
The Magazine for Professional Testers

March, 2009

IS
SN

 1
86

6-
57

05
 		

w

w
w.

te
st

in
ge

xp
er

ie
nc

e.
co

m
		

fre
e

di
gi

ta
l v

er
si

on
		

pr
in

t v
er

si
on

 8
,0

0
€	

pr
in

te
d

in
 G

er
m

an
y

Outsourcing

5

© iStockphoto.com/Kameleon007

5The Magazine for Professional Testerswww.testingexperience.com

What happens to usability when development goes offshore? by James Christie

© iStockphoto.com/jrling

Thinking Outside Of The Box

by Aleksandra Popara & Predrag Skokovic

© iStockphoto.com/mammamaart

Interview Dr Mike Bartley..68

MBT as the next step in testing!..69
by Elise Greveraars

Interview Sumithra Gomatam...73

Co-Shoring – All The Benefits Of Onshoring With The Competitive Costs Of Offshoring	 75
by Osmar Higashi

Quality, Excellence and Cost Effectiveness..78
by Chen Bressler

Command Line Testing With The Robot Framework..80
by Alessandro Collino

Agile Specification Quality Control:... 87
by Tom Gilb

The Reality of Software Testing in an Agile Environment..94
by George Wilson

Beyond Functional Testing: On to Conformance and Interoperability.....................................98
by Derk-Jan de Grood & David Bakker

Masthead..102

Outsource your testing – Is it really worth it? Some tips…..103
by Yaron Tsubery

»Let’s Talk About
Testing« by Andreas Spillner

© iStockphoto.com/titaniumdoughnut

45
34

57

87The Magazine for Professional Testerswww.testingexperience.com

Agile Specification Quality Control:

by Tom Gilb

© iStockphoto.com/ tacojim

Traditional Inspection is often uneconomic
and ties up valuable staff resources. Shifting
the emphasis from cleanup (that is, from iden-
tifying defects and then removing them) to
merely sampling the defect level of specifica-
tions, produces significant benefits. It enables
the quality level of specifications to be deter-
mined more rapidly. Consequently, the QC can
be carried out more frequently. Systems and
software engineers rapidly learn, through SQC
feedback, to take standards seriously, which in
turn reduces defect injection. Further, by ana-
lyzing where/how the defects occur, continu-
ous process improvement can be supported.

Introduction
If we carry out inspection of specifications
properly (Gilb and Graham 1993), the cost is
barely tolerable for some: about one hour of
effort, per page1 checked, per systems engi-
neer or software engineer. The harvest, even if
we are skilled, is only to identify between 40-
80% of the major defects. That leaves many
remaining major defects undetected, and many
of these will be found, at considerable cost,
during testing or in the final released product.

Of course, finding defects using traditional
inspection (and fixing them) earlier than the
test stage is beneficial, and may even pay off.
However, there is a better way: Agile Specifi-
cation Quality Control (Agile SQC). It ought
to appeal to all Spec QC purposes, and espe-
cially to the many organizations that have not
been able to stomach the high costs, and low
effectiveness, of traditional inspection.

The main concept of Agile SQC is to shift em-
phasis from ‘finding and fixing defects’, to ‘es-
timating the specification defect density’, and
1	 A page is defined as 300 words of
non-commentary text. Non-commentary text is core
specification or background text; it is not notes or
other commentary text.

using this information to motivate systems and
software engineers to learn to avoid defect in-
jection in the first place. Such a shift permits
a dramatic cost saving. When our QC purpose
is measurement, rather than ‘cleanup’, we can
sample, rather than have to check 100% of the
specifications. This is the major opportunity
that Agile SQC provides. The main purpose of
Agile SQC is to motivate individuals to learn
to reduce major defect insertion. Secondary
purposes include:

To prevent uneconomic major-defect •	
density specifications from escaping
downstream – and thus to avoid the con-
sequent delays and quality problems. The
major tactic to achieve this is to impose a
numeric exit-barrier for the specification
process, such as ‘only a maximum of 1.0
remaining majors per page’;

To teach and reinforce current specifica-•	
tion standards.

