A NEW BUSINESS MODEL FOR FUNCTION POINT METRICS

Capers Jones

Version 8.0

May 8, 2008

Abstract
Function point metrics are the most accurate and effective metrics yet developed for performing software economic studies, quality studies, and value analysis. But normal function point analysis is slow and expensive. Function point analysis performed by a certified function point consultant proceeds at a rate between 400 and 600 function points per day. The cost per function point counted is around $6.00. Further, very small applications below about 15 function points in size cannot be counted. Function point analysis for applications larger than about 15,000 function points in size almost never occur because the costs and schedule are larger than most companies will fund.

In 2008 several forms of high-speed, low-cost function point analysis are available or under development. This report discusses the business value of high-speed, low-cost function point analysis. The goal of high-speed, low-cost function point analysis is to expand the usage of function points to 100% of software applications, corporate portfolios, and backlogs. In addition, function point analysis will also allow improved risk and value studies of both new applications and aging legacy applications.

COPYRIGHT © 2008 BY CAPERS JONES & ASSOCIATES LLC.

ALL RIGHTS RESERVED.
A NEW BUSINESS MODEL FOR FUNCTION POINT METRICS

Capers Jones

INTRODUCTION

Function point metrics were developed within IBM and put into the public domain in October of 1978. The non-profit International Function Point Users Group (IFPUG) assumed responsibility for counting rules and function point definitions in 1984. Today in 2008 IFPUG has grown to more than 3000 members and has affiliates in 24 countries.

In addition to standard IFPUG function points, no fewer than 24 function point variations have been developed, including backfired function points, COSMIC function points, Finnish function points, Engineering function points, feature points, Netherlands function points, unadjusted function points, function points light, and many others. There are few conversion rules between these variations and standard IFPUG function points. Standard IFPUG function points remain the primary version, and about 85% of all projects are sized using the IFPUG model. This report is based on IFPUG function point metrics.

The main uses of function point metrics have included:

1. Baselines to measure rates of improvement in productivity, schedules, or costs

2. Benchmarks for software productivity

3. Benchmarks for software quality

4. Estimating new applications before development

5. Defining the terms of outsource agreements

6. Measuring the rates of requirements change

Function point metrics are far more useful than the older “lines of code” metrics. For measuring quality, function points are also more useful than “cost per defect” metrics. Function points can measure non-coding activities such as project management and design. Also, function point metrics stay constant regardless of which programming language or languages are used. Since the industry has more than 700 programming languages and almost every application uses multiple languages, the consistency of function point metrics allow economic studies that are not possible using any other metric.

The Costs and Limitations of Standard Function Point Metrics

Normal function point analysis is carried out by trained professionals who have passed a certification exam. There are about 1000 certified function point counters in the United States, and this number increases at perhaps 100 per year. Some of the other function point variations such as COSMIC and the Netherlands method also have certification examinations. The International Standards Organization (ISO) has certified four function point metrics as being suitable for economic studies: IFPUG, COSMIC, NESMA, and the Australian function point metric. The measured accuracy of counts by certified function point counters is usually within about 5%.

The standard methods for counting function points count five major elements: inputs, outputs, interfaces, logical files, and inquiries. There are also adjustments and weighting factors for a number of kinds of complexity. In practice, the weighting factors and adjustments cause a lower limit for function point analysis: applications smaller than about 15 function points cannot be counted.

There are also a number of small changes to software that do not affect function point totals. These are called “churn” as opposed to “creep.” An example of churn would be shifting the location of a data item on a screen, but not adding or subtracting from the data itself. These cannot be counted using standard function point analysis but they obviously require effort.

To use standard function point analysis, it is necessary to have at least a fairly complete set of requirements for the software applications being counted. Additional materials such as functional specifications add value and rigor to function point analysis. This means that normal function point analysis cannot occur until somewhere between one month and six months after a software application is started. This starting point is too late for successful risk avoidance. It is also later than the usual need for an initial software cost and schedule plan.

Normal function point analysis by a certified counter proceeds at a rate of between 400 and 600 function points per day. At normal consulting fee rates, this means that the cost for function point analysis runs between $4.00 and $6.00 for every function point counted.

This is a rather significant cost that is so high that it has slowed down the use of function point analysis for applications larger than about 15,000 function points. For example to count a really massive application such as an ERP package at perhaps 300,000 function points in size the number of days required for the count might total to 750 days of consulting time. The cost might total to $1,800,000. No company is willing to spend that much time and money for function point analysis.

The combined results of the lower limits of function point analysis and the high costs of function point analysis means that less than 10% of software applications have ever been counted, or are likely to be counted using normal manual counts:

The total effort corporations devote to small projects below 15 function points in size is close to 10% of their entire workload. This is because bug repairs and small changes and enhancements are almost always smaller than 15 function points in size.

Small changes are extremely common, and major corporations such as IBM, Microsoft, EDS may carry out more than 30,000 of these each year. While individual changes may range from only about 1/50th of a function point up to 15 function points, the total volume of such changes can easily top 100,000 function points per calendar year.

For large applications at the upper end of the size spectrum, about 40% of a corporation’s software workload is spent on applications that are 15,000 function points or larger in size. Although massive applications are few in number, they usually have development teams that run from 500 to more than 5000 personnel. These applications are also hazardous and prone to failure or enormous cost and schedule delays.

Large applications would actually be the top candidates for the power of function point analysis, because these applications are prone to failure, delays, and cost overruns. The use of function point metrics for early risk analysis and avoidance would be extremely valuable. Unfortunately the high costs and high human effort of function point analysis has prevented function points from being used on the very applications that need them the most.

Mid-range applications between 15 and 15,000 function points in size comprise about 35% of a corporations’ work load and technical staff. The average size of applications that are counted using standard function point analysis is about 1,500 function points. However, because of the high costs involved, only the more important applications typically use function point analysis.

If a corporation produces 100 applications per year in the size range between about 100 and 15,000 function points, probably only about 25% would actually be counted. Usually the counts would occur for a specific business purpose such as a formal benchmark study or a baseline study at the beginning of a process improvement program. Other than special studies, function point analysis is usually not performed because the costs and time required preclude day to day usage on ordinary projects.

Assume that a corporation is interested in comparing the results of a 10,000 function point applications against benchmark data published by the International Software Benchmark Standards Group (ISBSG). In order to do this they commission a certified function point counter to perform function point analysis. If you assume a daily consulting fee of $3000 and a counting speed of 500 function points per day, the function point analysis will take 20 days, the consulting costs will be $60,000, and the cost per function point counted would be $6.00. As of 2008 function point analysis is useful but expensive.

In addition all large organization use commercial-off-the-shelf (COTS) applications such as Microsoft Vista, SAP, Oracle, Symantec anti-virus, AutoCad, and hundreds of others. A study performed by the author and his colleagues found that a large manufacturing corporation owned more COTS packages than applications developed in-house.

It is suspected that the total size of these COTS packages in terms of function points may be much larger than the portfolio of applications developed by the companies themselves. (This is certainly true for small and mid-sized corporations.) These COTS packages are never counted using standard function point analysis because the vendors don’t want them to be. Vendors provide no size data themselves, nor do they provide the raw materials for a normal function point analysis. About 15% of corporate software work is involved with maintenance and support of COTS packages.

Between small applications that cannot be counted, very large applications that are too expensive to count, mid-range applications that are not selected for function point analysis, and COTS packages that lack the available information for a count, less than 10% of the software owned by a major corporation or a large government organization is likely to have function point counts available. Given the power and usefulness of function point metrics for economic studies and quality analysis, this is an unfortunate situation.

To summarize:

1. Projects < 15 function points cannot be counted using standard function points.

2. Projects > 15,000 function points are seldom counted due to high costs

3. Projects between 15 and 15,000 are counted less than 25% of the time

4. COTS packages are never counted due to vendor reluctance

Assume that a corporation owns a portfolio with a total size of 10,000,000 function points. Of these 5,000,000 function points represent 3,000 in-house applications and the other 5,000,000 represent some 2,500 COTS packages such as SAP, AutoCAD, SAS, Microsoft applications, and other commercial packages.

As of 2008, it is likely that the corporation will have used function point analysis only on about 75 applications that total to perhaps 100,000 function points. This is a very small percentage of the total corporate portfolio. The total cost for performing standard function point analysis on the 75 applications would probably be about $600,000. This explains why the usage of function points is quite limited. To perform standard function point analysis on the in-house portfolio of 5,000,000 function points would cost as much as $30,000,000. No company would spend such a large amount for ordinary function point analysis. To perform a function point analysis on the COTS portion of the portfolio is impossible in 2008, so a major source of corporate expense is outside the current scope of standard function point analysis.

The bottom line is that standard function point analysis is too limited, too costly, and too slow to be used with 100% of the software developed and used by large organizations. As a result, the advantages of function point metrics for economic and quality studies are only partially available as of 2008.

Expanding the Role and Advancing the Start Time of Function Point Analysis
There is no question that function points provide the most effective metric for software applications that has ever been developed. There are no other metrics that perform as well as function points for economic studies, quality analysis, and value analysis. But to achieve optimum returns, it is necessary to modify function point practices in a number of important ways:

1. The starting point for function point analysis needs to be earlier by 6 months

2. The cost of function point analysis needs to drop below 1¢ per function point

3. The counting speed needs to be higher than 10,000 function points per day

4. There should be no lower limit on application size, down to zero function points

5. COTS packages should be able to be counted

6. Cancelled projects, if they occur, should be counted

7. Changing requirements should be counted in real time as they occur

8. Deleted features should be counted in real time as they occur

9. Legacy applications should be counted, if they were not previously counted

10. Updates to legacy applications should be counted before they are started

11. Function point sizing should be possible as a service without on-site visits

12. Function point sizing should include requirements changes

13. Function point sizing should include total requirements growth for every release

Fortunately the technology for achieving these changes is starting to become available as of 2008, although some methods are still experimental and not yet commercially available.

Relativity Technologies has announced a tool for sizing legacy applications called “Function Point Analyzer” or FPA. This tool operates by parsing source code in selected languages and extracting business rules which can then be analyzed using normal function point analysis. The assertion is that this new FPA tool provides counts with an accuracy equivalent to normal function point analysis, but is able to accomplish this in a matter of minutes rather than a matter of days or weeks. For legacy applications in languages that are supported, this tool provides an effective high-speed, low-cost approach for function point analysis.

Software Productivity Research LLC has offered several methods for function point approximation as features of their commercial estimating tools, SPQR/20™, Checkpoint® and the more recent KnowledgePlan®. These methods work, but in 2008 a new method will be offered that achieves counts very close to standard function point analysis, but carried out in a matter of minutes rather than a matter of days or weeks. However this method does assume the existence of requirements.

An earlier tool developed by SPR generated function point automatically during the design process when using the Bachman Analyst design work bench. The closure of the Bachman company prevented wide spread deployment of this tool, but it could be redeveloped for use with other methods such as uses cases and the Rational Unified Process. Function points were automatically generated from the normal design process without requiring a separate function point analysis consultant.

The author of this report has developed a method for function point approximation (patent pending) based on pattern matching. This method shifts the paradigm from traditional function point analysis to using historical data from applications already counted.

As of 2008 more than 15,000 software applications have been counted using normal IFPUG function point analysis. Many of these application counts are commercially available from the International Software Benchmark Standards Group (ISBSG). Many others are available from software consulting groups such as Software Productivity Research (SPR), Gartner Group, David Consulting Group, QPMG, and a number of others.

As a result of the increasing volumes of measured projects, it is possible to go about function point analysis in a new way. If a proposed software project is mapped onto a standard taxonomy that includes the project’s nature, class, type, scope, and several forms of complexity it is possible to use the size of historical applications already counted as a surrogate for standard function point analysis. Applications that are similar in terms of taxonomy are also similar in terms of function point size. This method of using pattern matching rather than normal function point analysis has several advantages:

1. It shifts the point in time at least 6 months earlier than function point analysis

2. It lowers the cost well below 1¢ per function point

3. It can be carried out at speeds in excess of 10,000 function points per minute

Using algorithms and mathematical techniques the pattern matching approach can also offer additional advantages compared to normal function point analysis:

4. It can be used for “micro function points” below the normal boundary of 15

5. It can be used to size specific features of applications such as security features

6. It can be used to size reusable components and object class libraries

7. It can be used for COTS packages as well as in-house development

8. It has no upper limit and can be used for applications > 100,000 function points

9. It can be used as a front-end for commercial software estimation tools

10. It can be used for both risk and value analysis before applications are started

11. It can be done remotely as a service

12. It can deal with requirements changes during development and afterwards

The availability of high-speed, low-cost function point sizing methods brings with it a need to examine the business model of function point analysis and develop a new business model using assumptions of much reduced costs and much greater speed than normal function point analysis.

The Current Business Model of Function Point Analysis in the United States

From 1978 when IBM first released the original function point method through 2008 function point analysis has been a boutique industry. Of the approximate number of 1000 function point analysts in the United States about 600 work for large corporations or government agencies and the other 400 are consultants. Only a fraction of the people who count function point metrics have been certified by IFPUG or one of the other certification groups such as COSMIC.

Assuming each counter completes 25 function point counts per year, about 25,000 projects per year are counted in the United States. However the majority of these are for internal and proprietary uses. Only about 200 projects per year are added to public data sources such as the ISBSG data base.

Assuming an average size of about 1,500 function points for the applications counted, about 3,750,000 function points per year are counted in the United States. At a typical cost of $6.00 per function point counted, the annual cost for U.S. function point analysis would be about $22,500,000. Most function point analysis is performed on the client sites by certified counting personnel.

Function points are normally used for benchmark and baseline studies. Assuming that about 500 of these studies are performed per year in the United States at an average cost of $50,000 per study, then about $25,000,000 per year is the revenue derived from benchmark and baseline studies. Most of the benchmark data is proprietary and confidential, but some of the data is submitted to the International Benchmark Standards Group (ISBSG). As of 2008 ISBSG has perhaps 5,000 total projects from around the world, and is adding new data at a rate of perhaps 500 projects per year.

