.

(Requirements) ^[Theoretical Design]  ^[Estimate Cost]  ^[Evo]

 (Estimates based on Reality)

Future cost estimation is more accurate if based on early Evolutionary delivery

realities.

 Start: ^[System Operation]  ^[Capacity Expansion]  ^[Redesign to

cope with Expansion] Start.

 Initial successful designs might have to be adjusted for growth and change.

Example: Mixed Keyed icons and text used to express systems engineering

relationships. To defined Planguage itself. This is experimental and I have not

made it public, for example in the CE book. ^[this is a process symbol]

Objectives of the Planguage icons

• The Plicons are designed to satisfy the following objectives in the
Planguage context.

o Language-neutral notation
 The icons are designed to not rely on any particular

human language.
o Keyable:

 The icons are selected because they can be
conveniently keyed in from a normal computer
keyboard

o Defined:
 The icons have a well-considered conceptual

definition in the Planguage Concept Glossary. The
icon itself is but one means of accessing the concept.

o Consistency:
 The drawn icons and the keyed icons have

reasonable graphical similarity, to aid recognition and
learning.

 The chosen icons are designed to be consistent with
each other. For example all ‘benchmarks’ point
leftwards, all targets point rightwards. See
Illustration 1 above.

o Optionality
 The Plicons are optional in use and alternatives exist.

They should be selected for use voluntarily because
they offer the user some advantage.

Principles of Plicon design
 Here is a set of Keyed Icon Rules:

1. Keyed icons are keyboard character sets with defined meanings.
2. In general they will correspond, as far as possible, with graphic or drawn icons.
3. Their detailed and official meaning will generally be found in the glossary.

4. They should all have a defined term number (*nnn) in the glossary or here.
5. They should be simple to remember.
6. They should consistent in use of terms and sequences.
7. Left side is equivalent to graphic icon top, and right side to bottom ((Input)^[…] = Input to
Process)
8. A ‘.’ can be used to couple words/terms in a single concept. To give clarity and ambiguity.
Optional: (+.O.-|-|-.#.± Incremental.cost.scale.estimate.deviation)
9. At least one space shall be inserted between an icon and adjacent terms.(avoid ambiguity!)

[P] means Entry to P ([] is Entry symbol), and  [P] means flow to P, or .[P]

‘Rules’ are good-practice specification guidelines, and can be used to detect ‘defects’ in a

specification. Source: Gilb, Keyed Icons MASTER Specific Rules for Keyed Icons. Version

Oct 18 2005.

Basic Plicons

• There are a number of keyed icons that are used regularly in
Planguage text, and indeed preferred over human language
equivalents because of their brevity and clarity.

• Here are some of them

Example of some of the keyed icons used on a regular basis in
Planguage. Source CE, page 15.

• Here is a real client Planguage example of use of several of these

keyed icons to define a function specification:

Emergency Stop:

Type: Function.

Description: <Requirement detail>.

Module Name: GEX.F124.

Users: {Machine Operator, Run Planner}.

Assumptions: The User Handbook describes this in detail for all <User Types>.

User Handbook: Section 1.3.5 [Version 1.0].

Planned Implemented: Early Next Year, Before Release 1.0.

Latest Implementation: Version 2.1. ‘‘Bug Correction: Bug XYZ.’’

Test: FT.Emergency Stop. <- Carla

Test [System]: {FS.Normal Start, FS.Emergency Stop}.

Hardware Components: {Emergency Stop Button, Others}.

Owner: Carla

Source CE p.91. Note the Set, Qualifier, Source, Note, and Fuzzy
brackets being used.

Here is a set of keyed icons relating to the Impact Estimation method
(Source Figure 9.11, in CE page 287, Impact Estimation Chapter). Notice
how the symbols ‘->’, ‘±’, ‘∑’ and ‘?’ are used to build concepts.

Practical Application thus far

• The frequently used subset of the keyed icons are regularly used
amongst engineers using Planguage.

• The more exotic defined keyed icons are hardly used by anyone
at all, except the author for the purpose of defining them at all –
for example the Impact estimation set above (CE p.287). But

then Planguage is a relatively young language, and I would
expect the use of icons to grow with the use of the language in
time.