Process Details
Traditional Inspection Method: The old inspec-
tion method (widely practiced in CMM Level
3 as peer reviews) was based on the idea of
inspecting 100% of all pages, at optimum rate
checking (one page per hour), using a review
team of between 2 and 5 software and systems
engineers. The maximum yield of major de-
fects from such an inspection process is in the
range of 40%-80% depending on specifica-
tion type (For example, a maximum of 60%
for software source code specifications, and a
maximum of 80% for requirements specifica-
tions – in practice, however, it is actually more
likely that only 30% is achieved since mal-
practice is common). The reported ability to
actually correctly correct major defects, once
found, is only 5 out of 6 fixes attempted (Fa-
gan 1986 reported in Gilb and Graham 1993).

All this amounts to the following:

The same order-of-magnitude defects •	
remaining, as before the quality control
process was applied;

Little or no change in the defect •	 insertion
density. In requirements specifications,
this regularly exceeds 100 major defects
per 300 lines of specification (personal
experience by field measurement over
many years).

New Agile SQC Method: The new ‘Agile
SQC method’ is based on the following:

Sampling•	 of a specification;

A few (1 to 3) pages at a time;•	

Starting early (perhaps once the first 5% •	
of a large specification is written);

Frequently (every week or so) until the •	
work is completed.

For each individual systems or software engi-
neer (each one must be motivated and trained
personally), their sampled specification pages
will be checked against a set of a few simple
rules – usually about 3 to 7 rules are applied
(For example, for initial checks, these could
be: Clear enough to test, Unambiguous to in-
tended readers, and No design options in the
requirements). The reviewers/checkers are
asked to identify all deviations from these
rules. Any deviation is termed a ‘specifica-
tion defect’. The reviewers/checkers are then
asked to classify any specification defect that
can potentially lead to loss of time, or signifi-
cant reduction in product quality, as ‘major’.
The entire checking session might use only
2 engineers for 30 to 60 minutes. This might
seem quite a high checking rate, but remem-
ber that only a few rules are being used and no
other documents are being consulted to check

Shifting emphasis from cleanup to sampling defects

88 The Magazine for Professional Testers www.testingexperience.com

out the original source of material, so we can
go faster. In any event, as long as we turn up
more defects than the threshold exit level for
defects, then exactly how effective we are in
detecting defects is a secondary issue.

The major defect findings are reported to a
review leader, who calculates the estimated
number of defects actually present, based on
the total found by the team. An inexperienced
team is usually about one third effective, so
the estimated total number of majors per page
is about three times the total of unique majors
found by the team. This is a very rough cal-
culation, but it seems to work well in practice.

A pre-arranged standard for exit control (the
fail to exit level) is set for unacceptable speci-
fication major-defect density. Initially, it can
be set at ‘anything more than 10.0 majors per
page’. In the longer term (beyond 6 months of
culture change), the aim should be to set the
limit at ‘anything more than 1.0 majors per
page’. To give some examples, IBM reported
using a maximum of 0.25 major defects per
page (Humphreys 1989). NASA reported a
standard of using 0.1 major defects per page
(Bhandari et al. 1994). The initial limit set is a
matter of trying to get better as fast as humanly
possible. Ultimately, it should become a mat-
ter of finding the level that pays off, for the
class of work you are doing.

Note: There are several limitations to this sim-
plified Agile SQC process:

It is only a small sample, so the accuracy •	
is not as good as for a 100%, or than for a
sample which is larger than a few pages;

The team will not have time or experi-•	
ence to get up to speed on the rules and
the concept of major defects;

A small team of two people does not have •	
the probable greater effectiveness of 3 or
4 people;

The entire specification will not have •	
been checked, so there will not be the
basis for making corrections to the entire
specification;

The checking will not have been carried •	
out against all possible source documents
(Usually in the Agile SQC process, no
source documents are used, and memory
is relied on. While this means that the
checking is not nearly as accurate, it does
considerably speed up the process).