Function points are also used for other business purposes. For example most commercial software cost estimating tools use function points as a basic sizing method. Function points are also used in litigation, such as breach of contract lawsuits or taxes involving the costs and value of software applications.

A number of commercial software cost estimating tools use function points as a sizing method. Unfortunately function points are usually not available until after the first and most critical estimates need to be prepared. As a result the software cost estimation market is also a boutique market. The total number of copies of the major commercial software estimation tools (COCOMO, KnowledgePlan, PriceS, SLIM, and SEER) probably amounts to no more than 5000 copies in 2008, with COCOMO having about half and the other half divided among the other vendors. There are also some specialized tools that support function point counts for individual applications and also portfolios. Here too, penetration of the market is small in 2008.

When the total market for function point analysis and benchmark studies is summed, it is probably less than $50,000,000 per year. That indicates a fairly small boutique industry with a number of small consulting groups plus individual certified function point counters. To summarize:

1. As of 2008 standard function point analysis is almost never used for applications > 15,000 function points in size.

2. As of 2008 standard function point analysis cannot be used for applications < 15 function points in size due to limits in the adjustment factors.

3. As of 2008 the high costs and low speed of standard function point analysis has been a barrier to widespread adoption.

The European business model is similar to the U.S. business model in overall size, with perhaps $50,000,000 per year in revenues for function point analysis and benchmark studies. However the European market is very fragmented and difficult to characterize because of the many function point variations in use in Europe. Although IFPUG function points are number one in usage throughout most of Europe, there are a number of alternate function points metrics that are also utilized: the older British Mark II function point metric, the newer COSMIC function point metrics, and several national variations such as Finnish function points and NESMA or Netherlands function points. The use of function points in Russia is not yet as widespread as in Western Europe.

The Asian business model is also similar, and currently seems to be slightly larger than either the U.S. or European markets when India, Japan, South Korea, China, and Singapore are aggregated into a single view. Function point revenues are perhaps in the range of $75,000,000 per year. The rate of growth of the Asian market is accelerating due to the very quick expansion of software companies and outsourcing business in both India and China. Since local costs in both countries are below those of both Europe and the U.S. these two countries have favorable costs per function point. India also has very favorable quality data when measuring using “defects per function point” and “defect removal efficiency.” However inflation is very high in Asia so cost differentials may change over time.

Other parts of Asia such as North Korea, Myanmar, Laos, and Cambodia no doubt use function points primarily for defense and weapons systems, although banks and telephone systems have computers also. There is no data on the function point business in these places.

The usage of function points in the Middle East is difficult to quantify. Israel has perhaps the largest number of certified function point counters, but it is hard to ascertain function point usage for that entire region.

At this point it is interesting to see what kind of a business model will emerge when the cost of function point analysis drops down to about 1¢ per function point counted, the starting point shifts six months earlier, and there are no longer either upper or lower size limits on function point analysis.

A New Business Model for Function Point Analysis

Once reliable high-speed, low-cost function point methods become widely available, the opportunities for function point consulting work should expand from today’s small boutique industry into a main-stream industry with annual revenues that approach or exceed $2,500,000,000 per year.

There are at least 50 business opportunities that will occur once function point costs drop down and they can be used before projects start rather than at the end of requirements. Many of these opportunities are new and do not exist today.

As the new business opportunities become visible, it can be expected that many of today’s small function point companies will grow to substantial sizes. It can also be expected that major software companies such as Microsoft, EDS, Computer Associates, and IBM will move into the function point market in various ways, including acquisition of existing companies.

The expansion of IFPUG function point metrics shows promise of finally providing the software industry with solid, quantified data. Ambiguous and uncertain topics such as development schedules, development costs, maintenance costs, quality, reliability, process improvement results, process improvement costs, security, software value, and software renovation will become predictable and measurable. Entirely new topics such as the impact of software tools to knowledge workers will also be possible.

It is hypothesized by the author that every 50% reduction in the cost of counting function points will lead to a 100% expansion in function point usage. Today circa 2008 the cost of counting function points is about $6.00 per function point and usage is only about 4,000 projects per year. For wide-spread or universal deployment of function point metrics the costs have to drop down to only a few cents per function point counted. Below one cent would be even better.

The goal of the new business model for function point metrics is to expand the use of function point metrics from perhaps 10% of mid-range software projects up to close to 100% of all software projects in the United States: new development, maintenance, enhancements, and creation and use of reusable components. Even cancelled projects and disasters can be measured once the cost of function point counting drops significantly. A related goal of the new business model is to allow function point analysis for software projects whose size ranges from less than 1 function point to more than 500,000 function points, as opposed to the current range of between about 15 function points and 15,000 function points.

Table 1 provides an overview of these new and evolving opportunities:

	
	Table 1: Business Opportunities From High-Speed, Low-Cost Function Point Analysis

	
	
	
	
	
	
	
	
	
	
	

	
	Activity
	
	
	Number
	
	Days per
	
	Cost per
	
	Annual

	
	
	
	
	per year
	
	study
	
	study
	
	Revenues

	
	
	
	
	
	
	
	
	
	
	

	1
	Early risk/value analyses
	25,000
	
	3
	
	$15,000
	
	$375,000,000

	2
	Real-time requirements
	75,000
	
	1
	
	$4,000
	
	$300,000,000

	3
	Competitive analyses
	
	2,500
	
	10
	
	$50,000
	
	$125,000,000

	4
	Quality analyses
	
	10,000
	
	3
	
	$12,000
	
	$120,000,000

	5
	Software usage studies
	5,000
	
	5
	
	$20,000
	
	$100,000,000

	6
	Activity analyses
	
	5,000
	
	5
	
	$20,000
	
	$100,000,000

	7
	Legacy renovations
	7,500
	
	3
	
	$12,000
	
	$90,000,000

	8
	Benchmark analyses
	
	2,000
	
	10
	
	$40,000
	
	$80,000,000

	9
	Baseline analyses
	
	2,000
	
	10
	
	$40,000
	
	$80,000,000

	10
	Feature/class analyses
	5,000
	
	3
	
	$12,000
	
	$60,000,000

	11
	Complete portfolios
	750
	
	20
	
	$80,000
	
	$60,000,000

	12
	Micro function points
	
	3,000
	
	5
	
	$20,000
	
	$60,000,000

	13
	Development methods
	2,500
	
	5
	
	$20,000
	
	$50,000,000

	14
	ITIL analyses
	
	2,500
	
	5
	
	$20,000
	
	$50,000,000

	15
	Development tool studies
	2,500
	
	5
	
	$20,000
	
	$50,000,000

	16
	Maintenance tool studies
	2,500
	
	5
	
	$20,000
	
	$50,000,000

	17
	Mass update analyses
	5,000
	
	2
	
	$10,000
	
	$50,000,000

	18
	Backlog analyses
	
	3,000
	
	4
	
	$16,000
	
	$48,000,000

	19
	Normal function points
	3,500
	
	4
	
	$12,000
	
	$42,000,000

	20
	COTS risk analyses
	
	5,000
	
	2
	
	$8,000
	
	$40,000,000

	21
	ERP deployment analyses
	1,000
	
	10
	
	$40,000
	
	$40,000,000

	22
	Reengineering analyses
	5,000
	
	2
	
	$8,000
	
	$40,000,000

	23
	Customer support
	
	5,000
	
	2
	
	$8,000
	
	$40,000,000

	24
	SOA/reuse analyses
	
	2,000
	
	5
	
	$20,000
	
	$40,000,000

	25
	Cancelled projects
	1,500
	
	5
	
	$20,000
	
	$30,000,000

	26
	Agile analyses
	
	2,500
	
	3
	
	$12,000
	
	$30,000,000

	27
	CMM/CMMI analyses
	
	1,500
	
	5
	
	$20,000
	
	$30,000,000

	28
	Security risk analyses
	
	2,000
	
	3
	
	$15,000
	
	$30,000,000

	29
	Outsource contracts
	2,500
	
	3
	
	$12,000
	
	$30,000,000

	30
	Litigation (contracts)
	250
	
	35
	
	$100,000
	
	$25,000,000

	31
	Mergers/acquisitions
	500
	
	10
	
	$50,000
	
	$25,000,000

	32
	Occupation groups
	2,000
	
	3
	
	$12,000
	
	$24,000,000

	33
	Test tool analyses
	
	2,000
	
	3
	
	$12,000
	
	$24,000,000

	34
	Embedded analyses
	
	2,000
	
	3
	
	$12,000
	
	$24,000,000

	35
	Web site analyses
	
	3,000
	
	2
	
	$8,000
	
	$24,000,000

	36
	Balanced scorecards
	
	2,000
	
	3
	
	$12,000
	
	$24,000,000

	37
	Metrics conversion
	
	5,000
	
	1
	
	$4,000
	
	$20,000,000

	38
	Defense analyses
	
	1,000
	
	5
	
	$20,000
	
	$20,000,000

	39
	Supply-chain analyses
	1,000
	
	5
	
	$20,000
	
	$20,000,000

	40
	International analyses
	
	100
	
	30
	
	$150,000
	
	$15,000,000

	41
	Marketing analyses
	
	300
	
	10
	
	$50,000
	
	$15,000,000

	42
	Business processes
	
	300
	
	10
	
	$50,000
	
	$15,000,000

	43
	Litigation (tax cases)
	100
	
	35
	
	$140,000
	
	$14,000,000

	44
	Venture capital analyses
	500
	
	5
	
	$25,000
	
	$12,500,000

	45
	Programming languages
	1,000
	
	3
	
	$12,000
	
	$12,000,000

	46
	Earned value analyses
	1,000
	
	3
	
	$12,000
	
	$12,000,000

	47
	Infrastructure analyses
	1,000
	
	3
	
	$12,000
	
	$12,000,000

	48
	Educational uses
	
	2,500
	
	1
	
	$4,000
	
	$10,000,000

	49
	Delivery channels
	
	200
	
	10
	
	$50,000
	
	$10,000,000

	50
	National studies
	
	50
	
	40
	
	$200,000
	
	$10,000,000

	
	
	
	
	
	
	
	
	
	
	

	
	TOTAL
	
	
	218,050
	
	
	
	
	
	$2,607,500,000

Following are short discussions of the 50 business opportunities highlighted in Table 1. These opportunities will begin to emerge in 2008, and should be fully available by 2017. It can be expected that the number of companies involved with function point metrics will increase, and that new companies will probably be created as well. Large companies such as IBM, Microsoft, and EDS will also enter the expanding market for function point data.

As of 2008 there are perhaps 50 U.S. companies in the function point business arena. As function points come down in price, it can be expected that additional companies will enter the expanding market.

Not every opportunity will occur at the same time. Some opportunities may be much smaller than the predicted results in Table 1. But the bottom line is that once the emphasis of function point metrics switches from the mechanics of counting rules to the economic uses of function points, a major expansion will occur.

Opportunity 1. Early Risk/Value Analysis: Because both software risks and value are directly proportional to the sizes of applications measured in function points, the ability to perform early sizing prior to requirements will lead to a major new business opportunity. Every application larger than 1,500 function points should have a formal risk/value analysis before any funding occurs. The current consulting companies that perform function point analysis should evolve into more sophisticated risk and value consultancies. Risk and value analysis consulting is needed because there is a widespread lack of understanding and training for both the risk and value topics. If the software industry knew how to deal with risks, there would not be so many outright failures and so many overruns. As of 2008 almost one third of the software personnel in the United States are working on projects that will be cancelled due to excessive cost and schedule overruns. The major risks analyzed will be outright cancellation, schedule delays, cost overruns, security vulnerabilities, poor customer satisfaction, poor quality, poor test coverage, and the odds of litigation occurring. The major value topics analyzed will be both financial and intangible values such as customer satisfaction and corporate prestige. Applications > 10,000 function points in size fail more often than they succeed, so better risk and value analysis are urgently needed by the software industry. The cost for a basic risk/value analysis would be about $15,000 or three days of time by an experienced risk/value consultant. The average cost for a cancelled project of 10,000 function points is over $37,000,000. Spending $15,000 up front in order to eliminate a $37,000,000 failure is a very good return on investment. This business opportunity could involve 50 consulting companies, 1,000 trained risk consultants, and generate annual revenues of perhaps $375,000,000 per year. Although some risk analysis can be done as a service or with tools, the U.S. needs more live consultants and project managers who actually know how to navigate large projects > 10,000 function points to a successful conclusion.

Opportunity 2. Real-Time Requirements Estimates: A major source of litigation and also a major source of schedule delays and cost overruns has been that of rapidly changing requirements that are not properly integrated into project cost and schedule estimates. Now that function point analysis can be performed in minutes rather than days, every requirements change can be analyzed immediately and its impact integrated into cost and schedule estimates. Both commercial software estimating tools and consulting groups need to be ready to deal with the fact that requirements changes occur at rates of between 1% and 3% per calendar month. Requirements changes on a nominal 10,000 function point application can add another 2,000 function points during development. If these additions are not properly planned for, failure or major overruns are likely to occur. This opportunity can be done remotely as a service, or on-site using quick sizing tools.

Opportunity 3. Competitive Analyses: This is a new business opportunity that is not part of current function point analysis. Using the quick sizing method based on pattern matching, it will be possible to analyze the software portfolios of direct competitors in the same industry. Thus it will be possible to quantify the software portfolios of every major company in industries such as insurance, banking, pharmaceuticals, oil and energy, and manufacturing. The companies with the largest and most sophisticated portfolios are likely to have a competitive edge. These studies can also be stepped up to measure the defense capabilities of national governments and even the specific capabilities of aircraft, missiles, and weapons systems. The most probable form of competitive analysis will be studies commissioned by a single company of major competitors in the same industry.

