
Agile Methods 1

Running head: EFFECTS OF AGILE METHODS ON WEBSITE QUALITY FOR E-COMMERCE

EFFECTS OF AGILE METHODS ON WEBSITE QUALITY FOR ELECTRONIC COMMERCE

David F. Rico

(August 29, 2007)

Dissertation submitted to the faculty of the
Graduate School of Management and Technology

University of Maryland University College

in partial fulfillment of the requirements for the degree of

DOCTOR OF MANAGEMENT

(Information Technology)

Doctoral Committee:

Hasan H. Sayani, PhD, Chair
James J. Stewart, PhD, Member

Ralph F. Field, PhD, Member
Jeffrey V. Sutherland, PhD, Member

Agile Methods 2

© Copyright by David F. Rico (2007)

Agile Methods 3

ABSTRACT

The purpose of this dissertation is to study the relationships between the use of agile methods to

manage the development of Internet websites and website quality. An agile method is a new

product development process that is often associated with the Internet software industry. Agile

methods are characterized by factors of iterative development, customer feedback, well-

structured teams, and flexibility. Use of agile methods may improve software quality by injecting

customer feedback into a stream of working software versions to converge on a solution. Surveys

of software professionals were used to help determine whether the use of agile methods improves

the quality of Internet websites for the $2 trillion U.S. electronic commerce industry. The central

contributions of this study include a literature review, conceptual model, survey instruments,

measurement data, and data analysis for agile methods and Internet website quality. Additional

contributions include a thorough discussion of the relationships between agile methods and

website quality, the results of which may help U.S. managers better understand the effects agile

methods. Our findings indicated iterative development and customer feedback were related to

website quality, but well-structured teams and flexibility were not. Finally, we included a list of

recommendations for researchers and scholars who may wish to study these relationships further.

Keywords. Agile methods, iterative development, customer feedback, well-structured teams,

flexibility, website quality.

Agile Methods 4

EXECUTIVE SUMMARY

Electronic commerce has grown into a $2 trillion U.S. industry that involves the buying and
selling of products and services utilizing Internet websites such as Amazon or E-bay. As many as
67% of U.S. firms use agile methods to develop their Internet websites, which is a new product
development process that emphasizes iterative development, customer feedback, well-structured
teams, and flexibility to improve website quality. Do agile methods improve website quality? Do
agile methods based on job-shop or craft-industry principles improve website quality better than
traditional ones from the scientific management era?

Survey data was collected from 250 respondents to determine if the use of iterative development,
customer feedback, well-structured teams, and flexibility improved the quality of their websites.
The components of this study include: (a) a history of electronic commerce and agile methods,
(b) a conceptual framework, (c) survey instruments, (d) a repository of original data, and (e) a
roadmap for conducting future studies of agile methods. Analysis showed that iterative
development and customer feedback improved website quality, but well-structured teams and
flexibility did not. Some of the more notable findings include:

• 70% of all developers are using many if not all aspects of agile methods.
• 79% of all developers using agile methods have more than 10 years of experience.
• 83% of all developers using agile methods are from small to medium-sized firms.
• 26% of all developers using agile methods have had improvements of 50% or greater.
• Developers using all aspects of agile methods produced better e-commerce websites.

The findings also showed that iterative development is only effective if all iterations are working
software. The lag time for getting customer feedback continues to plague software developers.
Larger organizations may be shunning the use of agile methods to build bigger and more
complex systems. Developers may not always be exploiting the most flexible technologies to
their advantage. And, agile methods are absent at the edges of the adoption curve. In summary:

• 46% of organizations still struggle to produce operational code for all iterations.
• 70% of organizations don’t get timely, high-quality feedback from their customers.
• 85% of organizations are hesitant to use agile methods to develop larger systems.
• 57% of organizations are not using agile and flexible information technologies.
• 87% of programmers with less than 6 years of experience are not using agile methods.

The results of this study should be interpreted with caution since less than half the people who
claim to be using agile methods may not be producing working software at the end of their
iterations. This is contrary to a major principle of agile methods, which requires working
software at the end of iterations. Some may argue that organizations that are not producing
working software at the end of their iterations are not using agile methods. This observation has
a two-fold impact on the results of this study. First, organizations who want to use agile methods
should make a concerted effort to produce working software at the end of their iterations.
Second, organizations may not actually be using agile methods if they are not producing working
software at the end of their iterations. Again, some may argue that all principles of agile methods
must be used in order to get all of the potential benefits of agile methods such as website quality.

Agile Methods 5

PREFACE

Does use of agile methods improve the quality of Internet websites used for the $2 trillion
electronic commerce industry by U.S. firms? Agile methods are a new product development
process consisting of iterative development, customer feedback, well-structured teams, and
flexibility. Use of agile methods may improve website quality by injecting customer feedback
into a stream of working software versions to converge on a solution.

There is a well-documented debate among management scholars about the best approaches for
managing the development of Internet websites. Some scholars believe traditional methods
rooted in well-established scientific management principles lead to high quality Internet
websites. However, other management scholars believe agile methods have the characteristics of
a job-shop or craft industry predating the scientific management era and are the best approach for
managing the development of high-quality Internet websites.

Our challenge is to identify, survey, select, or develop a scholarly instrument for measuring the
use of agile methods and the quality of Internet websites, and then collect data to determine
whether their use is linked to higher quality websites for electronic commerce by U.S. firms.
Though agile methods are a general purpose approach for managing the development of new
products, they are often associated with Internet software, which is the focus of this study.

There seems to be no middle ground on this issue. Some management scholars firmly believe
agile methods lead to lower quality websites and others believe agile methods lead to higher
quality websites, with neither side offering much empirical evidence to support their claims. We
hope to create the first in a long line of scholarly studies that test the relationships between the
use of agile methods as a management approach for developing Internet websites and improved
website quality for electronic commerce among U.S. firms.

Internet websites are the fundamental tool for conducting business transactions on the Internet,
otherwise known as electronic commerce. The U.S. alone generates around $1.95 trillion in
revenues using Internet websites each year. Likewise, U.S. firms commit between $152 and $231
billion in information technology expenditures each year to achieve these revenues. Currently at
stake is a ten-fold return on investment in electronic commerce revenues to information
technology expenditures by U.S. firms each year (e.g., revenues ÷ expenditures).

There are more than 250,000 information technology projects in the U.S. each year and up to
two-thirds of these projects have failed or are failing. Some argue that principles of agile
methods such as iterative development, customer feedback, well-structured teams, and flexibility
may improve project success. To that end, U.S. managers have already committed between 50%
and 67% of their projects to the use of agile management methods. They may want to know
whether the use of agile methods for managing the development of Internet websites leads to
higher quality websites and what the potential consequences to lower electronic commerce
revenues are if the detractors of agile methods are indeed correct—that is, whether traditional
methods rooted in the scientific management era are superior to those of agile methods from the
much earlier job-shop or craft industry of the early industrial revolution in the U.S. The lessons
associated with both sides of these debates will be addressed throughout this study.

Agile Methods 6

DEDICATION

This dissertation is dedicated to my wife, Celia, who patiently worked so hard over the last four

years in order to make this degree possible. This dissertation is also dedicated to my children,

David, Serena, Faith, and Christian, who sacrificed so many of their formative years for the

fleeting hope of a brighter future for all of us. And, of course, to my family, friends, and

colleagues who diligently provided daily encouragement to me by eagerly listening to my

research interests, in order to keep me challenged, focused, and intrigued with my dissertation

topic for so long.

Agile Methods 7

ACKNOWLEDGMENTS

I would like to thank my dissertation committee, especially my chair, Dr. Hasan H. Sayani, who

was one of the best leaders I have ever had the pleasure of serving. And, of course, to my

committee members Dr. James J. Stewart and Dr. Ralph F. Field who seemed to have a knack for

knowing when to lend a helping hand. Special thanks also go to my external committee member,

Dr. Jeffrey V. Sutherland, who took an interest in my topic and went above and beyond the call

of duty to help me fulfill some of my more challenging graduation requirements. My cohort also

deserves honorable mention for being a great team. Oh yes, and thanks to Scott Ambler and Jon

Erickson for helping me with my data collection, and thanks to Dr. Monica S. Bolesta for

introducing me to the skills necessary to complete my data analysis.

Agile Methods 8

TABLE OF CONTENTS

Introduction .. 12
Purpose of Study ... 13
Scope of Study .. 13
Rationale and Justification.. 14
Relevance and Importance.. 14
Significance and Interest... 15
Organization and Outline.. 15

Research Problem .. 16
Research Background ... 17
Goals and Objectives .. 18
Research Questions... 18
Terms and Definitions... 19
Assumptions and Constraints.. 20

Literature Review... 21
History of Computers and Software ... 22
History of Electronic Commerce .. 27
History of Software Methods.. 31
History of Software Quality Measurement ... 43
History of Agile Methods ... 52
History of Studies on Agile Methods.. 61
Gaps and Problem Areas in the Literature.. 65
Need for a New Study of Agile Methods.. 65

Conceptual Framework .. 66
Major Factors of Agile Methods... 74
Subfactors of Iterative Development .. 86
Subfactors of Customer Feedback .. 88
Subfactors of Well-Structured Teams... 90
Subfactors of Flexibility ... 93
Hypotheses Linking Subfactors of Agile Methods to Website Quality.................................... 96
Conceptual Framework Summary .. 99

Research Method.. 100
Research Design.. 101
Research Variables.. 102
Research Instruments .. 103
Research Scales... 105
Data Collection Process .. 105
Data Analysis Process... 106
Threats to Validity .. 106
Data Interpretation Process ... 107

Data Analysis.. 108
Descriptive Data.. 109
Demographic Data .. 110

Agile Methods 9

Agile Methods Data .. 113
Benefit Data .. 120
Website Quality Data.. 124
Agile Methods and Benefits.. 131
Agile Methods and Website Quality... 135
Summary of Data Analysis ... 140

Discussion, Results, and Conclusions ... 141
Discussion... 142
Results... 150
Limitations .. 152
Lessons.. 152
Contributions... 153
Conclusions... 153
Final Summary.. 157

Recommendations for Future Work.. 158
Industry Sector .. 158
Research Scope ... 159
Conceptual Model... 159
Outcome Measures.. 160
Research Method .. 160
Data Source... 161
Data Collection ... 161

References.. 162
Appendices ... 184

Appendix A — Agile Methods Survey Instrument .. 184
Appendix B — Website Quality Survey Instrument .. 185
Appendix C — Research Project Notification and Human Subjects Protection Form........... 186

Agile Methods 10

LIST OF TABLES

Table 1. Summary of Practices and Processes of Agile Methods... 60
Table 2. Summary of Recent Studies and Surveys of Agile Methods.. 64
Table 3. Major Factors of Website Quality from an Analysis of Major Approaches................... 73
Table 4. Major Factors of Agile Methods from an Analysis of Major Approaches..................... 74
Table 5. Analysis of Values and Principles of the Agile Manifesto... 85
Table 6. Subfactors of Iterative Development .. 86
Table 7. Subfactors of Customer Feedback .. 89
Table 8. Subfactors of Well-Structured Teams... 91
Table 9. Subfactors of Flexibility ... 94
Table 10. Measurement Instrument for Assessing Agile Methods... 103
Table 11. Measurement Instrument for Assessing Website Quality... 104
Table 12. Method of Interpreting Results of Data Analysis Process.. 107
Table 13. Descriptive Data on Agile Methods, Benefits, and Website Quality 109
Table 14. Demographic Data on Agile Methods, Benefits, and Website Quality 111
Table 15. Agile Methods Data Summary ... 114
Table 16. Agile Methods Data Correlational Analysis (Pearson Correlations).......................... 116
Table 17. Agile Methods Data Variable Analysis (Adjusted R2 Values) 117
Table 18. Agile Methods Factor Analysis .. 118
Table 19. Agile Methods Model Analysis .. 119
Table 20. Benefit Data Summary.. 120
Table 21. Benefit Data Correlational Analysis (Pearson Correlations)...................................... 121
Table 22. Benefit Data Variable Analysis (Adjusted R2 Values) ... 122
Table 23. Benefit Data Model Analysis.. 123
Table 24. Website Quality Data Summary ... 125
Table 25. Website Quality Data Correlational Analysis (Pearson Correlations)........................ 127
Table 26. Website Quality Data Variable Analysis (Adjusted R2 Values)................................. 128
Table 27. Website Quality Factor Analysis .. 129
Table 28. Website Quality Model Analysis.. 130
Table 29. Agile-Benefit Data Correlational Analysis (Pearson Correlations)............................ 131
Table 30. Agile-Benefit Data Variable Analysis (Adjusted R2 Values)..................................... 132
Table 31. Agile-Benefit Factor Analysis .. 133
Table 32. Agile-Benefit Model Analysis .. 134
Table 33. Agile-Website Quality Data Correlational Analysis (Pearson Correlations) 136
Table 34. Agile-Website Quality Data Variable Analysis (Adjusted R2 Values)....................... 137
Table 35. Agile-Website Quality Factor Analysis.. 138
Table 36. Agile-Website Quality Model Analysis.. 139
Table 37. Agile-Website Quality Summary Analysis... 140

Agile Methods 11

LIST OF FIGURES

Figure 1. Timeline and history of computers and software. ... 22
Figure 2. Timeline and history of electronic commerce. .. 27
Figure 3. Timeline and history of software methods. ... 31
Figure 4. Timeline and history of software quality measures... 43
Figure 5. Timeline and history of agile methods. ... 52
Figure 6. Timeline and history of studies on agile methods. .. 61
Figure 7. Conceptual model of agile methods, website quality, and e-commerce. 66
Figure 8. Research method for studying agile methods and website quality.............................. 100
Figure 9. Data analysis of relationships between agile methods and website quality. 108
Figure 10. Final conceptual model of agile methods and website quality.................................. 141
Figure 11. Summary of demographics from agile methods and website quality survey. 143
Figure 12. Summary of responses from agile methods survey... 145
Figure 13. Summary of responses from benefit survey. ... 147
Figure 14. Summary of responses from website quality assessment.. 149
Figure 15. Summary of relationships between agile methods and benefits................................ 150
Figure 16. Summary of relationships between agile methods and website quality. 151

Agile Methods 12

INTRODUCTION

Does use of agile methods improve the quality of Internet websites used for the $2 trillion

electronic commerce industry by U.S. firms? Agile methods are a new product development

process consisting of iterative development, customer feedback, well-structured teams, and

flexibility. Use of agile methods may improve website quality by injecting customer feedback

into a stream of working software versions to converge on a solution. A survey will be conducted

to test the hypothesis that the use of agile methods may be linked to website quality.

The use of agile methods for Internet software was a reaction to the rise of traditional

software development methods, which were too cumbersome, expensive, rigid, and fraught with

failure rates ranging from 65% to 87%. Downsizing was the norm and traditional methods were

being used by large corporations in decline, rather than young, energetic firms on the rise.

Millions of websites were created overnight by anyone with a computer and a modicum of

curiosity. Agile methods marked the end of traditional methods in the minds of their creators.

Traditional methods for managing software development were created when the first

commercial computers began emerging in the 1950s. Scientists and engineers began creating

increasingly more powerful and complex computer systems and inordinately complex computer

programs beyond the comprehension of a single human. These early computer programs had

millions of components to perform the simplest of operations giving rise to traditional methods.

Traditional methods consisted of formal project plans, well documented customer requirements,

detailed engineering processes, hundreds of documents, and rigorous testing.

Agile methods emerged with a focus on iterative development, customer feedback, well-

structured teams, and flexibility. Internet technologies such as HTML and Java were powerful

new prototyping languages, enabling smaller teams to build bigger software products in less

time. Because it could be built faster, customers could begin to see finished software sooner and

provide earlier feedback and developers could rapidly refine their software. This gave rise to

closed-loop, circular, highly-recursive, and tightly-knit processes for creating Internet software.

Agile Methods 13

Purpose of Study

The purpose of this study is to determine whether the use of agile methods results in

better website quality than software methods based on traditional management principles. Since

both agile and traditional methods are currently in widespread use by U.S. firms, this study may

help determine whether agile methods have any impact at all on website quality. It is not the

purpose of this study to repeat scholarship comparing traditional and agile methods, analyzing its

component parts, or analyzing gaps in its individual parts based on external factors. Rather, this

study proposes to analyze its factors in toto and focus on little studied areas such as its basic

claims that it improves website quality, especially for the field of electronic commerce. Higher

quality websites may be a stepping stone to improved organizational and market performance.

Scope of Study

Therefore, the scope of this study will be limited to an analysis of using agile methods for

managing the development of electronic commerce websites. Only the major factors of agile

methods will be examined by this study. Furthermore, the scope of this study will be limited to

an empirical analysis of the links between the factors of agile methods and scholarly models of

website quality. There are many important factors within the computer science and software

engineering fields and a single study could not possibly address all of them. Examples include

operating systems, programming languages, artificial intelligence, software architecture, domain

engineering, open source software, and many others. It is not the purpose of this study to

minimize their importance, but determine the relevance of using agile methods by U.S. firms.

This study will not examine whether agile methods are appropriate for large systems or whether

agile methods result in more or less maintainable systems. Scholarly evidence is still emerging

related to these issues, and it is not the purpose of this study to support or refute these claims.

Agile Methods 14

Rationale and Justification

Today, U.S. firms generate more than $2 trillion each year from electronic commerce,

and Internet websites are a big part of this massive revenue stream (U.S. Census Bureau, 2006).

As a result, the top 500 U.S. firms spend more than $231 billion per year on Internet related

technologies in order to exploit this potential revenue (U.S. Department of Commerce, 2006).

Furthermore, much of the annual $400 billion U.S. defense budget is devoted to information

technology as well (Fulghum & Wall, 2004), which may increase interest in the results of this

study. There are more than 250,000 software projects in the U.S. of which more than 72% have

failed or are failing (Standish Group, 2000). Therefore, executives and managers of U.S. firms

may benefit from the knowledge that agile methods may be linked to better website quality.

There has never been a greater need for scholarly studies of agile methods.

Relevance and Importance

With regard to the relevance and importance of this study, U.S. firms may also garner

indirect economic benefits from using agile methods to develop Internet software. For instance,

the stock market rewards firms with higher market valuations for publicly committing to the use

of management approaches such as agile methods (Przasnyski & Tai, 1999). Furthermore, the

stock market also rewards firms with higher market valuations for renovating their information

technology infrastructures (Davis, Dehning, & Stratopoulos, 2003). What these studies mean is

that a firm’s investors may simply reward companies with higher market valuations for adopting

the use of agile methods. Therefore, understanding the strategic implications of using agile

methods for developing Internet software is relevant and important to managers engaged in

business development as well. It is important to note that small U.S. firms elect to delist from the

stock market due to expenses such as legal fees associated with public listings (O’Connor, 2005).

Agile Methods 15

Significance and Interest

Agile methods may be significant and interesting to a number of stakeholders. These may

include managers and developers of Internet software. Managers may want to use software

development approaches well suited for Internet technologies. Developers may want to focus on

creating the best possible Internet software without the overhead of using traditional methods.

Management scientists, on the other hand, are responsible for creating both traditional as well as

agile management approaches for software development. So this study may help them

understand the dynamics of creating Internet software. Agile methods may also be used to

develop Web 2.0 technologies, which offer an optimal blend of capabilities associated with both

personal computer and Internet software (O’Reilly, 2006). So this study may help managers and

technologists understand the dynamics of creating both current and future Internet software.

Organization and Outline

This document consists of eight sections: Introduction; Research Problem; Literature

Review; Conceptual Framework; Research Method; Data Analysis; Discussion, Results, and

Conclusions; and Recommendations for Future Research. This Introduction describes the context

for using agile methods. The Research Problem describes the major issues and delineates the

boundaries of this study. The Literature Review describes the history of software methods and

the justification for this study. The Conceptual Framework describes a theory, factors, subfactors

and hypotheses for using agile methods. The Research Method describes the use of survey

research for studying agile methods. The Data Analysis describes the statistical analysis of the

data from this study. The Discussion, Results, and Conclusions describe the results of the

hypothesis testing and the findings from this study. The Recommendations for Future Research

describe new research directions identified as a result of conducting this study of agile methods.

Agile Methods 16

RESEARCH PROBLEM

The Internet is a powerful new communication medium for conducting free-market style

business transactions involving the instant exchange of billions of dollars on a worldwide scale.

Primarily due the Internet industry’s low market entry requirements, the 21st century shifted the

balance of power away from industrial age firms. This enabled Internet firms to monopolize

market share and achieve unprecedented levels of profitability (Vise, 2005). Likewise, it presents

large challenges for managing the development of Internet software. Some firms manage the

development of Internet software using principles of flexibility and agility, while other firms use

traditional methods rooted in the scientific management era.

The challenge is to investigate, examine, and determine whether the use of agile methods

for managing the development of Internet software is linked to website quality. There is scant

literature that investigates the linkages between the use of agile methods and project outcomes,

such as organizational performance (Cusumano & Selby, 1995). There is even some literature

that links the use of agile methods to higher website quality for the field of electronic commerce

(MacCormack, 1998).

However, the major tenets, principles, and factors of agile methods had yet to fully

evolve and emerge at the time of some of these writings. Few, if any, studies examine the effects

of all four of the factors associated with agile methods: (a) iterative development, (b) customer

feedback, (c) well-structured teams, and (d) flexibility. Furthermore, few studies link any of

these factors associated with agile methods to outcomes, such as website quality for electronic

commerce, in a scholarly manner. Therefore, this study proposes to analyze the effects of all four

factors of agile methods and then empirically link these factors to scholarly models of website

quality for electronic commerce.