However, if the sample turns up a defect-den-
sity estimation of 50 to 150 major defects per
page (which is quite normal), that is more than
sufficient to convince the people participating,
and their managers, that they have a serious
problem.

As discussed earlier, the immediate solution to
the problem of high defect density is not to set
about removing the defects from the document,
because the same order of magnitude level of
defects would still remain. The best solution
for a document with a high defect density is
to rewrite it entirely, using an individual who
does not insert too many defects. Long term,

the most effective practical solution is to adopt
Agile SQC as part of the corporate process,
and most importantly, make sure that each in-
dividual specification writer takes the defect
density criteria (and its ‘no exit’ consequence)
seriously. They will then learn to follow the

rules; and as a result will reduce their personal
defect injection rate. On average, a personal
defect injection rate should fall by about 50%
after each experience of using the SQC pro-
cess. Widespread use of Agile SQC will result
in large numbers of systems and software en-

Agile SQC Process

Entry Conditions
A group of two, or more, suitable people* to carry out Agile SQC is assembled in a •	
meeting.
The people have sufficient time to complete an Agile SQC. Total Elapsed Time: 30 •	
to 60 minutes.
There is a trained SQC team leader at the meeting to manage the process.•	

Procedure
P1: Identify Checkers: Two people, maybe more, should be identified to carry out the
checking.
P2: Select Rules: The group identifies about three rules to use for checking the speci-
fication. (My favorites are clarity (‘clear enough to test’), unambiguous (‘to the intended
readership’) and completeness (‘compared to sources’). For requirements, I also use
‘no optional design’.)
P3: Choose Sample(s): The group then selects sample(s) of about one ‘logical’ page in
length (300 non-commentary words). Choosing such a page at random can add cred-
ibility – so long as it is representative of the content that is subject to quality control.
The group should decide whether all the checkers should use the same sample, or
whether different samples are more appropriate.
P4: Instruct Checkers: The SQC team leader briefly instructs the checkers about the
rules, the checking time, and how to document any defects, and then determine if they
are major defects (majors).
P5: Check Sample: The checkers use between 10 and 30 minutes to check their
sample against the selected rules. Each checker should ‘mark up’ their copy of the
document as they check (underlining issues, and classifying them as ‘major’ or not). At
the end of checking, each checker should count the number of ‘possible majors’ (spec
defects, rule violations) they have found in their page.
P6: Report Results: The checkers each report to the group their number of ‘possible
majors.’ Each checker determines their number of majors, and reports it.
P7: Analyze Results: The SQC team leader extrapolates from the findings the number
of majors in a single page (about 6 times** the most majors found by a single person,
or alternatively 3 times the unique majors found by a 2 to 4 person team). This gives
the major-defect density estimate. If using more than one sample, you should average
the densities found by the group in different pages. The SQC team leader then multi-
plies the ‘average major defects per page density’ by the ‘total number of pages’ to get
the ‘total number of major defects in the specification’ (for dramatic effect!).
P8: Decide Action: If the number of majors per page found is a large one (ten majors
or more), then there is little point in the group doing anything, except determining how
they are going to get someone to write the specification ‘properly’, meaning to an ac-
ceptable exit level. There is no economic point in looking at the other pages to find ‘all
the defects’, or correcting the majors already found. There are simply too many majors
not found.
P9: Suggest Cause: The team then chooses any major defect and thinks for a minute
why it happened. Then the team agrees a short sentence, or better still a few words, to
capture their verdict.

Exit Conditions
Exit if less than 5 majors per page extrapolated total density, or if an action plan to
‘rewrite’ the specification has been agreed.