Opportunity 4. Quality analyses: The weakest technology in all of software is that of quality control. Function point metrics coupled with measures of defect removal efficiency levels provide the most effective quality control methods yet developed. Every software project and every requirements change and enhancement should use early function point sizing to predict defect potentials. Since the total volumes of defects range between about 4 and 7 defects per function point and only about 85% are removed, this information can be used to plan successful defect prevention and defect removal strategies. The current U.S. average for defect removal efficiency is only 85%, which is a professional embarrassment. For every $1.00 spent on software development more than $0.40 goes to fixing bugs that should not even be there. During the maintenance period, perhaps $0.35 goes to bug repairs for every $1.00 spent. Some large applications never stabilize and have bug reports their entire lives of 20 years or more. Better quality control is a major business opportunity that will benefit the software industry and the United States economy as a whole. Improved quality control will lower the odds of cancellations, cost and schedule overruns, and also breach of contract litigation. Improved quality will also expand market penetration and improve market shares. It would be very beneficial if the major quality associations such as the American Society of Quality endorsed function points. It would also be useful for testing companies, six-sigma consultants, inspection instructors, and quality educators to begin to express quality results in terms of function points for defect potentials and also to measure defect removal efficiency levels. Unfortunately the economics of quality has been blinded for many years by two of the worst business metrics in history: “lines of code” (LOC) and “cost per defect.” The lines of code metric is useless for measuring defects in requirements, design, and non-code sources which are often greater in volume that coding defects. It also penalizes high-level and object-oriented programming languages. The “cost per defect” metric penalizes quality and achieves its lowest values for the buggiest applications. Both of these metrics are bad enough to be viewed as professional malpractice. Examples of the failure modes of LOC and cost per defect are given later in this report.

Opportunity 5. Software Usage Studies: This is a new business opportunity that is not part of current function point analysis. Function point metrics can be used to study the use of software as well as its development. For example a well-equipped project manager will need about 5,000 function points of estimating and scheduling tools. A well-equipped test engineer will need about 15,000 function points of test library control and test coverage tools. There are significant correlations between efficiency, effectiveness, and the volume of tools available in every form of knowledge work. Now that tools and COTS packages can be sized in terms of function points, it will be possible to carry out studies that relate tool availability to performance. Not only software personnel but also other knowledge workers use software. Lawyers have Nexis/Lexis available and a number of specialized tools amounting to perhaps 50,000 function points. Physicians on staff in well-equipped hospitals with MRI and other diagnostic instruments are now supported by more than 5,000,000 function points. A modern combat pilot has more than 25,000 function points of on-board navigation and weapons control applications. New kinds of economic studies can now be performed that have never been done before. This is a new opportunity not only for the function point community, but for the entire software industry.

Opportunity 6. Activity Analyses: To date there is little reliable data available on the performance and schedules of individual activities that are part of software development. How long does it take to gather requirements? How much does it cost to do design? How long will coding take? How much does it cost to translate a user’s guide into another language? What are the costs and effectiveness of software quality assurance activities? What are the costs and effectiveness of data base administrators? Questions such as these can be explored once function point analysis becomes a cheap and easy technique. Every software activity can be studied using function point assignment scopes and function point production rates. Studies at the activity level were not possible using older metrics such as “lines of code.” Although such studies are possible using standard function point analysis, they were seldom performed. The International Software Benchmark Standards Group (ISBSG) has started to perform some phase-level studies, but with more than development 25 activities, 30 maintenance activities, and hundreds of tasks, much more detailed studies are needed.

Opportunity 7. Legacy Renovation Analyses: Software does not age gracefully. Software life expectancies are directly proportional to application size measured in function point metrics. Some large applications are now more than 25 years old. As a result, there are dozens of large and decaying applications in the > 10,000 function point size range. Most of these do not have function point counts, so it is hard to do studies that quantify defects, rates of change, or cost of ownership. Now that legacy applications can be sized quickly and cheaply, it is possible to carry out economic studies of various forms of geriatric care and renovation. Among these are data mining to extract business rules, surgical removal of error-prone modules, restructuring, refactoring, clarifying comments, and eventual replacement. The costs and value of these geriatric approaches can now be measured using function points, which was not feasible using manual function point analysis. Not only were the legacy applications large, but many of them had obsolete or missing specifications so there was no documentation available for standard function point analysis.

Opportunity 8. Benchmark Analyses: Benchmarks, or comparisons of software applications to similar applications produced elsewhere, have been one of the main uses of function point metrics since 1978. However due in part to the high costs of function point analysis, only about 200 projects each year get submitted to various benchmarking organizations such as ISBSG, SPR, and others. Now that function point analysis can be done quickly and cheaply, it is anticipated that the number of benchmarked projects submitted will rise from 200 to perhaps 2,000 per year. Indeed, as many as 20,000 benchmark projects per year might occur as the cost of function point analysis goes down. However, gaps and leakage from resource tracking systems remains a problem that needs to be solved to ensure that the benchmarks are accurate enough to be depended upon. New kinds of benchmarks such as individual features can also occur. At the high-end of the scale, portfolio benchmarks of all software owned by major corporations will also be possible. Special benchmarks, such as tool usage and specific methodologies will also occur in significant numbers. Benchmark data can either be collected remotely, as done by ISBSG or collected via on-site interview as done by SPR. Remote collection is less expensive, but on-site collection is more thorough because errors can be corrected during the team interviews.

Opportunity 9. Baseline Analyses: Before starting a process improvement program, it is valuable to measure at least a sample of applications using function point analysis. Then as the process improvement program unfolds, the productivity and quality of the original baseline can be used to measure rates of progress. Now that high-speed, low-cost function points are available, the number of existing applications used for baseline purposes can be increased. Not only mid-range applications can be measured, but also very large projects > 100,000 function points can be studied. In addition, the thousands of small updates < 15 function points in size can now be evaluated using “micro function points.” Thus baselines can increase in number and sophistication at the same time that they are dropping down in cost. Establishing current productivity and quality levels by means of function point metrics should be a standard initial step in all software process improvement programs.

Opportunity 10. Feature/Class Analyses: The current taxonomy that allows rapid function point sizing deals with complete applications. If this taxonomy is extended down another level, then it will be possible to perform sizing of the individual features that comprise software applications. Feature analysis is an important prerequisite for increasing the volumes of reused materials in software applications. It is also valuable to know the sizes of the contents of object-oriented class libraries. Feature size analysis is also an important topic for massive applications such as Enterprise Resource Planning (ERP) and Service Oriented Architecture (SOA) packages. For example, it is important to know the size of customer resource management components, or the size of accounts payable components. Feature analysis will improve the accuracy of estimating, and will also facilitate planning for software reuse at the macro level, such as SOA systems. This is a new business opportunity that has not been part of the older function point business model.

Opportunity 11. Portfolio Analyses: Because software is a taxable asset, there is a business value associated with knowing how much software a corporation owns. Portfolio analysis has not been possible with standard function points because the costs and timing of normal function point analysis are too high. Also, at least half of corporate portfolios are in the form of COTS packages acquired from external vendors. Now that high-speed, low-cost function point counts are possible, it can be expected that most Fortune 500 companies will want to know exactly how much software they own, its rate of growth, the retirement rate of aging applications, and the split between in-house development, outsourced development, and COTS packages. Portfolio analysis is a major new business opportunity for function point consultants. It was not possible to perform a full portfolio analysis using standard function point counting methods because the cost for a portfolio of 10,000,000 function points might exceed $60,000,000. In order to be cost effective, the consulting fees for a corporate portfolio analysis need to be less than $100,000 or roughly 1¢ per function point. Now that function point costs are low, portfolio analysis and long-range portfolio planning are a major new business opportunity. As of 2008 there are probably fewer than 10 companies in the world who actually know how much software they own and use. There are probably no government organizations at any level (national, state, county, or city) who have any knowledge of the software they own and use. Considering that software is one of the most expensive and valuable assets in history, the lack of economic quantification is a serious economic deficiency.

Opportunity 12. Micro-function points: A surprising amount of work takes place in the form of small updates that range between a fraction of a function point up to perhaps 15 function points in size. Almost all bug repairs and many maintenance changes are found in the size range < 15 function points, and therefore cannot be measured using standard function point analysis. Now that micro-function points are available, a number of important new studies can be carried out on the economics of small changes. Topics that need definitive answers are those of productivity rates, bad-fix injection rates, and total volumes of small changes on an annual basis. Since the total volume of small updates in large corporations can top 100,000 function points per year the lack of any ability to study update economics is a gap that needs to be filled. This is a new business opportunity for micro function point metrics and has not been part of standard function point analysis due to the lower boundary of the counting rules.

Opportunity 13. Development Methods: One of the important values of function point metrics is the ability to study the productivity and quality results from various development methods such as the Rational Unified Process (RUP), Watts Humphrey’s Team Software Process (TSP), the Agile methods, Object-Oriented development, and others. Now that high-speed, low-cost function points are available, the numbers of methods studied will increase exponentially. In addition, the number of samples measured for each methodology will increase. To judge the effectiveness of a methodology at least 50 projects are needed, and their sizes should range from a low of perhaps 100 function points up to a high of perhaps 100,000 function points. Evaluating development is a significant new opportunity for function point analysis. There are more than 100 methods of software development in existence circa 2008, so this topic will of necessity be complex.

Opportunity 14. ITIL Analyses: The Information Technology Infrastructure Library (ITIL) is among the fastest growing software technologies. ITIL deals with post-release maintenance, service, and change control. The ITIL concept itself is still undergoing change and evolution. A major gap in the current ITIL literature is any reference to the sizes of applications expressed in terms of function points. Since both defect volumes and rates of change are directly proportional to application size measured with function points, this is a gap that needs to be filled as quickly as possible.

Opportunity 15. Development Tool Analyses: As of 2008 there are hundreds of software development tools available. These include design tools, compilers for programming languages, test tools, change control tools, configuration control tools, web development tools, and many others. Few of these tools have been sized in terms of function point metrics. Few have been studied under controlled conditions. Now that high-speed, low-cost function point metrics are available it will be possible to measure the size of every tool using function point metrics. There are already some rough correlations that show that tool availability and tool usage benefits quality and productivity, but these studies need to be done in greater numbers and with greater precision. From partial data, it looks as though a fully equipped software engineer for mainframe development will have about 25,000 function points of tools; web developers will have about 50,000 function points of tools.

Opportunity 16. Maintenance Tool Studies: Although maintenance in the dual forms of bug repairs and small enhancements is now the dominant activity of the software world, it is among the least covered in terms of quality and productivity studies. Part of the reason for this lack of empirical data is the fact that standard function point analysis does not work below a size of about 15 function points. Most bug repairs are between 1/50th of a function point and 1 function point in size. Most small enhancements are between 1 and 10 function points in size. Although each of these is small individually, corporations and government agencies can top 30,000 such changes per calendar year with a total volume of changes in excess of 100,000 function points. More than 50% of the total staff of many corporations now work in the areas of maintenance and enhancement. In order to study the effectiveness of maintenance tools, such as code restructuring tools or renovation work benches, it is necessary to have a “micro function point” that can deal with small updates to legacy applications. It is also necessary to measure the size of maintenance tools using standard function point metrics. Preliminary data indicates that a typical maintenance programmer is supported by about 15,000 function points of maintenance tools. Monthly bug repairs and small enhancements proceed at a rate of perhaps 25 function points per staff month. This is a major new opportunity for function point analysis and was not part of the older function point business model because small updates could not be measured.

Opportunity 17. Mass-Update Analyses: The phrase “mass update” refers to problems that cause simultaneous changes to thousand of applications throughout an industry or throughout the world. The recent Y2K problem is the most widely studied mass update, but it is only one of dozens of such problems. Other mass updates include the roll out of the Euro in 1999 and the Sarbanes-Oxley legislation in 2004. Almost every year government mandates or changes in tax laws trigger mass updates of financial applications. In the future we can expect really significant mass updates such as the need to add digits to telephone numbers or the need to expand social security numbers. Function point metrics are the best tool for estimating the costs and schedules for such updates. The caveat is that while estimates for thousands of individual updates are needed, it is also necessary to produce overall estimates for each company and industry. Standard function point analyses is too slow and time consuming, so the newer high-speed methods will be needed to deal with mass update economics.

Opportunity 18. Backlog Analyses: Large corporations and government agencies have “backlogs” of applications that are awaiting development at some future time, but where available resources are not in the current year’s budget. The arrival of high-speed, low-cost function point analysis now makes it possible to size the entire backlog. The size data can be used to prioritize the applications awaiting development. Backlog analysis was not feasible using standard function point analysis because the requirements for many backlogged applications are not fully defined. The total size of the backlog in a large company can approach 100,000 function points, which is too large for conventional function point analysis. Backlog sizing and prioritization are significant new business opportunities for function point analysis. Every corporate and government backlog should be sized and have preliminary risk and value data available.

Opportunity 19. Normal Function Point Analyses: Surprisingly, the advent of high-speed, low-cost function point methods will not eliminate standard function point analysis. This is because the high-speed methods are not as accurate as normal function point analysis. Although some of the high-speed methods can be used six months before requirements are complete, when the requirements finally are complete it will be necessary to validate the original function point predictions by means of normal function point analysis. Rather than curtailing normal function point analysis, the high-speed methods are likely to increase normal function point counts by possibly 100%, or doubling the current business.

Opportunity 20. COTS Risk Analyses: If a company buys software from Microsoft, Oracle, SAP, Symantec, or essentially any other vendor it will be delivered with latent bugs. The vendors will not provide data on how many bugs are likely to be there. However, by using high-speed, low-cost function point analysis of COTS applications and looking at industry data for defect removal efficiency levels, it is possible to predict the number of latent bugs in COTS packages. Because COTS packages make up at least 50% of all the software owned by major corporations, there is a strong business need to predict the bugs in these applications and the amount of internal effort required to install and support the applications. This is a new business opportunity for function point analysis.