Agile Methods 17

Research Background

The history of such research is characterized by numerous attempts to link the use of

software methods to software quality. Programmers, computer scientists, software engineers, and

management scientists have been trying to solve problems associated with computer

programming such as productivity, quality, customer satisfaction, and time-to-market for more

than five decades. Flowcharts and stepwise refinement were used to help ease the process of

creating complex computer programs in the 1960s (Dijkstra, 1969; Knuth, 1963). IBM created

software inspections to increase quality and productivity by an order of magnitude in the 1970s

(Fagan, 1976). IBM used iterative releases to develop the software for NASA’s space shuttle in

the 1980s (Madden & Rone, 1984). IBM also used customer feedback to produce 30 billion lines

of application software and garner $14 billion in revenue in the 1980s (Sulack, Lindner, & Dietz,

1989). Hewlett Packard saved $350 million using a myriad of software methods in the 1990s

(Grady, 1997). Motorola successfully produced an error free paging system at 25 times the

normal productivity levels (Ferguson, Humphrey, Khajenoori, Macke, & Matvya, 1997).

Electronic Brokering Services designed a 65,000 lines-of-code Java system using team processes

that conducted $1 billion worth of online trades per day, without error, in record time (Goth,

2000). General Dynamics has even noted order of magnitude improvements in quality and

productivity using the capability maturity model (Diaz & Sligo, 1997). Hewlett Packard also

experienced 50% to 500% improvements in quality, productivity, cycle time, and return on

investment by using domain engineering (Lim, 1998). Yet, all of these breakthroughs linking

software methods to improved software quality are not without their skeptics (Sassenburg, 2002).

This is the background that establishes the context for seeking empirical evidence linking agile

methods to improved website quality for the $2 trillion U.S. electronic commerce industry.

Agile Methods 18

Goals and Objectives

The research goals and objectives are to gather information that might determine whether

a link exists between the use of agile methods for managing the development of Internet software

and website quality for electronic commerce. Therefore, the research goals and objectives are to

examine the empirical links between the theoretical factors of agile methods and scholarly

constructs of website quality in the field of electronic commerce. Conversely, the research goals

and objectives of this study are also to determine whether iterative development, customer

feedback, well-structured teams, and flexibility are not linked to scholarly models of website

quality for electronic commerce. Negative correlations between the factors of agile methods and

website quality for electronic commerce are just as important as positive ones.

Research Questions

The basic research area to be explored is whether the use of agile methods by U.S. firms

is more effective than traditional approaches based on scientific management principles. A

closely related question is how do firms manage the development of Internet software for the $2

trillion U.S. electronic commerce industry? Another closely related question is what

management approaches are linked to website quality for U.S. firms? Furthermore, what factors

are motivating the use of new management approaches such as agile methods?

Specific questions must also include whether the major factors of agile methods are

linked to website quality among U.S. firms. Is the use of iterative development linked to website

quality among U.S. firms? Is the use of customer feedback linked to website quality among U.S.

firms? Is the use of well-structured teams linked to website quality among U.S. firms? Is the use

of flexibility linked to website quality among U.S. firms? Equally important is whether the

answer to these questions is “no.”

Agile Methods 19

Terms and Definitions

A software method is defined as “an approach to the analysis, design, construction, and

implementation of information systems” (Hirschheim, Klein, & Lyytinen, 1996). Agile methods

are defined as “the application of time-boxed iterative and evolutionary development, adaptive

planning, evolutionary delivery, and other values and practices that encourage rapid and flexible

response to change” (Larman, 2004). Iterative development is defined as “an approach to

building software in which the overall lifecycle is composed of several iterations in sequence”

(Larman, 2004). Customer feedback is defined as “the early identification of problems, effective

screening of ideas, reduction of design changes in later stages of development, and better

definition of global market and opportunities” (Lim, Sharkey, & Heinrichs, 2003). Well-

structured teams are defined as “groups who are responsible for setting direction, establishing

boundaries, assigning staff with certain talents to roles, and building a multi-tiered decision-

making process in which managers have the responsibility and authority to make certain

decisions” (Highsmith, 2002). Flexibility is defined as “the ease with which a system or

component can be modified for use in applications or environments other than those for which it

was specifically designed” (Institute of Electrical and Electronics Engineers, 1990). Website

quality is defined as “the extent to which a website facilitates efficient and effective shopping,

purchasing, and delivery of products and services” (Gounaris, Dimitriadis, & Stathakopoulos,

2005). A U.S. firm is defined as “a business registered with a national regulatory authority”

(Caccese & Lim, 2005). The Internet is defined as “a network of millions of computers, a

network of networks, or an internetwork” (Reid, 1997, p. xvii). A website is defined as “a

collection of web pages for sharing of business information, maintaining business relationships,

or conducting business transactions using the Internet” (Kalakota & Whinston, 1996).

Agile Methods 20

Assumptions and Constraints

The first assumption is that agile methods are a measurable phenomenon. Another

assumption is that agile methods will be relevant in the near future. A subtle assumption is that

agile methods are linked to website quality and electronic commerce. An overriding assumption

is that scholarship on agility is not already mature. There are many topics in the field of

information systems, one study cannot address them all, and this study will not attempt to do so.

Special purpose methods address specific types of non-functional requirements such as security,

safety, or maintainability. This study will not attempt to address special kinds of non-functional

requirements. For instance, the instrument for measuring website quality will be kept to a small

set of items, with proven inter-item reliability. An instrument addressing every kind of non-

functional requirement would have hundreds of items, and respondents simply will not have time

for such a survey (which is beyond the scope of this study).

One may argue that unless the entire organization is committed to using agile methods

the effects of individual engineers and teams on website quality would be difficult to measure.

Furthermore, an organization may have multiple project teams who use agile methods to varying

degrees of success, so the positive effects on website quality may not reach users or customers.

An important assumption is that engineers have responsibility for the whole product and for

interfacing directly with their customers using agile methods. In this scenario, the engineer gets a

little market intelligence, develops some operational software, gets customer feedback, and then

repeats the cycle until the desired quality levels with the website are achieved. This scenario

would break down quickly if one inserted a software development team using agile methods into

a large traditional bureaucratic organization and then expected them to converge on a solution

without any customer or market feedback.

Agile Methods 21

LITERATURE REVIEW

The purpose of this section is to present a literature review relevant to a study of using

agile methods to manage the development of Internet websites and their subsequent quality. This

study places website quality within the context of the $2 trillion U.S. e-commerce industry. Thus,

this section provides a history of electronic computers, electronic commerce, software methods,

software quality metrics, agile methods, and studies of agile methods. None of these histories are

without controversy. For instance, some scholars begin the study of the electronic computer by

mentioning the emergence of the Sumerian text, Hammurabi code, or the abacus. We, however,

will align our history with the emergence of the modern electronic computer at the beginning of

World War II. The history of electronic commerce also has poorly defined beginnings. Some

studies of electronic commerce begin with the widespread use of the Internet in the early 1990s.

However, electronic commerce cannot be appreciated without establishing a deeper context.

The origins of the software industry are also somewhat poorly documented. It started

sometime in the 1960s, though it did not really take off until the 1980s. Software methods,

however, are often associated with the rise of structured design in 1969, though they can firmly

be traced back to the late 1950s. The first uses of agile methods are also not well defined. Many

associate agile methods with the appearance of extreme programming in 1999, though agile

methods began taking hold in the early 1990s, and most of its principles appeared before 1975.

While research on agile methods began appearing in 1998, therein lies the issue. Few scholarly

studies, if any, have been performed on agile methods; thus the basic purpose of this literature

review is to establish the context to conduct scholarly research within the fields of agile methods

and electronic commerce. Since agile methods may be linked to outcomes such as software

quality, an in-depth analysis of literature on software quality metrics is also included.

Agile Methods 22

History of Computers and Software

Figure 1. Timeline and history of computers and software.

Agile Methods 23

Electronic computers. Electronic computers are simply machines that perform useful

functions such as mathematical calculations or inputting, processing, and outputting data and

information in meaningful forms (Rosen, 1969). Modern electronic computers are characterized

by four major generations: first generation vacuum tube computers from 1940 to 1950, second

generation transistorized computers from 1950 to 1964, third generation integrated circuit

computers from 1964 to 1980, and fourth generation microprocessor computers from 1980 to the

present (Denning, 1971; Rosen, 1969; Tanenbaum, 2001). First generation or vacuum tube

computers consisted of the electronic numerical integrator and calculator or ENIAC, electronic

discrete variable computer or EDVAC, universal automatic computer or UNIVAC, and Mark I,

II, and III computers (Rosen, 1969). Second generation or transistorized computers consisted of

Philco’s TRANSAC S-1000, Control Data Corporation’s 3600, and International Business

Machine’s 7090 (Rosen, 1969). Third generation or integrated circuit based computers consisted

of International Business Machine’s System/360, Radio Corporation of America’s Spectra 70,

and Honeywell’s 200 (Rosen, 1969). Late third generation computers included Cray’s CDC 7600

as well as Digital Equipment Corporation’s PDP-8 and VAX 11/780 (Carlson, Burgess, &

Miller, 1996). Fourth generation or microprocessor based computers included the International

Business Machine’s Personal Computer or PC and Apple’s Macintosh (Tanenbaum, 2001).

Programming languages. Programming languages are defined as “any of various

languages for expressing a set of detailed instructions for a digital computer” (Nerlove, 2004).

By 1972, there were 170 programming languages in the U.S. alone (Sammet, 1972b) and today

there are over 8,500 programming languages worldwide (Pigott, 2006). First generation or

vacuum tube computers did not have any programming languages (Sammet, 1972b). Second

generation or transistorized computers were characterized by an explosion of programming

Agile Methods 24

languages, the most notable of which included formula translation or FORTRAN, flowchart

automatic translator or FLOWMATIC, algorithmic language or ALGOL, common business

oriented language or COBOL, Jules own version of the international algorithmic language or

JOVIAL, and the list processing language or LISP (Sammet, 1972b). Third generation or

integrated circuit based computers likewise experienced a rapid increase in programming

languages, the most notable of which were the beginner’s all purpose symbolic instructional code

or BASIC, programming language one or PL/1, Smalltalk, Pascal, and C (Chen, Dios, Mili, Wu,

& Wang, 2005). Fourth generation or microprocessor based computers continued the trend of

introducing new programming languages, such as Ada, C++, Eiffel, Perl, Java, and C#.

Operating systems. Operating systems are simply a layer of software between the

computer hardware and end user applications used for controlling hardware peripherals such as

keyboards, displays, and printers (Denning, 1971). First generation or vacuum tube computers

did not have any operating systems and “all programming was done in absolute machine

language, often by wiring up plugboards” (Tanenbaum, 2001). Second generation or

transistorized computers did not have any operating systems per se, but were programmed in

assembly languages or using the early computer programming language called formula

translation or FORTRAN (Tanenbaum, 2001). Third generation or integrated circuit based

computers consisted of the first formalized multiprogramming operating systems and performed

useful functions such as spooling and timesharing (Tanenbaum, 2001). Examples of third

generation operating systems include IBM’s Operating System/360; the Massachusetts Institute

of Technology’s compatible time sharing system or CTSS; the multiplexed information and

computing service or MULTICS; the uniplexed information and computer system or UNICS,

which became UNIX; and Digital Equipment Corporation’s virtual memory system or VMS

Agile Methods 25

(Tanenbaum, 2001). Fourth generation or microprocessor based computers consisted of the

control program for microcomputers or CPM, disk operating system or DOS, Apple’s Macintosh

operating system or MAC OS, and Microsoft’s Windows (Tanenbaum, 2001).

Packaged software. Software is defined as “instructions required to operate

programmable computers, first introduced commercially during the 1950s” (Cusumano, 1991).

The international software industry grew slowly in revenues for commercially shrink-wrapped

software from about zero in 1964, to $2 billion per year in 1979, and $50 billion by 1990

(Campbell-Kelly, 1995; Steinmueller, 1996). It is important to note that the custom, non-

commercially available software industry was already gaining billions of dollars in revenue by

1964 (Campbell-Kelly, 1995). First generation or vacuum tube computers did not have any

software and “all programming was done in absolute machine language, often by wiring up

plugboards” (Tanenbaum, 2001). Second generation or transistorized computers were

characterized by bundled software, e.g., software shipped free with custom computer systems,

and customized software such as International Business Machine’s SABRE airline reservation

system and the RAND Corporation’s SAGE air defense system (Campbell-Kelly, 1995). Third

generation or integrated circuit based computers saw the first commercialized shrink-wrapped

software such as Applied Data Research’s Autoflow flowcharting software (Johnson, 1998) and

the total annual sales for commercial software were only $70 million in 1970 compared with

over $1 billion for custom software (Campbell-Kelly, 1995). Following the U.S. Justice

Department’s antitrust lawsuit against IBM around 1969, commercial software applications

reached over 175 packages for the insurance industry in 1972 and an estimated $2 billion in

annual sales by 1980 (Campbell-Kelly, 1995). Fourth generation or microprocessor based

computers represented the golden age of shrink-wrapped computer software and were

Agile Methods 26

characterized by Microsoft’s Word and Excel, WordPerfect’s word processor, Lotus’ 1-2-3 and

Visicorp’s Visicalc spreadsheets, and Ashton Tate’s dBase database (Campbell-Kelly, 2001). By

1990, there were over 20,000 commercial shrink-wrapped software packages on the market

(Middleton & Wardley, 1990). The international software industry grew to more than $90 billion

for pre-packaged software and $330 billion for all software-related products and services by

2002 (U.S. Department of Commerce, 2003) and is projected to reach $10.7 billion for the

software as a service or SAAS market by 2009 (Borck & Knorr, 2005).

Internet and WWW. The Internet is defined as a network of millions of computers, a

network of networks, or an internetwork (Reid, 1997, p. xvii). First generation or vacuum tube

computers were not known to have been networked. Likewise, second generation or

transistorized computers were not known to have been networked together. Third generation or

integrated circuit based computers gave rise to the Internet as we know it today. Third generation

computers of the 1960s gave rise to packet switching theory, the first networked computers, the

U.S. military’s advanced research project’s agency or ARPA, and the first interface message

processor or IMP (Leiner et al., 1997; Mowery & Simcoe, 2002). Late third generation

computers of the 1970s gave rise to the network control protocol or NCP, email, open

architecture networking, Ethernet, transmission control protocol, Internet protocol and one of the

first bulletin boards by Compuserve (Leiner et al., 1997; Mowery & Simcoe, 2002). Early fourth

generation or microprocessor based computers gave rise to the domain name system or DNS and

Prodigy and AOL were created (Leiner et al., 1997; Mowery & Simcoe, 2002). Middle fourth

generation computers of the Internet era gave rise to the hypertext markup language or HTML,

hypertext transfer protocol or HTTP, and Netscape, which caused the number of computers on

the Internet to reach one million by 1992 and 110 million by 2001 (Mowery & Simcoe, 2002).

Agile Methods 27

History of Electronic Commerce

Figure 2. Timeline and history of electronic commerce.

Agile Methods 28

Electronic commerce. From a simple perspective, electronic commerce is defined as

sharing of business information, maintaining business relationships, or conducting business

transactions using the Internet. However, there are at least four comprehensive definitions of

electronic commerce (Kalakota & Whinston, 1996):

1. Communications perspective. Electronic commerce is the delivery of

information, products, services, or payments via telephones or computer networks.

2. Business process perspective. Electronic commerce is the application of

technology toward the automation of business transactions and workflows.

3. Service perspective. Electronic commerce is a tool to help firms, consumers, and

managers cut service costs, improve quality, and speed delivery.

4. Online perspective. Electronic commerce provides the capability of buying and

selling products and information on the Internet and other online services.

Electronic commerce is one of the most misunderstood information technologies

(Kalakota & Whinston, 1996). For instance, there is a tendency to categorize electronic

commerce in terms of two or three major types, such as electronic retailing or online shopping

(U.S. Census Bureau, 2006). However, electronic commerce is as old as the computer and

software industries themselves and predates the Internet era of the 1990s (Kalakota & Whinston,

1996). There is no standard taxonomy of electronic commerce technologies, but they do include

major categories such as magnetic ink character recognition, automatic teller machines,

electronic funds transfer, stock market automation, facsimiles, email, point of sale systems,

Internet service providers, and electronic data interchange, as well as electronic retail trade and

shopping websites (Kalakota & Whinston, 1996).

Agile Methods 29

Second generation electronic commerce. Second generation or transistorized

computers were associated with electronic commerce technologies such as magnetic ink

character recognition or MICR created in 1956, which was a method of “encoding checks and

enabling them to be sorted and processed automatically” (Mandell, 1977).

Third generation electronic commerce. Third generation or integrated circuit based

computers were associated with electronic commerce technologies such as automatic teller

machines, electronic funds transfer, stock market automation, facsimiles, email, point-of-sale

systems, electronic bulletin boards, and electronic data interchange. In 1965, automated teller

machines were created (Anonymous, 1965), which were electronic machines or computers that

automatically dispense money or cash (Mandell, 1977). In 1966, electronic funds transfer or EFT

was created (Ellis, 1967), which was “a set of processes that substitutes electronic messages for

checks and other tangible payment mechanisms” (Mandell, 1977). Also in 1966, the New York

Stock Exchange or NYSE was first automated (New York Stock Exchange, 2006). In 1971,

facsimiles were created (Anonymous, 1971). In 1973, email was created (Mowery & Simcoe,

2002). In 1975, electronic point of sale systems were created (Anonymous, 1975), which

involved “the collection in real-time at the point of sale, and storing in a computer file, of sales

and other related data by means of a number of electronic devices” (Lynch, 1990). In 1976, the

designated order turn around or DOT was created, which automated small-volume individual

trades (New York Stock Exchange, 2006). In 1979, Compuserve launched one of the first

electronic bulletin boards (Mowery & Simcoe, 2002). Also in 1979, electronic data interchange

was created (Accredited Standards Committee, 2006), which is the “electronic movement of

information, such as payments and invoices, between buyers and sellers” (Smith, 1988).

Agile Methods 30

Fourth generation electronic commerce. Fourth generation or microprocessor based

computers were associated with electronic commerce technologies such as the vast automation of

the stock market. In 1984, the super designated order transfer 250 was launched to enable large

scale automatic program trading (New York Stock Exchange, 2006).

Mid-fourth generation electronic commerce. Mid-fourth generation computers were

associated with electronic commerce technologies such as selected electronic services, electronic

retail trade, and electronic shopping and mail order houses. Selected electronic services consisted

of industry sectors such as transportation and warehousing; information, finance, rental, and

leasing services; professional, scientific, and technical services; administrative and support

services; waste management and remediation services; health care and social assistance services;

arts, entertainment, and recreation services; accommodation and food services; and other

services (U.S. Census Bureau, 2006). Electronic retail trade consisted of industry sectors such as

motor vehicles and parts dealers; furniture and home furnishings stores; electronics and

appliance stores; building materials, garden equipment, and supplies stores; food and beverage

stores; health and personal services; gasoline stations; clothing and accessories stores; sporting

goods, hobby, book, and music stores; general merchandise stores; miscellaneous store retailers;

and non-store retailers (U.S. Census Bureau, 2006). Electronic shopping and mail order houses

consisted of industry sectors such as books and magazines; clothing and clothing accessories;

computer hardware; computer software; drugs, health aids, and beauty aids; electronics and

appliances; food, beer, and wine; furniture and home furnishings; music and videos; office

equipment and supplies; sporting goods, toys, hobby goods, and games; other merchandise; and

non-merchandise receipts (U.S. Census Bureau, 2006). Today, these are the only three

recognized categories, garnering $1.95 trillion in 2004 (U.S. Census Bureau, 2006).

Agile Methods 31

History of Software Methods

Figure 3. Timeline and history of software methods.

Agile Methods 32

Database design. One of the earliest software methods emerging in the mainframe era

of the 1960s was database design. Database design is a process of developing the structure and

organization of an information repository (Teorey & Fry, 1980). The U.S. formed a standard

information resource dictionary system or IRDS (American National Standards Institute, 1988),

which is a “logically centralized repository of data about all relevant information resources

within an organization, often referred to as metadata” (Dolk & Kirsch, 1987). The use of flat

files for the design of information repositories was one of the earliest forms of database design

(Lombardi, 1961). Network databases were one of the earliest forms of industrial strength

information repositories consisting of many-to-many relationships between entities or data

records, examples of which include IBM’s Information Management System or IMS/360 and

UNIVAC’s Data Management System or DMS 1100 (Bachman, 1969). Hierarchical databases

soon emerged with a focus on organizing data into tree like structures, which were believed to

mimic the natural order of data in the real world (Dodd, 1969). Relational database design was

introduced to create more reliable and less redundant information repositories based on the

mathematical theory of sets (Codd, 1970).

Automatic programming. Another of the earliest software methods emerging in the

mainframe era of the 1960s was automatic programming, which is also known as fourth

generation programming languages or 4GLs. Automatic programming is defined as the “process

and technology for obtaining an operational program and associated data structures automatically

or semi-automatically, starting with only a high level user-oriented specification of the

environment and the tasks to be performed by the computer” (Cardenas, 1977). Decision tables

were one of the first automatic programming methods, which provided a simple format enabling

both users and analysts to design computer software without being programmers themselves

Agile Methods 33

(Montalbano, 1962). Programming questionnaires were also one of the first automatic

programming methods, which provided an English-like yes or no questionnaire enabling non-

programmers to answer a few discrete questions about their needs leading to the automatic

production of computer software (Oldfather, Ginsberg, & Markowitz, 1966). The next evolution

in automatic programming methods emerging in the early midrange era was problem statement

languages, characterized by the information system design and optimization system or ISDOS,

which provided a means for users and other non-programmers to specify their needs,

requirements, and “what” to do, without specifying “how” the computer programs would

perform their functions (Teichroew & Sayani, 1971). Special purpose languages also began

emerging in the early midrange era. These languages were regarded as very high level, English-

like computer programming languages used for rapid prototyping and quick software

composition. Major examples include statistical analysis packages, mathematical programming

packages, simplified database query languages, and report generators (Sammet, 1972a).

Software project management. The earliest notions of software project management

also emerged in the mainframe era of the 1960s. An early definition of software project

management consisted of the “skillful integration of software technology, economics, and human

relations” (Boehm & Ross, 1988). The project evaluation and scheduling technique or PEST was

one of the first complete approaches to software project management emerging in this era

(Anderson, 1966). Project network diagrams in the form of the program evaluation review

technique or PERT and the critical path method or CPM, though not originating in computer

programming, were soon applied for planning, scheduling, and managing resources associated

with software projects (Fisher, 1968). Cost estimation techniques were soon added to the

repertoire of software project management, especially for managing large U.S. military projects

Agile Methods 34

(Merwin, 1972). The framework for software project management was finally in place for years

to come when basic measures of software productivity and quality were devised (Jones, 1978).

