
A Short Introduction to

Agile Methods
A synopsis based on the background, examples,
deliverables, costs, benefits, and unique features

Dr. David F. Rico, PMP, CSM

2

Agenda
Background
Examples
Deliverables
Business Value
Other Considerations
Conclusion
References

3

Purpose
Provide an overview of Agile Methods using
examples, artifacts, benefits, and other data

Agility is the ability to create and respond to change
in order to profit in a turbulent business environment
Agility is prioritizing for maneuverability with respect
to shifting requirements, technology, and knowledge
Agile methods use time-boxed iterations, adaptability,
and evolutionary delivery to promote rapid flexibility
Agile methods promote quick response to changes in
requirements as well as collaboration with customers
Agile methods are a better way of developing software
using teams, collaboration, iterations, and flexibility

4

Key Terms
Software method. An approach to the analysis, design,
construction, and implementation of information systems.
Traditional method. A software method with a focus on
contracts, planning, processes, documentation, and tools.
Agile method. A software method with a focus on teams,
collaboration, working software, and responding to change.
Software team. Small group responsible for making decisions,
establishing needs, creating software, and ensuring success.
Customer collaboration. A method of customer interaction
and participation to obtain feedback and establish user needs.
Iterative development. Creation of a large number of small,
frequent, and time-boxed working operational software releases.
Adaptability. A culture, attitude, process, and product enabling
rapid, flexible, and easy adaptation to evolving customer needs.

5

IT Industry
U.S. firms spent $700 billion on IT projects in 2006
U.S. IT industry revenues reached $3 trillion in 2006
U.S. used Agile Methods on 300,000 projects in 2006

Rico, D. F. (2008). Internet and information technology growth statistics: 1995 to 2006. Retrieved September 1, 2008, from http://davidfrico.com/it-stats.xls

Internet Growth

0.0

0.2

0.4

0.6

0.8

1.0

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

N
or

m
al

iz
ed

 S
ca

le

Websites Hosts Users
Buyers Shoppers Revenues

IT Growth

0.0

0.2

0.4

0.6

0.8

1.0

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

N
or

m
al

iz
ed

 S
ca

le

Revenues Spending PMPs
ISO 9001 CMM DoD$

6

What are Agile Methods?
‘Lightweight’ software development methodologies
‘Human-centric’ approach to creating business value
‘Alternative’ to heavy document-based methodologies

Agile Manifesto. (2001). Manifesto for agile software development. Retrieved September 3, 2008, from http://www.agilemanifesto.org

also
known as

Customer
Collaboration

Working
Software

Individuals &
Interactions

Responding
to Change

Early Customer
Involvement

Iterative
Development

Self Organizing
Teams

Adaptability
or Flexibility

Contract
Negotiation

Comprehensive
Documentation

Processes
& Tools

Following
a Plan

Agile Methods
‘Values’

also
known as

also
known as

also
known as

valued
more than

valued
more than

valued
more than

valued
more than

Agile Methods
‘Principles’

Traditional Methods
‘Values’

7

Agile vs. Traditional Methods
Sloanism vs. Taylorism and Fordism
Craft-industry vs. scientific management
Personal vs. impersonal human interactions

Pine, B. J. (1992). Mass customization: The new frontier in business competition. Boston, MA: Harvard Business School Press.
Boehm, B., & Turner, R. (2004). Balancing agility and discipline: A guide for the perplexed. Boston, MA: Addison-Wesley.
Nerur, S., Mahapatra, R., & Mangalaraj, G. (2005). Challenges of migrating to agile methodologies. Communications of the ACM, 48(5), 73-78.

8

Antecedents of Agile Methods
JAD involved customers in requirements analysis
PD involved customers in architecture and designs
Judo Strategy involved customers in implementation

Rico, D. F., Sayani, H. H., & Field, R. F. (2008). History of computers, electronic commerce, and agile methods. In M. V. Zelkowitz (Ed.), Advances in
computers: Emerging technologies, Vol. 73. San Diego, CA: Elsevier.