Figure 1: Specification of the Agile SQC Process
Notes:
* A suitable person is anyone, who can correctly interpret the rules and the concept of
‘major’.
** Concerning the factor of multiplying by ‘6 ‘: We have found by experience (Gilb and
Graham 1993: reported by Bernard) that the total unique defects found by a team is
approximately twice that of the number found by the person who finds the most defects
in the team. We also find that inexperienced teams using Agile SQC seem to have about
one third effectiveness in identifying the major defects that are actually there. So 2 x 3
= 6 is the factor we use (Or 3 x the number of unique majors found by the entire team).

89The Magazine for Professional Testerswww.testingexperience.com

gineers learning to follow the rules. To get to
the next level of quality improvement, the next
step is to improve the rules themselves.

Case Study 1: A Financial Organization
In 2003, a large multinational financial group
was a pilot user of this Agile SQC process. It
also had combined this with adopting a speci-
fication and planning language, Planguage
(Gilb 2005). After six months, the organiza-
tion reported the following for requirements
and design specifications:

Across 18 development projects using •	
the new requirements method, the aver-
age major defect rate (per page) on first

inspection is 11.2;

14 of the 18 development projects exited •	
successfully on first pass Agile SQC. The
other 4 development projects failed to
meet the exit criteria of 10 major defects
per page, the projects’ specifications had
to be improved, and were then re-inspect-
ed;

A sample of 6 development projects with •	
requirements in the ‘old’ specification
format were tested against the following
set of rules:

The requirement is uniquely identi-◦◦
fiable;

All stakeholders are identified;◦◦

The content of the requirement is ◦◦
‘clear and unambiguous’;

A practical test can be applied to val-◦◦
idate delivery of the requirement.

The average major defect rate (per page) in
this sample was 80.4.

A few months later, as a result of the continu-
ing overall success of the pilot testing, the cli-
ent decided to spread Agile SQC widely to all
types of technical specification.

After Exit from a
Specification Process

Rules

and associated Checklists

Specification Quality Control (SQC)

Specification
Rules

Clear,
Complete &
Unambigu-
ous?

Specification
Review Rules

Right Thing
To Do?

Source
Documents

Kin
Documents

Main
Specification

Main
Specification
(SQC Exited)

Review
(Go / No Go)

Decisions
And Actions
To Be Taken

Change Requests for Source
and Kin Documents and
Suggested Process Improve-
ments

Main
Specification
(SQC Exited)

Entry Process Task Process Exit Process

Figure 2. Overview of the SQC Process (Gilb 2005)

Case Study 2: A Jet Engine Manufac-
turer
At one of my clients, we sampled 2 pages of an
82-page requirements document: four manag-
ers checked page 81, and four other managers,
who were directly involved with the require-
ment specifications projects, checked page 82.
These pages were all ‘non-functional’ require-
ments (such as, security). We agreed to check
against the following simple set of require-
ment specification rules:

Unambiguous1.	 to intended readership

Clear2.	 enough to test.

No 3.	 Design specifications (= ‘how to- be
good’) mixed in

Violation of any one of these rules constituted a
specification ‘defect’ and was classified either
as ‘major’ (likely to result in potential damage
to effort or quality) or ‘minor’ (no way they
can harm us, even though they are defects).

We also agreed a specification exit level of
‘No more than one remaining major defect
per page’. They ‘agreed’ (for demo purposes!)
that any manager who signed off (approved)
a requirements specification with more than
100 remaining major defects per page should
be fired for incompetence. Later that day they
themselves were, as we shall see, to provide
clear numeric evidence that – they themselves
should be ‘fired’!

The 8 managers were given 30 minutes to
check their page. At the end they reported the
following major defects found by themselves
individually:

Page 81 (three quarters of a page): 15, 15, 20,
and 4 majors.

Page 82 (a full page): 24, 15, 30 and 3 majors.