Opportunity 21. ERP Deployment Analyses: Enterprise Resource Planning (ERP) packages are the largest commercial applications ever developed. The main products from SAP and Oracle top 300,000 function points in size. These massive packages are hard to debug, so each release is delivered with thousands of latent bugs. As a result, installation and successful deployment of an ERP package often fails, and is never cheap or easy. The vendors do not provide such information. However now that ERP packages can be sized using function point metrics, it is possible to predict the number of latent bugs at delivery and the probable amount of time to install and adjust the ERP packages, which may be more than one calendar year. Every ERP deployment should be supported by a formal risk and value assessment coupled with a function point analysis of potential defects. This is a major new opportunity for function point analysis.

Opportunity 22. Reengineering Analyses: Many legacy applications contain error-prone modules, sections of dangerously high complexity, and lack suitable comments. Some are written in obscure or dead languages where few programmers are available and even working compilers or interpreters may be hard to find. If these legacy applications still have business value, then it will be necessary to reengineer them and plan for replacements. Because of the cost and schedules of replacements correlate directly with application size, it will be necessary to perform a function point analysis as part of the reengineering process. In particular the key features and algorithms will need to have their sizes known. Also, it may be possible to find replacements from libraries of certified reusable components, or possibly to replace some aging applications with service-oriented architecture (SOA) versions. The legacy applications should be mined for business rules and useful algorithms at the same time.

Opportunity 23. Customer Support Analyses: The area of customer support is a weak link in the software industry. With the exception of Apple Computers and a few other high-technology companies such as Advanced Bionics, customer support is hard to access (telephone wait time often exceeds 10 minutes). Once customer support is reached, only a small percentage of problems can be fixed in a single call. Because customer support is often outsourced to countries with low labor costs, it is sometimes difficult for hard of hearing customers to understand the accents of the support personnel. In fact customer support for the deaf is extremely limited. Customer support staffing and skill requirements are partly based on applications size in function points, and partly based on numbers of users or customers. As a rule of thumb one customer support staff member can support an application of about 5,000 function points in size, with perhaps 150 customers or users. As size and/or usage increase, additional customer support personnel will be needed or support will degrade to unsatisfactory levels. Customer support planning is a new opportunity for high-speed, low-cost function point metrics. Standard function points were of little use in the past because most heavy duty commercial packages are larger than 10,000 function points and hence did not use standard function point analysis. The new high-speed versions can size applications in excess of 100,000 function points so that problem is no longer an issue.

Opportunity 24. Service-Oriented Architecture (SOA) and Reuse Analyses: The new SOA applications are composed of fairly large segments that range between 1,000 and 10,000 function points in size. By contrast, normal reusable modules or objects run between 10 and 100 function points in size. Function point metrics can be used to predict latent defects in both SOA components and smaller reusable modules. They can be used to predict development costs and construction costs as well. Function point metrics can also be used as an aid in determining the taxable value of reusable components of any size. Related topics such as integration and system testing of SOA and reusable material will also benefit from high-speed, low-cost function point analysis.

Opportunity 25. Cancelled Project Analyses: Based on depositions and discovery materials during litigation, an “average” cancelled project is large than 10,000 function points in size, almost a year late at the point of cancellation, and around 50% over budget when terminated. An average cost for a cancelled project in the 10,000 function point range is about $37,000,000. Not many people know that cancelled projects actually cost more than successful projects of the same size. In-house cancelled projects that don’t go to court are almost never studied and analyzed. Now that low-cost, high-speed function points are available, it would be a sound business practice to perform a formal post-mortem on every cancelled project. This is possible due to high-speed, low-cost function points. Corporations would not pay the fees for normal function point analysis on projects that were cancelled due to excessive cost and schedule overruns.

Opportunity 26: Agile Development Analyses: To date the Agile approaches have been expanding rapidly in terms of usage and numbers of projects completed. A major gap in the Agile method has been lack of solid empirical data regarding development schedules, costs, and quality. Because Agile is so new, there is an almost total lack of data on Agile maintenance. While some Agile projects do measure, they tend to use specialized metrics such as Story points that cannot be used for benchmarks because there is little or no data available. Further, it is not possible to do a side-by-side study if one project used function points and the other used Story points. The availability of high-speed, low-cost function point metrics should allow benchmarks of thousands of Agile projects within a few years. Even retrospective studies can now be performed by using function point metrics on existing Agile projects that were developed over the past five years. One of the more valuable features of high-speed function point analysis is the ability to size each “sprint” in an Agile environment. Traditional function point analysis is far too sluggish to be a good match to the Agile approach, but being able to size features and sprints in less than 1 minute should make function point metrics a standard part of Agile development in the future.

Opportunity 27. CMM and CMMI Analyses: The Software Engineering Institute (SEI) was a late adopter of function point metrics. The defense community also has very sparse usage of function points. As a result, there is little solid data on the value of ascending the CMM scale. When function point metrics are used to analyze the various levels of the CMM and CMMI, the results are very convincing that the higher CMM levels have lower defect potentials, higher levels of defect removal efficiency, shorter schedules, and higher productivity. Function point metrics are the best method for such studies. In fact the older “lines of code” metric behaves so badly that it should its usage should be classified as professional malpractice. Not only development but maintenance improves at the higher CMM levels. It is now possible to show the results of each CMM level for an entire sequence of both development and multi-year maintenance period culminating in total cost of ownership (TCO). The TCO of an application developed at CMM level 5 is only about one-fourth of the TCO of the same application developed at CMM level 1. The long-range economic pictures should be useful in expanding the usage of the CMM approach.

Opportunity 28. Security risk Analyses: By interesting coincidence the number of security vulnerabilities applications correlates with application size measured with function points. Security vulnerabilities also correlate, with less certainty, with the defect potentials of applications also measured in terms of function points. Because of the high costs of conventional function point analysis, there have been few studies of the relationships between bugs and security flaws in applications > 10,000 function points. Now that high-speed, low-cost function point analysis is available security studies should soon increase in number.

Opportunity 29. Outsource Contract Analyses: A significant percentage of outsource contracts utilize function point metrics for size, productivity, and quality requirements. It is not uncommon for the sizes of outsourced applications to be defined in terms of function points. As the costs of function point analysis decline, this practice may become universal. It would also be valuable to include clauses in outsource agreements that deal with defect potentials and delivered defects measured in terms of function point metrics. Requirements changes can also be measured in terms of function point metrics. Defect removal efficiency should also be included in outsource agreements. Function points are used today in perhaps 10% of outsource contracts in the United States. In the future the use of function point metrics will probably approach 100% of U.S. software outsource agreements.

Opportunity 30. Litigation (Breach of Contract): About 5% of outsource contracts end up in court for breach of contract litigation. In all of these cases it is important to know the size of the applications expressed in function point form. Although standard function point analysis is sometimes used during lawsuits, it is too slow and costly to be used for lawsuits involving really big applications > 100,000 function points in size. The time required for the function point analysis would exceed the time period the courts assign for discovery. However, low-cost, high-speed function point counts will probably become widely used in software breach of contract litigation.

Opportunity 31. Merger and Acquisition Analyses: This is a new business opportunity that has not been part of the current function point business model. When two companies merge and one or both possess significant quantities of software, it is appropriate to use function point metrics as part of the due diligence process. Standard function point analysis is too slow and costly to be used with companies that own more than 1,000,000 function points of software. However the new high-speed, low-cost methods of function point counting allow entire portfolios of software applications to be considered even if those portfolios top 10,000,000 function points. Function point metrics can quantify the value of portfolios and also predict future maintenance costs, warranty costs, defect levels, and other factors that should be studied as part of a due diligence process.

Opportunity 32. Occupation Group Analyses: The software industry employs more than 90 different occupations and specialty groups. Among these can be found architects, software engineers, data base administrators, quality assurance personnel, testers, technical writers, function point analysts, project librarians, web master, SCRUM masters, cost estimators, and specialized engineers such as telecommunications engineers. There is a shortage of empirical data as to how many of these various specialists are needed. There is an even greater shortage of empirical data on their productivity rates, value to projects, and other business topics. For an application of 10,000 function points, how many architects, software engineers, quality assurance personnel, testers, and technical writers are going to be needed? Questions such as this can be explored using function point metrics for assignment scopes and production rates. Another aspect of occupation group analysis could also be carried out, with perhaps alarming results. One of the first uses of computers was to displace clerical workers in tasks that dealt primarily with paper handling. Thus starting in the 1970’s it was noted that about 10,000 function points could be substituted for one insurance claims clerk. In robotic manufacturing, it takes about 150,000 function points of automated machine tools to displace one factory worker. As software becomes more sophisticated, it is of some importance to be able to quantify the numbers of workers of various kinds that might be displaced.

Opportunity 33. Test Tool Analyses: There are important questions about test tools that need better answers than those available today. How effective are automated test tools vs. manual testing for unit test, stress test, or security testing? What is the code coverage of various forms of testing? How big are test tools measured in terms of function point metrics? How many test cases are needed to fully test an application of 10,000 function points in size? Preliminary data suggests that about 15,000 function points of test tools are required to fully support a professional software tester. A somewhat depressing topic is that the measure defect removal efficiency level of most forms of testing is only about 35%, in that the tests only find one bug out of three that are present. An important question that can be studied using function point metrics is that of how many test cases are needed to raise the removal efficiency levels up to 950%? Also, how many test cases are needed to raise test coverage to 90%.

Opportunity 34: Embedded Software Analyses: The embedded software community has lagged in adopting function point metrics because of a mistaken idea that “function points only work for IT projects.” In fact, function point metrics are the best available metric for demonstrating facts about embedded software, such as the fact embedded software’s defect potentials and defect removal efficiency are better than IT projects. Now that function point costs and speed have reached useful levels, there is no reason why function point metrics cannot be used routinely on every kind of embedded application: medical equipment, aerospace equipment, automotive equipment, military equipment, machine tools, and even computer gaming equipment, MP3 players, and wrist watches.

Opportunity 35. Web site Analyses: Web applications and web sites have been growing explosively for the past 10 years, and show no sign of slowing down their growth over the next 10 years. Web applications have lagged in using function point metrics, or any other kind of metrics for that matter. When web applications are studied, they have higher than average productivity but lower than average quality. It is now possible to use function points for ascertaining the size of very large and complex web sites such a Amazon and EBay in the 20,000 function point size range. This will allow useful economic studies of development costs, maintenance costs, rates of growth, and total costs of ownership (TCO).

Opportunity 36. Balanced Scorecard Analyses: Dr. Robert Kaplan and Dr. David Norton of the Harvard Business School are the originators of the balanced scorecard measurement approach. The balanced scorecard includes four measurement topics: 1) the learning and growth perspective; 2) the business process perspective; 3) the customer perspective; 4) the financial perspective. Function point metrics are useful in all four perspectives. The most intriguing possibility is to use the new capability of using function points to measure software usage, and combine that view with software development also using function points. For example a tool like Microsoft Project is about 5,000 function points in size. If it is used by 100 managers in a corporation and saves each manager 150 hours in developing project plans, then the economic value can be quantified. One of the steps is to consider the total usage, which in this example would be 100 people each using 5,000 function points or a 500,000 function point daily usage value.

Opportunity 37. Metrics Conversion: As of 2008 there are about 25 variations in counting function point metrics and 5 variations in counting lines of code metrics. Some of the function point variations include IFPUG, COSMIC, NESMA, Finnish, Australian, the older Mark II method, backfired function points, feature points, web-object points, Gartner function points, unadjusted function points, and many more. The major variations in code counting include counting physical lines (with or without comments and blanks), counting logical statements, and counts of code that either include or exclude reused sections, macro calls, and many other topics. One of the advantages of the high-speed, low-cost function point methods is that it is technically straight-forward to include conversion logic from one metric to another. However the effort to include accurate conversion logic is not trivial, so conversion will only be added if there is a legitimate business need. Obviously there is a need to convert old data expressed in various flavors of lines of code into function point form. There may also be a business need to convert COSMIC function points into IFPUG function points, or vice versa. Since the bulk of all reliable benchmark data is now expressed in terms of IFPUG function points, the most solid business case is for a need to convert other metrics into IFPUG format.

Opportunity 38. Defense Analyses: The U.S. Department of Defense (DoD) owns more software than any other organization on the planet. In spite of constant attempts to improve and upgrade performance, the DoD continues to be troubled by a large number of software failures and by an even larger number of massive cost overruns and schedule slippages. It is not coincidental that the DoD has also lagged in use of function point metrics, in studies of defect potentials, in studies of defect removal efficiency levels, studies of maintenance performance, and studies of the costs and reliability of COTS packages. The older “lines of code” metric cannot do any of these studies. In fact LOC results are bad enough to be viewed as professional malpractice. It can be stated that the DoD will gain more value from the widespread utilization of function point metrics than any other industry segment, because of the huge volumes of software already deployed and planned for the future. The DoD urgently needs accurate measurements of quality, reliability, schedules, costs, and staffing levels. These are not possible using lines of code metrics, so migration to function points is important. However with a portfolio of existing software that approaches 100,000,000 function points the DoD cannot possibly afford the high costs of normal function point analysis.

Opportunity 39. Supply-chain Analyses: As a manufactured product moves from the raw material stage to the finished product stage, there may be more than a dozen companies involved. Each of these companies will use software to add value to the finished product. It is an interesting but unanswered question as to whether products that utilize very large amounts of software are more efficient or have better or worse quality levels than products using traditional manual methods. This is a new business opportunity because the total quantity of software involved in manufacturing a complex product such as an automobile or an aircraft could top 1,000,000 function points and as many as 50 suppliers.