9

Essence of Agile Methods
Small well-structured multi-disciplinary team
Adaptable processes and product technologies
Customer feedback on working software releases

Highsmith, J. A. (2002). Agile software development ecosystems. Boston, MA: Addison-Wesley.

Adaptability or FlexibilitySelf Organizing Teams

Iterative DevelopmentCustomer Involvement

10

Agenda
Background

Examples
Deliverables
Business Value
Other Considerations
Conclusion
References

11

“Big 5” Agile Methods
The term “Agile Methods” was coined in 2001
Extreme Programming was the first Agile Method
Other Agile Methodologies came-to-light after 2001

Highsmith, J. A. (2002). Agile software development ecosystems. Boston, MA: Addison-Wesley.

5 processes, 8 practices, 14
roles, 29 tasks, 17 artifacts

7 properties, 5 strategies, 7
stages, 9 tools, 22 artifacts

DSDM

Easel

IBM

Beck

De Luca

Millington

Sutherland

Cockburn

Author

Originally had 13 practices
(now has 28 practices)

9 principles, 5 stages, 15
tools, 12 roles, 23 artifacts

7 processes, 7 artifacts, 3
roles

Process Elements

Chrysler

Nebulon

Firm

User Stories, Pair
Programming, Tests

Domain Model,
Inspections

Iterations,
Prototypes

Backlogs, Sprints,
Daily Scrums

Use Cases,
Domain Model

Major Features

1999

1997

1993

1993

1991

Year

Feature-Driven
Development

Crystal Clear

Extreme
Programming

Dynamic
Systems

Development

Scrum

Method

12

Crystal Methods
Created by Alistair Cockburn in 1991
Consists of 5 goals, 9 practices, and 8 roles
Scalable family of techniques for critical systems

Cockburn, A. (2002). Agile software development. Boston, MA: Addison-Wesley.

13

Scrum
Created by Jeff Sutherland at Easel in 1993
Three basic phases—Planning, sprint, post-sprint
Uses EVM to burn down backlog in 30-day iterations

Schwaber, K., & Beedle, M. (2001). Agile software development with scrum. Upper Saddle River, NJ: Prentice-Hall.

14

Dynamic Systems Develop.
Created by consortium of British firms in 1993
Consists of 5 phases, 15 practices, and 12 roles
Non-proprietary RAD approach from the early 1990s

Stapleton, J. (1997). DSDM: A framework for business centered development. Harlow, England: Addison-Wesley.

15

Feature Driven Development
Created by Jeff De Luca at Nebulon in 1997
Consists of 5 phases, 29 tasks, and 8 practices
Uses object oriented design and Fagan inspections

Palmer, S. R., & Felsing, J. M. (2002). A practical guide to feature driven development. Upper Saddle River, NJ: Prentice-Hall.

Develop an
Overall Model

Build a
Features List

Plan by
Feature

Design by
Feature

Build by
Feature

Iteration

16

Extreme Programming
Created by Kent Beck at Chrysler in 1998
Grown from 13 to more than 28 rules/practices
Popularized pair programming and test-driven dev.

Beck, K. (2000). Extreme programming explained: Embrace change. Reading, MA: Addison-Wesley.

17

Release Planning
Created by Kent Beck at Chrysler in 1998
Consists of user stories and development tasks
Used as project planning process for XP and Scrum

Beck, K., & Fowler, M. (2004). Planning extreme programming. Upper Saddle River, NJ: Addison-Wesley.

18

Pair Programming
Term coined by Jim Coplien in 1995
Consists of two side-by-side programmers
Considered an efficient problem solving technique

Williams, L., & Kessler, R. (2002). Pair programming illuminated. Boston, MA: Pearson Education.

19

Test Driven Development
Term coined by Kent Beck in 2003
Consists of writing unit tests before coding
Believed to be a primary means of quality control

Beck, K. (2003). Test-driven development: By example. Boston, MA: Addison-Wesley.