Estimating the number of major defects
found by the team

From the results of this input, we could estimate
the number of unique major defects found by

the team. First we had a hypothetical choice
of either logging all the unique major defects
(Using non-Agile methods, logging would take
3 minutes for each defect resulting in a 3 hour
job), or estimating the result approximately.
Not surprisingly, the managers chose the quick
estimation. To estimate the number of unique
majors (that is, the number of majors that are
not duplicated - so if the same defect is found
by more than one checker it only counts as one
defect); we can double the count of the largest
number of majors found by one individual in
a small (2-4 people) group. This is based on
observations done at Cray Research (Gilb and
Graham 1993 pp. 299-301). From personal
experience, it works well. In this case, this
means that the group working on page 82 had
about (2 x 30) 60 majors per page found (±15
majors of course). The group working on page
81 had about 40 totally unique major defects
they could log if they so chose to log them in
detail.

90 The Magazine for Professional Testers www.testingexperience.com

Estimating the total number of defects per
page – including those NOT found by the
team

Of course, inexperienced checkers do not
find 100% of the major defects present - they
find only about a third. Remember even ex-
perienced checkers carrying out source code
inspections peak at a source code bug-finding
effectiveness of 60% (Gilb and Graham 1993
reported by IBM MN), and most groups are
not that good. Requirements and design
checking tend to have an effectiveness rang-
ing between 30% and 80% or more, depending
on a wide range of process factors. These ef-
fectiveness factors include speed of checking,
available related project data, use of standards
and checklists, and intelligibility of the speci-
fication being checked.

Can we verify the level of checking effec-
tiveness in practice?

If you want to prove these estimates, the proof
is simple: carry out an inspection, and then
remove the major defects you have identified.
That should leave twice that number estimat-
ed remaining – the two thirds NOT found by
checkers (In this example, 80 major defects for
page 81, and 120 for page 82). This sounds in-
credible. How could people miss so many on a
single page? The proof comes when you repeat
the checking process, and predictably find one
third of the remainder (one third of 80); and
can prove they were there on the first checking
pass. Skeptics turn into believers at this point.
We have carried out this test on our courses for
years, and it always proves the case.

So, how many major defects are there in to-
tal on the page?

In this case, the managers accepted my asser-
tion – that the 60 majors on page 82 were an
indication of about 180 majors in the page (and
150 majors on page 81, indicative of the same
density as page 82). Now this indicates an av-
erage of (120 + 180)/2 = 150 majors per page.
I asked the managers if they felt this was prob-
ably typical for the other (‘functional’) pages.
They said they had no doubts that it was. If
managers are skeptical, the solution is simple,
take another sample at random. I can assure
you that the result found for defect density will
be essentially the same order of magnitude.

Then, how can we estimate the total num-
ber of major defects in the specification?

Now this leads us to an estimation that we have
about 150 (average per physical page) x 82
(total pages) = 12,300 major defects in total.
I was initially quite shocked when calculating
this number. But the managers were for some
strange reason not as skeptical as I was. I did
not know anything about the project beyond
that the requirements had just been handed to
me 45 minutes earlier, and that the managers
were somehow responsible.

How many bugs will be generated as a re-
sult of these specification major defects?

Let’s carry on with the calculations! Now an-
other factor that has to be taken into consider-

ation is that not all major defects in specifica-
tions will directly lead to bugs. The problem
being that we don’t know exactly which of
the major specification defects will actually
cause bugs to be inserted - that depends on the
‘sleepiness of the programmers on the day’!
Two pieces of research I recall showed that
25% to 35% of the majors actually turn into
bugs. For example, to make this plausible, a
random guess as to the correct interpretation of
an ambiguity with 2 options would give a 50%
chance of a bug and 50% not. I have found that
a good rule of thumb, that correlates well with
observed reality, is that one third of the major
defects will cause bugs in the system. So, for
this example, that implies that about 4,100 (=
12,300/3) bugs will occur.

What do these major defects cost in project
terms? How do they delay the project?