Opportunity 40. International Analyses: A topic of great importance to the software industries and national governments of many countries is how software productivity and quality compare to those of other countries. Function point metrics combined with process assessments provide the best approaches for measuring this important topic. Additional factors need to be recorded, however. Basic topics such as the number of work days per year, number of work hours per day, and the amount of unpaid overtime have a very significant effect on national performance. For example software engineers in Japan put in more unpaid overtime than almost any country. Software workers in France, Canada, or Germany, by contrast, put in very few hours of unpaid overtime. Within any given country there are also regional and industrial differences in work patterns, and these need to be recorded too. Although the well-known ISBSG data base of software benchmarks does record countries that provide data, the country information has not yet been released due to the fear that it might be used to gain undue competitive advantages.

Opportunity 41. Marketing Analyses: It obviously costs more to develop an application of 10,000 function points than it does an application of 1,000 function points. But is it harder or easier to market large applications? Up until now marketing analysts have never had reliable data on the sizes of software applications. Now that it is known that applications such as Vista are about 160,000 function points in size while Linux is only about 20,000 function points in size it will be possible to use this information to study interesting market trends. It will also be possible to carry out side-by-side feature analyses of similar applications, such as comparing Microsoft Office to Open Office to the Google office suite. In order to do this, the new ability size individual features of large applications will be used. This is a new opportunity for function point metrics that was not part of the older business model. Further, now that COTS applications can be sized it will be possible to analyze business topics such as retail costs per function point, which have never been possible before. This is likely to benefit competition and perhaps lower some of the excessive pricing structures now part of the software business.

Opportunity 42. Business Process Analyses: One of the reasons why business process reengineering does not usually accomplish very much is lack of quantification of the relative proportions of manual effort and software usage to accomplish basic business tasks. For example, when a customer places an order by phone with a company such as Dell, how many people and how much software are involved until the computer that was ordered actually leaves the dock for the customer? There are hundreds of business processes that need careful analysis of the relative proportions of manual effort vs. software measured in terms of function points. Some additional examples include basic activities such as accounts payable, accounts receivable, purchasing, government activities such as renewing drivers’ licenses or assessing real estate value. By including software size in terms of function points, it will be possible to do more sophisticated forms of process analysis. Another aspect of business process analysis that has historically been weak is failure to consider the effects of bugs or defects in the software itself. Thus quality control has been a missing ingredient. As mentioned previously, one of the first uses of computers was to displace clerical workers in tasks that dealt primarily with paper handling. Thus starting in the 1970’s it was noted that about 10,000 function points could be substituted for one insurance claims clerk. In robotic manufacturing, it takes about 150,000 function points of automated machine tools to displace one factory worker. As software becomes more sophisticated, it is of some importance to be able to quantify the numbers of workers of various kinds that might be displaced.

Opportunity 43. Litigation (tax cases): Function point metrics are often used in tax litigation where the value of software assets has been challenged by the Internal Revenue Service (IRS). One of the largest software tax cases in history involved the valuation of the software assets owned by EDS when the company was acquired by General Motors. Function point metrics are the best choice for dealing with software creation expenses

and software value analysis. Since the IRS already uses function points for software tax issues, this is a current business opportunity that should expand in the future.

Opportunity 44. Venture Capital Analyses: When a venture capital company is about to invest money in a software company, what are the risks involved? Given the high failure rate and frequent overruns of software projects, what are the odds of a successful software application being developed and released before the money runs out? Currently about 90% of venture-funded companies fail within two years. By using high-speed, low-cost function points to predict the development speed, costs, and quality of the software that is being venture-funded, it would be possible to weed out weak candidates. If so, venture failure rates might drop below 50% and hence permit larger investments in companies with good chances of business success. The new high-speed function point method combined with quality and risk analyses should give a much better understanding of both the risks and potential values of the situation. Both the venture capitalists and the entrepreneurs are likely to commission studies of schedules, costs, quality, and value using function point metrics. This is a new business opportunity and not a significant part of the older function point business model, in part because the software under consideration may not have complete requirements at the time the venture company makes a first round investment.

Opportunity 45. Programming Languages: The topic of “backfiring” or mathematical relationships between function point metrics and lines of code metrics has been studied since about 1975. As of 2008 there are more than 700 programming languages in existence. As of 2008, over 50% of all software applications utilize at least two separate programming languages, and some applications contain as many as 15 different languages. There is a continuing need to explore topics such as the relationship between programming languages and function point metrics. Now that low-cost, high-speed function point sizing is possible, the costs of such studies will become so low that backfiring ratio analyses could be carried out by university students as research projects.

Opportunity 46: Earned-Value Analyses: The earned-value approach is widely used in defense contracts, and is starting to move into the area of civilian contracts as well. To date function point metrics have not been part of the earned-value approach, but they should soon become widely used for early estimates before development begins and then used again to certify that the components meet contractual agreements as they are delivered.

Opportunity 47: Infrastructure and substrate or technical requirements analyses: Many years ago (before function points were invented) IBM did a study of accounting software and found that only about 25% of the code in accounting packages had anything to do with accounting at all. The other 75% was the code needed to make accounting work on a computer. As time passed improvements in operating systems and utilities have reduced the overhead needed to put business problems on a computer, but even in 2008 between 15% and 50% of the effort involved with software development is concerned with technical platform issues rather than the business issues of the applications themselves. As of 2008 web development has the lowest overhead and embedded software has the highest overhead. This is one of the reasons why embedded software has a higher cost per function point than web applications. It is useful to know the kinds of activities and costs associated with putting business features onto various platforms. As web-enabled applications, service-oriented architecture (SOA), software as a service (SaaS), and certified reusable components become more widespread, the overhead will probably decline still further. However it is significant to quantify the overhead items. This is a new opportunity that has only recently started to be studied with care. An interesting question is whether the substrate software underneath the business application itself can be measured with function point metrics, or needs a separate metric. Function point metrics can be used if the user view is expanded from end users to the designers of operating systems and hardware platforms. An analogy is that infrastructure costs are similar to building codes in home construction. For example in many coastal states such as Rhode Island homes within a mile of the ocean now are required to use hurricane-proof windows, at considerable expense. Home construction can still be estimated using “cost per square foot” but for homes near the ocean the new windows will add to those costs.

Opportunity 48: Educational uses of function points: Knowledge of software economics is distressingly bad in the United States. Neither software engineering schools nor MBA programs have effective training in software economics, in part because of the paucity of reliable data on costs, schedules, quality, and maintenance expenses. Now that high-speed function point metrics are available and are part of high-speed estimating tools, it is possible to make real advances in software economic education. Some of the topics that can now be illustrated in only a few minutes are the economic values of the CMM approach, how Agile projects compare to older waterfall projects, what happens when formal inspections are added to a defect removal series, how software project requirements grow, and dozens of topics that should be understood but are not. Post mortems of cancelled projects can be displayed side-by-side against successful projects of the same size and type. Very few project managers in the United States know that cancelled projects cost more than successful projects. Very few software engineers or project managers know that adding inspections to the defect removal steps will shorten total development schedules and lower development costs. Although the educational uses of high-speed function points will not be a major source of income, in the long run the educational uses of function points will be the most valuable for the software industry and possibly for the U.S. economy as a whole.

Opportunity 49: Delivery Channel Analyses: Up until the past few years software was always delivered on physical media such as tapes or disks. In recent years more and more software is delivered via downloads from the web. In fact software may not even be delivered at all to a client’s computer, but can be run remotely from the vendor’s web site or host computer. Because delivery by physical media is expensive, vendors prefer electronic delivery. Software is almost the only expensive product that can be delivered electronically at high speeds. But electronic delivery demands high-speed connections to be cost effective for users. As software becomes a global commodity and usage expands in developing countries, it is interesting to perform studies on the most cost-effective and secure delivery channels. For example a floppy disk can only hold about 5,000 function points but a CD or DVD disk can hold millions of function points. Downloading via a modem at 56K baud only allows about 500 function points per minute to be downloaded, while a high-speed connection allows about 50,000 function points per minute. This is a new form of analysis that was not part of the older function point business model. This question is of more than casual importance. If web-site delivery and broad-band delivery increase as fast as they have been to date, by about 2020 a substantial portion of the available band width may be tied up in distributing and using function points. The business model for “software as a service” (SaaS) assumes almost infinite band width. If band width is finite and speed is slow, then SaaS cannot reach its projected business potentials.

Opportunity 50: National Studies: As of 2008 the United States produces and consumes more software than any other country. The U.S. probably produces in the range of 100,000,000 function points per calendar year. When consumption is considered, every U.S. citizen probably uses more than 100,000 function points per day without even knowing it. Everyone who has a cell phone, a digital watch, a digital camera, modern kitchen appliances, and a fairly new automobile is surrounded by dozens of small computers and large quantities of software. The production and sale of software either as software itself or embedded in manufactured products is a major component of the U.S. economy, and an increasingly important component of countries such as China, India, and Russia. Function point metrics can be used to measure the economic importance of software to both the developed countries and the developing countries. In order to use function points for this purpose, it is necessary to know the sizes of every form of software that a country produces and uses. This was not possible using manual function point analysis because many applications were too large or too specialized for function point counts. Now that function points can be applied quickly to any form of software, an important new form of large-scale economic analysis is now possible. Examples of topics that can now be studied using function point metrics include: 1) The relative manufacturing efficiencies of Ford vs. Toyota; 2) Correlations between insurance and medical function point usage and health care costs; 3) The relative performance and efficiencies of state government operations; 4) The relative capabilities of U.S. combat troops, aircraft, and Naval vessels vs. those of other countries; 5) The economic value of software exports and imports; 6) The relative volumes of open-source software as part of overall national software development and consumption. This last topic is of some importance. Due to Microsoft, IBM, Symantec and a few other companies the U.S. exports more commercial fee-based software than all other countries put together, and the value of these exports is significant to the overall U.S. economy. If open-source software should begin to supplant fee-based software, it will have a perceptible impact on both Microsoft and the national economy. As of 2008 open-source software seems to be less than 2% of overall domestic software usage. If that number should increase to perhaps 20%, it would cause a significant economic perturbation throughout the world. National studies of software using function point metrics are a brand new kind of economic analysis that has only just begun to be considered. National usage of software measured with function points and trans-national distribution, sales, and purchasing of software quantified by function points are an interesting indicator of relative economic performance.

The 50 business opportunities discussed here are not an exhaustive list. They are only examples of some of the kinds of business opportunities that need low-cost and high-speed function point counts to become commercially viable. For example, yet another kind of study would examine and quantify the quality levels of open-source applications such as Linux and Firefox compared to fee-based applications such as Vista and Internet Explorer.

Another very important kind of study will be a form of “Consumer Reports” analysis that examines the cost per function point of various commercial software packages and reports to customers on products that may be priced artificially high for the services and features they provide. For example Microsoft Office Professional is perhaps 95,000 function points in size and costs about $500.00 for a cost of $0.052 per function point. Google Office is only about 50,000 function points and the Open Office Suite is about 75,000 function points, but both are available for no cost. Word Perfect’s office suite is perhaps 80,000 function points and available for about half the cost of Microsoft Office. These are only hypothetical examples, but they show an interesting new kind of analysis that has not been possible before. Once this kind of information becomes available, it is likely to benefit competition and perhaps to lower the retail prices of applications that have been priced artificially higher than their competitors.

Not only can price per function point be compared, but also the features of various applications in the same market space. Historically Microsoft applications tend to have the largest number of features of commercial applications in any general area. But since not all features are necessary for all users, a similar application with fewer features and a lower cost may be a more attractive product for many customers.

Although pricing studies of COTS software is likely to become an important use of function point metrics, it is not listed as a major revenue opportunity because of the assumption that this kind of study would be carried out by either non-profit organizations or by universities. However vendors in competitive markets may well commission function-point feature analyses of other tools and software packages to demonstrate that they either have a lower cost per function point, provide more features, or have better quality levels. If this occurs, then the revenues from COTS pricing studies could top $50,000,000 per year.

In addition there will probably be dozens of new or updated software tools such as function point sizing tools, quality estimating tools, cost estimating tools, maintenance estimating tools, ERP deployment estimating tools, and many more.

The Hazards and Errors of “Lines of Code” Metrics
The reason that function point metrics will expand rapidly once costs go down is because the older “lines of code” metric has been found to violate standard economic assumptions when analyzed carefully. Few people in the industry realize that LOC metrics penalize high-level and object-oriented languages. Very few people have actually studied the problems of LOC metrics.

One of the oldest and most widely used metrics for software has been that of “lines of code” which is usually abbreviated to “LOC.” Unfortunately this metric is one of the most ambiguous and hazardous metrics in the history of business. LOC metrics are ambiguous because they can be counted using either physical lines or logical statements. LOC metrics are hazardous because they penalize high-level programming languages, and can’t be used to measure non-coding activities.

The development of Visual Basic and its many competitors have changed the way many modern programs are developed. Although these visual languages do have a procedural source code portion, quite a bit of the more complex kinds of “programming” are done using button controls, pull-down menus, visual worksheets, and reusable components. In other words, programming is being done without anything that can be identified as a “line of code” for measurement or estimation purposes. By today in 2008 perhaps 60% of new software applications are developed using either object-oriented languages or visual languages (or both). Indeed, sometimes as many as 12 to 15 different languages are used in the same applications.

For large systems, programming itself is only the fourth most expensive activity. The three higher-cost activities cannot be measured or estimated effectively using the lines of code metric. Also, the fifth major cost element, project management, cannot easily be estimated or measured using the LOC metric either. Table 2 shows the rank order of software cost elements for large applications in descending order:

Table 2: Rank Order of Large System Software Cost Elements

1. Defect removal (inspections, testing, finding and fixing bugs)

2. Producing paper documents (plans, specifications, user manuals)

3. Meetings and communication (clients, team members, managers)

4. Programming

5. Project management

The usefulness of a metric such as lines of code which can only measure and estimate one out of the five major software cost elements of software projects is a significant barrier to economic understanding.