20

Agenda
Background
Examples

Deliverables
Business Value
Other Considerations
Conclusion
References

21

User Story
A function or feature of value to a customer
An estimable and testable software requirement
Six user stories should be implemented per iteration

Beck, K., & Fowler, M. (2004). Planning extreme programming. Upper Saddle River, NJ: Addison-Wesley.

<Title of User Story>

Type of User
Goal of User
Objective of User

Make a Reservation

22

System Metaphor
Simple story about how the whole system works
Overarching 10,000 foot view of system architecture
Pushes the system into a sense of coherent cohesion

System Metaphor

Metaphor

System Metaphor

Shopping Cart

Beck, K., & Fowler, M. (2004). Planning extreme programming. Upper Saddle River, NJ: Addison-Wesley.

23

Release Plan
Fluid, informal roadmap for planning releases
Includes dates for releases, iterations, and stories
Must prioritize, split, estimate, and order user stories

Beck, K., & Fowler, M. (2004). Planning extreme programming. Upper Saddle River, NJ: Addison-Wesley.

Release Plan

Release Plan
Release
Iteration

Release Plan
Release Iteration

1
2
3
4
n

1
1
2
2
n

Story
01 thru 06
07 thru 12
13 thru 18
19 thru 24
25 thru nn

24

Development Tasks
Customers read story to communicate expectations
Developers brainstorm tasks to satisfy user stories
Development tasks should last two to three days

<Title of Development Task>

Action of Developer
Software Unit

Technology

Splash Screen

Beck, K., & Fowler, M. (2004). Planning extreme programming. Upper Saddle River, NJ: Addison-Wesley.

25

Iteration Plan
Plan that divides iterations into development tasks
Each iteration is one to three weeks in duration
Iteration plans updated using daily standups

Iteration Plan

Iteration Plan
Story
Task
Status

Iteration Plan
Story

1
1
2
2
n

Task
1
2
3
4
n

Developer
Bob
Sue
Mary
John

n

Status
1/3
2/3
3/3
3/3
n/n

Beck, K., & Fowler, M. (2004). Planning extreme programming. Upper Saddle River, NJ: Addison-Wesley.

26

Acceptance Tests
Black-box, functional tests to be performed
Specified by customers during iteration planning
Run when user stories and unit tests are completed

<Title of User Story>

Type of User
Satisfy their Goals and

Objectives

Make a Reservation
Verify customers can establish a
reservation
Verify customers can change a
reservation
Verify customers can cancel a
reservation

Beck, K., & Fowler, M. (2004). Planning extreme programming. Upper Saddle River, NJ: Addison-Wesley.

27

Unit Tests
A test written from the developer’s perspective
Each task is implemented by two programmers
Unit tests are developed prior to implementation

<Title of Development Task>

Type of User
Satisfy Task
Condition Occurs

Make a Splash Screen
Verify customers can see splash
screen when they visit website
Verify customers can see company
logo when splash screen executes
Verify customers can skip splash
screen when they want to enter site

Beck, K., & Fowler, M. (2004). Planning extreme programming. Upper Saddle River, NJ: Addison-Wesley.

28

Agenda
Background
Examples
Deliverables

Business Value
Other Considerations
Conclusion
References

29

ROI Metrics for Agile Methods
A major principle of Agile Methods is creating value
ROI is the measure of value within Agile Methods
Costs and benefits are the basic inputs to ROI

Rico, D. F. (2007). Practical metrics and models for ROI with real options. Retrieved September 3, 2008, from http://davidfrico.com/rico07b.pdf

ROI Metric ROI Formula

Costs ∑
=

n

i
iCost

1

Benefits ∑
=

n

i
iBenefit

1

Benefit to Cost Ratio (B/CR)
Costs

Benefits

Return on Investment (ROI) %100×
−

Costs
CostsBenefits

Net Present Value (NPV) ∑
=

−
+

Years

i
Years

i Costs
RateDiscount

Benefits
1

0)1(

Break Even Point (BEP) Months
NPV
Costs 60×

Real Options Analysis (ROA) () () YearsRateeCostsdNBenefitsdN ×−××−× 21

d1 = [ln(Benefits ÷ Costs) + (Rate + 0.5 × Risk2) × Years] ÷ Risk × √ Years, d2 = d1 − Risk × √ Years