One of my clients (Philips Defence, UK, see
case study in (Gilb and Graham 1993, page
315)) studied about 1,000 major defects found
in specification inspection of a wide variety
of systems engineering specifications. They
determined that the median downstream cost
of not finding the majors would have been 9.3
hours (range up to 80 hours). So I use 10 hours
as a rough rounded approximation of the cost
of a major if it occurs downstream (at test and
field stages).

Well, in this case study, that implies 41,000
hours (10 x 4,100 defects that hit us) effort
lost in the project through faulty requirements.
I was quite shocked at the implication of this
quick estimate based on a small sample. But
the managers were quite at home with it. They
responded, “Don’t worry, Tom, we believe
you!”

“Why?” I asked. So they explained, “Because
(and we know you did not have any inkling of
this) we have 10 people on the project, each us-
ing about 2,000 hours per year, and the project
is already 1 year late (a total of 20,000 hours),
and we have at least one more year of correct-
ing the problems before we can finish.”

Case Study 3: An Air Traffic Control Proj-
ect (In Sweden & Germany)
Another client had a seriously delayed soft-
ware component for an air traffic control simu-
lator. The contract dictated about 80,000 pages
of logic specifications. The supplier had writ-
ten and approved about 40,000 pages of these.
The next stage for the logic specifications was
writing the software.

The divisional director, Ingvar, gave me the
technical managers for a day to try to sort out
the problem. These managers had each person-
ally signed off the 40,000 pages. We pulled 3
random pages from the 40,000 and I asked the
managers to find logic errors in the specifica-
tions – errors in the sense that, if coded, the
ATC system would be wrong. Within an hour
of checking, they found 19 major defects in
the 3 sample pages. They agreed these pages
were representative of the others.

That evening, Ingvar took 30 minutes to check

the 19 defects personally, while his managers
and I waited in his office. He finally said, ”If I
let one of these defects get out to our customer,
the CEO would fire me!”

Now the 19 defects found in the 3 pages repre-
sent an actual defect density of approximately
three times that (that is, they probably did not
find two thirds of the existing defects). So the
managers had signed off about (20 x 40,000)
0.8 million bugs. And they had only done half
the contracted logic specification. Well, the
sample told us a great deal.

We started thinking that afternoon about what
could have been done better. The conclusion
was that we had a ‘factory’ of analysts produc-
ing about 20 major defects per page of ATC
logic specification. We also concluded that if
we had taken such a sample earlier, say after
the first dozens of pages written, we might
have discovered the systemic defect-density
pollution-rate earlier, and could have hope-
fully done something about it.

Too bad that they did not have Agile SQC! The
project got completed; but only after being sold
off to another corporation. The director lost his
job, and it was not just for a single defect.

The irony was that when I first met the direc-
tor, he told me he had read a book of mine. Too
bad he did not practice what he read. His cor-
poration, I later realized, had a bad ingrained
habit. They did not review specifications until
all pages were completed.

I asked the manager responsible for the third
signature on the specification approval, why he
signed off on what we all acknowledged was a
tragedy. He told me it was because ‘the other
managers signed it ahead of him’. I guess that
is when I lost faith in management approvals.

Agile Sqc Estimations And Calculations

At this point, it is worthwhile summarizing the
overall Agile SQC process of estimating and
calculating. See Figures 3 and 4, which show
how to arrive at the defect level for a specifi-
cation and how to calculate the number of re-
maining defects in a specification respectively.
The calculations shown are for yet another
case study.

92 The Magazine for Professional Testers www.testingexperience.com

Agile Specification Quality Control (SQC) Form - An Exam-
ple Filled Out

SQC Date: May 29, 200X. SQC Start Time: _______
SQC Leader: Tom.
Author: Tino. Other Checkers: Artur.

Specification Reference: Test Plan. Specification Date and/
or Version: V 2.
Total Physical Pages: 10.
Sample Reference within Specification: Page 3.
Sample Size (Non commentary words): approx. 300.