Early user involvement. Early user involvement has long been recognized as a critical

success factor in software projects since the earliest days of the mainframe era. Early user

involvement is defined as “participation in the system development process by representatives of

the target user group” (Ives & Olson, 1984). While project overruns were considered a normal

part of the early computer age, scholars began calling for management participation to stem

project overruns which were now regarded as a “management information crisis” (Dunn, 1966).

By the late 1960s, “user involvement” began to supplant management participation as a key to

successfully designing software systems (Fitch, 1969). In the early 1970s, end users were asked

to help design software systems themselves in what was known as “participatory design” (Milne,

1971). End user development quickly evolved from these concepts, which asked the end users

themselves to develop the applications to help address the productivity paradox (Miller, 1974).

Structured methods. The late mainframe period gave rise to structured methods as

some of the earliest principles of software engineering to help overcome the software crisis.

Structured methods are approaches to functionally decomposing software designs, e.g.,

expressing software designs in high-level components, which are further refined in terms of

lower-level components (Bechtolsheim, 1978). Structured programming emerged in this

timeframe to help programmers create well-structured computer programs (Dijkstra, 1969). The

next innovation in structured methods was called “top down stepwise refinement,” which

consisted of the hierarchical design and decomposition of computer programs (Wirth, 1971).

Structured design, which is defined as “a set of proposed general program design considerations

and techniques for making coding, debugging, and modification easier, faster, and less expensive

Agile Methods 35

by reducing complexity,” quickly followed suit (Stevens, Myers, & Constantine, 1974).

Structured analysis methods rounded out this family of methods by suggesting the use of graphs

for depicting the decomposition of software functions and requirements (Yourdon, 1976).

Formal methods. The late mainframe period also gave rise to formal methods, which

would be used as the theoretical basis for software engineering for the next two decades. Formal

methods are “mathematically based languages, techniques, and tools for specifying and

verifying” reliable and complex software systems (Clarke & Wing, 1996). Axiomatic

programming is one of the first recognized formal methods, which uses mathematical set theories

to design functionally correct software (Hoare, 1969). An entire set of formal semantics was

soon devised to serve as a basis for creating mathematically correct computer programming

languages called the Vienna definition language (Wegner, 1972). The communicating sequential

processes method was then created by the modern day founder of formal methods in computer

science to help design mathematically correct multi-tasking software systems (Hoare, 1978). The

cleanroom or box structured methodology was created to serve as a stepwise refinement and

verification process for creating software designs (Mills, Linger, & Hevner, 1987). Formal

methods, primarily due to the difficulty associated with their mathematical rigor, never enjoyed

widespread adoption by the growing community of computer programmers (Shapiro, 1997).

Software life cycles. One of the first methods to come out of the early midrange era

was the notion of software life cycles. A software life cycle is a “collection of tools, techniques,

and methods, which provide roles and guidelines for ordering and controlling the actions and

decisions of project participants” (Van Den Bosch et al., 1982). The waterfall is one of the first

recognized software life cycles consisting of seven stages: system requirements, software

requirements, analysis, program design, coding, testing, and operations (Royce, 1970). The

Agile Methods 36

iterative software lifecycle appeared around the middle of the decade, which consisted of using a

planned sequence of programming enhancements until computer software was complete (Basili

& Turner, 1975). The evolutionary software life cycle soon formed with notions of gradually

enhancing computer programs rather than developing them in phases or iterations (Bauer, 1976).

The incremental software life cycle followed next, recommending project assessments at each

major milestone in order to identify and reduce risk (Cave & Salisbury, 1978). The spiral model

called for risk analysis between major milestones and prototypes as well (Boehm, 1986).

Software reviews. Software reviews emerged as a methodology in the very earliest

stages of the midrange era. Software reviews are meetings held by groups of software engineers

to review software products to identify and remove their defects (Sauer, Jeffrey, Land, & Yetton,

2000). Egoless programming was introduced in the early midrange era as a method of

transforming software development from an individual craft into a loosely structured group

activity (Weinberg, 1971). Chief programmer teams emerged shortly thereafter to formalize the

notion of egoless programming with one small difference: the team would have a clear leader

(Mills, 1971). Structured walkthroughs were quickly formed to once again place the

responsibility for overall program quality in the hands of the team, rather than a single individual

(Waldstein, 1974). Software inspections crystallized the concept of structured walkthroughs with

a rigid meeting protocol for group reviews in order to optimize team performance (Fagan, 1976).

That same year, the U.S. military formed a standard with system design reviews, software

specification reviews, preliminary design reviews, critical design reviews, test readiness reviews,

functional configuration audits, physical configuration audits, formal qualification reviews, and

production readiness reviews (U.S. Department of Defense, 1976).

Agile Methods 37

Object oriented methods. Object oriented methods emerged in the midrange era as a

direct response to calls for a software engineering discipline to mitigate the software crisis.

Object oriented methods are processes that “allow a designer to generate an initial design model

in the context of the problem itself, rather than requiring a mapping onto traditional computer

science constructs” (Rosson & Alpert, 1990). Modular programming was created with principles

of information hiding, self contained data structures, co-located subroutines, and well-defined

interfaces, which were claimed to improve efficiency, flexibility, and maintainability (Parnas,

1972). Object oriented programming was first elucidated in the middle of the midrange era,

which demonstrated how the Simula programming language satisfied the principles of modular

programming (Liskov & Zilles, 1974). Object oriented design emerged in the early

microcomputer era to demonstrate one of the first graphical notations for describing object

oriented programming languages (Booch, 1981). Finally, object oriented analysis methods

emerged often reusing the tools of structured analysis to begin constructing specifications of

software systems prior to devising their object oriented design (McIntyre & Higgins, 1988).

Software testing. Software testing gained recognition in the middle of the midrange

era, though system and hardware component testing had been the norm for at least two decades.

Software testing is defined as “the process of executing a software system to determine whether

it matches its specification and executes in its intended environment” (Whittaker, 2000).

Software usage testing was developed based on the notion that software reliability could be

improved by specifying how computer programs will be used, devising tests to model how users

operate programs, and then measuring the outcome of the testing (Brown & Lipow, 1975).

Domain testing emerged at the same time with its principles of identifying test cases from

program requirements, specifying a complete set of inputs using mathematical set theory, and

Agile Methods 38

using set theory itself to prove program correctness when necessary (Goodenough & Gerhart,

1975). Soon thereafter, top down testing was introduced recommending a unique test procedure

for each software subroutine (Panzl, 1976). Finally, structured testing emerged as an approach to

encapsulate best practices in software testing for novice computer programmers (Walsh, 1977).

Software environments. Software environments emerged in the middle of the

midrange era as a means of improving software quality and productivity through automation. A

software environment is an “operating system environment and a collection of tools or

subroutines” (Leblang & Chase, 1984). Structured programming environments were created as a

means of improving software reliability and productivity using guidelines, code libraries,

structured coding, top down development, chief programmer teams, standards, procedures,

documentation, education, and metrics (Baker, 1975). Software factories were soon created to

introduce discipline and repeatability, software visualization tools, the capture of customer needs

or requirements, automated software testing, and software reuse (Bratman & Court, 1975).

Computer assisted software engineering or CASE was also created to enhance software

productivity and reliability by automating document production, diagram design, code

compilation, software testing, configuration management, management reporting, and sharing of

data by multiple developers (Amey, 1979). The Ada programming support environment or APSE

was suggested as a core set of programming tools consisting of editors, compilers, debuggers,

linkers, command languages, and configuration management utilities (Wegner, 1980). Computer

aided software engineering was created to automate the tasks of documenting customer

requirements, creating software architectures and designs, maintaining requirements traceability,

and configuration management (Day, 1983). Integrated computer aided software engineering or

I-CASE tools emerged, merging analysis and code generation tools (Banker & Kauffman, 1991).

Agile Methods 39

Software quality assurance. The modern day tenets of software quality assurance

began to assume their current form in the late midrange era. Software quality assurance is

defined as a “planned and systematic pattern of all actions necessary to provide adequate

confidence that the software conforms to established technical requirements” (Abdel-Hamid,

1988). Software quality assurance was created to establish “adherence to coding standards and

conventions, compliance with documentation requirements and standards, and successful

completion of activities” (Fujii, 1978). Software verification and validation was created to

determine the adequacy of software requirements, software designs, software source code, and

regression testing during software maintenance (Adrion, Branstad, & Cherniavsky, 1982). Defect

prevention was a structured process of determining the root causes of software defects and then

institutionalizing measures to prevent their recurrence (Jones, 1985). Quality management

systems consisted of a set of organizational policies and procedures to ensure software satisfied

its requirements (Rigby, Stoddart, & Norris, 1990).

Software processes. Software processes were formed in the microcomputer era,

though they were rooted in the traditions of software engineering, structured methods, software

life cycles, and software environments dating back to the late mainframe and early midrange

eras. A software process is the “collection of related activities seen as a coherent process subject

to reasoning involved in the production of a software system” (Notkin, 1989). The maturity grid

(e.g., uncertainty, awakening, enlightenment, wisdom, and certainty), though not for software,

inspired the software process modeling movement of the microcomputer era (Crosby, 1979).

IBM then created its own process grid (e.g., traditional, awareness, knowledge, skill and wisdom,

and integrated management system) for conducting site studies of computer programming

laboratories (Radice, Harding, Munnis, & Phillips, 1985). The process maturity framework was

Agile Methods 40

directly adapted from IBM’s process grid (Humphrey, 1987), which was finally turned into the

capability maturity model for U.S. military use (Weber, Paulk, Wise, & Withey, 1991).

Rapid development. Rapid development was formalized in the microcomputer era

though its tenets can be traced back to early notions of structured methods and prototyping.

Rapid development is defined as a “methodology and class of tools for speedy object

development, graphical user interfaces, and reusable code for client-server applications”

(Agarwal, Prasad, Tanniru, & Lynch, 2000). Rapid prototyping was defined as a process of

quickly creating an informal model of a software system, soliciting user feedback, and then

evolving the model until it satisfied the complete set of customer requirements (Naumann &

Jenkins, 1982). Joint application development was a process of having professional software

developers assist end users with the development of their applications by evaluating their

prototypes (Alavi, 1985). Joint application design, on the other hand, was a structured meeting

between end users and software developers with the objective of developing software designs

that satisfied their needs (Guide International, Inc., 1986). Rapid systems development was an

extension of the joint application design method, which advocated specific technological

solutions such as relational databases and the completion of the software system, not just its

design (Gane, 1987). In a close adaptation, rapid application development recommended iterative

rapid system development cycles in 60 to 120 day intervals (Martin, 1991).

Software reuse. Software reuse assumed its current form in the early microcomputer

era, though its earliest tenets can clearly be seen in literature throughout the 1950s, 1960s, and

1970s. Software reuse is the “use of existing software or software knowledge to construct new

software” (Frakes & Kang, 2005). Reusable software became synonymous with the Ada

programming language in the 1980s, though it was prophesied as a major strategy in 1968 and

Agile Methods 41

was a central management facet of Japanese software factories in the 1970s (Neighbors, 1984).

By the close of the microcomputer era, reusable software designs were considered just as

important as reusable software source code (Jameson, 1989). The same year, reusability was

expanded to include requirements, designs, code, tests, and documents, and dubbed “reusable

assets” (Holibaugh, Cohen, Kang, & Peterson, 1989). By the end of the Internet era, catalysis

was formed based on composing new applications from existing ones (D’Souza & Wills, 1998).

Software architecture. Software architecture began to assume a strategic role for

managing the development of software systems near the end of the microcomputer era. Software

architecture is defined as “the structure and organization by which modern system components

and subsystems interact to form systems and the properties of systems that can best be designed

and analyzed at the system level” (Kruchten, Obbink, & Stafford, 2006). Domain analysis was

the discipline of identifying, capturing, and organizing all of the information necessary to create

a new software system (Prieto-Diaz, 1987). Domain engineering was a process of managing

reusable information about specific types of software systems, gathering architectural data, and

gathering data about the computer programs themselves (Arango, 1988). Software architecture

was a discipline of creating flexible software designs that were adaptable to multiple computer

systems in order to respond to the rapidly changing military threats (Horowitz, 1991). Software

product lines soon emerged with an emphasis on evolving software architectures to reduce costs

and risks associated with design changes (Wegner, Scherlis, Purtilo, Luckham, & Johnson,

1992), along with software product families (Northrop, 2002).

Agile methods. Agile methods gained prominence in the late Internet and early

personalized eras to accommodate the uniquely flexible nature of Internet technologies. Agile

methods are an approach for managing the development of software, which is based upon

Agile Methods 42

obtaining early customer feedback on a large number of frequent software releases (Beck, 1999).

The dynamic systems development methodology or DSDM has three broad phases that consist of

requirements prototypes, design prototypes, and then an implementation or production phase

(Millington & Stapleton, 1995). Scrum is a light weight software development process consisting

of implementing a small number of customer requirements in two to four week sprint cycles

(Schwaber, 1995). Extreme programming or XP consists of collecting informal requirements

from on-site customers, organizing teams of pair programmers, developing simple designs,

conducting rigorous unit testing, and delivering small and simple software packages in short two-

week intervals (Anderson et al., 1998). Open source software development involves freely

sharing, peer reviewing, and rapidly evolving software source code for the purpose of increasing

its quality and reliability (O’Reilly, 1999). Crystal methods involve frequent delivery; reflective

improvement; close communication; personal safety; focus; easy access to expert users; and a

technical environment with automated testing, configuration management, and frequent

integration (Cockburn, 2002a). Feature driven development involves developing an overall

model, building a features list, planning by feature, designing by feature, and building by feature

(Palmer & Felsing, 2002). The rational unified process involves a project management, business

modeling, requirements, analysis and design, implementation, test, configuration management,

environment, and deployment workflow (Kruchten, 2000). Adaptive software development

involves product initiation, adaptive cycle planning, concurrent feature development, quality

review, and final quality assurance and release (Highsmith, 2000). Lean development involves

eliminating waste, amplifying learning, deciding as late as possible, delivering as fast as

possible, empowering the team, building integrity in, and seeing the whole (Poppendieck &

Poppendieck, 2003).

Agile Methods 43

History of Software Quality Measurement

Software Complexity

Software Size

User Satisfaction

Website Quality

Software Reliability

Software Defect Models

Software Attributes

MAINFRAME ERA
(1960s)

MIDRANGE ERA
(1970s)

MICROCOMPUTER ERA
(1980s)

INTERNET ERA
(1990s)

PERSONALIZED ERA
(2000s)

Operand Count (Halstead, 1972)
Segment Global Usage Pair (Basili & Turner, 1975)

Cyclomatic Complexity (McCabe, 1976)
Information Flow (Henry & Kafura, 1981)

WAM (Selz & Schubert, 1997)
AST (Chen & Wells, 1999)

E-SAT (Szymanski et al., 2000)
WebQ (Barnes et al., 2000)

ime Between Failures (Jelinski & Moranda, 1972)
Reliability Growth (Coutinho, 1973)

Non-Homogeneous Poisson Process (Goel & Okumoto, 1979)
Rayleigh Model (Kan, 1995)

Program Quality (Rubey & Hartwick, 1968)
Software Quality (Boehm, Brown, Kaspar, & Lipow, 1973)

Software Maintenance (Swanson, 1976)
Database Design (Gilb, 1977)

Total Defects (Akiyama, 1971)
Programming Errors (Motley & Brooks, 1977)
Total Defects (Halstead, 1977)

Number of Defects (Potier, Albin, Ferreol, & Bilodeau, 1982)

Computer Instructions (McIlroy, 1960)
Lines of Code (Martin, 1965)

Token Count (Halstead, 1972)
Function Points (Albrecht, 1979)

Quality of Service (Lucas, 1974)
User Behavior (Maish, 1979)

End User Computing Satisfaction (Doll & Torkzadeh, 1988)
CUPRIMDA (Kan, 1995)

Software Errors

Errors Per Statement (Weinberg & Gressett, 1963)
Error Density (Shooman & Bolsky, 1975)

Fault Density (Lipow, 1982)
Defect Density (Shen, Yu, Thebaut, & Paulsen, 1985)

Figure 4. Timeline and history of software quality measures.

Software size. One of the earliest known measures used to describe computer programs

was software size (McIlroy, 1960). Software size is a measure of the volume, length, quantity,

amount, and overall magnitude of a computer program (Conte, Dunsmore, & Shen, 1986). In the

mid-1960s, lines of code or LOC was one of the first known measures of software size, which

referred to the number of computer instructions or source statements comprising a computer

program and was usually expressed as thousands of lines of code (Martin, 1965). Almost a

Agile Methods 44

decade later in the mid to late 1970s, more sophisticated measures of software size emerged such

as token count, volume, function count, and function points (Conte, Dunsmore, & Shen, 1986).

Recognizing that individual lines of code had variable lengths, token count was created to

distinguish between unequally sized lines of code, which was technically defined as “basic

syntactic units distinguishable by a compiler” (Halstead, 1977). In yet another attempt to

accurately gauge the size of an individual line of code, volume was created to measure the actual

size of a line of code in bits, otherwise known as binary zeros and ones (Halstead, 1977). Shortly

thereafter, function count was created to measure software size in terms of the number of

modules or subroutines (Basili & Reiter, 1979). Function points was another major measure of

software size, which was based on estimating the number of inputs, outputs, master files,

inquiries, and interfaces (Albrecht, 1979). Though software size is not a measure of software

quality itself, it formed the basis of many measures or ratios of software quality right through the

modern era (e.g., number of defects, faults, or failures per line of code or function point).

Furthermore, some treatises on software metrics consider software size one of the most basic

measures of software complexity (Kan, 1995). Thus, a history of software quality measurement

may not be complete without introducing an elementary discussion of software size.

Software errors. One of the earliest approaches for measuring software quality was the

practice of counting errors, which dates back to the 1950s when digital computers emerged.

Software errors are human actions resulting in defects, defects sometimes manifest themselves as

faults, and faults lead to failures, which are often referred to as software crashes (Kan, 1995).

The concept of “errors per statement” first appeared in the early 1960s (Weinberg & Gressett,

1963) and studies of “error proneness” intensified by the close of the decade (Youngs, 1970).

The term error density was coined in the mid-1970s, which referred to the simple ratio of errors

Agile Methods 45

to software size (Shooman & Bolsky, 1975). Fault density was also a measure of software

quality, which referred to the ratio of anomaly causing faults to software size (Lipow, 1982). The

term defect density subsumed the measure of error and fault density in the mid-1980s, which

referred to the ratio of software errors to software size (Shen, Yu, Thebaut, & Paulsen, 1985).

Many unique types of errors were counted, such as number of requirement, design, coding,

testing, and maintenance errors, along with number of changes and number of changed lines of

code (Conte, Dunsmore, & Shen, 1986). Even the term problem density emerged in the early

1990s, which referred to the number of problems encountered by customers to measure and track

software quality (Kan, 1995). The practice of counting errors, defects, faults, and failures as a

means of measuring software quality enjoyed widespread popularity for more than five decades.

Software attributes. Another of the earliest approaches for measuring software quality

was the practice of quantifying and assessing attributes or characteristics of computer programs.

Software attributes are an “inherent, possibly accidental trait, quality, or property” such as

functionality, performance, or usability (Institute of Electrical and Electronics Engineers, 1990).

Logicon designed a model to measure software attributes such as correctness, logicality, non-

interference, optimizability, intelligibility, modifiability and usability (Rubey & Hartwick, 1968).

Next, TRW identified software attributes such as portability, reliability, efficiency, modifiability,

testability, human engineering, and understandability (Boehm, Brown, Kaspar, & Lipow, 1973).

These early works led to numerous specialized spin-offs such as a framework for measuring the

attributes of software maintenance (Swanson, 1976) and even a database’s design (Gilb, 1977).

Spin-offs continued emerging with an increasing focus on operationalizing these attributes with

real software metrics (Cavano & McCall, 1978; Dzida, Herda, & Itzfeldt, 1978; Gaffney, 1981).

By the mid-1980s, this practice reached Japan (Sunazuka, Azuma, & Yamagishi, 1985) and a

Agile Methods 46

comprehensive framework emerged replete with a detailed software measures (Arthur, 1985).

Use of software attributes to measure software quality was exemplified by the functionality,

usability, reliability, performance, and supportability or FURPS model (Grady & Caswell, 1987).

Software attributes enjoyed widespread use among practitioners throughout the 1970s and 1980s

because of their simplicity, though scientists passed them by in favor of statistical models.

Static defect models. One of the earliest approaches for predicting software quality

was the use of statistical models referred to as static reliability or static software defect models.

“A static model uses other attributes of the project or program modules to estimate the number of

defects in software” (Kan, 1995), ignoring “rate of change” (Conte, Dunsmore, & Shen, 1986).

One of the earliest software defect models predicted the number of defects in a computer

program as a function of size, decision count, or number of subroutine calls (Akiyama, 1971).

Multi-linear models were created with up to 10 inputs for the various types of statements found

in software code such as comments, data, and executable instructions (Motley & Brooks, 1977).

The theory of software science was extended to include defect models by using volume as an

input, which itself was a function of program language and statement length (Halstead, 1977).

Research into software defect models continued with more extensions based on software science,

cyclomatic complexity, path, and reachability metrics (Potier, Albin, Ferreol, & Bilodeau, 1982).

More defect models were created by mixing defects, problems, and software science measures

such as vocabulary, length, volume, difficulty, and effort (Shen, Yu, Thebaut, & Paulsen, 1985).

Later, IBM developed models for predicting problems, fielded defects, arrival rate of problems,

and backlog projection, which were used to design midrange operating systems (Kan, 1995).

Static linear or multi-linear statistical models to predict defects continue to be useful tools well

into modern times, though older dynamic statistical reliability models are overtaking them.