30

Studies of Agile Methods
Based on a recent study of Agile Methods
Represents 109 data points from 69 studies
Agile is 459% better than Traditional Methods

Rico, D. F. (2008). What is the ROI of agile vs. traditional methods? Retrieved September 3, 2008, from http://davidfrico.com/rico08b.pdf

Agile Methods Traditional Methods
Low Median HighCategory

ROI 240% 2,633% 8,852%

Satisfaction 70% 70% 70%

Quality 10% 70% 1,000%

Productivity 14% 122% 712%

Schedule 11% 71% 700%

Cost 10% 26% 70%
Low Median HighCategory

ROI 200% 470% 2,770%

Satisfaction -4% 14% 55%

Quality 7% 50% 132%

Productivity 9% 62% 255%

Schedule 2% 37% 90%

Cost 3% 20% 87%

31

Costs of Agile Methods
Represents 47 data points from 29 studies
Based on average productivity and quality data
Better quality is related to lower total lifecycle costs

10,000 471 1,797 $100 $226,805Agile LOC 21.2374 1.7972 KLOC 100

Agile Methods — Total Lifecycle Cost Models

10,000 1,837 3,945 $100 $578,202

10,000 299 2,355 $100 $265,437

10,000 342 2,155 $100 $249,653

10,000 619 747 $100 $136,548

LOC Hours Hours Rate Total Cost

Scrum

PP

TDD

XP

Method

LOC 05.4436

LOC 33.4044

LOC 29.2800

LOC 16.1575

Development

3.9450 KLOC 100

2.3550 KLOC 100

2.1550 KLOC 100

0.7466 KLOC 100

Maintenance

Rico, D. F. (2008). What is the ROI of agile vs. traditional methods? Retrieved September 3, 2008, from http://davidfrico.com/rico08b.pdf

32

Benefits of Agile Methods
Traditional costs based on quality and productivity
Test benefits are subtracted from traditional cost
Agile costs are subtracted from traditional costs

$4,509,997Agile (LOC 10.51 – 6,666.67 9) 100 $226,805 $4,283,19210,000

Agile Methods — Total Lifecycle Benefit Models

$4,509,997

$4,509,997

$4,509,997

$4,509,997

Trad. Cost

Scrum

PP

TDD

XP

Method

(LOC 10.51 – 6,666.67 9) 100

(LOC 10.51 – 6,666.67 9) 100

(LOC 10.51 – 6,666.67 9) 100

(LOC 10.51 – 6,666.67 9) 100

Traditional Methods Agile Cost

$578,202

$265,437

$249,653

$136,548

Benefits

$3,931,795

$4,244,560

$4,260,344

$4,373,449

10,000

10,000

10,000

10,000

LOC

Rico, D. F. (2008). What is the ROI of agile vs. traditional methods? Retrieved September 3, 2008, from http://davidfrico.com/rico08b.pdf

33

ROI of Agile Methods
Costs and benefits were input to ROI metrics
Agile Methods were ranked according their ROI
Agile Methods with higher quality had higher ROI

Method Costs Benefits B/CR ROI NPV BEP ROA

XP $136,548 $4,373,449 32:1 3,103% $3,650,401 $4,263 $4,267,105

Agile $226,805 $4,283,192 19:1 1,788% $3,481,992 $12,010 $4,110,308

TDD $249,653 $4,260,344 17:1 1,607% $3,439,359 $14,629 $4,074,506

PP $265,437 $4,244,560 16:1 1,499% $3,409,908 $16,599 $4,050,918

Scrum $578,202 $3,931,795 7:1 580% $2,826,320 $85,029 $3,660,805

Rico, D. F. (2008). What is the ROI of agile vs. traditional methods? Retrieved September 3, 2008, from http://davidfrico.com/rico08b.pdf