Rules used for Checking: Generic Rules, Test Plan Rules.
Planned Exit Level (Majors per page): _______ or less.
Checking Time Planned (Minutes): 30. Actual: 25.
Checking Rate Planned (Non commentary pages per hour): 2.
(Note this rate should be less than 2 pages per hour)

Actual Checking Rate (Non commentary words per minute):

Number of Defects Identified by each Checker:
	 Majors: 6, 8, 3. Total Majors Identified in Sample:
17.
	 Minors: 10, 15, 30.
Estimated Unique Majors Found by Team: 16 ± 5.
(Note 2 x highest number of Majors found by an individual
checker)
Estimated Average Majors per Page: ~16 x 3 = 48.
(A Page = 300 Non commentary words)
Majors in Relation to Exit Level: 48/1 (47 too many).
Estimated Total Majors in entire Specification: 48 x 10 = 480.

Recommendation for Specification (Exit/Rework/Rewrite): No
exit, redo and resubmit.
Suggested Causes (of defect level): Author not familiar with
rules.
Actions suggested to mitigate Causes: Author studies rules. All
authors given training in rules.
Person responsible for Action: Project Manager.
SQC End Time: 18:08. Total Time taken for SQC: ________

Figure 3. A example of an SQC form filled out

Continuous Process Improvement
Notice how towards the end of Figure 3 there
are two questions concerned with analyzing
the origin of the defects (that is, ‘Suggested
Causes’ and ‘Actions suggested to mitigate
Causes’). The aim of these questions is to
identify problems in the work practices that
need correction. This approach is identical to
Capability Maturity Model Level 5, and to the
Defect Prevention Process (see discussion of
Mays in (Gilb and Graham 1993)).

In the Raytheon Study (Haley et al. 1995, Dion
1993), this process improvement effort re-
duced rework costs, within about 7 years, from
about 27% of all development costs, down to
about 4%. Before that happened though, the
individual discipline of software engineers ac-
tually following their existing (bad) processes,
led to a reduction, in a year, from 43% rework
costs to the 27% cited above. So there is lots of

short-term improvement available by getting
people to follow even simple standards.

Personal experience with SQC is that by mere-
ly motivating people to follow the simple rules
of ‘clear/unambiguous/no design’ in require-
ments, we can reduce the number of major
defects inserted into requirements by, in one
case an average of 80 majors/page to about an
average of 11 majors/page within 6 months.
Corporate engineering measurements (Doug-
las Aircraft 1988) and other examples indicate
that the individual rate of reduction of defect
insertion is about 50% per learning cycle. So,
in about 7 cycles of writing specifications and
measuring defects, an individual gets to the
exit level of less than one major per page.

Summary
Agile SQC costs very little, but its effect on
early control over injected defects is signifi-
cant. It can drive defect injection down by one

and then, with time, two orders of magnitude.

The key Agile SQC concept compared to tra-
ditional Spec Inspection methods is to mea-
sure by sampling, and use the information to
motivate people to ‘learn the rules’ (that is, the
standards and/or best practices), and reduce
their defect injection.

Traditional Spec Inspection techniques are
doomed to high costs and low effect because:

they can only hope to find about half the •	
problems (Given 40-80% is the very best
in practice);

they spend approximately 3-4 hours en-•	
gineering effort per page of specification
(for full effectiveness).

Estimating Remaining Major Defect Density

Assumptions:
A logical page (page) is 300 non-commentary words.
Your SQC effectiveness is 33.3% and your SQC is a statistically
stable process.
One sixth of your attempts to fix defects fail (One sixth is aver-
age failure to fix).
New defects are injected during your attempts to fix defects at
5%.
The uncertainty factor in the estimation of remaining defects is
± 30%.
Probable remaining major defects per page =
‘Probable unidentified majors’ + ‘Bad fix majors’ + ‘Majors
injected’
Let E = Effectiveness expressed as a percentage (%) = 33.3%

If 33 major defects per page have been found during SQC.
Probable unidentified majors =
Major defects total estimated 3 x Found Majors (33) = about
100 ±30

Bad fix majors = One sixth of fixed majors =
Of 30 attempted fixes, 5 major defects in each page are not
fixed.
This is useful to recognize.
Even if you found all defects, 1/6 would remain after all were
fixed.