Agile Methods 47

Software complexity. Appearing in the early 1970s, the study of software complexity

became one of the most common approaches for measuring the quality of computer programs.

Software complexity is defined as “looking into the internal dynamics of the design and code of

software from the program or module level to provide clues about program quality” (Kan, 1995).

Software complexity sprang from fervor among research scientists eager to transform computer

programming from an art into a mathematically based engineering discipline (Halstead, 1972).

Many technological breakthroughs in the two decades prior to the mid-1970s led to the formation

of software complexity measures. These included the advent of digital computers in the 1950s,

discovery of high level computer programming languages, and the formation of compiler theory.

Furthermore, flowcharting was routinely automated, axiomatic theorems were used for designing

new computer languages, and analysis of numerical computer algorithms became commonplace.

As a result, three major classes of software complexity metrics arose for measuring the quality of

software: (a) data structure, (b) logic structure, and (c) composite metrics (Weismann, 1973).

One of the first data structure metrics was the count of operands, which measured the number of

variables, constants, and labels in a computer program versus measuring logic (Halstead, 1972).

The segment-global-usage-pair metric determined complexity by counting references to global

variables, a high number of which was considered bad among coders (Basili & Turner, 1975).

Another data structure metric was the span between variables, which measured how many logic

structure statements existed between variables where a higher number was poor (Elshoff, 1976).

A unique data structure metric for measuring software quality was the number of live variables

within a procedure or subroutine as a sign of undue complexity (Dunsmore & Gannon, 1979).

One data structure metric surviving to modern times is the information flow, or fan in - fan out

metric, which measures the number of modules that exchange data (Henry & Kafura, 1981).

Agile Methods 48

Logic structure metrics were cyclomatic complexity or paths (McCabe, 1976), minimum paths

(Schneidewind & Hoffmann, 1979), and gotos or knots (Woodward, Hennell, & Hedley, 1979).

Also included were nesting (Dunsmore & Gannon, 1980), reachability (Shooman, 1983), nest

depth (Zolnowsky & Simmons, 1981), and decisions (Shen, Yu, Thebaut, & Paulsen, 1985).

Composite metrics combined cyclomatic complexity with other attributes of computer programs

to achieve an accurate estimate software quality (Myers, 1977; Hansen, 1978; Oviedo, 1980).

They also included system complexity (Card & Glass, 1990) and syntactic construct (Lo, 1992).

Finally, it is important to note that most complexity metrics are now defunct, though cyclomatic

complexity, which arose out of this era, is still used as a measure of software quality today.

Software reliability. Also emerging in the early 1970s, software reliability was created

to predict the number of defects or faults in software as a method of measuring software quality.

Software reliability is the “probability that the software will execute for a particular period of

time without failure, weighted by the cost to the user of each failure encountered” (Myers, 1976).

Major types of reliability models include: (a) finite versus infinite failure models (Musa, 1999),

(b) static versus dynamic (Conte, Dunsmore, & Shen, 1986), and (c) deterministic versus

probabilistic (Pham, 2000). Major types of dynamic reliability models include: life cycle versus

reliability growth (Kan, 1995) and failure rate, curve fitting, reliability growth, non-

homogeneous Poisson process, and Markov structure (Pham, 2000). One of the first and most

basic failure rate models estimated the mean time between failures (Jelinski & Moranda, 1972).

A slightly more sophisticated failure rate model was created based on the notion that software

became more reliable with each successive code failure repaired (Schick & Wolverton, 1978).

The next failure rate model assumed the failure rate was initially constant and then begins to

decrease (Moranda, 1979). Multiple failure rate models appeared throughout the 1970s to round

Agile Methods 49

out this family of reliability models (Goel & Okumoto, 1979; Littlewood, 1979; Sukert, 1979).

Reliability or “exponential” growth models followed the appearance of failure rate models,

which measured the reliability of computer programs during testing as a function of time or the

number of tests (Coutinho, 1973; Wall & Ferguson, 1977). Another major family of reliability

models is the non-homogeneous Poisson process models, which estimate the mean number of

cumulative failures up to a certain point in time (Huang, 1984; Goel & Okumoto, 1979; Musa,

Iannino, & Okumoto, 1987; Ohba, 1984; Yamada, Ohba, & Osaki, 1983). Reliability models

estimate the number of software failures after development based on failures encountered during

testing and operation. Though rarely mentioned, the Rayleigh life cycle reliability model

accurately estimates defects inserted and removed throughout the software lifecycle (Kan, 1995).

Some researchers believed the use of software reliability models offered the best hope for

transforming computer programming from a craft industry into a true engineering discipline.

User satisfaction. User satisfaction gradually became a measure of software quality

during the 1950s, 1960s, and 1970s (Thayer, 1958; Hardin, 1960; Kaufman, 1966; Lucas, 1973).

User satisfaction is defined as “the sum of one’s feelings or attitudes toward a variety of factors

affecting that situation,” e.g., computer use and adoption by end users (Bailey & Pearson, 1983).

Though not the first, one study of user satisfaction analyzed attitudes toward quality of service,

management support, user participation, communication, and computer potential (Lucas, 1974).

A more complex study of user satisfaction looked at feelings about staff, management support,

preparation for its use, access to system, usefulness, ease-of-use, and flexibility (Maish, 1979).

Most studies up until 1980 focused on the end user’s satisfaction toward software developers; but

one study squarely focused on the end user’s satisfaction with the software itself (Lyons, 1980).

One of the first studies to address a variety of software attributes such as software accuracy,

Agile Methods 50

timeliness, precision, reliability, currency, and flexibility appeared (Pearson & Bailey, 1980).

Studies throughout the 1980s addressed user satisfaction with both designers and software

(Walsh, 1982; Bailey & Pearson, 1983; Ives, Olson, & Baroudi, 1983; Joshi, Perkins, &

Bostrom, 1986; Baroudi & Orlikowski, 1988). The late 1980s marked a turning point with

studies focusing entirely on user satisfaction with the software itself and attributes such as

content, accuracy, format, ease-of-use, and timeliness of the software (Doll & Torkzadeh, 1988).

A study of user satisfaction at IBM was based on reliability, capability, usability, installability,

maintainability, performance, and documentation factors (Kekre, Krishnan, & Srinivasan, 1995).

Throughout the 1990s, IBM used a family of user satisfaction models called UPRIMD,

UPRIMDA, CUPRIMDA, and CUPRIMDSO, which referred variously to factors of capability,

usability, performance, reliability, installability, maintainability, documentation, availability,

service, and overall satisfaction (Kan, 1995). User satisfaction, now commonly referred to as

customer satisfaction, is no doubt related to earlier measures of software attributes, usability or

user friendliness of software, and more recently website quality.

Website quality. Appearing in the late 1990s, following the user satisfaction movement,

models of website quality appeared as important measures of software quality (Lindroos, 1997).

One of the first models of website quality identified background, image size, sound file display,

and celebrity endorsement as important factors of software quality (Dreze & Zufryden, 1997).

The web assessment method or WAM quickly followed with quality factors of external bundling,

generic services, customer specific services, and emotional experience (Selz & Schubert, 1997).

In what promised to be the most prominent web quality model, attitude toward the site or AST

had quality factors of entertainment, informativeness, and organization (Chen & Wells, 1999).

The next major model was the e-satisfaction model with its five factors of convenience, product

Agile Methods 51

offerings, product information, website design, and financial security (Szymanski & Hise, 2000).

The website quality model or WebQual for business school portals was based on factors of ease-

of-use, experience, information, and communication and integration (Barnes & Vidgen, 2000).

An adaptation of the service quality or ServQual model, WebQual 2.0 measured quality factors

such as tangibles, reliability, responsiveness, assurance, and empathy (Barnes & Vidgen, 2001).

The electronic commerce user consumer satisfaction index or ECUSI consisted of 10 factors

such as product information, consumer service, purchase result and delivery, site design,

purchasing process, product merchandising, delivery time and charge, payment methods, ease-

of-use, and additional information services (Cho & Park, 2001). Based on nine factors, the

website quality or SiteQual model consisted of aesthetic design, competitive value, ease-of-use,

clarity of ordering, corporate and brand equity, security, processing speed, product uniqueness,

and product quality assurance (Yoo & Donthu, 2001). In what promised to be exclusively for

websites, the Internet retail service quality or IRSQ model was based on nine factors of

performance, access, security, sensation, information, satisfaction, word of mouth, likelihood of

future purchases, and likelihood of complaining (Janda, Trocchia, & Gwinner, 2002). In a rather

complex approach, the expectation-disconfirmation effects on web-customer satisfaction or

EDEWS model consists of three broad factors (e.g., information quality, system quality, and web

satisfaction) and nine subfactors (McKinney, Yoon, & Zahedi, 2002). In one of the smallest and

most reliable website quality models to-date, the electronic commerce retail quality or EtailQ

model, consists of only four major factors (e.g., fulfillment and reliability, website design,

privacy and security, and customer service) and only 14 instrument items (Wolfinbarger & Gilly,

2003). Based on techniques for measuring software quality dating back to the late 1960s, more

data has been collected and validated using models of website quality than any other measure.

Agile Methods 52

History of Agile Methods

Figure 5. Timeline and history of agile methods.

Agile Methods 53

New product development game. Early in 1986, two management scholars from the

School of International Corporate Strategy at Hitotsubashi University in Tokyo, Japan, published

a management approach called the “new product development game” in the Harvard Business

Review (Takeuchi & Nonaka, 1986). In their article, they argued that Japanese “companies are

increasingly realizing that the old sequential approach to developing new products simply will

not get the job done.” They cited the sport of Rugby as the inspiration for the principles of their

new product development game—In particular, Rugby’s special play called the Scrum, when the

players interlock themselves together as a tightly bound group to gain possession of the ball. The

new product development game consisted of six major factors: (a) built-in instability, (b) self

organizing project teams, (c) overlapping development phases, (d) multi-learning, (e) subtle

control, and (f) organizational transfer of learning. They went on to demonstrate how four

Japanese firms, e.g., Fuji-Xerox, Canon, Honda, and NEC, applied the six factors of the new

product development game to develop six major products, which became market successes. The

six major factors of the new product development game were not unlike the total quality

management and concurrent engineering movements that were popular in the U.S. during that

timeframe, and their work inspired the development of agile methods for the next 20 years.

New development rhythm. In 1989, three managers from IBM in Rochester,

Minnesota, published an article on how IBM devised a management approach called the “new

development rhythm,” to bring the AS/400 midrange computer to market in only two years

(Sulack, Lindner, & Dietz, 1989). In their article, they stated that “user involvement programs

yielded a product offering that met the user requirements with a significantly reduced

development cycle.” The new development rhythm consisted of six major factors: (a)

modularized software designs, (b) software reuse, (c) rigorous software reviews and software

Agile Methods 54

testing, (d) iterative development, (e) overlapped software releases, and (f) early user

involvement and feedback. IBM’s new development rhythm was a remarkable feat of

management science and boasted a long list of accomplishments: (a) time-to-market

improvement of 40%, (b) development of seven million lines of operating system software in 26

months, (c) compatibility with 30 billion lines of commercial applications, (d) $14 billion in

revenues, and (e) the IBM corporation’s first Malcolm Baldrige National Quality Award. While

there was nothing innovative about IBM’s new development rhythm, it was IBM’s audacity to

apply these academic textbook approaches to commercial product development that was unique.

Scrum. In 1993, Jeff Sutherland of the Easel Corporation adapted the principles from the

“new product development game” (Takeuchi & Nonaka, 1986) to the field of computer

programming management, explicitly calling it “scrum” (Schwaber, 1995). In particular, scrum

assumes that the “systems development process is an unpredictable and complicated process that

can only be roughly described as an overall progression.” Furthermore, scrum’s creators believed

“the stated philosophy that systems development is a well understood approach that can be

planned, estimated, and successfully completed has proven incorrect in practice.” Therefore,

scrum’s creators set out to define a process as a “loose set of activities that combines known,

workable tools and techniques with the best that a development team can devise to build

systems.” Today, scrum is composed of three broad phases: (a) pre-sprint planning, (b) sprint,

and (c) post-sprint meeting. During the pre-sprint planning phase, computer programmers gather

to prioritize customer needs. During the sprint phase, computer programmers pretty much do

whatever it takes to complete a working version of software that meets a small set of high

priority customer needs. Finally, during the post-sprint meeting, computer programmers

demonstrate working software to their customers, adjust their priorities, and repeat the cycle.

Agile Methods 55

Dynamic systems development method. In 1993, 16 academic and industry

organizations in the United Kingdom banded together to create a management approach for

commercial software called the “dynamic systems development method” or simply DSDM

(Millington & Stapleton, 1995). Their goal was to “develop and continuously evolve a public

domain method for rapid application development” in an era dominated by proprietary methods.

Initially, DSDM emphasized three success factors: (a) “the end user community must have a

committed senior staff that allows developers easy access to end users,” (b) “the development

team must be stable and have well established skills,” and (c) “the application area must be

commercial with flexible initial requirements and a clearly defined user group.” These success

factors would later be expanded to include functionality versus quality, product versus process,

rigorous configuration management, a focus on business objectives, rigorous software testing,

risk management, and flexible software requirements. DSDM consists of five major stages: (a)

feasibility study, (b) business study, (c) functional model iteration, (d) design and build iteration,

and (e) implementation. The goal of DSDM is to explore customer requirements by building at

least two full scale prototypes before the final system is implemented.

Synch-n-stabilize. In 1995, two management scholars from MIT’s Sloan School of

Management published a textbook on how Microsoft managed the development of software for

personal computers, dubbed the “sync-n-stabilize” approach (Cusumano & Selby, 1995). Experts

on software management approaches for the mainframe market, their two year case study from

1993 to 1995 was more of a grounded theory or emergent research design, which led them to

some startling conclusions. At one point in their textbook, they stated that “during this initial

research, it became clear why Microsoft was able to remain on top in its industry while most

contemporaries from the founding years of the 1970s disappeared.” The synch-n-stabilize

Agile Methods 56

approach consisted of six major factors: (a) parallel programming and testing, (b) flexible

software requirements, (c) daily operational builds, (d) iterative development, (e) early customer

feedback, and (f) use of small programming teams. Microsoft’s success was indeed remarkable,

and their synch-n-stabilize approach did indeed help them create more than 20 million lines of

code for Windows and Office 95, achieve customer satisfaction levels of 95%, and maintain

annual profit margins of nearly 36%.

Judo strategy. In 1998, two management scholars from both the Harvard Business

School and MIT’s Sloan School of Management published a textbook on how Netscape managed

the development of software for the Internet, dubbed the “judo strategy” (Cusumano & Yoffie,

1998). Experts on software management approaches for the personal computer market, their one

year case study from 1997 to 1998 was once again more of a grounded theory or emergent

research design, which prophetically led them to be critical of Netscape’s future. Whereas

Microsoft’s strategic advantage was its immense intellectual capital, Netscape’s only advantage

seemed to be its first-mover status, which was quickly eroding to Microsoft’s market share for

browsers at the time their book was published. In fact, the authors criticized Netscape for not

having a technical CEO in the fast moving Internet market, which was a very unconventional

view among management scholars. Some of the more notable factors characteristic of Netscape’s

judo strategy included: (a) design products with modularized architectures; (b) use parallel

development; (c) rapidly adapt to changing market priorities; (d) apply as much rigorous testing

as possible; and (e) use beta testing and open source strategies to solicit early market feedback on

features, capabilities, quality, and architecture.

Internet time. In 1998, a management scholar from the Harvard Business School

conducted a study on how U.S. firms manage the development of websites, referring to his

Agile Methods 57

approach as “Internet time” (MacCormack, 1998). His study states that “constructs that support a

more flexible development process are associated with better performing projects.” Basically,

what he did was survey 29 software projects from 15 Internet firms such as Microsoft, Netscape,

Yahoo, Intuit, and Altavista. He set out to test the theory that website quality was associated with

three major factors: (a) greater investments in architectural design, (b) early market feedback,

and (c) greater amounts of generational experience. Harvard Business School scholars believed

firms must spend a significant amount of resources creating flexible software designs, they must

incorporate customer feedback on working “beta” versions of software into evolving software

designs, and higher website quality will be associated with more experience among computer

programmers. After determining the extent to which the 29 website software projects complied

with these “Internet time” factors through a process of interviews and surveys, he then assembled

a panel of 14 industry experts to objectively evaluate the associated website quality. Statistical

analysis supported two of the hypotheses, e.g., greater architectural resources and early market

feedback were associated with higher website quality, but not the third, e.g., greater experience

among computer programmers is associated with higher website quality. This was one of the first

studies to offer evidence in support of agile methods.

Extreme programming. In 1998, 20 software managers working for the Chrysler

Corporation published an article on how they devised a management approached called “extreme

programming” or XP to turn around a failing software project that would provide payroll

services for 86,000 Chrysler employees (Anderson et al., 1998). In their article, they stated that

“extreme programming rests on the values of simplicity, communication, testing, and

aggressiveness.” They also stated that the “project had been declared a failure and all code

thrown away, but using the extreme programming methodology, Chrysler started over from

Agile Methods 58

scratch and delivered a very successful result.” Extreme programming consists of 13 factors: (a)

planning game, (b) small releases, (c) metaphor, (d) simple design, (e) tests, (f) refactoring, (g)

pair programming, (h) continuous integration, (i) collective ownership, (j) onsite customer, (k)

40 hour workweek, (l) open workspace, and (m) just rules. What these 20 software managers did

was start over, get an informal statement of customer needs, gradually evolve a simple system

design using iterative development, apply rigorous testing, use small teams of programmers, and

get early customer feedback on their evolving design. In the end, Chrysler was able to deploy an

operational payroll system serving more than 86,000 employees.

Crystal methods. In 1991, a software manager with IBM was asked to create an

approach for managing the development of object oriented systems called “crystal methods”

(Cockburn, 2002a). Crystal methods were piloted on a “$15 million firm, fixed-price project

consisting of 45 people.” Crystal methods are a “family of methods with a common genetic code,

one that emphasizes frequent delivery, close communication, and reflective improvement.”

Crystal methods are a family of 16 unique approaches for project teams ranging from one to

1,000 people and project criticality ranging from loss of comfort to loss of life. The seven

properties of crystal methods are: (a) frequent delivery; (b) reflective improvement; (c) close

communication; (d) personal safety; (e) focus; (f) easy access to expert users; and (g) a technical

environment with automated testing, configuration management, and frequent integration. The

five strategies of crystal methods are: (a) exploratory 360, (b) early victory, (c) walking skeleton,

(d) incremental re-architecture, and (e) information radiators. The nine techniques of crystal

methods are: (a) methodology shaping, (b) reflection workshop, (c) blitz planning, (d) Delphi

estimation, (e) daily stand-ups, (f) agile interaction design, (g) process miniature, (h) side-by-side

programming, and (i) burn charts. The eight roles of crystal methods are: (a) sponsor, (b) team

Agile Methods 59

member, (c) coordinator, (d) business expert, (e) lead designer, (f) designer-programmer, (g)

tester, and (h) writer. The work products include a mission statement, team structure and

conventions, reflection workshop results, project map, release plan, project status, risk list,

iteration plan and status, viewing schedule, actor-goal list, use cases and requirements file, user

role model, architecture description, screen drafts, common domain model, design sketches and

notes, source code, migration code, tests, packaged system, bug reports, and user help text.

Feature driven development. In 1997, three software managers and five software

developers created a software development approach called “feature driven development” to help

save a failed project for an international bank in Singapore (Palmer & Felsing, 2002). In their

textbook, they stated that “the bank had already made one attempt at the project and failed, and

the project had inherited a skeptical user community, wary upper management, and a

demoralized development team.” Furthermore, they stated that “the project was very ambitious,

with a highly complex problem domain spanning three lines of business, from front office

automation to backend legacy system integration.” In order to address this highly complex

problem domain that had already experienced severe setbacks, they created an agile and adaptive

software development process that is “highly iterative, emphasizes quality at each step, delivers

frequent tangible working results, provides accurate and meaningful progress, and is liked by

clients, managers, and developers.” Feature driven development consists of five overall phases or

processes: (a) develop an overall model, (b) build a features list, (c) plan by feature, (d) design

by feature, and (e) build by feature. Feature driven development also consists of other best

practices in software management and development such as domain object modeling, developing

by feature, individual class ownership, feature teams, inspections, regular builds, configuration

management, and reporting and visibility of results.