34

ROI of Agile vs. Traditional
Traditional Methods data was used for comparison
All methods were ranked according to their ROI
Methods with higher quality had higher ROI

Method Costs Benefits B/CR ROI NPV BEP ROA
PSPsm $105,600 $4,469,997 42:1 4,133% $3,764,950 $945 $4,387,756

Inspection $82,073 $2,767,464 34:1 3,272% $2,314,261 $51,677 $2,703,545

XP $136,548 $4,373,449 32:1 3,103% $3,650,401 $4,263 $4,267,105

TSPsm $148,400 $4,341,496 29:1 2,826% $3,610,882 $5,760 $4,225,923

Agile $226,805 $4,283,192 19:1 1,788% $3,481,992 $12,010 $4,110,118

TDD $249,653 $4,260,344 17:1 1,607% $3,439,359 $14,629 $4,073,167

PP $265,437 $4,244,560 16:1 1,499% $3,409,908 $16,599 $4,048,404

SW-CMM® $311,433 $3,023,064 10:1 871% $2,306,224 $153,182 $2,828,802

Scrum $578,202 $3,931,795 7:1 580% $2,826,320 $85,029 $3,622,271

ISO 9001 $173,000 $569,841 3:1 229% $320,423 $1,196,206 $503,345

CMMI® $1,108,233 $3,023,064 3:1 173% $1,509,424 $545,099 $2,633,052

Rico, D. F. (2008). What is the ROI of agile vs. traditional methods? Retrieved September 3, 2008, from http://davidfrico.com/rico08b.pdf

35

ROI of Individual Methods
Data for all methods was used for comparison
Best Agile and Traditional Methods had top ROI
Agile Methods better than big Traditional Methods

4,133%

3,272%
3,103%

2,826%

1,788%
1,607% 1,499%

871%
580%

229% 173%

0%

500%

1,000%

1,500%

2,000%

2,500%

3,000%

3,500%

4,000%

4,500%

PSPsm Inspect XP TSPsm Agile TDD PP CMM® Scrum ISO 9001 CMMI®

Rico, D. F. (2008). What is the ROI of agile vs. traditional methods? Retrieved September 3, 2008, from http://davidfrico.com/rico08b.pdf

36

Agenda
Background
Examples
Deliverables
Business Value

Other Considerations
Conclusion
References

37

Strengths & Weaknesses
Some follow the Agile Manifesto better than others
Some have more process and document formality
Often mistakenly compared to traditional methods

Coffin, R., & Lane, D. (2006). A practical guide to seven agile methodologies: Part 2. Retrieved September 3, 2008, from
http://www.devx.com/architect/Article/32836/1954

Method Strengths Weaknesses

XP

• Technical practices
• Customer ownership
• Frequent feedback
• Widely known

• Onsite customer
• Informal documentation
• Little or no architecture

Scrum

• Self organizing teams
• Customer participation
• Focus on business value
• Certification process

• No sub-disciplines
• No technical practices
• Feature prioritization

Crystal

• Scalable methodology
• Support for safety-critical systems
• Scalable project team size
• Emphasis on testing

• Requires co-located teams
• Backward and forward compatibility
• Non-real time scalability

FDD

• Support for parallel teams
• Product feature focused
• Easy to adopt
• Scales to large teams or projects

• Promotes individual code ownership
• Release planning is not well-defined
• Incompatible with other approaches

DSDM

• Emphasis on testing
• Business focused
• Prioritization of requirements
• Sets stakeholder expectations early

• Most heavyweight approach
• Continuous user involvement
• Heavy documentation
• Proprietary approach

38

Degree of Agility
Agile Manifesto is a great way to measure agility
Some do have a high degree of process rigidity
These tend to be more of a popularity contest

Highsmith, J. A. (2002). Agile software development ecosystems. Boston, MA: Addison-Wesley.
Qumer, A., & Henderson-Sellers, B. (2008). An evaluation of the degree of agility in six agile methods. IS&T, 50(4), 280-295.

