
 ‘Real QA’ Manifesto 23/05/2009 01:44

Draft:
‘Real QA’
[Real Software and System Quality Assurance]
Manifesto

© By Tom@gilb.com May 22 2009

Purpose of this document/manifesto:
Quality Assurance (QA) in software has in fact degenerated into testing
alone, on a large scale. Software/IT management has ignorantly allowed
this to happen, and it is time for a wakeup call. Of course many parts of
the industry have been well-aware of more cost-effective ways of
delivering required quality in practice, but this has in fact been largely
ignored; while granting very large resources to testing alone (as opposed
to smarter upstream engineering practices, based on design, prevention
and upstream inspections).

QA Objectives
1. NO SURPRISES ASSURANCE: To allow management to understand
release consequences fully, in relation to expectations, with the lowest
costs, the lowest risks, and the lowest degree of surprises.
2. MEET EXPECTATIONS: To make sure that the project investors and
sponsors get, at least, what they expect.
3. BUSINESS PERFORMANCE: To deliver the ‘business’ (or
organisational) results envisaged and promised to project and
programme supporters
4. TECHNICAL PERFORMANCE: To measure the technical performance
(including all Quality attributes) attributes of the system
5. CONSTRAINT COMPLIANCE: To ascertain that the system has not
violated any specified constraints.
6. LONG TERM ASSURANCE: To give some assurance that the long
term characteristics of the system are as planned. Things like
adaptability, maintainability.
7. LEGAL COMPLIANCE: make sure the system is always compliant with
legal and other compliance policy items.

QA Strategies: valid QA Strategies include, but are never limited to:

1. Clear and quantified project and system level objectives, at the
level of the organization, the product (example a software package), and
the system (all related aspects such as support, documentation,
marketing). Using ‘Planguage’* fully to express them clearly and fully.
2. Clear, detailed, impact and cost estimated strategies for meeting
the objectives. Rated and measured using Impact Estimation*
specification language. Strong architecture design to meet multiple
quantified objectives and constraints.
3. Quality Control Reviews of all forms of specification and
documentation against sufficiently high standards (Rules, Processes, and
other types of Standards * The reviews (“Spec QC” *) will operate at
early stages (leading measures) to
a. motivate and teach engineers to use best practices in practice
b. measure the degree to which every development and maintenance
output actually meets the best practice adopted standards.
c. give a basis for serious numeric process entry and exit conditions* for
all engineering work outputs.
D. give a partial data-driven basis for continuous and immediate
process improvement (like Defect Prevention Process (DPP) and CMMI
Level 5).
4. Rapid Evolutionary iteration, incremental delivery, data collection,
feedback, analysis and change (as in Evo *). Delivery being really useful
value increments to stakeholders. The purposes of this are:
a. to be able to prioritise high value deliveries very early
b. to validate that the teams are actually able to deliver value at all
c. to learn rapidly about everything, and improve everything rapidly.
D. to enable all Quality Assurance tactics to be tried and proven, early
and often.
5. Automated and Built in measurement and detection of problems,
including very direct real-time user and stakeholder feedback to
developers and engineers. Operating before releases and eternally after
releases.
6. Ongoing Fact Analysis: Software Engineering Accounting: capability
of analysing, organisation wide and in the long term how all these things
are working, so as to determine what works best and what the costs are.
7. oh yes, I almost forgot, conventional testing, at its best.

* as detailed in Gilb: Competitive Engineering – or any better or
equivalent specification method.

QA Principles (general ideas that guide us in detailed decisions)
1. EARLY BIRD: QA must operate as early as possible to detect
problems both in the current development/maintenance process, and in
the product or system being engineered.
2. Quantification will always be preferred as a language to express any
variable idea associated with product, system and process ideas. It is
always possible, and it is the only sound basis for rational thinking by
management, engineering, and academic research.
3. Prevention: we will rapidly invest in a shift to prevention of problems,
rather than tolerate eternal levels of problems to clean up.
4. Rapid Feedback: we will position our activities to get rapid feedback
(like this same week) so we can correct bad things as soon as possible,
and they cannot fester for months and years.

QA Values
1. Efficiency: we will always try to find and implement the most cost
effective methods to assure system quality in the long term.
2. Confidence: our assertions of confidence in system releases can be
relied on totally, and will be very explicitly about caveats, assumptions,
maximum deviations, and responsibilities if accepted.
3. Predictability: we want to develop our ability to predict system
attributes based on early indicators (example field bugs based on
requirement major defects)
4. Leanness: we will constantly remove and avoid all activity that does
not have clear measured value contributions in relation to its real cost.
5. Perceptiveness: we will anticipate all system quality aspects even
when not directed by our stakeholder to explicitly deal with them.
6. Reality: we will be directed by current local realities: how things work
for us now. We will not be driven by ideals, fads, customs,
misunderstanding, illogical arguments.
7. Delegation – avoiding micromanagement: we will practice extreme
delegation for details and choice of design, and for processes, to the
people who do them daily. Management’s role will be limited to setting

clear measurable high level objectives for products and processes, and
then enabling their staff to reach them.

The IT Management role in Making Real QA Happen
The testers have not been leading the change to real and complete QA.
They ‘test’.
The developers have not done anything laudable either. They code.
Managers don’t seem to have a clue, but then nobody actually trained
them to understand broad QA.
The universities have no discernible honour in educating us in broad QA.
But, nothing is going to change unless responsible management (CIO,
CTO, if necessary CEO levels) is somehow illuminated about QA, and
chooses to insist it is exploited to its fullest potential.
So, this manifesto:

The following signatories claim to be able and willing to help
management achieve the above manifesto elements, in part or whole.

And they will on request, directly or publicly, give reasonable evidence of
their real capability in terms of experience, results, facts, measures,
references and writings (papers, books, slides) by or about their efforts to
date; so that managers might fairly evaluate their potential value:

Signatories:
Tom Gilb gilb.com 22 May 2009
Kai Gilb gilb.com 22 May 2009

 23/05/2009 01:44

manifesto : a public declaration of policy and aims, esp. one issued
before an election by a political party or candidate.
ORIGIN mid 17th cent.: from Italian, from manifestare, from Latin,
‘make public,’ from manifestus ‘obvious’ (see manifest 1).

False QA: is calling your activity ‘QA’ when in fact you only do testing.

 23/05/2009 01:44

References:
Gilb, Tom, Competitive Engineering, A Handbook For Systems
Engineering, Requirements Engineering, and Software Engineering Using
Planguage, ISBN 0750665076, 2005, Publisher: Elsevier Butterworth-
Heinemann. Sample chapters will be found at Gilb.com.