Agile Methods 60

Table 1. Summary of Practices and Processes of Agile Methods

 FDD Extreme Programming DSDM Scrum

P
ra

ct
ic

es

• Domain object modeling
• Developing by feature
• Class (code) ownership
• Feature teams
• Inspections
• Regular build schedule
• Configuration management
• Reporting/visibility of results

• Planning game
• Small releases
• Metaphor
• Simple design
• Tests
• Refactoring
• Pair programming
• Continuous integration
• Collective ownership
• On-site customer
• 40-hour weeks
• Open workspace
• Just rules

• Active user involvement
• Empowered teams
• Frequent delivery
• Fitness (simplicity)
• Iterations and increments
• Reversible changes
• Baselined requirements
• Integrated testing
• Stakeholder collaboration

• Product backlog
• Burndown chart
• Sprint backlog
• Iterations and increments
• Self managed teams
• Daily scrums

P
ro

ce
ss

es

Develop an Overall Model
 Form the Modeling Team
 Conduct a Domain Walkthrough
 Study Documents
 Develop Small Group Models
 Develop a Team Model
 Refine the Overall Object Model
 Write Model Notes
 Internal and External Assessment
Build a Features List
 Form the Features List Team
 Build the Features List
 Internal and External Assessment
Plan by Feature
 Form the Planning Team
 Determine Development Sequence
 Assign Features to Chief Coders
 Assign Classes to Developers
 Self Assessment
Iteration (1)
 Design by Feature
 Form a Feature Team
 Conduct Domain Walkthrough
 Study Referenced Documents
 Develop Sequence Diagrams
 Refine the Object Model
 Write Class/Method Prologue
 Design Inspection
 Build by Feature
 Implement Classes/Methods
 Conduct Code Inspection
 Unit Test
 Promote to the Build
Iteration (2)
 Design by Feature
 Form a Feature Team
 Conduct Domain Walkthrough
 Study Referenced Documents
 Develop Sequence Diagrams
 Refine the Object Model
 Write Class/Method Prologue
 Design Inspection
 Build by Feature
 Implement Classes/Methods
 Conduct Code Inspection
 Unit Test
 Promote to the Build
Iteration (n)
 Design by Feature
 Form a Feature Team
 Conduct Domain Walkthrough
 Study Referenced Documents
 Develop Sequence Diagrams
 Refine the Object Model
 Write Class/Method Prologue
 Design Inspection
 Build by Feature
 Implement Classes/Methods
 Conduct Code Inspection
 Unit Test
 Promote to the Build

User Stories
 Requirements
 Acceptance Tests
Architectural Spike
 System Metaphor
Release (1)
 Release Planning
 Release Plan
 Iteration (1)
 Iteration Planning
 Iteration Plan
 Daily Standup
 Collective Code Ownership
 Create Unit Tests
 Unit Tests
 Pair Programming
 Move People Around
 Refactor Mercilessly
 Continuous Integration
 Acceptance Testing
 Iteration (2)
 Iteration Planning
 Iteration Plan
 Daily Standup
 Collective Code Ownership
 Create Unit Tests
 Unit Tests
 Pair Programming
 Move People Around
 Refactor Mercilessly
 Continuous Integration
 Acceptance Testing
 Iteration (n)
 Iteration Planning
 Iteration Plan
 Daily Standup
 Collective Code Ownership
 Create Unit Tests
 Unit Tests
 Pair Programming
 Move People Around
 Refactor Mercilessly
 Continuous Integration
 Acceptance Testing
Release (2)
 Iteration (1)
 Iteration (2)
 Iteration (n)
Release (n)
 Iteration (1)
 Iteration (2)
 Iteration (n)

Feasibility Study
 Feasibility Report
 Feasibility Prototype (optional)
 Outline Plan
 Risk Log
Business Study
 Business Area Definition
 Prioritized Requirements List
 Development Plan
 System Architecture Definition
 Updated Risk Log
Functional Model Iteration
 Functional Model
 Functional Prototype (1)
 Functional Prototype
 Functional Prototype Records
 Functional Prototype (2)
 Functional Prototype
 Functional Prototype Records
 Functional Prototype (n)
 Functional Prototype
 Functional Prototype Records
 Non-functional Requirements List
 Functional Model Review Records
 Implementation Plan
 Timebox Plans
 Updated Risk Log
Design and Build Iteration
 Timebox Plans
 Design Prototype (1)
 Design Prototype
 Design Prototype Records
 Design Prototype (2)
 Design Prototype
 Design Prototype Records
 Design Prototype (n)
 Design Prototype
 Design Prototype Records
 Tested System
 Test Records
Implementation
 User Documentation
 Trained User Population
 Delivered System
 Increment Review Document

Iteration (1)
 Sprint Planning Meeting
 Product Backlog
 Sprint Backlog
 Sprint
 Daily Scrum
 Shippable Code
 Sprint Review Meeting
 Shippable Code
 Sprint Retrospective Meeting
Iteration (2)
 Sprint Planning Meeting
 Product Backlog
 Sprint Backlog
 Sprint
 Daily Scrum
 Shippable Code
 Sprint Review Meeting
 Shippable Code
 Sprint Retrospective Meeting
Iteration (n)
 Sprint Planning Meeting
 Product Backlog
 Sprint Backlog
 Sprint
 Daily Scrum
 Shippable Code
 Sprint Review Meeting
 Shippable Code
 Sprint Retrospective Meeting

Agile Methods 61

History of Studies on Agile Methods

Figure 6. Timeline and history of studies on agile methods.

Agile Methods 62

Harvard business school. In 1998, two management scholars from the Harvard

Business School conducted a survey of 391 respondents to test the effects of flexible versus

inflexible product technologies (Thomke & Reinertsen, 1998). What they found was that projects

using inflexible product technologies required over two times as much engineering effort as

flexible product technologies (e.g., 17.94 vs. 8.15 months).

Harvard business school. In 1998, a management scholar from the Harvard Business

School conducted a survey of 29 projects from 15 U.S. Internet firms to test the effects of

flexible software development management approaches on website quality (MacCormack, 1998).

What he found was that flexible product architectures and customer feedback on early beta

releases were correlated to higher levels of website quality.

Boston college carroll school of management. In 1999, two management scholars

from Boston College’s Carroll School of Management conducted a case study of 28 software

projects to determine the effects of iterative development on project success (Fichman & Moses,

1999). What they found was that software projects that use iterative development deliver

working software 38% sooner, complete their projects twice as fast, and satisfy over twice as

many software requirements.

Reifer consultants. In 2003, Reifer Consultants conducted a survey of 78 projects from

18 firms to determine the effects of using agile methods to manage the development of software

(Reifer, 2003). What they found was that 14% to 25% of respondents experienced productivity

gains, 7% to 12% reported cost reductions, and 25% to 80% reported time-to-market

improvements.

Shine technologies. In 2003, Shine Technologies conducted an international survey of

131 respondents to determine the effects of using agile methods to manage the development of

Agile Methods 63

software (Johnson, 2003). What they found was that 49% of the respondents experienced cost

reductions, 93% of the respondents experienced productivity increases, 88% of the respondents

experienced quality increases, and 83% experienced customer satisfaction improvements.

CIO magazine. In 2004, CIO Magazine conducted a survey of 100 information

technology executives with an average annual budget of $270 million to determine the effects of

agile management on organizational effectiveness (Prewitt, 2004). What they found was that

28% of respondents had been using agile management methods since 2001, 85% of the

respondents were undergoing enterprise wide agile management initiatives, 43% of the

respondents were using agile management to improve organizational growth and market share,

and 85% said agile management was a core part of their organizational strategy.

Digital focus. In 2006, Digital Focus conducted a survey of 136 respondents to

determine the effects of using agile methods to manage the development of software (Digital

Focus, 2006). What they found was that 27% of the respondents were adopting agile methods for

a project, 23% of the respondents were adopting agile methods company wide, 51% of the

respondents wanted to use agile methods to speed up the development process, 51% of the

respondents said they lacked the skills necessary to implement agile methods at the project level,

62% of the respondents said they lacked the skills necessary to implement agile methods at the

organization level, and 60% planned on teaching themselves how to use agile methods.

Version one. In 2006, Version One conducted an international survey of 722

respondents to determine the effects of using agile methods to manage the development of

software (Version One, 2006). What they found was that 86% of the respondents reported time-

to-market improvements, 87% of the respondents reported productivity improvements, 86% of

the respondents reported quality improvements, 63% of the respondents reported cost reductions,

Agile Methods 64

92% of the respondents reported the ability to manage changing priorities, 74% of the

respondents reported improved morale, 72% of the respondents reported risk reductions, 66% of

the respondents reported satisfaction of business goals, and 40% were using the scrum method.

Ambysoft. In 2006, Ambysoft conducted an international survey of 4,232 respondents to

determine the effects of using agile methods to manage the development of software (Ambler,

2006). What they found was that 41% of organizations were using agile methods; 65% used

more than one type of agile method; 44% reported improvements in productivity, quality, and

cost reductions; and 38% reported improvements in customer satisfaction.

Table 2. Summary of Recent Studies and Surveys of Agile Methods

Year Source Findings Responses

1998 Harvard
(Thomke et al., 1998)

50% reduction in engineering effort
55% improvement in time to market
925% improvement in number of changes allowed

391

1998 Harvard
(MacCormack, 1998)

48% productivity increase over traditional methods
38% higher quality associated with more design effort
50% higher quality associated with iterative development

29

1999 Boston College
(Fichman et al., 1999)

38% reduction in time to produce working software
50% time to market improvement
50% more capabilities delivered to customers

28

2003 Reifer Consultants
(Reifer, 2003)

20% reported productivity gains
10% reported cost reductions
53% reported time-to-market improvements

78

2003 Shine Technologies
(Johnson, 2003)

49% experienced cost reductions
93% experienced productivity increases
88% experienced customer satisfaction improvements

131

2004 CIO Magazine
(Prewitt, 2004)

28% had been using agile methods since 2001
85% initiated enterprise-wide agile methods initiatives
43% used agile methods to improve growth and marketshare

100

2006 Digital Focus
(Digital Focus, 2006)

27% of software projects used agile methods
23% had enterprise-wide agile methods initiatives
51% used agile methods to speed-up development

136

2006 Version One
(Version One, 2006)

86% reported time-to-market improvements
87% reported productivity improvements
92% reported ability to dynamically change priorities

722

2006 AmbySoft
(Ambler, 2006)

41% of organizations used agile methods
44% reported improved productivity, quality, and costs
38% reported improvements in customer satisfaction levels

4,232

Agile Methods 65

Gaps and Problem Areas in the Literature

The gaps and problem areas in the literature associated with agile methods and website

quality are numerous. First, there are few scholarly studies of agile methods. That is, this author

has been unable to locate and identify a single scholarly study containing a theoretical conceptual

model of agile methods. Furthermore, not a single article in the literature review was based on a

systematic qualitative or quantitative study of agile methods. The literature review only mentions

textbooks and articles with notional concepts in agile methods. Even the quantitative survey

research mentioned in the literature review was of a rudimentary attitudinal nature. Additionally,

none of the articles mentioned in the literature review addressed all four of the factors associated

with agile methods (e.g., iterative development, customer feedback, well-structured teams, and

flexibility). None of them were systematically linked to scholarly models of website quality. The

gaps are quite clear, a dearth of holistic scholarship exists on agile methods.

Need for a New Study of Agile Methods

There is a clear need for a new study of agile methods. Once again, we hope to develop

one of the first in a long line of systematic scholarly studies of agile methods. Furthermore, we

will attempt to link the factors of agile methods to scholarly models of website quality. First and

foremost, there is a need for a systematic analysis of scholarly literature associated with the

factors of agile methods, which the next section will attempt to do. Then there is a need for a

scholarly theoretical model of agile methods, depicting the factors, variables, and hypotheses

associated with using agile methods. Additionally, there is a need for an analysis of scholarly

literature to identify the factors and variables associated with website quality. Finally, there is a

need to identify, survey, select, or develop scholarly measures and instruments for both agile

methods and website quality. Together these would constitute a new study of agile methods.

Agile Methods 66

CONCEPTUAL FRAMEWORK

The purpose of this section is to present a framework for examining the links between the

factors of agile methods and website quality among electronic commerce firms. This section

identifies four major factors of agile methods from an analysis of relevant literature: (a) iterative

development, (b) customer feedback, (c) well-structured teams, and (d) flexibility. In total, nine

major agile methods were analyzed: (a) new development rhythm, (b) scrum, (c) dynamic

systems development, (d) synch-n-stabilize, (e) Internet time, (f) judo strategy, (g) extreme

programming, (h) feature driven development, and (i) open source software development. The

conceptual model in Figure 7 represents the results of the analysis of factors and subfactors of

agile methods and their relationships. Furthermore, four hypotheses were formulated linking the

factors of agile methods to website quality. The conceptual model is a graphical illustration of

the goals, scope, and boundaries of this study.

Agile Methods Website Effectiveness Electronic Commerce

Customer Feedback

Feedback solicited
Feedback received
Feedback frequency
Feedback quality
Feedback incorporated

Iterative Development

Time boxed releases
Operational releases
Small releases
Frequent releases
Numerous releases

Well-Structured Teams

Team leader
Vision and strategy
Goals and objectives
Schedules and timelines
Small team size

Flexibility

Small size
Simple design
Modular design
Portable design
Extensible design

H 1 (+)

H 2 (+)

H 3 (+)

H 4 (+)

Website Quality

Website design
Privacy and security
Fulfillment and reliability
Customer service

Business-to-Consumer (B2C)

Shopping
Retail
Services

Figure 7. Conceptual model of agile methods, website quality, and e-commerce.

Agile Methods 67

Agile methods. Although the tenets of agile methods have been in place for as long as

five decades, modernized agile methods have only been in existence for about four or five years.

Subsequently, few scholarly definitions of agile methods have been produced or exist. However,

there are numerous informal definitions of agile methods, which will be examined here. “Agility

is a comprehensive response to the business challenges of profiting from rapidly changing and

continually fragmenting global markets for high quality, high-performance, and customer-

configured goods and services” (Goldman, Nagel, & Preiss, 1995). “Agility is the ability to both

create and respond to change in order to profit in a turbulent business environment” (Highsmith,

2002). “Agile development methods apply time-boxed iterative and evolutionary development,

adaptive planning, evolutionary delivery, and other values and practices to encourage rapid and

flexible response to change” (Larman, 2004). “Agility is the ability to deliver customer value

while dealing with inherent project unpredictability and dynamism by recognizing and adapting

to change” (Augustine, 2005). “Agile software development promotes quick response to changes

in requirements as well as extensive and ongoing collaboration between the development team

and the customer” (Germain & Robillard, 2005). “Agile methods are characterized by short

iterative cycles of development driven by product features, periods of reflection and

introspection, collaborative decision making, incorporation of rapid feedback and change, and

continuous integration of code changes into the system under development” (Nerur, Mahapatra,

& Mangalaraj, 2005). “Agile programming is design for change without refactoring and

rebuilding, its objective is to design programs that are receptive to and expect change, and it lets

changes be applied in a simple localized way to avoid or substantially reduce major refactoring,

retesting, and system builds” (Thomas, 2005). “Agile denotes the quality of being agile, ready

for motion, nimble, active, and dexterous in motion, which is what software development

Agile Methods 68

methods are attempting to offer in order to answer the eager business community asking for

lighter weight, faster, and nimbler software development processes” (Abrahamsson, Salo,

Ronkainen, & Warsta, 2002). “Being agile is a declaration of prioritizing for project

maneuverability with respect to shifting requirements, shifting technology, and a shifting

understanding of the situation” (Cockburn, 2002b). “Agile methods are human-centric bodies of

practices and guidelines for building usable software in unpredictable and highly-volatile

environments; they encourage continual realignment of development goals with the needs and

expectations of the customer; and they concentrate on significantly improving communications

and interactions among team members and with the customer, promoting continuous feedback,

focusing on clean code that works, transparency, and merciless testing to achieve higher quality”

(Melnik & Maurer, 2005). “Agile processes focus on the early facilitation and fast production of

working code, and are based on software development process models that support iterative and

incremental development of software” (Turk, France, & Rumpe, 2005). “Agile methods are a

better way of developing software, which involves working software over comprehensive

documentation, customer collaboration over contract negotiation, individuals and interactions

over processes and tools, and responding to change over following a plan” (Agile Manifesto,

2001). These 12 definitions reveal a diversity of interrelated concepts with respect to agile

methods. For the purposes of this research framework, we conclude that agile methods are

processes for developing new products in which small, but structured teams solicit and

incorporate early market feedback into a stream of rapid, frequent, and numerous releases of

working software that are intentionally designed to evolve, grow, and change in order to discover

and satisfy customer needs and produce high quality software.

Agile Methods 69

Iterative development. Iterative development was invented in the 1970s, sometimes

used in the 1980s, gained momentum in the 1990s, and is accepted as a coding principle today.

There have been many variations of iterative development, such as incremental, evolutionary,

and spiral development, as well as experimentation, learning by doing, and sense and response.

The notion of iterative development is that product architecture begins with a simple design and

then evolves into a more complex design as data is learned about technology and market needs.

There are basically two approaches to design: (a) gather all user needs at once and then design

the product all at one time, or (b) evolve designs a little at a time as user needs are discovered.

The former is called scope-boxed development and the latter is called time-boxed development,

both of which have fixed delivery schedules. There is a subtle but important difference between

the two and a few other misconceptions about iterative development. First, traditional scope-

boxed development is particularly risky, because if the scope is too large or too complex then

one of three situations will arise: (a) the schedule will slip, (b) the budget will overrun, or (c) the

contract will enter into default. In time-boxed development, none of these things happen, because

the requirements may be relaxed (e.g., reduced), in order to meet the schedule, budget, or

contract stipulations. Other common misconceptions about iterative development are that one

can develop requirements and designs in increments, and then code the software all at once in the

end. A more important caveat is that each increment must be operational software. Even more

importantly, there must be many operational increments, not just a few. A major study of new

product development from the 1990s lauded that the best product designers developed an

operational product in five years, while market laggards developed products in seven or more.

The rapid application development movement of the early 1990s yielded operational software in

three, six, nine, twelve, eighteen, and even twenty-four month intervals. Mainstream agile

Agile Methods 70

methods yielded their products in two, four, and twelve week increments. Internet time, synch-n-

stabilize, and open source software development methods yielded operational increments on a

daily basis. A minor flaw in scholarly studies of iterative development was their reliance on only

two or three operational increments in total. Many have ignored earlier research indicating that

the difference between unsuccessful and successful products was 14 operational increments.

Therefore, the following five subfactors of iterative development have been selected from the

literature on agile methods: (a) time-boxed releases, (b) operational releases, (c) small releases,

(d) frequent releases, and (e) numerous releases.

Customer feedback. The field of customer feedback as it relates to agile methods

seems to be bifurcated. Most of the agile methods from the 1990s equate customer feedback to

the participation by one’s customers in every aspect of project decision making. However,

smaller, leaner, and more effective agile methods equate customer feedback to early market

feedback on working or operational software. In the latter case, customers are not involved in

project decision making, but do give rather extensive evaluations or suggestions for

improvement on working code. This is a most interesting finding, because most academic

software methods favor the over-involved, micromanaging customer. On the other hand, most

industry models of agile methods used by Internet firms prefer the model of early market

feedback (i.e., “I will give you a beta release, but my security guard will stop you at the door if

you try to see me”). Therefore, the following five subfactors of customer feedback have been

selected from the literature on agile methods: (a) feedback solicited, (b) feedback received, (c)

feedback frequency, (d) feedback quality, and (e) feedback incorporated.

Well-structured teams. Well-structured teams have historically been regarded as small

groups of workers who are responsible for accomplishing their tasks with little or no supervision.

Agile Methods 71

Early studies demonstrated the ability of well-structured teams to satisfy their goals and

objectives without the necessity of having task masters who were responsible for efficiency of

employees. However, the agile manifesto’s creators stated that well-structured teams within agile

methods were not to be mistaken with the historical principles of self-managing or self-directed

teams. Instead, agile methods give managers the responsibility and authority to set directions,

establish boundaries, build multi-tiered structures, and hire programmers to carry out their

decisions. These principles are very similar to more recent research on self-organizing, self-

managing, and self-directed teams. That is, studies have shown that teams with clear leaders,

goals, objectives, plans, tasks, and timelines, no matter how formal or informal, perform better.

An analysis of the literature on agile methods from the 1990s shows that successful projects have

had varying degrees of formal management structures calling for strategic vision to be mixed

together with small teams who were responsible for producing releases of working software as

rapidly as possible, even on a daily basis. Therefore, the following five subfactors of well-

structured teams have been selected from the literature on agile methods: (a) team leader, (b)

vision and strategy, (c) goals and objectives, (d) schedules and timelines, and (e) small team size.

Flexibility. The fourth value found in the agile manifesto is “responding to change.” An

analysis of the literature on agile methods reveals this value was meant to embody the theory of

“adaptable organizations” and represented an entire genre of popular literature equating

organizations to living organisms, evolutionary biology, and survival of the fittest. In actuality,

the notion of organizations as organisms was conceived in the 1940s, gained notoriety with the

rise of systems dynamics in the 1960s, and entered into mainstream consciousness in the 1990s.

So, one could legitimately label the fourth value of agile methods “adaptability.” However, an

analysis of the literature on agile methods reveals that in every case the fourth major factor of

Agile Methods 72

agile methods was not adaptability, but rather the flexibility of software architectures and

designs. That is, in order to succeed with iterative development, software architectures, designs,

and code had to be proactively structured in such a way as to accommodate continuous change or

replacement. Therefore, the last major factor of agile methods has been named “flexibility” and

the following five subfactors have been selected from the literature on agile methods: (a) small

size, (b) simple design, (c) modular design, (d) portable design, and (e) extensible design.

Website quality. Since the 1960s, increasingly sophisticated views of software quality

have emerged: (a) software size, (b) software errors, (c) software attributes, (d) software defect

models, (e) software complexity, (f) software reliability, (g) user satisfaction, and (h) website

quality. One of the earliest approaches for measuring software quality was the practice of

quantifying and assessing attributes or characteristics of computer programs. Early studies

attempted to enumerate, qualify, and quantify all of the attributes of software products. One such

study identified the following attributes: (a) correctness, (b) efficiency, (c) flexibility, (d)

integrity, (e) interoperability, (f) maintainability, (g) portability, (h) reliability, (i) reusability, (j)

testability, and (k) usability. During the 1990s, user satisfaction models were used to measure

end user attitudes towards software products. One such model measured user attitudes about the

following attributes of software quality: (a) capability, (b) usability, (c) performance, (d)

reliability, (e) installability, (f) maintainability, (g) documentation, (h) availability, (i) service,

and (j) overall satisfaction. Models of user satisfaction were eventually overtaken by models of

website quality by the end of the 1990s. Basic website quality is defined as a “customer’s

judgment about the website’s overall excellence or superiority, which is an attitude that comes

from a comparison of expectations and perceived performance” (Arambewela & Hall, 2006).

Within the context of electronic commerce, website quality refers to “the extent to which a

Agile Methods 73

website facilitates efficient and effective shopping, purchasing, and delivery of products and

services” (Gounaris, Dimitriadis, & Stathakopoulos, 2005). Over 45 scholarly models of website

quality have appeared in the last 10 years. A small sample of those studies had been tested on

over 436,000 data points from 16,000 respondents. What this indicates is that the application and

use of scholarly models of website quality is a very-well established discipline. However, many

of these models have numerous factors and subfactors, as well as unusually large measurement

instruments, which are economically prohibitive to apply. Many of these models have not proven

very robust, and exhibit low levels of reliability and validity. Since the purpose of this study is to

determine the effects of agile methods on website quality, we propose to use the eTailQ model to

measure website quality. The eTailQ model was extensively tested on over one thousand

respondents and exhibits high levels of reliability and validity (Wolfinbarger & Gilly, 2003). The

eTailQ model of website quality consists of four major subfactors: (a) website design, (b)

privacy and security, (c) fulfillment and reliability, and (d) customer service.