Following is an excerpt from the 3rd edition of the author’s book Applied Software Measurement (McGraw Hill, 2008) that illustrates the economic fallacy of KLOC metrics:

“The reason that LOC metrics give erroneous results with high-level languages is because of a classic and well known business problem: the impact of fixed costs. Coding itself is only a small fraction of the total effort that goes into software. Paperwork in the form of plans, specifications, and user documents often cost much more. Paperwork tends to act like a fixed cost, and that brings up a well-known rule of manufacturing: “when a manufacturing process includes a high percentage of fixed costs and there is a reduction in the number of units manufactured, the cost per unit will go up.”

Here are two simple examples, showing both the lines-of-code results and function point results for doing the same application in two languages: basic assembly and C++. In Case 1 we will assume that an application is written in assembly. In Case 2 we will assume that the same application is written in C++.

Case 1: Application Written in the Assembly Language

Assume that the assembly language program required 10,000 lines of code, and the various paper documents (specifications, user documents, etc.) totaled to 100 pages. Assume that coding and testing required 10 months of effort, and writing the paper documents took 5 months of effort. The entire project totaled 15 months of effort, and so has a productivity rate of 666 LOC per month. At a cost of $10,000 per staff month the application cost $150,000. Expressed in terms of cost per source line, the costs are $15.00 per line of source code.

Case 2: The Same Application Written in the C++ Language

Assume that C++ version of the same application required only 1,000 lines of code. The design documents probably were smaller as a result of using an O-O language, but the user documents are the same size as the previous case: assume a total of 75 pages were produced. Assume that coding and testing required 1 month and document production took 4 months. Now we have a project where the total effort was only 5 months, but productivity expressed using LOC has dropped to only 200 LOC per month. At a cost of $10,000 per staff month the application cost $50,000 or only one third as much as the assembly language version. The C++ version is a full $100,000 cheaper than the assembly version, so clearly the C++ version has much better economics. But the cost per source line for this version has jumped to $50.00.

Even if we measure only coding, we still can't see the value of high-level languages by means of the LOC metric: the coding rates for both the assembly language and C++ versions were both identical at 1,000 LOC per month, even though the C++ version took only 1 month as opposed to 10 months for the assembly version.

Since both the assembly and C++ versions were identical in terms of features and functions, let us assume that both versions were 50 function points in size. When we express productivity in terms of function points per staff month, the assembly version had a productivity rate of 3.33 function points per staff month. The C++ version had a productivity rate of 10 function points per staff month. When we turn to costs, the assembly version had a cost of $3000 per function point while the C++ version had a cost of $1000 per function point. Thus function point metrics clearly match the assumptions of standard economics, which define productivity as “goods or services produced per unit of labor or expense.”

Lines of code metrics, on the other hand, do not match the assumptions of standard economics and in fact show a reversal. Lines of code metrics distort the true economic case by so much that their use for economic studies involving more than one programming language might be classified as professional malpractice.

The only situation where LOC metrics behave reasonably well is when two projects utilize the same programming language. In that case, their relative productivity can be measured with LOC metrics. But if two or more different languages are used, the LOC results will be economically invalid.”

A Short History of Lines of Code (LOC) Metrics

It is interesting to consider the history of LOC metrics:

Circa 1960: When the LOC metric was first introduced there was only one programming language and that was basic assembly language. Programs were small and coding effort comprised about 90% of the total work. Physical lines and logical statements were the same thing for basic assembly. In this early environment, LOC metrics were useful for both economic and quality analysis. Unfortunately as the software industry changed, the LOC metric did not change and so became less and less useful until by about 1980 it had become extremely harmful without very many people realizing it.

Circa 1970: By 1970 basic assembly had been supplanted by macro-assembly. The first generation of higher-level programming languages such as COBOL, FORTRAN, and PL/I were starting to be used. The first known problem with LOC metrics was in 1970 when many IBM publication groups exceeded their budgets for that year. It was discovered (by the author) that technical publication group budgets had been based on 10% of the budget for programming. The publication projects based on assembly language did not overrun their budgets, but manuals for the projects coded in PL/S (a derivative of PL/I) had major overruns. This was because PL/S reduced coding effort by half, but the technical manuals were as big as ever. The initial solution was to give a formal mathematical definition to language “levels.” The “level” was the number of statements in based assembly language needed to equal the functionality of 1 statement in a higher-level language. Thus COBOL was a “level 3” language because it took 3 assembly statements to equal 1 COBOL statement. Using the same rule, SMALLTALK is a level 18 language. The documentation problem was one of the reasons IBM assigned Allan Albrecht and his colleagues to develop function point metrics. Also macro assembly language had introduced reuse, and had begun the troublesome distinction between physical lines of code and logical statements. The percentage of project effort devoted to coding was dropping from 90% down to about 50%, and LOC metrics were no longer effective for economic or quality studies. After function point metrics were developed circa 1975 the definition of “language level” was expanded to include the number of logical code statements equivalent to 1 function point. COBOL, for example requires about 105 statements per function point in the procedure and data divisions. This expansion is the mathematical basis for “backfiring” or direct conversion from source code to function points. Of course individual programming styles make backfiring a method with poor accuracy.

Circa 1980: By about 1980 the number of programming languages had topped 50 and object-oriented languages were rapidly evolving. As a result, software reusability was increasing rapidly. Another issue circa 1980 was the fact that many applications were starting to use more than one programming language, such as COBOL and SQL. In the middle of this decade the first commercial software cost estimating tool based on function points had reached the market, SPQR/20. By the end of this decade coding effort was below 35% of total effort, and LOC was no longer valid for either economic or quality studies. LOC metrics could not quantify requirements and design defects, which now outnumbered coding defects. LOC metrics could not be used to measure any of the non-coding activities such as requirements, design, documentation, or project management. The response of the LOC users to these problems was unfortunate: they merely stopped measuring anything but code production and coding defects. The bulk of all published reports based on LOC metrics cover less than 35% of development effort and less than 25% of defects, with almost no data being published on requirements and design defects, rates of requirements creep, design costs, and other modern problems.

Circa 1990: By about 1990 not only were there more than 500 programming languages in use, but some applications were written in 12 to 15 different languages. There were no international standards for counting code, and many variations were used sometimes without being defined. A survey of software journals in 1993 found that about one third of published articles used physical lines, one third used logical statements, and the remaining third used LOC metrics without even bothering to say how they were counted. Since there is about a 500% variance between physical LOC and logical statements for many languages, this was not a good situation. Even worse the arrival of Visual Basic introduced a class of programming language where counting lines of code was not possible. This is because a lot of Visual Basic “programming” was not done with procedural code but rather with buttons and pull-down menus. In the middle of this decade a controlled study was done that used both LOC metrics and function points for 10 versions of the same application written in 10 different programming languages including four object-oriented languages. This study was published in American Programmer in 1994. This study found that LOC metrics violated the basic concepts of economic productivity and penalized high-level and OO languages due to the fixed costs of requirements, design, and other non-coding activities. This was the first published study to state that LOC metrics constituted professional malpractice if used for economic studies where more than one programming language was involved. By the 1990’a most consulting studies that collected benchmark and baseline data used function points. There are no large-scale benchmarks based on LOC metrics. The International Software Benchmark Standards Group (ISBSG) was formed in 1997 and only publishes data in function point form. By the end of the decade, some projects were spending less than 20% of the total effort on coding, so LOC metrics could not be used for the 80% of effort outside the coding domain. The LOC users remained blindly indifferent to these problems, and continued to measure only coding, while ignoring the overall economics of complete development cycles that include requirements, analysis, design, user documentation, project management, and many other non-coding tasks. By the end of the decade non-coding defects in requirements and design outnumbered coding defects almost 2 to 1. But since non-code defects could not be measured with LOC metrics the LOC literature simply ignores them.

Circa 2000: By the end of the century the number of programming languages had topped 700 and continues to grow at more than 1 new programming language per month. Web applications are mushrooming, and all of these are based on very high-level programming languages and substantial reuse. The Agile methods are also mushrooming, and also tend to use high-level programming languages. Software reuse in some applications now tops 80%. LOC metrics cannot be used for most web applications and are certainly not useful for measuring Scrum sessions and other non-coding activities that are part of Agile projects. Function point metrics have become the dominant metric for serious economic and quality studies. But two new problems have appeared that have kept function point metrics from actually becoming the industry standard for both economic and quality studies. The first problem is the fact that some software applications are now so large (>300,000 function points) that normal function point analysis is too slow and too expensive to be used. The second problem is that the success of function points has triggered an explosion of function point “clones.” As of 2008 there are at least 24 function point variations. This makes benchmark and baseline studies difficult, because there are very few conversion rules from one variation to another. Although LOC metrics continue to be used, they continue to have such major errors that they constitute professional malpractice for economic and quality studies where more than one language is involved, or where non-coding issues are significant.

Circa 2010: It would be nice to predict an optimistic future, but if current trends continue within a few more years the software industry will have more than 800 programming languages of which about 750 will be obsolete or becoming dead languages, more than 20 variations for counting lines of code, more than 50 variations for counting function points, and probably another 20 unreliable metrics such as “cost per defect” or percentages of unstable numbers. Future generations of sociologists will no doubt be interested in why the software industry spends so much energy on creating variations of things, and so little energy on fundamental issues. No doubt large projects will still be cancelled, litigation for failures will still be common, software quality will still be bad, software productivity will remain low, security flaws will be alarming, and the software literature will continue to offer unsupported claims without actually presenting quantified data. What the software industry needs is actually fairly straightforward: 1) measures of defect potentials from all sources; 2) measures of defect removal efficiency levels for all forms of inspection and testing; 3) activity-based productivity benchmarks from requirements through delivery and then for maintenance and customer support from delivery to retirement; 4) certified sources of reusable material near the zero-defect level; 5) much improved security methods to guard against viruses, spyware, and hacking; 6) licenses and board-certification for software engineering specialties. But until measurement becomes both accurate and cost-effective, none of these are likely to occur.

The Hazards and Errors of the “Cost per Defect” Metric

The well-known and widely cited “cost per defect measure” also violates the canons of standard economics. Although this metric is often used to make quality claims, its main failing is that it penalizes quality and achieves the best results for the buggiest applications! Furthermore, when zero-defect applications are reached there are still substantial appraisal and testing activities that need to be accounted for. Obviously the “cost per defect” metric is useless for zero-defect applications.

Because of the way cost per defect is normally measured, as quality improves, “cost per defect” steadily increases until zero-defect software is achieved, at which point the metric cannot be used at all.

As with KLOC metrics, the main source of error is that of ignoring fixed costs. Three examples will illustrate how “cost per defect” behaves as quality improves.

In all three cases, A, B, and C, we can assume that test personnel work 40 hours per week and are compensated at a rate of $2,500 per week or $62.50 per hour. Assume that all three software features that are being tested are 100 function points in size.

Case A: Poor Quality

Assume that a tester spent 15 hours writing test cases, 10 hours running them, and 15 hours fixing 10 bugs. The total hours spent was 40 and the total cost was $2,500. Since 10 bugs were found, the cost per defect was $250. The cost per function point for the week of testing would be $25.00.

Case B: Good Quality

In this second case assume that a tester spent 15 hours writing test cases, 10 hours running them, and 5 hours fixing one bug, which was the only bug discovered. However since no other assignments were waiting and the tester worked a full week 40 hours were charged to the project. The total cost for the week was still $2,500 so the cost per defect has jumped to $2,500. If the 10 hours of slack time are backed out, leaving 30 hours for actual testing and bug repairs, the cost per defect would be $1,875. As quality improves, “cost per defect” rises sharply. Let us know consider cost per function point. With the slack removed the cost per function point would be $18.75. As can easily be seen cost per defect goes up as quality improves, thus violating the assumptions of standard economic measures. However, as can also be seen, testing cost per function point declines as quality improves. This matches the assumptions of standard economics. The 10 hours of slack time illustrate another issue: when quality improves defects can decline faster than personnel can be reassigned.

Case C: Zero Defects

In this third case assume that a tester spent 15 hours writing test cases and 10 hours running them. No bugs or defects were discovered. Because no defects were found, the “cost per defect” metric cannot be used at all. But 25 hours of actual effort were expended writing and running test cases. If the tester had no other assignments, he or she would still have worked a 40 hour week and the costs would have been $2,500. If the slack 15 hours of slack time are backed out, leaving 25 hours for actual testing, the costs would have been $1,562. With slack time removed, the cost per function point would be $15.63. As can be seen again, testing cost per function point declines as quality improves. Here too, the decline in cost per function point matches the assumptions of standard economics.

Time and motion studies of defect repairs do not support the aphorism that “it costs 100 times as much to fix a bug after release as before.” Bugs typically require between 15 minutes and 4 hours to repair. There are some bugs that are expensive and these are called “abeyant defects” by IBM. Abeyant defects are customer-reported defects which the repair center cannot recreate, due to some special combination of hardware and software at the client site. Abeyant defects comprise less than 5% of customer-reported defects.

Because of the fixed or inelastic costs associated with defect removal operations, cost per defect always increases as numbers of defects decline. Because more defects are found at the beginning of a testing cycle than after release, this explains why cost per defect always goes up later in the cycle. It is because the costs of writing test cases, running them, and having maintenance personnel available act as fixed costs. In any manufacturing cycle with a high percentage of fixed costs, the cost per unit will go up as the number of units goes down. This basic fact of manufacturing economics is why both “cost per defect” and “lines of code” are hazardous and invalid for economic analysis of software applications.

The Hazards of Multiple Metrics without Conversion Rules

There are many sciences and engineering disciplines that have multiple metrics for the same values. For example we have nautical miles, statute miles, and kilometers for measuring speed and distance. We have Fahrenheit and Celsius for measuring temperature. We have three methods for measuring the octane ratings of gasoline. However, other engineering disciplines have conversion rules from one metric to another.

The software industry is unique in having more metric variants than any other engineering discipline in history, combined with an almost total lack of conversion rules from one metric to another. As a result, producing accurate benchmarks of software productivity and quality is much harder than for any other engineering field.

The author has identified five distinct variations in methods for counting lines of code, and 24 distinct variations in counting function point metrics. New variations are occurring almost faster than they can be counted. There are no standard conversion rules between any of these variants.