• The graphical icons are used frequently and regularly in our
teaching slides to explain concepts, especially those to do with
performance attributes.

Illustration: drawn icons used to illustrate my book. <- CE p.115

• It would seem difficult to teach the quantification of quality
concepts without using the drawn icons.

Work Remaining to do to develop Plicons

• I have done a lot of work defining icons on my own, but I saw no
point in publishing things that were not in fact in frequent use by
me and my clients. I initially went quite far in defining Planguage
concepts with the help of long strings of Planguage keyed icons.
But then I removed all that from the final CE book, as it seemed
academic for the intended audience.

• I still have a dream, that requires lots of hard work, by someone,
to define a systems engineering discipline primarily by using the
icons. This can be with minimum human text, or; in my dreams,
with none whatsoever.

• The ideal is a fairly complete language like mathematics or
Blissymbolics [Bliss]. The excellent work of Charles Bliss, who I
corresponded with many times, was a major inspiration. His
language is so well developed, even for scientific and engineering
purposes, that it is an open question of whether it would be a
good base for a very comprehensive systems engineering
language.

Bliss Symbols

• In my own case I saw the need for a few dozen frequently-used

symbols for everyday notation, interspersed with human text

(as in electronic and music), and a few hundred symbols in total
to make a useful systems engineering symbolic language.

• In spite of a large number of graphic notations in the software
engineering industry, such as UML, and starting with
conventional flowchart symbols about half a century ago, I have
been surprised that the software symbols kept closely to the idea
of describing logic, but did not ever include graphical notions of
system performance and cost. I am afraid that this reflects the
narrow education of the programmer. This cultural lack of
concern about quality and cost is, in my opinion, a major reason
for the high widely-reported IT-system failure experience. When
the software community wakes up to the need to act like
systems engineers instead of coders, then hopefully the
corresponding need for a graphical language to communicate
about quality and cost will arrive.

• My personal position is that real need must dictate the
development work effort that should be put into developing an
iconic systems engineering language. But there is some
academic fun, as Bliss’ life illustrates, in just seeing what we can
create. Should any energetic soul wish to develop this I wish
them luck and would like to give them a base, some advice, and
encouragement.

• Who knows? Maybe I am forgetting the Chinese ideogram’s
inspiration of Bliss, and that the necessary symbols will simply
be an extension of Chinese Ideograms?

•

• The web gives plenty of symbol ideas!
[http://www.symbols.net].

Summary
• Planguage, a systems engineering language, strong in

performance and cost attribute modelling, also contains a
complimentary and optional set of graphical symbols. These
planning language icons differ from other graphic modelling
languages in their ability to describe variable system
performance and cost attributes.

• The graphic language is in practical daily use, both for systems
engineering purposes, and teaching purposes.

• It is partly, but not completely, described in ‘Competitive
Engineering’, the Planning Language Handbook.

• The purpose of this paper is to generate awareness that there is
a graphical modelling way to describe systems engineering
information. And it is far more realistic for both software and
system engineering purposes than the currently popular
modelling techniques such as UML.

Author Bio
Tom has been an independent consultant, teacher and author, since
1960. He mainly works with multinational clients; helping improve their
organizations, and their systems engineering methods.
Tom’s latest book is ‘Competitive Engineering: A Handbook For Systems
Engineering, Requirements Engineering, and Software Engineering Using
Planguage’ (Summer 2005).
Other books are ‘Software Inspection’ (with Dorothy Graham, 1993), and
‘Principles of Software Engineering Management’ (1988). His ‘Software
Metrics’ book (1976, OoP) has been cited as the initial foundation of what
is now CMMI Level 4.
Tom’s key interests include business metrics, evolutionary delivery, and
further development of his planning language, ‘Planguage’. He is a
member of INCOSE and is an active member of the Norwegian chapter
NORSEC. He participates in the INCOSE Requirements Working Group,
and the Risk Management Group.

Email: Tom@Gilb.com
URL: http://www.Gilb.com

Version Nov 9 2005