Table 3. Major Factors of Website Quality from an Analysis of Major Approaches

Method Major Factors

WAM Product/service system, external bundling, generic services, customer-specific services,
emotional customer experience

AST Entertainment, informativeness, organization

E-Satisfaction Convenience, merchandizing, website design, financial security

WebQual Tangibles, reliability, responsiveness, assurance, empathy

ECUSI Product information, consumer service, purchase result and delivery, website design,
purchasing process, product sales, delivery time and charge, payment methods, ease-of-use

SiteQual Ease-of-use, aesthetic design, processing speed, security

IRSQ Performance, access, security, sensation, information

EDEWS Expectation, perceived performance, disconfirmation, satisfaction

e-SQ Customer website requirements, customer website experiences, perceived quality, perceived
value, purchase/repurchase

eTailQ Website design, privacy and security, fulfillment and reliability, customer service

Agile Methods 74

Major Factors of Agile Methods

Since the 1980s, the factors of new product development have been adapted to software

methods to produce innovatively new computer software. The new development rhythm

emphasized early user involvement, iterative processes, cross-functional teams, and modularity.

Scrum emphasized stakeholder feedback, iterative development, self-managed teams, and early

architectural design. DSDM emphasized user involvement and stakeholder cooperation, iterative

development, empowered teams, and simple flexible designs. Synch-n-stabilize emphasized

continuous customer feedback, iterations, small teams, and evolving specifications. Internet time

emphasized market feedback, prototypes and beta versions, experienced teams, and architectural

design. The judo strategy emphasized market feedback, beta testing, small teams, and cross-

platform designs. All of the known agile methods, including XP, FDD, OSS, and the agile

manifesto have four major factors in common: (a) iterative development, (b) customer feedback,

(c) well-structured teams, and (d) flexibility.

Table 4. Major Factors of Agile Methods from an Analysis of Major Approaches

Method Major Factors
New development

rhythm
Iterations 1, involvement 2, empowered teams 3, modularity 4, synchronization, configuration
control, dependency management, performance reviews, metrics, testing, reviews

Scrum Iterative development 1, stakeholder feedback 2, self managing teams 3, prioritized
requirements 3, daily team meetings 3, early architectural design 4

Dynamic systems
development

Iterative development 1, frequent delivery 1, user involvement 2, stakeholder cooperation 2,
empowered teams 3, simple flexible designs 4, change control, high-level requirements, tests

Synch-n-stabilize Iterations 1, daily builds 1, releases 1, customer feedback 2, small teams 3, vision statements 3,
prioritized features 3, milestones 3, evolving specifications 4, parallel development

Internet time Rapid prototyping and early beta releases 1, daily incorporation of rapid market feedback 2,
experienced teams 3, large investments in software architecture and design 4

Judo strategy Beta testing 1, market feedback 2, small teams 3, cross platform design 4, modular designs 4,
reuse 4, flexible priorities 4, evolving features 4, parallel development, testing

Extreme
programming

Releases 1, on-site customer 2, pair programming 3, simplicity 4, planning, metaphors, tests,
refactoring, continuous integration, collective owners, 40-hours, open workspace, just rules

Feature driven
development

Regular builds 1, domain experts 2, feature teams 3, technical architecture 4, object modeling,
design by feature, class (code) ownership, inspections, configuration management, reporting

Open source
software

Rapid releases 1, increased user involvement 2, prompt feedback 2, international community 3,
highly-talented developers 3, evolutionary designs 4, parallel development, peer reviews

Agile manifesto Working software 1, Customer collaboration 2, individuals and interactions 3, responding to
change 4

1 Iterative development — 2 Customer feedback — 3 Well-structured teams — 4 Flexibility

Agile Methods 75

New development rhythm. In 1988, IBM’s computer division in Minnesota created a

new product development process called the “silverlake project” (Bauer, Collar, & Tang, 1992).

No doubt inspired by the new product development game (Takeuchi & Nonaka, 1986) and Peter

Drucker, IBM created the silverlake project to help turnaround a failed project called fort knox.

The silverlake project consisted of 10 major factors: (a) visionary leaders, (b) talented people, (c)

empowerment, (d) cross-functional teams, (e) market segmentation, (f) market analysis, (g)

setting priorities, (h) parallel processes, (i) customer partnerships, and (j) customer satisfaction.

Likewise, IBM devised a software method called the new development rhythm, which consisted

of 17 major factors: (a) walkthroughs, (b) inspections, (c) iterative development, (d) early user

involvement, (e) user feedback, (f) design synchronization, (g) flatter organizations, (h)

configuration control, (i) design control, (j) dependency management, (k) quality management,

(l) performance reviews, (m) reliability modeling, (n) formal testing, (o) empowerment, (p)

cross-functional teams, and (q) modular designs (Sulack, Lindner, & Dietz, 1989). IBM

combined the major factors of the silverlake project and new development rhythm to consolidate

their midrange computers in only two years, which was half of the normal development time.

During this time, IBM reused five million lines of code, designed two million lines of new code,

and helped their customers port 30 billion lines of code to the new computer system (Pine, 1989).

The new development rhythm was directly linked to high customer satisfaction (Kan, Dull,

Amundson, Lindner, & Hedger, 1994) and IBM’s stock market performance (Hoisington, 1998).

IBM used the major factors of the silverlake project and new development rhythm to generate

$14 billion in revenues and also help IBM win its first baldrige award (Tang & Collar, 1992).

IBM’s adaptation of the new product development game formed a broad framework and pattern,

which would be used to describe innovative software processes throughout the 1990s.

Agile Methods 76

Scrum. In 1993, Jeff Sutherland of the Easel Corporation created an extremely simple

software method called scrum to complete the design of a software package (Sutherland, 2004).

Scrum was based on the six major factors of the new product development game: (a) built-in

instability, (b) self organizing project teams, (c) overlapping development phases, (d) multi-

learning, (e) subtle control, and (f) organizational learning transfer (Takeuchi & Nonaka, 1986).

Scrum was based on six major factors: (a) iterative development, (b) prioritized requirements, (c)

early architectural design, (d) daily team meetings, (e) self managing teams, and (f) stakeholder

feedback (Schwaber, 2004). Scrum was comprised of five major stages or processes: (a) sprint

planning meeting, (b) sprint, (c) daily scrum meetings, (d) sprint review meetings, and (e) sprint

retrospective meetings (Schwaber, 2004). During the sprint cycle, teams met on a daily basis to

report how much code they had completed, not just work-in-progress, which was considered a

sign of weakness (Schwaber, 2004). Scrum was also comprised of four major roles: (a) product

owner, (b) team members, (c) scrum master, and (d) stakeholders (Schwaber, 2004). In scrum,

the first three roles were comprised of people who were committed to a project’s success, while

stakeholders, who represent customers and end users were not (Schwaber, 2004). Scrum masters

were people trained to teach and administer the scrum method. Customer collaboration and

design occurred during sprint planning and sprint review meetings, iterative development was

accomplished by sprints, small cross-functional teams came together in daily scrums, and

software refactoring occurred during the sprints as well (Schwaber, 2004). Though scrum was

based on knowledge creation theory, it seemed to get its strength from the power and synergy of

iterative development and self-managed teams rather than early customer feedback (Schwaber,

2004). Today, there are more than 11,000 certified scrum masters and it is growing in popularity

due to its overall simplicity and low-market entry costs contrary to traditional methodologies.

Agile Methods 77

Dynamic systems development method. Also in 1993, a British consortium formed

to create the dynamic systems development method or DSDM (Millington & Stapleton, 1995).

The goal of the DSDM consortium was to create a publicly available software development

methodology to counter proprietary rapid application development methods formed in the 1990s.

DSDM consisted of nine major factors: (a) user involvement, (b) team empowerment, (c)

frequent delivery, (d) fitness for use, (e) iterative development, (f) change control, (g) high-level

requirements, (h) thorough testing, and (i) stakeholder cooperation (DSDM Consortium, 1995).

DSDM consisted of five major stages: (a) feasibility study, (b) business study, (c) functional

model iteration, (d) system design and build iteration, and (e) implementation. DSDM was also

comprised of 15 major practices: (a) time-boxing, (b) daily meetings, (c) requirements

prioritization, (d) project management, (e) escalation management, (f) project planning, (g)

quality management, (h) risk management, (i) estimating, (j) facilitated workshops, (k) modeling,

(l) prototyping, (m) testing, (n) configuration management, and (o) tool support environments.

DSDM consisted of 12 roles: (a) executive sponsor, (b) visionary, (c) ambassador user, (d)

advisor user, (e) project manager, (f) technical coordinator, (g) team leader, (h) developer, (i)

tester, (j) facilitator, (k) scribe, (l) and specialist. DSDM consisted of 23 work products: business

area definition, delivered system, design prototype, design prototyping review records,

development plan, feasibility prototype, feasibility report, functional model, functional model

review records, functional prototype, implementation plan, increment review document, non-

functional requirements list, outline plan, post-implementation review report, prioritized

requirements list, risk log, system architecture definition, tested system, test records, time-box

plan, trained user population, and user documentation. DSDM has not enjoyed the widespread

use in the market place as other agile methods, but continues to have a noticeable following.

Agile Methods 78

Synch-n-stabilize. Microsoft grew from three employees and $16,000 in revenue in

1975 to almost 18,000 employees and $6 billion in revenue by 1995 (Cusumano & Selby, 1995).

A seven-pronged strategy called “Microsoft’s secrets” was credited with helping them achieve

this phenomenal growth and create seven operating systems and 13 products in this time frame.

The seven factors of Microsoft’s secrets were: (a) find smart people who know the technology

and business; (b) organize small teams of overlapping functional specialists; (c) pioneer and

orchestrate evolving mass markets; (d) focus creativity by evolving features and fixing resources;

(e) do everything in parallel with frequent synchronizations; (f) improve through continuous self-

critiquing, feedback, and sharing; and (g) attack the future. Microsoft’s software development

method, dubbed “synch-n-stabilize,” consisted of seven major factors as well: (a) product

development and testing done in parallel, (b) vision statement and evolving specification, (c)

features prioritized and built in 3 or 4 milestone subprojects, (d) frequent synchronizations (daily

builds) and intermediate stabilizations (milestones), (e) fixed release and ship dates and multiple

release cycles, (f) continuous customer feedback in the development process, and (g) product and

process design so that large teams work like small teams. The key to synch-n-stabilize was its

daily build process, which consisted of 11 major techniques: (a) check out, (b) implement

feature, (c) build private release, (d) test private release, (e) synch code changes, (f) merge code

changes, (g) build private release, (h) test private release, (i) execute quick test, (j) check in, and

(k) generate daily build. Buried deep within Microsoft’s process were 14 kinds of software tests:

usage, interface, ad hoc, 16-bit application, gorilla, user interface, stress, 32-bit application,

verification, applets, independent, bug bash, simulation, automated, and various other types of

tests. Nearly 30 years after its inception, Microsoft’s corporate culture was still regarded as free

wheeling, informal, individualistic, highly-motivated, and innovative (Herbold, 2002).

Agile Methods 79

Internet time. The term “Internet time” emerged in the mid 1990s and referred to the

instantaneous speed at which beta versions of web browsers were distributed (Lundquist, 1996).

The term Internet time became synonymous with Silicon Valley startups like Netscape, Yahoo,

and Alta Vista, because of their daily releases of browsers, email services, and search engines.

Even Microsoft opened the floodgates on their synch-n-stabilize process to allow beta versions

of their web browsers to be released on a nightly basis allowing them to catch up with Netscape.

Because of the success of Internet startups, Internet time became the new product development

process of the late 1990s and came under scrutiny by scholars from Ivy League business schools.

One such study characterized Internet time in terms of three broad factors: (a) testing technical

solutions, (b) sensing the market, and (c) integrating customer needs with technical solutions

(Iansiti & MacCormack, 1997). Testing technical solutions referred to building rapid prototypes

and beta versions, sensing the market referred to soliciting market feedback, and integrating

customer needs referred to acting on market feedback. One of the first empirical studies of

Internet time identified four major factors: (a) an early release of the evolving product design to

customers, (b) daily incorporation of new software code and rapid feedback on design changes,

(c) a team with broad-based experience shipping multiple projects, and (d) major investments in

the design of the product architecture (MacCormack, 2001). This study revealed a correlation

between: (a) gradual evolution using beta versions and increasing quality, (b) number of beta

versions and increasing quality, and (c) shorter market feedback cycles and increasing quality.

Later studies showed that Internet time required as much as 25% of the total project effort hours

to be dedicated to architectural and design activities (MacCormack, Verganti, & Iansiti, 2001).

Further analysis of the data shows that productivity rates of Internet time were an order of

magnitude better than historical averages and 50% better than state-of-the-art techniques.

Agile Methods 80

Judo strategy. Netscape grew from two employees and $2 million in revenues in 1994

to more than 1,500 employees and $440 million in revenues by 1998 (Buckley, Tse, Rijken, &

Eijgenhuijsen, 2002). Netscape’s operating philosophy for competing with Microsoft was

dubbed the “Judo Strategy” by management scholars from MIT (Cusumano & Yoffie, 1998).

The judo strategy consisted of four broad factors: (a) scaling an organization on Internet time, (b)

formulating a judo strategy on Internet time, (c) designing software on Internet time, and (d)

developing software on Internet time. The last two factors comprised Netscape’s software

process: (a) designing software on Internet time and (b) developing software on Internet time.

Designing software on Internet time consisted of four broad factors: (a) design products for

multiple markets (platforms) concurrently, (b) design and redesign products to have more

modular architectures, (c) design common components that multiple product teams can share,

and (d) design new products and features for parallel development. Developing software on

Internet time consisted of four broad factors: (a) adapt development priorities as products,

markets, and customers change; (b) allow features to evolve but with frequent synchronizations

and periodic stabilizations; (c) automate as much testing as possible; and (d) use beta testing,

internal product usage, and other measures to improve product and process quality. Four less

obvious software practices were embedded within Netscape’s judo strategy: (a) solicit early

market feedback from beta releases, (b) produce beta versions from which to solicit early market

feedback, (c) form small decentralized teams, and (d) develop flexible cross-platform

modularized software architectures. Several factors were attributed to Netscape’s early success:

(a) first mover status in new markets such as browsers, (b) strategic alliances that allowed it to

exhibit a formidable market presence, (c) its vision to pioneer new and emerging market niches,

and, more importantly, (d) its ability to develop new products at previously unheard of speeds.

Agile Methods 81

Extreme programming. Extreme programming or XP was a software development

method created by consultants designing a payroll system for Chrysler (Anderson et al., 1998).

XP was inspired by Internet time and extreme sports as symbols of risk, speed, and danger, to

build brand equity in the products and services of computer firms (Khermouch & Voight, 1997).

Unimpressed by ethereal factors of Internet time, XP was based on more tangible and traditional

techniques dating back to the earliest stages of the computer and software industries. Some of

these foundational techniques included pair programming, joint application design, rapid

application development, and the dynamic systems development method (Beck, 1999). XP took

something unique from Internet time that was not found in traditional techniques. Based on

Internet time, XP required its users to complete a development cycle and produce operational

software every 14 days, unlike traditional methods and techniques (Beck, 1999). Originally, XP

was based on four major factors: (a) simplicity, (b) customer-developer communication, (c)

testing, and (d) aggressiveness (Anderson et al., 1998). The next version of XP included 13

major factors: (a) planning game, (b) small releases, (c) metaphor, (d) simple design, (e) tests, (f)

refactoring, (g) pair programming, (h) continuous integration, (i) collective ownership, (j) on-site

customer, (k) 40-hour weeks, (l) open workspace, and (m) just rules. The latest version of XP has

28 factors: user stories, release planning, frequent small releases, measuring velocity, iterations,

iteration planning, personnel mobility, standup meetings, process improvement, simplicity,

system metaphors, class-responsibility-collaboration cards, spike solutions, simplicity,

refactoring, available customers, coding standards, automated unit tests, pair programming,

sequential integration, frequent integration, collective ownership, late optimization, no overtime,

complete unit tests, complete unit testing, debugging, and acceptance testing (Extreme

Programming, 2006). Provocatively titled, XP became one of the widest used software methods.

Agile Methods 82

Feature driven development. In 1996, Jeff De Luca created the “feature driven

development” or FDD method to turnaround a failed banking project (Palmer & Felsing, 2002).

Representing best known practices, FDD was modeled after joint application design, Coad’s

object oriented method, iterative development, code inspections, and chief programmer teams

(Palmer & Felsing, 2002). FDD consisted of five processes: (a) develop an overall model, (b)

build a features list, (c) plan by feature, (d) design by feature, and (e) build by feature (Coad,

Lefebre, & De Luca, 1999). Originally, FDD only had three roles: (a) chief programmer, (b)

class owner, and (c) feature team (Coad, Lefebre, & De Luca, 1999). However, FDD evolved to

having six major roles: (a) project manager; (b) chief architect; (c) development manager; (d)

chief programmer; (e) class owner; and (f) domain experts such as users, clients, sponsors, and

analysts (Palmer & Felsing, 2002). Early customer involvement occurred in acceptance testing

and three FDD processes: (a) develop an overall model, (b) build a features list, and (c) design

by feature (Palmer & Felsing, 2002). Design and build iterations or iterative design occurred in

FDD’s last two processes (a) design by feature and (b) build by feature (Palmer & Felsing,

2002). Small teams were formed in each of FDD’s first four processes: (a) develop an overall

model, (b) build a features list, (c) plan by feature, and (d) design by feature (Palmer & Felsing,

2002). Evolution of its technical architectures generally occurred within the first four iterations

of FDD’s five major processes (Palmer & Felsing, 2002). That is, the development of complex

architectures may be the highest priority. FDD also consisted of eight major practices: (a)

domain object modeling, (b) developing by feature, (c) class (code) ownership, (d) feature teams,

(e) inspections, (f) regular build schedule, (g) configuration management, and (h)

reporting/visibility of results. Today, FDD has a small, but noticeable market as compared to

extreme programming, scrum, and open source software development.

Agile Methods 83

Open source software development. The term “open source software” or OSS was

coined in 1997, though the practice of open source software started in 1970 (Bretthauer, 2002).

Simply put, open source software was a “set of computer instructions that may be used, copied,

modified, and distributed by anyone, anywhere, and for any purpose whatsoever” (Fink, 2003).

Another definition stated “open source development is labeled with free source, fast evolution,

and extensive user collaboration” (Zhao & Deek, 2004). One study identified eight major factors

of OSS development: (a) is parallel rather than linear; (b) involves large communities of globally

distributed developers; (c) utilizes truly independent peer review; (d) provides prompt feedback

to user and developer contributions; (e) includes the participation of highly talented developers;

(f) includes increased user involvement; (g) makes use of extremely rapid release schedules, and

(h) produces evolutionary designs (Feller & Fitzgerald, 2002). Another early study identified the

unique factors of OSS development for 11 communities of practice, such as: (a) Apache, (b)

Gnome, (c) GCC, (d) Jakarta, (e) KDE, (f) Linux, (g) Mozilla, (h) NetBeans, (i) Perl, (j) Python,

and (k) XFree86 (Halloran & Scherlis, 2002). A more recent study identified 15 factors of OSS

development: (a) no forking a project, (b) no distribution without permission, (c) no removal of

someone’s name from source code, (d) open source development methods produce better code,

(e) outcomes are better when code is freely available, (f) outcomes are better when information is

freely available, (g) more people will quickly find and fix bugs, (h) practical work is more useful

than theory, (i) status is achieved through community, (j) sharing information is important, (k)

aiding others is important, (l) technical knowledge is highly valued, (m) there is a value in

learning, (n) voluntary cooperation is important, and (o) reputation is valuable (Stewart &

Gosain, 2006). One author mused, “Internet time refers to something much faster, revolutionary,

and more basic — It describes the process of developing open source software” (Pavlicek, 2000).

Agile Methods 84

Agile manifesto. In 2001, the “agile manifesto” was created to outline the values and

principles of agile methods and how they differed from traditional ones (Agile Manifesto, 2001).

A council of 17 experts in agile methods met in order to find an “alternative to documentation-

driven, heavyweight software development processes.” They believed that agile methods rose to

“free the developer community from the baggage of Dilbertesque corporations.” Furthermore,

they exclaimed “in order to succeed in the new economy, to move aggressively into the era of e-

business, e-commerce, and the web, companies have to rid themselves of their Dilbert

manifestations of make-work and arcane policies.” Once the ground rules and assumptions of

agile methods were established, they were able to get on with the business of writing the agile

manifesto itself and publish it on the Internet. The agile manifesto began with the following

statement: “we are uncovering better ways of developing software by doing it and helping others

do it.” Then the agile manifesto laid out four broad values: (a) “working software over

comprehensive documentation,” (b) “customer collaboration over contract negotiation,” (c)

“individuals and interactions over processes and tools,” and (d) “responding to change over

following a plan.” The values of agile methods were capped off with the following statement,

“while there is value in the items on the right, we value the items on the left more.” In other

words, they valued working software, customer collaboration, individuals and interactions, and

responding to change much more than the comprehensive documentation, contract negotiation,

processes and tools, and following a plan associated with traditional methods. They also devised

12 broad principles shown in Table 5. While there is an implicit semantic relationship between

the values and principles found in the agile manifesto, there is no explicit mapping between the

two as shown in Table 5. The principles were artificially arranged with the principles and factors

for analytical purposes. That is, to understand the major factors of the agile manifesto.