Here is an example of why this situation is harmful to the industry. Suppose you are a consultant who has been commissioned by a client to find data on the costs and schedules of producing a certain kind of software, such as a PBX switching system. You scan the literature and benchmark data bases and discover that data exists on 66 similar projects. You would like to perform a statistical analysis of the results for presentation to the client. But now the problems begin when trying to do statistical analysis of the 66 samples:

1. Three were measured using lines of code, and counted physical lines.

2. Three were measured using lines of code, and counted logical statements.

3. Three were measured using lines of code, and did not state the counting method.

4. Three were constructed from reusable objects and only counted custom code

5. Three were measured using IFPUG function point metrics.

6. Three were measured using COSMIC function point metrics.

7. Three were measured using Full function points.

8. Three were measured using Mark II function point metrics.

9. Three were measured using FESMA function points

10. Three were measured using NESMA function points.

11. Three were measured using unadjusted function points.

12. Three were measured using Engineering function points.

13. Three were measured using Web-object points.

14. Three were measured using Function points light.

15. Three were measured using backfire function point metrics.

16. Three were measured using Feature points.

17. Three were measured using Story points.

18. Three were measured using Use Case points.

19. Three were measured using MOOSE metrics.

20. Three were measured using goal-question metrics.

21. Three were measured using TSP/PSP task hours.

22. Three were measured using RTF metrics.

As of 2008 there are no effective conversion rules between any of these metrics. There is no effective way of performing a statistical analysis of results. Why the software industry has developed so many competing variants of software metrics is an unanswered sociological question.

Developers of new versions of function point metrics almost always fail to provide conversion rules between their new version and older standard metrics such as IFPUG function points. In the author’s view it is the responsibility of the developers of new metrics to provide conversion rules to older metrics. It is not the responsibility of organization such as IFPUG to provide conversion rules to scores of minor variations in counting practices.

The existence of five separate methods for counting source code and at least 24 variations in counting function points with almost no conversion rules from one metric to another is a professional embarrassment to the software industry. As of 2008 the plethora of ambiguous metrics is slowing progress towards a true economic understanding of the software industry.

SUMMARY AND CONCLUSIONS

Function point metrics are the most effective metrics yet developed for economic studies, quality studies, maintenance studies, and comparative studies of industries and even countries. However the very slow speed of about 400 function points per day, and the high cost of about $6.00 per function point counted have limited the role of function point metrics to a few specialized benchmark and baseline studies. Less than 200 projects per year are being added to the available public benchmark data collections.

For function point metrics to achieve their full promise as the most effective software metrics in history, the speed of function point analysis needs to top 10,000 function points per day, and the costs need to drop down to about 1¢ per function point counted.

As of 2008 high-speed, low-cost function point methods are starting to become available. This discussion of a possible new business model for function point metrics considers what kinds of opportunities will become available when function point metrics can be applied to 100% of software development projects and 100% of maintenance and enhancement projects.
APPENDIX A: 150 EXAMPLES OF FUNCTION POINTS AND LINES OF CODE

This appendix illustrates the kinds of size information produced by Capers Jones’ Software Risk Master™ tool. The 150 size examples are based on a proprietary pattern matching technique. Each size prediction required less than 1 minute to complete. The entire table required less than 3 hours.

The accuracy of the predictions is uncertain because for some of the examples there is no way to actually get real counts. However for the projects where real counts have been available, the pattern matching method usually comes within 15%. Of course since its primary use is six months before projects even start, there can be many changes that will affect the function point total. This is why early predictions will often require normal function point analysis later on.

These examples show application sizes as delivered. Software Risk Master™ can also show requirements creep during development, and post-release growth during the maintenance period for up to 25 years.

Software Risk Master™ is currently aimed at producing function point counts that match the IFPUG function point approach. The tool and algorithms could be modified to match other metrics as well, such as COSMIC function points, NESMA function points, or Story points. A conversion utility may be added if the market for function point variants should grow large enough to be commercially viable.

Software Risk Master™ can also separate function points from the technology substrata that adds effort and difficulty to putting features on computers under specific operating systems.

Because many kinds of risks, and also value, are directly proportional to application size measured in terms of function points, the Software Risk Master™ tool is aimed at alerting software managers and clients to possible hazards before any funding is committed to a project and also before the first formal cost and schedule plans are prepared. It is intended to be used up to 6 months prior starting an application.

Since small applications below 1,500 function points are usually successful, the main target of Software Risk Master™ are large applications in the 10,000 to 300,000 function point range. Today these massive applications fail far more often than they succeed. Even if they are eventually delivered, they will have poor to marginal quality and very significant cost and schedule overruns.

	
	COPYRIGHT © 2007-2008 BY CAPERS JONES & ASSOCIATES LLC.
	

	
	ALL RIGHTS RESERVED.
	
	
	
	

	
	
	
	
	
	
	
	

	
	FUNCTION POINTS AND LINES OF CODE SIZES FOR 150 SOFTWARE APPLICATIONS

	
	
	
	
	
	
	
	

	
	Note 1:
	Sizes are not counted, but estimated using the Software Risk Master tool.

	
	Note 2:
	IFPUG counting rules, version 4.2 are assumed for the function point totals.

	
	Note 3:
	Source code size is expressed in terms of logical code statements.
	

	
	Note 4:
	Code size expressed in physical lines of code would yield different results.

	
	Note 5:
	Software Risk Master is being calibrated. These are examples only.
	

	
	
	
	
	
	
	
	

	
	Capers Jones
	
	4/30/2008
	
	
	

	
	
	
	
	
	
	
	

	
	Application
	
	Size in
	
	
	Lines per

	
	
	
	
	Function Points
	Language
	Total
	Funct.

	
	
	
	
	(IFPUG 4.2)
	Level
	Source Code
	Point

	
	
	
	
	
	
	
	