Highsmith

0.00

0.40

0.80

1.20

1.60

2.00

XP Scrum Crystal FDD DSDM

Sc
or

e Practices
Values

Qumer

0.00

0.40

0.80

1.20

1.60

2.00

XP Scrum Crystal FDD DSDM

Sc
or

e Practices
Phases

39

Degree of Risk
Agile Manifesto should be used to measure risk
Risk is often measured using Traditional Methods
Some traditional factors may be considered (not all)

Boehm, B., & Turner, R. (2004). Balancing agility and discipline: A guide for the perplexed. Boston, MA: Addison-Wesley.

0

5

10

15

20

25

30

35

XP Scrum Crystal FDD DSDM

Ri
sk

Others - Customers
Others - Measurement
Others - Risk Mgt.
Others - Technical
Others - Management
Lifecycle - Maintenance
Lifecycle - Development
Lifecycle - Design
Lifecycle - Analysis
Lifecycle - Concept
Scalability - Enterprise
Scalability - Business
Scalability - Program
Scalability - Project
Scalability - Individual

40

Common Mistakes
Laissez-faire attitude to Agile Methods is a mistake
Agile Methods require a measure of commitment
Involve resources, training, and compliance

Sliger, M., & Broderick, S. (2008). The software project manager's bridge to agility. Boston, MA: Addison-Wesley.

No. Common Mistakes

1. Thinking that Agile means "no documentation" and "cowboy coding"

2. Thinking that you can piecemeal Agile practices and gain all the benefits

3. Thinking Agile stops at engineering teams and won't affect the rest of the organization

4. Not having a champion

5. Having the wrong people lead the effort and/or the teams

6. Hanging on to the death march as a solution

7. Allowing the team to say "you'll get it when you get it"

8. Assuming you're Agile and only planning one iteration at a time

9. Allowing the Agile team leader to say, "you figure it out"

10. Lack of participation by the business

11. Not bothering with the retrospective

12. A values mismatch

41

Critical Success Factors
Agile Methods-specific studies starting to emerge
New studies focusing on values of Agile Manifesto
Training, adherence, culture, and leadership are key

Chow, T., & Cao, D. B. (2008). A survey study of critical success factors in agile software projects. Journal of Systems and Software, 81(6), 961-971.

Category Critical Success Factors
Delivery • Regular delivery of software • Delivering important features first

Technical
• Well-defined coding standards
• Pursuing simple design
• Rigorous refactoring activities

• Right amount of documentation
• Correct integration testing

Personnel
• High competence and expertise
• Great motivation
• Managers knowledgeable in agile

• Adaptive management style
• Appropriate technical training

Management
• Agile requirements management
• Agile project management
• Agile configuration management

• Good progress tracking mechanism
• Strong daily communication
• Honoring regular working schedule

Teamwork • Collocation of the whole team
• Coherent self-organizing teamwork

• Projects with small team
• No multiple independent teams

Customers • Good customer relationship
• Strong customer commitment

• Customer having full authority

42

Project Management
Project management differs for Agile Methods
Focuses on enhancing the performance of teams
Agile project management is related to agile values

Augustine, S. (2005). Managing agile projects. Upper Saddle River, NJ: Prentice-Hall.