Agile Methods 85

Table 5. Analysis of Values and Principles of the Agile Manifesto

Values Principles Factors

Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software

Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter timescale

Working
software over

comprehensive
documentation

Working software is the primary measure of progress

Iterative
development

Business people and developers must work together daily
throughout the project

Agile processes promote sustainable development. The sponsors,
developers, and users should be able to maintain a constant pace
indefinitely

Customer
collaboration
over contract
negotiation

At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly

Customer
feedback

Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the job
done

The most efficient and effective method of conveying information
to and within a development team is face-to-face conversation

Individuals and
interactions

over processes
and tools

The best architectures, requirements, and designs emerge from
self-organizing teams

Well-structured
teams

Welcome changing requirements, even late in development. Agile
processes harness change for the customer’s competitive
advantage

Continuous attention to technical excellence and good design
enhances agility

Responding to
change over

following a plan

Simplicity--the art of maximizing the amount of work not done--is
essential

Flexibility

Agile Methods 86

Subfactors of Iterative Development

Iterative development was defined as “an approach to building software (or anything) in

which the overall lifecycle is composed of several iterations in sequence” (Larman, 2004).

Furthermore, “each iteration is a self-contained mini-project composed of activities such as

requirements analysis, design, programming, and test.” Iterative development is a software

lifecycle, which is used to evolve operational software into finished products by incorporating

customer feedback into its design. Iterative development is time-boxed, not scope-boxed,

meaning that delivery dates are fixed by reducing product requirements. Sometimes iterative

development is a scaled-back traditional software life cycle completed within three to six months

(e.g., new development rhythm, dynamic systems development method, synch-n-stabilize,

extreme programming, scrum, and feature driven development). In simpler, leaner approaches,

iterative development refers to a much more dynamic daily release of beta versions to the market

using the Internet (e.g., Internet time, judo strategy, and open source software development).

Table 6. Subfactors of Iterative Development

Method Subfactors
New development

rhythm
Iterative or cyclic process, developing system by iterating, functional milestones at each
iteration, prototyping, staged delivery, overlapped component testing

Dynamic systems
development Frequent delivery of products, product-based approach, time-boxing, fixed end dates

Synch-n-stabilize Risk-driven incremental spiral life cycle model, incremental milestones, prototypes,
subprojects, daily builds, beta testing

Internet time Evolutionary delivery, iterative approach, working version, prototypes, beta versions

Judo strategy Short development cycles, three-month windows, multiple milestones, daily builds, internal
usage testing, alpha testing, beta testing, field testing

Extreme
programming

Release planning, release plans, iterations, iteration plans, frequent small releases,
continuous integration, incremental deployment, daily deployment, incremental design

Scrum Sprint planning meeting, product backlog, sprints, sprint backlog, sprint review meeting,
sprint retrospective meeting, time-box, increment, shippable product, 30-day iteration

Feature driven
development

Frequent deliveries, tangible working results, adaptive processes, feature development, small
features, regular builds, feature lists, feature sets, feature designs, feature builds

Open source
software

Rapid releases, rapid increments, multiple daily releases, development releases, production
releases, early releases, official releases, new releases, minor releases, major releases

Agile Methods 87

The new development rhythm consisted of six subfactors for iterative development: (a)

iterative or cyclic process, (b) developing system by iterating, (c) functional milestones at each

iteration, (d) prototyping, (e) staged delivery, and (f) overlapped component testing (Sulack,

Lindner, & Dietz, 1989). The dynamic systems development method consisted of four subfactors

of iterative development: (a) frequent delivery of products, (b) product-based approach, (c) time-

boxing, and (d) fixed end dates (DSDM, 2007). Synch-n-stabilize consisted of six subfactors of

iterative development: (a) risk-driven incremental spiral life cycle model, (b) incremental

milestones, (c) prototypes, (d) subprojects, (e) daily builds, and (f) beta testing (Cusumano &

Selby, 1995). Internet time consisted of five subfactors of iterative development: (a) evolutionary

delivery, (b) iterative approach, (c) working version, (d) prototypes, and (e) beta versions

(MacCormack, 2001). The judo strategy consisted of eight subfactors for iterative development:

(a) short development cycles, (b) three-month windows, (c) multiple milestones, (d) daily builds,

(e) internal usage testing, (f) alpha testing, (g) beta testing, and (h) field testing (Cusumano &

Yoffie, 1998). Extreme programming consisted of nine subfactors of iterative development: (a)

release planning, (b) release plans, (c) iterations, (d) iteration plans, (e) frequent small releases,

(f) continuous integration, (g) incremental deployment, (h) daily deployment, (i) incremental

design (Beck, 2005; Extreme Programming, 2006). Scrum consisted of 10 subfactors of iterative

development: (a) sprint planning meeting, (b) product backlog, (c) sprints, (d) sprint backlog, (e)

sprint review meeting, (f) sprint retrospective meeting, (g) time-box, (h) increment, (i) shippable

product, and (j) 30-day iteration (Schwaber, 2004). Feature driven development consisted of 10

subfactors of iterative development: (a) frequent deliveries, (b) tangible working results, (c)

adaptive processes, (d) feature development, (e) small features, (f) regular builds, (g) feature

lists, (h) feature sets, (i) feature designs, and (j) feature builds (Palmer & Felsing, 2002). Open

Agile Methods 88

source software development consisted of 10 subfactors for iterative development: (a) rapid

release schedule, (b) rapid incremental releases, (c) multiple daily releases, (d) development

releases, (e) production releases, (f) early releases, (g) official releases, (h) new releases, (i)

minor releases, and (j) major releases (Halloran & Scherlis, 2002; Jorgensen, 2001).

Subfactors of Customer Feedback

Customer feedback is “a general term describing direct contact with users and covering

many approaches” and lays on the “continuum from informative, through consultative to

participative” (Kujala, 2003). Customer feedback has its origins from the earliest days when the

discipline of marketing first emerged in the 1950s. Customer feedback was an important part of

the systems dynamics movement of the 1960. Customer feedback was an important element of

the customer active participation paradigm from the 1970s. Customer feedback was also an

important part of the double loop learning paradigm of the early 1980s. Today, customer

feedback is an essential element of most contemporary new product development approaches,

especially ones that are fast, agile, flexible and able to respond to change. Succinctly stated,

“customer feedback provides advantages in early identification of problems, effective screening

of ideas, reducing design changes in later stages of development, and better defining the global

market and opportunities” (Lim, Sharkey, & Heinrichs, 2003). Customer feedback is a means by

which customers communicate their needs so that software developers may strive to fulfill them.

Sometimes customer feedback refers to user participation in all life cycle activities (e.g., new

development rhythm, dynamic systems development method, extreme programming, feature

driven development, and open source software development). In simpler and leaner approaches,

customer feedback refers to solicitation, receipt, and incorporation of market feedback on beta

releases (e.g., synch-n-stabilize, Internet time, judo strategy, and scrum).

Agile Methods 89

Table 7. Subfactors of Customer Feedback

Method Subfactors
New development

rhythm
Requirements briefings, field partners, usability activities, contract testing, migrations,
invitational’s, advisory councils, early support program

Dynamic systems
development

Vision, business processes, requirements, designs, reviews, conflict management,
measurement, monitoring, commitments, information, prototyping, approval, testing

Synch-n-stabilize Planning data, wish lines, call data, usability, beta, and supportability testing, technical
support, teleconferences, surveys, usage studies, instrumented tools, marketing studies

Internet time Technical feedback on prototypes, technical feedback on daily operational builds, market
feedback on early beta releases

Judo strategy Technical feedback on alpha tests, internal feedback on beta tests, market feedback on beta
tests, customer feedback from telephone support

Extreme
programming

Integrated into team, provide feedback at all stages, write user stories, select user stories,
prioritize user stories, specify test scenarios, approve tests, evaluate releases

Scrum Attend reviews, ask questions, note changes, vote on impressions, changes, and priorities,
rearrange backlogs, give feedback, identify omissions, suggest additions, add to backlog

Feature driven
development

Participate in modeling team, give an overview of domain, assess domain model, help build
features list, assess features list, participate in domain walkthrough

Open source
software

Propose changes, vote on changes, report bugs, join mailing list, suggest guidelines, browse
code, download code, analyze code, modify code, add code, join community

The new development rhythm consisted of eight subfactors for customer feedback: (a)

requirements briefings, (b) field partners, (c) usability activities, (d) contract testing, (e)

migrations, (f) migration invitational, (g) advisory councils, and (h) early support program (Pine,

1989). The dynamic systems development method had 13 subfactors for customer feedback,

which consisted of ambassador and advisor users who assisted with: (a) visioning, (b) business

processes, (c) requirements, (d) designs, (e) reviews, (f) conflict management, (g) measurement,

(h) monitoring, (i) commitments, (j) information, (k) prototyping, (l) approval, and (m) testing

(DSDM, 2007). The synch-n-stabilize method consisted of 12 subfactors of customer feedback:

(a) planning data, (b) wish lines, (c) call data, (d) usability testing, (e) beta testing, (f)

supportability testing, (g) technical support, (h) teleconferences, (i) surveys, (j) usage studies, (k)

instrumented tools, and (l) marketing studies (Cusumano & Selby, 1995). The Internet time

method consisted of three major subfactors of customer feedback: (a) technical feedback on

prototypes, (b) technical feedback on daily operational builds, and (c) market feedback on early

Agile Methods 90

beta releases (MacCormack, Verganti, & Iansiti, 2001). The judo strategy consisted of four

major subfactors of customer feedback: (a) technical feedback on alpha tests, (b) internal

feedback on beta tests, (c) market feedback on beta tests, and (d) customer feedback from

telephone support (Cusumano & Yoffie, 1998). Extreme programming had eight subfactors of

customer feedback, which consisted of customers who: (a) are integrated into teams, (b) provide

feedback at all stages, (c) write user stories, (d) select user stories, (e) prioritize user stories, (f)

specify test scenarios, (g) approve tests, and (h) evaluate releases (Extreme Programming, 2006).

Scrum had nine subfactors of customer feedback, which consisted of stakeholders who: (a)

attend reviews; (b) ask questions; (c) note changes; (d) vote on impressions, changes, and

priorities; (e) rearrange backlogs; (f) give feedback; (g) identify omissions; (h) suggest additions;

and (i) add to backlog (Schwaber, 2004). Feature driven development had six subfactors of

customer feedback, which consisted of domain experts who: (a) participate in modeling team, (b)

give an overview of domain, (c) assess domain model, (d) help build features list, (e) assess

features list, and (f) participate in domain walkthrough (Palmer & Felsing, 2002). Open source

software development had 11 subfactors of customer feedback: (a) propose changes, (b) vote on

changes, (c) report bugs, (d) join mailing list, (e) suggest guidelines, (f) browse code, (g)

download code, (h) analyze code, (i) modify code, (j) add code, and (k) join community

(Halloran & Scherlis, 2002).

Subfactors of Well-Structured Teams

Well-structured teams are defined as “work groups who are made up of individuals who

see themselves as a social entity, who are interdependent because of the tasks they perform, who

are embedded in one or more larger social systems, and who perform tasks that affect others”

(Guzzo & Dickson, 1996). Within the context of agile methods, well-structured teams are

Agile Methods 91

defined as “groups who are responsible for setting direction, establishing boundaries, assigning

staff with certain talents to roles, and building a multi-tiered decision-making process in which

managers have the responsibility and authority to make certain decisions” (Highsmith, 2002).

Within agile methods, the team has a clear leader, the leader is most likely a product line

manager or a project manager, the leader has the resources and authority to organize the project,

and the leader has authority over programmers. This definition for well-structured teams holds

true for the new development rhythm, dynamic systems development, synch-n-stabilize, judo

strategy, scrum, and feature driven development methods. However, these structures seem less

apparent in extreme programming and open source software development. It is interesting to

note, that in spite of traditional management structures, software engineers were able to put out

daily releases of software using synch-n-stabilize, Internet time, and judo strategy, when needed.

Even open source software developers have a clear leader, if not formalized project structures.

Table 8. Subfactors of Well-Structured Teams

Method Subfactors
New development

rhythm
Cross-functional teams, empowered management teams, isolated development teams, co-
located teams, special decision teams, engineering teams, testing teams, design groups

Dynamic systems
development

Team leaders, empowerment, large team structures, collaboration, communication, daily sub-
team meetings, daily time-box meetings, core teams, facilitated workshops

Synch-n-stabilize Small teams, overlapping functional specialists, delegated hiring, learning by doing,
mentoring, career paths, ladder levels, specialized management and teams

Internet time Small teams, broad-based experienced team, team empowered to respond to market
feedback, team with generational experience

Judo strategy Numerous teams, small six-person teams, decentralized teams, self-managed teams, product
teams, programming teams, build teams, version teams, Unix teams, quality assurance teams

Extreme
programming

Pair programming, personnel rotation, cross training, co-location, side-by-side, take breaks,
humility, confidence, communication, listening, teamwork

Scrum Self-managing teams, self-organizing teams, cross-functional teams, collective
responsibility, daily scrum meetings

Feature driven
development

Feature teams, team leaders, class owners, code inspection team, small teams, modeling
teams, planning teams, development teams, feature list teams

Open source
software

International communities, distributed communities, large communities, mailing lists, quality
assurance groups, core teams, trust

Agile Methods 92

The new development rhythm consisted of eight subfactors for well-structured teams: (a)

cross-functional teams, (b) empowered management teams, (c) isolated development teams, (d)

co-located teams, (e) special decision teams, (f) engineering teams, (g) testing teams, and (h)

design groups (Sulack, Lindner, & Dietz, 1989). The dynamic systems development method

consisted of nine subfactors for well-structured teams: (a) team leaders, (b) empowerment, (c)

large team structures, (d) collaboration, (e) communication, (f) daily sub-team meetings, (g)

daily time-box meetings, (h) core teams, and (i) facilitated workshops (DSDM, 2007). Synch-n-

stablize consisted of eight subfactors for well-structured: (a) small teams, (b) overlapping

functional specialists, (c) delegated hiring, (d) learning by doing, (e) mentoring, (f) career paths,

(g) ladder levels, and (h) specialized management and teams (Cusumano & Selby, 1995).

Internet time consisted of four subfactors for well-structured teams: (a) small teams, (b) broad-

based experienced team, (c) team empowered to respond to market feedback, and (d) team with

generational experience (MacCormack, Verganti, & Iansiti, 2001). The judo strategy consisted of

10 subfactors for well-structured teams: (a) numerous teams, (b) small six-person teams, (c)

decentralized teams, (d) self-managed teams, (e) product teams, (f) programming teams, (g)

build teams, (h) version teams, (i) Unix teams, and (j) quality assurance teams (Cusumano &

Yoffie, 1998; Yoffie & Cusumano, 1999). Extreme programming consisted of 11 subfactors of

well-structured teams: (a) pair programming, (b) personnel rotation, (c) cross training, (d) co-

location, (e) side-by-side, (f) take breaks, (g) humility, (h) confidence, (i) communication, (j)

listening, and (k) teamwork (Extreme Programming, 2006; Williams & Kessler, 2003). Scrum

consisted of five subfactors of well-structured teams: (a) self-managing teams, (b) self-

organizing teams, (c) cross-functional teams, (d) collective responsibility, and (e) daily scrum

meetings (Schwaber, 2004). Feature driven development consisted of nine subfactors of well-

Agile Methods 93

structured teams: (a) feature teams, (b) team leaders, (c) class owners, (d) code inspection team,

(e) small teams, (f) modeling teams, (g) planning teams, (h) development teams, and (i) feature

list teams (Palmer & Felsing, 2002). Open source software development consisted of seven

subfactors of well-structured teams: (a) international communities, (b) distributed communities,

(c) large communities, (d) mailing lists, (e) quality assurance groups, (f) core teams, and (g) trust

(Halloran & Scherlis, 2002).

Subfactors of Flexibility

Flexibility is defined as “the ease with which a system or component can be modified for

use in applications or environments other than those for which it was specifically designed”

(Institute of Electrical and Electronics Engineers, 1990). This is a highly relevant definition of

flexibility because the goal of agile methods is to form an organizational structure in which to

evolve software designs until they satisfy their customer’s needs. Therefore, software designs

themselves must be created in such a way that they can be modified over and over again. Three

closely related definitions worth mentioning include: (a) “a flexible product development process

is one that allows designers to continue to define and shape products even after implementation

has begun” (Iansiti & MacCormack, 1997); (b) “a flexible process is characterized by the ability

to generate and respond to new information for a longer proportion of a development cycle”

(MacCormack, Verganti, & Iansiti, 2001); and (c) “development flexibility can be expressed as a

function of the incremental economic cost of modifying a product as a response to changes that

are external or internal to the development process” (Thomke & Reinertsen, 1998). All of these

definitions allude to both a new product development process and, more specifically, a product

architecture, which in combination allow for a product to gradually grow, expand, and evolve as

engineers solicit, acquire, and incorporate more and more end user, customer, and market needs.

Agile Methods 94

It is important to note that the creators of agile methods (e.g., Highsmith, 2002) prefer to

link agile methods to early theories of adaptive organizations (e.g., Callahan, 1979). However,

definitions of flexibility found in theories of Internet time (Iansiti & MacCormack, 1997) are

better suited to describe the factors of agile methods, because of their scholarly nature. All of the

subfactors for the agile methods in Table 9 adhered to the four definitions of flexibility offered

here (e.g., the ease of which software can be modified, a process that allows designers to

continuously evolve products, processes with the ability to respond to new information, and

designs that cost-effectively accommodate changes). While all of the agile methods in Table 9

simply imply projects must spend resources creating software architectures that accommodate

change, very few say exactly how to create a flexible architecture. The judo strategy alludes to

cross-platform designs (e.g., software that runs on as many computers as possible). However,

technologies such as Java have substantially matured since the judo strategy was formed, which

enable firms using all of these agile methods to create cross-platform software products.

Table 9. Subfactors of Flexibility

Method Subfactors
New development

rhythm
Preliminary system architectures, experimental system architectures, architectural reuse,
software reuse, design control groups, early system, software, and user interface prototypes

Dynamic systems
development

Fitness for business purpose, system architecture definition, enterprise model, system model,
technology model, reversible changes

Synch-n-stabilize Vision statements, evolving specifications, horizontal architectures, modularity, functional
building blocks, flexible skeletons, architectural layers, portable designs, simple code

Internet time Flexible, evolving, coherent, delayed, robust, open, scaleable, and modular architectures and
designs

Judo strategy Cross-platform modularized architectures, designs, programming systems, programming
languages, feature sets, abstraction layers, components, and reusable libraries

Extreme
programming

Architectural spikes, system metaphors, spikes, spike solutions, simple designs, delayed
functionality, merciless refactoring, coding standards, delayed optimization

Scrum Product infrastructures, detailed product architectures, detailed technical architectures,
business architecture, system architecture, development environment

Feature driven
development

Technical architectures, user interface layers, problem domain layers, data management
layers, system interaction layers, domain object models, class diagrams, sequence diagrams

Open source
software

Advanced design decisions, solid architectures, design patterns, portable designs, modular
designs, code modularity, cohesive modules, coding guidelines, standards, and conventions

Agile Methods 95

The new development rhythm consisted of six subfactors of flexibility: (a) preliminary

system architectures; (b) experimental system architectures; (c) architectural reuse; (d) software

reuse; (e) design control groups; and (f) early system, software, and user interface prototypes

(Sulack, Lindner, & Dietz, 1989). The dynamic system development method consisted of six

subfactors of flexibility: (a) fitness for business purpose, (b) system architecture definition, (c)

enterprise model, (d) system model, (e) technology model, and (f) reversible changes (DSDM,

2007). Synch-n-stabilize consisted of nine subfactors of flexibility: (a) vision statements, (b)

evolving specifications, (c) horizontal architectures, (d) modularity, (e) functional building

blocks, (f) flexible skeletons, (g) architectural layers, (h) portable designs, and (i) simple code

(Cusumano & Selby, 1995). Internet time consisted of eight subfactors of flexibility: (a) flexible,

(b) evolving, (c) coherent, (d) delayed, (e) robust, (f) open, (g) scaleable, and (h) modular

architectures and designs (Iansiti & MacCormack, 1997; MacCormack, Verganti, & Iansiti,

2001). The judo strategy had eight subfactors of flexibility, which consisted of cross-platform

modularized: (a) architectures, (b) designs, (c) programming systems, (d) programming

languages, (e) feature sets, (f) abstraction layers, (g) components, and (h) reusable libraries

(Cusumano & Yoffie, 1998). Extreme programming consisted of nine subfactors of flexibility:

(a) architectural spikes, (b) system metaphors, (c) spikes, (d) spike solutions, (e) simple designs,

(f) delayed functionality, (g) merciless refactoring, (h) coding standards, and (i) delayed

optimization (Extreme Programming, 2006). Scrum consisted of six subfactors of flexibility: (a)

product infrastructures, (b) detailed product architectures, (c) detailed technical architectures, (d)

business architecture, (e) system architecture, and (f) development environment (Schwaber,

2004). Feature driven development consisted of eight subfactors of flexibility: (a) technical

architectures, (b) user interface layers, (c) problem domain layers, (d) data management layers,

Agile Methods 96

(e) system interaction layers, (f) domain object models, (g) class diagrams, and (h) sequence

diagrams (Palmer & Felsing, 2002). Open source software development consisted of eight

subfactors of flexibility: (a) advanced design decisions; (b) solid architectures; (c) design

patterns; (d) portable designs; (e) modular designs; (f) code modularity; (g) cohesive modules;

and (h) coding guidelines, standards, and conventions (Feller & Fitzgerald, 2002; Halloran &

Scherlis, 2002).

Hypotheses Linking Subfactors of Agile Methods to Website Quality

Iterative development. The underlying assumption for the last 30 years has been that

subfactors of iterative development are linked to software development success factors, such as

lower risks, lower system complexity, more accurate project estimates, fewer defects, user

satisfaction, and many others (Larman, 2004). Subfactors of iterative development have been

linked to better market performance (Li & Calantone, 1998), better product performance (Di

Benedetto, 1999), and better firm performance (Jin, 2000). Subfactors of iterative development

have been linked to faster cycle times (Sherman, Souder, & Jenssen, 2000), improved customer

relationships (Stump, Athaide, & Joshi, 2002), and higher satisfaction with firm-level

partnerships (Athaide, Stump, & Joshi, 2003). Subfactors of iterative development have also

been linked to better project performance (Joshi & Sharma, 2004), fewer engineering hours

(Hong, Vonderembse, Doll, & Nahm, 2005), and higher product quality (Schulze & Hoegl,

2006). More importantly, subfactors of iterative development have been linked to higher website

quality (MacCormack, 2001). However, low numbers of iterations (e.g., less than six) have not

been proven to be linked to improved website quality, though higher numbers of iterations have

been linked to improved product performance (Allen, 1966; Thomke & Reinertsen, 1998). While

there is some indication that factors of iterative development were linked to higher website

Agile Methods 97

quality, the field of scholarly models of website quality has yet to mature. Thus, we will seek to

link subfactors of iterative development to scholarly models of website quality:

Hypothesis 1 (H1): Iterative development is linked to higher website quality

Customer feedback. The underlying assumption for nearly 50 years has been that

subfactors of customer feedback are linked to software development success factors such as

higher productivity, quality, performance, and even user satisfaction (Ives & Olson, 1984).