	1
	U.S. Air Traffic control
	 306,324
	 1.50
	 65,349,222
	 213

	2
	Star Wars missile defense
	 352,330
	 3.50
	 32,212,992
	 91

	3
	WWMCCS
	
	 307,328
	 3.50
	 28,098,560
	 91

	4
	North Korean Border defense
	 273,961
	 3.50
	 25,047,859
	 91

	5
	Oracle
	
	
	 310,346
	 4.00
	 24,827,712
	 80

	6
	Israeli air defense system
	 300,655
	 4.00
	 24,052,367
	 80

	7
	Iran's air defense system
	 260,100
	 3.50
	 23,780,557
	 91

	8
	SAP
	
	
	 296,764
	 4.00
	 23,741,088
	 80

	9
	NSA Echelon
	
	 293,388
	 4.50
	 20,863,147
	 71

	10
	Aegis destroyer C&C
	 253,088
	 4.00
	 20,247,020
	 80

	11
	IBM MVS
	
	
	 104,738
	 3.00
	 11,172,000
	 107

	12
	Microsoft VISTA
	
	 157,658
	 5.00
	 10,090,080
	 64

	13
	Microsoft XP
	
	 126,788
	 5.00
	 8,114,400
	 64

	14
	Airline reservation system
	 38,392
	 2.00
	 6,142,689
	 160

	15
	Microsoft Office Professional
	 93,498
	 5.00
	 5,983,891
	 64

	16
	VA Patient monitoring
	 23,109
	 1.50
	 4,929,910
	 213

	17
	NSA code decryption
	 35,897
	 3.00
	 3,829,056
	 107

	18
	FBI Carnivore
	
	 31,111
	 3.00
	 3,318,515
	 107

	19
	IBM IMS data base
	
	 14,912
	 1.50
	 3,181,283
	 213

	20
	FBI fingerprint analysis
	 25,075
	 3.00
	 2,674,637
	 107

	21
	Nuclear reactor controls
	 19,084
	 2.50
	 2,442,747
	 128

	22
	NASA space shuttle
	
	 23,153
	 3.50
	 2,116,878
	 91

	23
	F115 avionics package
	 22,481
	 3.50
	 2,055,438
	 91

	24
	LexisNexis Legal analysis
	 22,434
	 3.50
	 2,051,113
	 91

	25
	Russian weather satellite
	 22,278
	 3.50
	 2,036,869
	 91

	26
	NASA Hubble controls
	 21,632
	 3.50
	 1,977,754
	 91

	27
	Shipboard gun controls
	 21,199
	 3.50
	 1,938,227
	 91

	28
	Oil refinery process control
	 17,203
	 3.00
	 1,834,936
	 107

	29
	M1 Abrams battle tank
	 19,569
	 3.50
	 1,789,133
	 91

	30
	Boeing 747 avionics package
	 19,446
	 3.50
	 1,777,951
	 91

	31
	NASA Mars rover
	
	 19,394
	 3.50
	 1,773,158
	 91

	32
	Order entry system
	
	 18,052
	 3.50
	 1,650,505
	 91

	33
	Oil refinery process control
	 17,471
	 3.50
	 1,597,378
	 91

	34
	Corporate cost accounting
	 17,378
	 3.50
	 1,588,804
	 91

	35
	Tomahawk cruise missile
	 17,311
	 3.50
	 1,582,694
	 91

	36
	ITT System 12 telecom
	 17,002
	 3.50
	 1,554,497
	 91

	37
	ADP Payroll application
	 16,390
	 3.50
	 1,498,554
	 91

	38
	Inventory management
	 16,239
	 3.50
	 1,484,683
	 91

	39
	Natural language translation
	 20,350
	 4.50
	 1,447,135
	 71

	40
	American Express billing
	 20,141
	 4.50
	 1,432,238
	 71

	41
	Patriot missile controls
	 15,392
	 3.50
	 1,407,279
	 91

	42
	IRS income tax analysis
	 19,013
	 4.50
	 1,352,068
	 71

	43
	Brain/Computer interface
	 25,327
	 6.00
	 1,350,757
	 53

	44
	Cruise ship navigation
	 18,896
	 4.50
	 1,343,713
	 71

	45
	MRI medical imaging
	 18,785
	 4.50
	 1,335,837
	 71

	46
	Denver Airport luggage
	 16,661
	 4.00
	 1,332,869
	 80

	47
	Google search engine
	 18,640
	 5.00
	 1,192,958
	 64

	48
	Skype
	
	
	 21,202
	 6.00
	 1,130,759
	 53

	49
	Data Warehouse
	
	 21,895
	 6.50
	 1,077,896
	 49

	50
	Motor vehicle registrations
	 10,927
	 3.50
	 999,065
	 91

	51
	America On Line (AOL)
	 14,761
	 5.00
	 944,713
	 64

	52
	FEDEX shipping controls
	 17,378
	 6.00
	 926,802
	 53

	53
	Ask search engine
	
	 16,895
	 6.00
	 901,060
	 53

	54
	Animated film graphics
	 21,813
	 8.00
	 872,533
	 40

	55
	Travelocity
	
	 19,383
	 8.00
	 775,306
	 40

	56
	Insurance claims handling
	 10,491
	 4.50
	 745,995
	 71

	57
	EBAY transaction controls
	 16,233
	 7.00
	 742,072
	 46

	58
	State wide child support
	 13,823
	 6.00
	 737,226
	 53

	59
	Linux
	
	
	 17,505
	 8.00
	 700,205
	 40

	60
	Toyota robotic mfg.
	
	 14,019
	 6.50
	 690,152
	 49

	61
	Vonage VOIP
	
	 13,811
	 6.50
	 679,939
	 49

	62
	Quicken 2006
	
	 11,339
	 6.00
	 604,761
	 53

	63
	NVIDIA graphics card
	 3,573
	 2.00
	 571,637
	 160

	64
	Apple I Phone
	
	 19,366
	 12.00
	 516,432
	 27

	65
	SAS statistical package
	 10,380
	 6.50
	 511,017
	 49

	66
	Oracle CRM Features
	 6,386
	 4.00
	 510,878
	 80

	67
	Amazon web site
	
	 18,080
	 12.00
	 482,126
	 27

	68
	Apple Leopard
	
	 17,884
	 12.00
	 476,898
	 27

	69
	U.S. Patent applications
	 4,429
	 3.50
	 404,914
	 91

	70
	Second Life web site
	 14,956
	 12.00
	 398,828
	 27

	71
	Lasik surgery (wave guide)
	 3,505
	 3.00
	 373,832
	 107

	72
	Chinese submarine sonar
	 4,017
	 3.50
	 367,224
	 91

	73
	EZPass vehicle controls
	 4,571
	 4.50
	 325,065
	 71

	74
	Enterprise Java Beans
	 5,877
	 6.00
	 313,434
	 53

	75
	Microsoft DOS
	
	 1,344
	 1.50
	 286,709
	 213

	76
	Software renovation tools
	 5,170
	 6.00
	 275,750
	 53

	77
	Computer BIOS
	
	 857
	 1.00
	 274,243
	 320

	78
	Microsoft Excel 2007
	 3,969
	 5.00
	 254,006
	 64

	79
	Patent data mining
	
	 4,751
	 6.00
	 253,400
	 53

	80
	ITMPI web site
	
	 11,033
	 14.00
	 252,191
	 23

	81
	All-in-one printer
	
	 1,780
	 2.50
	 227,893
	 128

	82
	DNA Analysis
	
	 6,213
	 9.00
	 220,918
	 36

	83
	Citizens bank on-line
	 3,917
	 6.00
	 208,927
	 53

	84
	Microsoft Outlook
	
	 3,200
	 5.00
	 204,792
	 64

	85
	SpySweeper antispyware
	 2,108
	 3.50
	 192,757
	 91

	86
	Microsoft Word 2007
	 2,987
	 5.00
	 191,152
	 64

	87
	Bank ATM controls
	
	 3,625
	 6.50
	 178,484
	 49

	88
	Artemis Views
	
	 2,507
	 4.50
	 178,250
	 71

	89
	Sun D-Trace utility
	
	 3,309
	 6.00
	 176,501
	 53

	90
	Laser printer driver
	
	 1,248
	 2.50
	 159,695
	 128

	91
	Adobe Illustrator
	
	 2,151
	 4.50
	 152,942
	 71

	92
	MapQuest
	
	 3,793
	 8.00
	 151,709
	 40

	93
	PBX switching system
	 1,592
	 3.50
	 145,517
	 91

	94
	SPR Checkpoint
	
	 1,579
	 3.50
	 144,403
	 91

	95
	AutoCAD
	
	
	 1,768
	 4.00
	 141,405
	 80

	96
	Seismic analysis
	
	 1,492
	 3.50
	 136,438
	 91

	97
	Automobile fuel injection
	 842
	 2.00
	 134,661
	 160

	98
	Software code restructuring
	 1,658
	 4.00
	 132,670
	 80

	99
	Sidewinder missile controls
	 1,450
	 3.50
	 132,564
	 91

	100
	Anti-lock brake controls
	 826
	 2.00
	 132,144
	 160

	101
	SPR KnowledgePlan
	
	 1,785
	 4.50
	 126,963
	 71

	102
	Microsoft Project 2007
	 1,963
	 5.00
	 125,631
	 64

	103
	Microsoft Visual Basic
	 1,900
	 5.00
	 121,631
	 64

	104
	Palm OS
	
	
	 1,310
	 3.50
	 119,772
	 91

	105
	Windows Mobile
	
	 1,858
	 5.00
	 118,900
	 64

	106
	Norton anti-virus software
	 2,068
	 6.00
	 110,300
	 53

	107
	ChessMaster 2007 game
	 2,227
	 6.50
	 109,647
	 49

	108
	PRICE-S
	
	
	 1,486
	 4.50
	 105,642
	 71

	109
	Toyota Prius engine
	
	 1,092
	 3.50
	 99,867
	 91

	110
	Property tax assessments
	 1,379
	 4.50
	 98,037
	 71

	111
	SLIM
	
	
	 1,355
	 4.50
	 96,342
	 71

	112
	Cochlear implant (internal)
	 1,041
	 3.50
	 95,146
	 91

	113
	IRA account management
	 1,281
	 4.50
	 91,096
	 71

	114
	Music synthesizer
	
	 1,134
	 4.00
	 90,736
	 80

	115
	Sony PlayStation controls
	 1,622
	 6.00
	 86,502
	 53

	116
	Software complexity analyzer
	 1,202
	 4.50
	 85,505
	 71

	117
	COCOMO II
	
	 1,178
	 4.50
	 83,776
	 71

	118
	Microsoft Links golf game
	 1,564
	 6.00
	 83,393
	 53

	119
	Digital camera controls
	 1,285
	 5.00
	 82,243
	 64

	120
	Motorola cell phone
	 1,507
	 6.00
	 80,347
	 53

	121
	APAR analysis and routing
	 866
	 3.50
	 79,197
	 91

	122
	Configuration control
	 1,093
	 4.50
	 77,705
	 71

	123
	Smart bomb targeting
	 1,154
	 5.00
	 73,864
	 64

	124
	Mozilla Firefox
	
	 1,340
	 6.00
	 71,463
	 53

	125
	Consumer credit report
	 1,267
	 6.00
	 67,595
	 53

	126
	Casio atomic watch
	
	 993
	 5.00
	 63,551
	 64

	127
	JAVA compiler
	
	 1,185
	 6.00
	 63,186
	 53

	128
	COCOMO I
	
	 883
	 4.50
	 62,794
	 71

	129
	GPS navigation system
	 1,518
	 8.00
	 60,730
	 40

	130
	Intel Math function library
	 1,627
	 9.00
	 57,842
	 36

	131
	Nintendo Game Boy DS
	 1,002
	 6.00
	 53,455
	 53

	132
	CAI APO (original estimate)
	 1,332
	 8.00
	 53,288
	 40

	133
	Football bowl selection
	 992
	 6.00
	 52,904
	 53

	134
	Google Gmail
	
	 1,306
	 8.00
	 52,232
	 40

	135
	Function point workbench
	 714
	 4.50
	 50,800
	 71

	136
	SPR SPQR/20
	
	 699
	 4.50
	 49,735
	 71

	137
	Apple I Pod
	
	 1,408
	 10.00
	 45,054
	 32

	138
	Instant messaging
	
	 687
	 5.00
	 43,944
	 64

	139
	Quick Sizer Commercial
	 794
	 6.00
	 42,326
	 53

	140
	LogiTech cordless mouse
	 736
	 6.00
	 39,267
	 53

	141
	CAI APO (revised estimate)
	 761
	 8.00
	 30,450
	 40

	142
	Wikipedia
	
	 1,142
	 12.00
	 30,448
	 27

	143
	Golf handicap analyzer
	 662
	 8.00
	 26,470
	 40

	144
	Denial of service virus
	 138
	 2.50
	 17,612
	 128

	145
	ILOVEYOU computer worm
	 22
	 2.50
	 2,838
	 128

	146
	Keystroke logger virus
	 15
	 2.50
	 1,886
	 128

	147
	MYDOOM computer virus
	 8
	 2.50
	 1,045
	 128

	148
	Quick Sizer prototype
	 30
	 20.00
	 480
	 16

	149
	APAR bug report
	
	 3.85
	 3.50
	 352
	 91

	150
	Screen format change
	 0.87
	 4.50
	 62
	 71

	
	
	
	
	
	
	
	

	
	AVERAGE
	
	
	 33,269
	 4.95
	 2,152,766
	 65

	
	
	
	
	
	
	
	

	
	COPYRIGHT © 2007-2008 BY CAPERS JONES & ASSOCIATES LLC. ALL RIGHTS RESERVED.

Appendix B: Sample Project Measured Using Function Point Metrics

	Table 3: Example of Complete Costs for Software Development
	
	
	

	
	
	
	
	
	
	
	

	Average monthly salary =
	$5,000
	
	
	
	
	

	Burden rate =
	
	50%
	
	
	
	
	

	Fully burdened monthly rate =
	$7,500
	
	
	
	
	

	Work hours per calendar month =
	132
	
	
	
	
	

	Application size in FP =
	1,500
	
	
	
	
	

	Application type =
	
	Systems
	
	
	
	
	

	CMM level =
	
	1
	
	
	
	
	

	Programming lang. =
	
	C
	
	
	
	
	

	LOC per FP =
	
	128
	
	
	
	
	

	
	
	
	
	
	
	
	

	Activities
	Staff
	Monthly
	Work Hours
	Burdened
	
	
	

	
	Funct. Pt.
	Funct. Pt.
	per
	Cost per
	Schedule
	
	Effort

	
	Assignment
	Production
	Funct. Pt.
	Funct. Pt.
	Months
	Staff
	Months

	
	Scope
	Rate
	
	
	
	
	

	
	
	
	
	
	
	
	

	01 Requirements
	500
	200
	0.66
	$37.50
	2.50
	3.00
	7.50

	02 Prototyping
	500
	150
	0.88
	$50.00
	3.33
	3.00
	10.00

	03 Architecture
	1,000
	300
	0.44
	$25.00
	3.33
	1.50
	5.00

	04 Project Plans
	1,000
	500
	0.26
	$15.00
	2.00
	1.50
	3.00

	05 Initial Design
	250
	175
	0.75
	$42.86
	2.86
	3.00
	8.57

	06 Detail Design
	250
	150
	0.88
	$50.00
	1.67
	6.00
	10.00

	07 Design Reviews
	200
	225
	0.59
	$33.33
	0.89
	7.50
	6.67

	08 Coding
	150
	25
	5.28
	$300.00
	6.00
	10.00
	60.00

	09 Reuse acquisition
	500
	1,000
	0.13
	$7.50
	0.50
	3.00
	1.50

	10 Package purchase
	2,000
	2,000
	0.07
	$3.75
	1.00
	0.75
	0.75

	11 Code inspections
	150
	75
	1.76
	$100.00
	2.00
	10.00
	20.00

	12 Ind. Verif. & Valid.
	1,000
	250
	0.53
	$30.00
	4.00
	1.50
	6.00

	13 Configuration mgt.
	1,500
	1,750
	0.08
	$4.29
	0.86
	1.00
	0.86

	14 Integration
	750
	350
	0.38
	$21.43
	2.14
	2.00
	4.29

	15 User documentation
	1,000
	75
	1.76
	$100.00
	13.33
	1.50
	20.00

	16 Unit testing
	200
	150
	0.88
	$50.00
	1.33
	7.50
	10.00

	17 Function testing
	250
	150
	0.88
	$50.00
	1.67
	6.00
	10.00

	18 Integration testing
	250
	175
	0.75
	$42.86
	1.43
	6.00
	8.57

	19 System testing
	250
	200
	0.66
	$37.50
	1.25
	6.00
	7.50

	20 Field (Beta) testing
	1,000
	250
	0.53
	$30.00
	4.00
	1.50
	6.00

	21 Acceptance testing
	1,000
	350
	0.38
	$21.43
	2.86
	1.50
	4.29

	22 Independent testing
	750
	200
	0.66
	$37.50
	3.75
	2.00
	7.50

	23 Quality assurance
	1,500
	250
	0.53
	$30.00
	6.00
	1.00
	6.00

	24 Installation/training
	1,500
	250
	0.53
	$30.00
	6.00
	1.00
	6.00

	25 Project management
	1,000
	75
	1.76
	$100.00
	13.33
	1.50
	20.00

	
	
	
	
	
	
	
	

	Cumulative Results
	420
	6
	22
	$1,249.94
	24.65
	3.57
	249.99

Because not all readers currently use function points or have seen data expressed in terms of function point metrics, this appendix illustrates the kind of information that can be gathered for software projects when function point metrics are utilized.

READINGS AND REFERENCES ON METRICS AND FUNCTION POINT ANALYSIS

Boehm, Barry Dr.; Software Engineering Economics; Prentice Hall, Englewood Cliffs, NJ; 1981; 900 pages.

Brooks, Fred: The Mythical Man-Month, Addison-Wesley, Reading, Mass., 1974, rev. 1995.
DeMarco, Tom; Why Does Software Cost So Much?; Dorset House, New York, NY; ISBN 0-9932633-34-X; 1995; 237 pages.

Fleming, Quentin W. & Koppelman, Joel M.; Earned Value Project Management; 2nd edition; Project Management Institute, NY; ISBN 10 1880410273; 2000; 212 pages.

Galorath, Daniel D. & Evans, Michael W.; Software Sizing, Estimation, and Risk Management: When Performance is Measured Performance Improves; Auerbach, Philadelphia, AP; ISBN 10-0849335930; 2006; 576 pages.

Garmus, David & Herron, David; Function Point Analysis; Addison Wesley, Boston, MA; ISBN 0-201069944-3; 363 pages; 2001.

Garmus, David & Herron, David; Measuring the Software Process: A Practical Guide to Functional Measurement; Prentice Hall, Englewood Cliffs, NJ; 1995.

Jones, Capers; Program Quality and Programmer Productivity; IBM Technical Report TR 02.764, IBM San Jose, CA; January 1977.

Jones, Capers; Sizing Up Software; Scientific American Magazine; New York NY; Dec. 1998, Vol. 279 No. 6; December 1998; pp 104-109.
Jones, Capers; Applied Software Measurement; McGraw Hill, 3rd edition 2008; ISBN 978-0-07-150244-3; 575 pages; 3rd edition (March 2008).

Jones, Capers; Software Assessments, Benchmarks, and Best Practices; Addison Wesley Longman, Boston, MA, 2000; 659 pages.

Jones, Capers; Conflict and Litigation Between Software Clients and Developers; Version 6; Software Productivity Research, Burlington, MA; June 2006; 54 pages.

Jones, Capers; Estimating Software Costs; McGraw Hill, New York; 2nd edition, 2007; 644 pages; ISBN13: 978- 0-07-148300-1.

Kan, Stephen H.; Metrics and Models in Software Quality Engineering, 2nd edition; Addison Wesley Longman, Boston, MA; ISBN 0-201-72915-6; 2003; 528 pages.
Kaplan, Robert S & Norton, David B.; The Balanced Scorecard; Harvard University Press, Boston, MA; ISBN 1591391342; 2004.

Love, Tom; Object Lessons – Lessons Learned in Object-Oriented Development Projects; SIG Books Inc., New York NY; ISBN 0-9627477-3-4; 1993; 266 pages.

McConnell, Steve; Software Estimation – Demystifying the Black Art; Microsoft Press, Redmond, Wa; ISBN 10: 0-7356-0535-1; 2006.

Parthasarathy, M.A.; Practical Software Estimation – Function Point Methods for Insourced and Outsourced Projects; Addison Wesley, Boston, MA; ISBN 0-321-43910-4; 2007; 388 pages.

Putnam, Lawrence H.; Measures for Excellence – Reliable Software On-Time Within Budget; Yourdon Press, Prentice Hall, Englewood Cliffs, NJ; ISBN 0-13-567694-0; 1992; 336 pages.

Putnam, Lawrence & Myers, Ware; Industrial Strength Software – Effective Management Using Measurement; IEEE Press, Los Alamitos CA; ISBN 0-8186-7532-2; 1997; 320 pages.
Strassmann, Paul; The Squandered Computer; Information Economics Press, Stamford, CT; 1997.
Stutzke, Richard D.; Estimating Software-Intensive Systems – Projects, Products, and Processes; Addison Wesley, Boston, MA; ISBN 0-301-70312-2; 2005; 917 pages.

Yourdon, Ed; Outsource – Competing in the Global Productivity Race; Prentice Hall PTR, Upper Saddle River, NJ; ISBN 0-13-147571-1; 2004; 251 pages.
Yourdon, Ed: Death March—The Complete Software Developer’s Guide to Surviving “Mission Impossible” Projects, Prentice Hall PTR, Upper Saddle River, N.J., ISBN 0-13-748310-4, 1997.

 [image: image1.png]

PAGE
50