Principle Practice Leadership Management

Organic
teams

• Promote software craftsmanship
• Foster team collaboration
• Form a guiding coalition
• Cultivate informal communities of practice

• Identify the project community
• Design a holographic formal structure
• Get self-disciplined team players
• Propose an adaptive IT enterprise Foster alignment

and cooperation
Guiding
vision

• Evolve a team vision
• Align the team
• Envision a bold future
• Create and maintain shared expectations

• Discover business outcomes
• Clearly delineate scope
• Estimate level of effort
• Design a vision box and elevator statement

Simple
rules

• Enlist the team for change
• Focus on business value

• Assess the status quo and customize method
• Develop a release/iteration plan/backlog
• Facilitate design, code, test, and deployment
• Conduct testing and manage release

Open
information

• Conduct a standup meeting daily
• Encourage feedback
• Build trust
• Link language with action

• Collocate team members and practice pairing
• Negotiate a customer representative on-site
• Encourage the use of information radiators
• Map the project’s value stream

Encourage
emergence and

self-organization

Light
touch

• Fit your style to the situation
• Support roving leadership
• Go with the flow and maintain quality of work life
• Build on personal strengths and commitments

• Decentralize control
• Establish a pull task management system
• Manage the flow
• Use action sprints

Institute leadership
and adaptation

Adaptive
leadership

• Cultivate an embodied presence
• Practice embodied learning

• Get plus-delta feedback daily
• Monitor and adapt to simple rules/practices
• Conduct regular project reflections
• Conduct scenario planning

43

Adoption Framework
Models exist for measuring degree of agile adoption
Lowest levels focus on basic tools and techniques
Highest level focus on advanced agile practices

Sidky, A., Arthur, J., & Bohner, S. (2007). A disciplined approach to adopting agile practices: The agile adoption framework. Innovations in
Systems and Software Engineering, 3(3), 203-216.

 Level Embrace Change Frequent Delivery Human Centricity Technical Excellence Customer Collaboration

5 Ambient • Low ceremony • Agile estimation • Ideal physical setup
• Test driven dev.
• Pair programming
• Top performers

• Frequent interaction

4 Adapt • Client-driven iteration
• Continuous feedback

• Frequent releases
• Adaptive planning

• Daily stand-ups
• Agile documentation
• User stories

• Accessible customer
• Customer contract

3 Effective
• Risk-driven iterations
• Feature-driven
• Feature-tracking

• Self-organizing team
• Collocated teams

• Continuous integ.
• Continuous improve.
• Unit testing
• Good performers

2 Evolve • Evolutionary stories • Continuous deliver
• Multi-level planning

• Configuration mgt.
• Iteration tracking
• Evolutionary design

• Evolutionary contract

1 Collaborate • Process reflection • Collaborative
planning

• Collaborative teams
• Empowered teams

• Coding standards
• Collaborative tools
• Task volunteering

• Committed customer

44

Agenda
Background
Examples
Deliverables
Business Value
Other Considerations

Conclusion
References

45

Conclusion
Agile Methods are a fundamentally new paradigm
Agile Methods are “not” lighter Traditional Methods
They should not be viewed through a Traditional lens

Contracts
Plans
Processes
Documents
Tools

User Stories for
Next IterationUpdated

User Stories

Customer
Feedback

(Collaboration)

Small Releases

Self Organizing
Teams

(Collaboration)

Unit
Tests

Release Planning
(Collaboration)

46

Agenda
Background
Examples
Deliverables
Business Value
Other Considerations
Conclusion

References

47

References
Agile Manifesto. (2001). Manifesto for agile software development. Retrieved
September 3, 2008, from http://www.agilemanifesto.org
Beck, K. (2001). Extreme programming: Embrace change. Upper Saddle
River, NJ: Addison-Wesley.
Beck, K. (2003). Test-driven development: By example. Boston, MA:
Addison-Wesley.
Beck, K., & Fowler, M. (2004). Planning extreme programming. Upper
Saddle River, NJ: Addison-Wesley.
Cohn, M. (2004). User stories applied: For agile software development.
Boston, MA: Addison-Wesley.
Emery, P. (2002). The dangers of extreme programming. Retrieved
September 3, 2008, from http://members.cox.net/cobbler/XPDangers.htm
Highsmith, J. A. (2002). Agile software development ecosystems. Boston,
MA: Addison-Wesley.
Wake, W. C. (2002). Extreme programming explored. Upper Saddle River,
NJ: Addison-Wesley.