Majors injected = 5% of majors attempted to be fixed = 1.5
major defects per page.
(this is not always calculated, since it is small, compared to the
error margin)

Probable remaining major defects/page, after fixing what we
found in a sample =
66 (not found) + 5 (not fixed) = roughly 71 remaining major
defects per page.

Taking into account the uncertainty factor of ± 30% and round-
ing down to the nearest whole number gives 50 Remaining
Major Defects per Page
(Minimum = 50, Maximum = 92 remaining major defects per
page).

Figure 4. An example of calculating the remaining major defects per page

93The Magazine for Professional Testerswww.testingexperience.com

References
Bhandari, I., M.J. Halliday, J. Chaar, R. Chillarege, K. Jones, J.S. Atkinson, C.
Lepori-Costello, P.Y. Jasper, E.D. Tarver, C.C. Lewis and M.Yonezawa, In-process
improvement through defect data interpretation, IBM Systems Journal, Issue 1, Vol-
ume 33, page 182, 1994.

Dion, Raymond. July 1993. Process Improvement and the Corporate Balance Sheet.
IEEE Software. Pages 28-35.

Fagan. M. E, ‘Advances in Software Inspections’, IEEE Transactions on Software
Engineering. Vol. SE-12, No. 7, pp 744-751, July 1986.

Gilb, T. and Graham, D., Software Inspection, Addison Wesley, 1993.

Gilb, T., Competitive Engineering: A Handbook For Systems Engineering, Require-
ments Engineering, and Software Engineering Using Planguage, Elsevier Butter-
worth-Heinemann, 2005. ISBN: 0750665076.

Haley, T., B. Ireland, Ed. Wojtaszek, D. Nash, R. Dion. Raytheon. 1995. Raytheon
Electronic Systems experience in Software Process Improvement. This paper is
available on-line at http://www.sei.cmu.edu/publications/documents/95.reports/95.
tr.017.html

Humphrey, W. S., Managing the Software Process, Addison-Wesley, Reading, MA,
1989.

The author is extremely grateful for editing assistance from Lindsey Brodie, Mid-
dlesex University, UK, on this paper.

Tom Gilb is the author of ‘Competitive
Engineering: A Handbook for Systems
& Software Engineering Management
using Planguage’ (published in June
2005), ‘Principles of Software Engineer-
ing Management’ (1988) and ‘Software
Inspection’ (1993). His book “Software
Metrics” (1976) coined the term and
was used as the basis for the Software
Engineering Institute Capability Maturity
Model Level Four (SEI CMM Level 4).
His most recent interests are develop-
ment of true software engineering and
systems engineering methods.
Tom Gilb was born in Pasadena CA in
1940. He moved to England in 1956,
and then two years later he joined IBM
in Norway. Since 1963, he has been an
independent consultant and author. He
is a member of INCOSE.

Biography

IREB

Certified Professional for
Requirements Engineering

- Foundation Level

http://training.diazhilterscheid.com/
training@diazhilterscheid.com

30.03.09-01.04.09 Berlin
25.05.09-27.05.09 Berlin

©
 iS

to
ck

ph
ot

o.
co

m
/

Pa
lto

	Gilb Agile Spec QC 2009 in Testing Experience
	testingexperience01_09 incl Gilb Agile SQC 1
	testingexperience01_09 incl Gilb Agile SQC 5
	testingexperience01_09 incl Gilb Agile SQC 87
	testingexperience01_09 incl Gilb Agile SQC 88
	testingexperience01_09 incl Gilb Agile SQC 89
	testingexperience01_09 incl Gilb Agile SQC 90

	back 2 Pages from Gilb Agile Spec QC in Testing Experience 2009