Subfactors of customer feedback have been linked to better conflict management (Barki &

Hartwick, 1994a), improved user attitudes (Barki & Hartwick, 1994b), and system use (Hartwick

& Barki, 1994). Subfactors of customer feedback have also been linked to higher user

satisfaction (McKeen, Guimaraes, & Wetherbe, 1994), higher user productivity (Hunton &

Beeler, 1997), and better project performance (Jiang, Chen, & Klein, 2002). More to the point,

subfactors of customer feedback have been linked to higher information quality (Blili, Raymond,

& Rivard, 1998), higher system quality (Barki & Hartwick, 2001), and system performance

(Rondeau, Ragu-Nathan, & Vonderemsbe, 2006). Even closer to home, subfactors of customer

feedback have been linked to higher website quality (MacCormack, 2001). Furthermore,

customer feedback must not only be sought and obtained, but must be acted upon in order to

improve quality (MacCormack, 2001). While there is some indication that factors of customer

feedback were linked to higher website quality, the field of scholarly models of website quality

has yet to mature. Thus, we will seek to link subfactors of customer feedback to scholarly models

of website quality:

Hypothesis 2 (H2): Customer feedback is linked to higher website quality

Well-structured teams. The underlying assumption for the last 60 years has been that

subfactors of well-structured teams have been linked to performance factors such as higher

Agile Methods 98

morale, satisfaction, efficiency, capacity, productivity, pride in workmanship, and many others

(Herbst, 1962). Subfactors of well-structured teams have been linked to better team performance

(Guinan, Cooprider, & Faraj, 1998), greater group cohesiveness (Riordan & Weatherly, 1999),

and better team effectiveness (Langfred, 2000). Subfactors of well-structured teams have been

linked to personal work satisfaction (Hoegl & Gemuenden, 2001), improved teamwork (Paul,

Samarah, Seetharaman, & Mykytyn, 2004), and more creativity (Tiwana & McLean, 2005).

Subfactors of well-structured teams have been linked to new product success (Lynn, Skov, &

Abel, 1999), system success (Sawyer, 2001), and faster time to market (Sarin & McDermott,

2003). In a recent study, subfactors of well-structured teams were linked to higher task

completion and greater team effort among open source software development teams, which are a

form of agile methods (Stewart & Gosain, 2006). Subfactors of well-structured teams such as

task interdependence have been linked to better performance among software development teams

(Edwards & Sridar, 2005). It is important to note that a major study of agile methods failed to

link subfactors of well-structured teams, such as experience, to website quality (MacCormack,

2001). Thus, we will seek to link subfactors of well-structured teams, other than experience

alone, to scholarly models of website quality:

Hypothesis 3 (H3): Well-structured teams are linked to higher website quality

Flexibility. The underlying assumption for the last 50 years has been that subfactors of

flexibility have been linked to software success factors such as quality, reliability,

maintainability, and cost effectiveness (Parnas, 1972). Subfactors of flexibility have been linked

to improved competitiveness (Byrd & Turner, 2001), better system performance (Nelson &

Cooprider, 2001), and better organizational performance (Chung, Rainer, & Lewis, 2003).

Subfactors of flexibility have been linked to organizational agility (Palanisamy & Sushil, 2003),

Agile Methods 99

better system efficiency (Golden & Powell, 2004), and faster time to market (Singh & Sushil,

2004). Subfactors of flexibility have been linked to improved partnerships (Gosain, Mulhotra, &

El Sawy, 2005), more frequent project success (Xia & Lee, 2005), and an organization’s return

on sales (Zhang, 2005). Closely related to this study, subfactors of flexibility among Internet

firms have been linked to improved website quality as well as organizational performance

(Cusumano & Selby, 1995; Iansiti & MacCormack, 1997; Yoffie & Cusumano, 1999). In at least

two of these studies, subfactors of flexibility were strong predictors of website quality and

organizational performance, but neither linked the subfactors of flexibility to scholarly models of

website quality. Thus, we will seek to link subfactors of flexibility to scholarly models of

website quality:

Hypothesis 4 (H4): Flexibility is linked to higher website quality

Conceptual Framework Summary

There have been hundreds of studies of software methods since the 1950s, there have

been hundreds of studies on what constitutes system success, and there have been hundreds of

studies linking subfactors of software methods to the subfactors of system success. There have

even been some rather intriguing studies of agile methods among Internet firms, subfactors of

agile methods among Internet firms, and the impacts of agile methods on the organizational

performance of Internet firms. However, there are several limitations associated with some of

these more recent studies of agile methods among Internet firms: (a) none of the better studies

have a theoretical conceptual model, (b) few of them were based on all four major factors of

agile methods, and (c) none of them attempted to link the factors of agile methods to scholarly

models of website quality. Thus, the conceptual framework (e.g., model, factors, subfactors, and

hypotheses) identified here may be one of the first holistic theories of agile methods.

Agile Methods 100

RESEARCH METHOD

The purpose of this section is to present a research method for collecting measurements,

which can then be used to analyze the relationships between agile methods and website quality.

The research method must help determine whether: (a) agile methods are being used, (b) high

quality websites are being produced, and (c) the use of agile methods is linked to website quality.

First, a survey will be conducted to determine the degree to which software developers are using

agile methods. Second, an independent assessment of the quality of their websites will be

performed. Third, the relationships between the use of agile methods and website quality will be

analyzed and studied. The main survey instrument is based on the four major factors of agile

methods: (a) iterative development, (b) customer feedback, (c) well-structured teams, and (d)

flexibility. The instrument to measure website quality is also composed of four factors: (a)

website design, (b) privacy and security, (c) fulfillment and reliability, and (d) customer service.

8. Identify Data Interpretation Process

6. Identify Data Analysis Process

5. Identify Data Collection Process

4. Identify Research Scales

3. Identify Research Instruments

2. Identify Research Variables

1. Identify Research Design

7. Identify Threats to Validity

Figure 8. Research method for studying agile methods and website quality.

Agile Methods 101

Research Design

Survey method. The recommended research design is a small-scale survey in order to

measure the relationships between the four factors of agile methods and scholarly models of

website quality. Survey research is one of the premier approaches for collecting both small and

large quantities of data to support scholarly research in the fields of both administrative and

management science. Survey research has been successfully used to study the four factors of

agile methods: (a) iterative development, (b) customer feedback, (c) well-structured teams, and

(d) flexibility. Survey research is the preferred research design used by management scientists to

collect and analyze attitudinal data concerning use of the Internet and website quality. The goal

of this study is to help determine whether a link exists between the use of agile methods and

website quality. Therefore, survey research will help satisfy this goal by gathering data about the

quality of websites produced using agile methods.

Population and sample. The population of computer programmers in the U.S. is

around 2 million and has been in steady decline since 2001. The level of U.S. electronic

commerce revenues has grown to more than $2 trillion, in spite of the decline in both U.S.

information technology workers and computer programmers. The sample cannot equal the

population for a full-scale academic research study and certainly not for a small-scale graduate

study. The sample will consist of up to 30,000 subscribers to a major U.S. computer

programming journal. The subscribers largely represent managers and programmers within the

U.S. computer programming industry. Recent response rates to similar surveys using this journal

have ranged from 700 (2.3%) to 2,500 (8.3%) respondents. So, we can expect around 300 (1%)

of all of the magazine’s subscribers to respond to our survey of agile methods and website

quality. This is more than enough for small-scale graduate survey research such as this.

Agile Methods 102

Research Variables

Agile methods. The main survey instrument is designed to measure compliance with

agile methods and consists of four major factors: (a) iterative development, (b) customer

feedback, (c) well-structured teams, and (d) flexibility. Iterative development consists of five

variables: (a) time boxed releases, (b) operational releases, (c) small releases, (d) frequent

releases, and (e) numerous releases. Customer feedback consists of five variables: (a) feedback

solicited, (b) feedback received, (c) feedback frequency, (d) feedback quality, and (e) feedback

incorporated. Well-structured teams consists of five variables: (a) team leader, (b) vision and

strategy, (c) goals and objectives, (d) schedules and timelines, and (e) small team size. Flexibility

consists of five variables: (a) small size, (b) simple design, (c) modular design, (d) portable

design, and (e) extensible design. The survey instrument in Table 10 contains further definitions

and explanations of the 20 variables used to measure compliance with agile methods.

Website quality. The secondary survey instrument is designed to assess the quality of e-

commerce websites produced using agile methods and also consists of four major factors: (a)

website design, (b) privacy and security, (c) fulfillment and reliability, and (d) customer service.

Website design consists of five variables: (a) in-depth information, (b) processing efficiency, (c)

processing speed, (d) personalization, and (e) product selection. Privacy and security consists of

three variables: (a) protection of privacy, (b) feelings of safety, and (c) adequate security.

Fulfillment and reliability consists of three variables: (a) order received, (b) on time delivery, and

(c) order accurate. Customer service consists of three variables: (a) willingness to respond, (b)

desire to fix issues, and (c) promptness of service. The survey instrument in Table 11 contains

definitions and explanations of the 14 variables used to measure e-commerce website quality,

which is based upon eTailQ (Wolfinbarger & Gilly, 2003).

Agile Methods 103

Research Instruments

Agile methods. The survey instrument for agile methods was designed using the factors

and subfactors associated with the conceptual model of agile methods (as shown in Table 10).

The major factors of agile methods were derived from an analysis of scholarly literature on agile

methods. Four major factors are associated with agile methods: (a) iterative development, (b)

customer feedback, (c) well-structured teams, and (d) flexibility. Similarly, the subfactors of

agile methods were derived from an analysis of the same scholarly literature of agile methods.

The items (i.e., questions) were carefully phrased based on the intent of the factors and

subfactors as they were used in the scholarly literature from which they were derived.

Table 10. Measurement Instrument for Assessing Agile Methods

Factor Variable Item
Time boxed

releases
We develop software using time-based iterations, increments, or
demonstrations

Operational
releases

We develop software using operational iterations, increments, or
demonstrations (working code)

Small releases We develop software using small iterations, increments, or demonstrations
Frequent releases We develop software using daily, weekly, bi-weekly, or monthly iterations,

increments, or demonstrations

Iterative
development

Numerous releases We develop software using multiple (several) iterations, increments, or
demonstrations

Feedback solicited We seek customer feedback on our software iterations, increments, or
demonstrations

Feedback received We receive customer feedback on our software iterations, increments, or
demonstrations

Feedback
frequency

We receive timely customer feedback on our software iterations, increments, or
demonstrations

Feedback quality We receive a lot of (detailed) customer feedback on our software iterations,
increments, or demonstrations

Customer
feedback

Feedback
incorporated

We incorporate customer feedback into our software iterations, increments, or
demonstrations

Team leader Our software teams have clear administrative or technical leaders
Vision and strategy Our software teams have clear visions, missions, or strategies

Goals and
objectives Our software teams have clear goals or objectives

Schedules and
timelines Our software teams have clear schedules or timelines

Well-
structured

teams

Small team size Our software teams have a small size with no more than 10 people
Small size Our software is designed to be as small as possible

Simple design Our software is designed to be as simple as possible
Modular design Our software is designed to be modular or object-oriented
Portable design Our software is designed to work on multiple operating systems

Flexibility

Extensible design Our software is designed to be changed, modified, or maintained

Agile Methods 104

Website quality. As shown in Table 11, the survey instrument for website quality was

derived from the factors, subfactors, and questions from eTailQ (Wolfinbarger & Gilly, 2003).

The eTailQ instrument itself was designed from an analysis of scholarly literature, use of focus

groups, and extensive field testing and validation of data collected from over 1,000 respondents.

Four major factors are associated with eTailQ: (a) website design, (b) privacy and security, (c)

fulfillment and reliability, and (d) customer service. Furthermore, only 14 instrument items are

associated with the eTailQ instrument: (a) five for website design, (b) three for protection and

privacy, (c) three for fulfillment and reliability, and (d) three for customer service. The strengths

of eTailQ are: (a) it is one of the newest, most mature, and scholarly models of website quality;

(b) it encompasses the entire life cycle associated with electronic commerce transactions; (c) it

has a small size maximizing speed and clarity; (d) it was developed and tested using focus

groups, confirmatory factor analysis, and a large population of respondents; and (e) each of its

factors, variables, and items exhibit high levels of inter-item reliability and validity.

Table 11. Measurement Instrument for Assessing Website Quality

Factor Variable Item

In-depth information The website provides in-depth information
Processing efficiency The site doesn’t waste my time

Processing speed It is quick and easy to complete a transaction at this website
Personalization The level of personalization at site is about right, not too much or too little

Website
design

Product selection This website has good selection
Protection of privacy I feel like my privacy is protected at this site

Feelings of safety I feel safe in my transactions with this website Privacy and
security

Adequate security The website has adequate security features
Order received You get what you ordered from this site

On time delivery The product is delivered by the time promised by the company Fulfillment
and reliability

Order accurate The product that came was represented accurately by the website
Willingness to

respond The company is willing and ready to respond to customer needs

Desire to fix issues When you have a problem, the website shows a sincere interest in solving it
Customer
service

Promptness of service Inquiries are answered promptly

Agile Methods 105

Research Scales

All of the instrument items for the survey instruments will consist of a seven point Likert-

type scale. They will be rank-ordered from lowest to highest as follows: (a) strongly disagree, (b)

disagree, (c) somewhat disagree, (d) neutral, (e) somewhat agree, (f) agree, and (g) strongly

agree. A graduated Likert-type scale will maximize the degree of variability in the responses and

lend itself to an analysis of continuous variable data. Rank-ordering the responses from lowest to

highest will also reduce the likelihood of misclassifying or incorrectly categorizing the data due

to reverse encoding of response data. For instance, the scales will be encoded from one to seven,

depending upon the response (e.g., 1 for strongly disagree and 7 for strongly agree). Each of the

instrument items was designed to elicit a response corresponding to these scales. That is, items

were designed to elicit a graduated response, rather than simply “yes” or “no.”

Data Collection Process

The goal of this study is to test for a link between the use of agile methods and website

quality. We will accomplish this goal by assessing the quality of websites produced by computer

programmers using agile methods. In order to accomplish the goals of this study, we will first

conduct up to six cognitive interviews to further validate the agile methods survey instrument.

We will then survey up to 300 software developers using the agile methods survey instrument to

determine the extent to which they are using agile methods. We will also ask these developers to

provide the addresses of websites they have produced using agile methods. From there, we will

randomly choose which website addresses to use. Then we will conduct an independent

assessment of the quality of the websites. In order to gauge the progress of the data collection

process, we will also collect interim, self-report data on the benefits of agile methods, such as

improvements in cost efficiency, productivity, quality, cycle time, and customer satisfaction.

Agile Methods 106

Data Analysis Process

The first step is to obtain a usable data set from the questionnaires. The next step is to

generate a summary of descriptive statistics. We propose to do a simple statistical analysis of the

responses from the sample of software developers. We will do this by analyzing the response

data from the instrument items, variables, and factors from the agile methods and eTailQ survey

instruments. Thus, we will determine the degree to which the websites produced by programmers

satisfy the variables and factors of agile methods and eTailQ. Then, we will attempt to analyze

the relationships between the use of agile methods and the quality of e-commerce websites

produced by U.S. programmers. We fully expect all of the websites produced by programmers

using agile methods to meet or exceed the minimum thresholds of website quality using eTailQ.

Correlational analysis and linear regression will be the primary statistical methods employed.

Threats to Validity

There are several major threats to the validity of this study. First, the instrument to

measure agile methods is new and untested, so its reliability cannot be fully determined in

advance. Second, the website quality instrument has only been tested on perceptions of past

transactions involving e-commerce website quality. It has never been used to assess the quality

of specific websites. Third, the respondents are self-selected, so there may be some bias towards

the use of agile methods. This is not likely given the amount skepticism regarding the validity of

agile methods. Fourth, we may not collect enough data about agile methods or website quality to

yield significant relationships between agile methods and website quality. Fifth, survey research

may or may not be the best research method to analyze the impacts of agile methods, in lieu of

qualitative methods, which yield richer experiences. Sixth, linear regression may not be sensitive

enough to measure minute variations in the data we collect.

Agile Methods 107

Data Interpretation Process

The primary method of interpreting results of the data analysis will be hypothesis testing.

Correlational analysis will be performed, linear regression between variables and factors will be

performed, and statistical models will be built and tested for correlations between all of the major

factors. Finally, statistical models will be designed and built to correlate all of the factors of agile

methods to the factors of website quality, including a composite model of all of the factors of

website quality. Models will be built between website quality and iterative development,

customer feedback, well structured teams, and flexibility to test the hypotheses. Then individual

models will be built between website design, privacy and security, fulfillment and reliability, and

customer service and the factors of agile methods to test the sub-hypotheses. These results will

not only test for large magnitudes of correlations, but statistically significant ones as well.

Finally, summary tables will be populated with these results (as shown in Table 12).

Table 12. Method of Interpreting Results of Data Analysis Process

Factors Hypothesis β t-value p-value
H1 Iterative development Website quality +/– +/– p < 0.05
H1a Iterative development Website design +/– +/– p < 0.05
H1b Iterative development Privacy and security +/– +/– p < 0.05
H1c Iterative development Fulfillment and reliability +/– +/– p < 0.05

Iterative
development

H1d Iterative development Customer service +/– +/– p < 0.05
H2 Customer feedback Website quality +/– +/– p < 0.05
H2a Customer feedback Website design +/– +/– p < 0.05
H2b Customer feedback Privacy and security +/– +/– p < 0.05
H2c Customer feedback Fulfillment and reliability +/– +/– p < 0.05

Customer
feedback

H2d Customer feedback Customer service +/– +/– p < 0.05
H3 Well-structured teams Website quality +/– +/– p < 0.05
H3a Well-structured teams Website design +/– +/– p < 0.05
H3b Well-structured teams Privacy and security +/– +/– p < 0.05
H3c Well-structured teams Fulfillment and reliability +/– +/– p < 0.05

Well-structured
teams

H3d Well-structured teams Customer service +/– +/– p < 0.05
H4 Flexibility Website quality +/– +/– p < 0.05
H4a Flexibility Website design +/– +/– p < 0.05
H4b Flexibility Privacy and security +/– +/– p < 0.05
H4c Flexibility Fulfillment and reliability +/– +/– p < 0.05

Flexibility

H4d Flexibility Customer service +/– +/– p < 0.05

Agile Methods 108

DATA ANALYSIS

The purpose of this section is to present an analysis of the relationships between the use

of agile methods to make e-commerce websites and the resulting website quality. A survey was

used to capture information on three major groups of data: (a) the use of agile methods, (b) the

benefits of using agile methods, and (c) the quality of the resulting websites. The data analysis

process consists of analyzing descriptive, demographic, agile methods, benefit, and website

quality data, in addition to the relationships between the three major groups of data. Statistical

software was used to analyze the descriptive, demographic, agile methods, benefit, and website

quality data, along with the relationships between these last three major groups of data.

Approximately 250 respondents provided data on agile methods, 150 respondents provided data

on benefits of agile methods, and 10 respondents provided addresses of e-commerce websites.

Data analysis revealed correlations within groups of data, correlations between agile methods

and benefit data, and insignificant relationships between agile methods and website quality data.

7. Analyze Agile Methods and Website Quality Relationships

6. Analyze Agile Methods and Benefits Relationships

5. Analyze Website Quality Data

4. Analyze Benefit Data

3. Analyze Agile Methods Data

2. Analyze Demographic Data

1. Analyze Descriptive Data

Figure 9. Data analysis of relationships between agile methods and website quality.

Agile Methods 109

Descriptive Data

Data were collected for agile methods, project outcomes, and website quality. Almost

250 respondents provided data on agile methods, 150 respondents provided data on project

outcomes, and 10 respondents provided data on website quality. The first two groups were self-

reported data and the last group was based on an independent assessment of website quality.

Table 13. Descriptive Data on Agile Methods, Benefits, and Website Quality

Group Factor Variable N Min Max Mean σ
Time-boxed releases 249 1 7 5.15 1.91
Operational releases 249 1 7 5.15 1.68

Small releases 246 1 7 5.13 1.83
Frequent releases 247 1 7 4.70 2.10

Iterative development

Numerous releases 248 1 7 5.38 1.73
Feedback solicited 249 1 7 5.55 1.60
Feedback received 249 1 7 5.24 1.57

Feedback frequency 246 1 7 4.45 1.67
Feedback quality 246 1 7 4.05 1.83

Customer feedback

Feedback incorporated 249 1 7 5.67 1.48
Team leader 251 1 7 5.25 1.61

Vision and strategy 250 1 7 4.82 1.63
Goals and objectives 249 1 7 5.20 1.42

Schedules and timelines 246 1 7 5.07 1.59
Well-structured teams

Small team size 249 1 7 5.96 1.55
Small size 249 1 7 4.22 1.70

Simple design 249 1 7 4.82 1.71
Modular design 248 1 7 5.38 1.50
Portable design 248 1 7 4.08 2.09

AGILE
METHODS

Flexibility

Extensible design 251 1 7 5.24 1.57
Cost 122 1 7 3.07 1.80

Productivity 145 1 7 3.32 1.73
Quality 149 1 7 3.48 1.88

Cycle time 138 1 7 3.55 1.91

PROJECT
OUTCOME

Benefits

Customer satisfaction 136 1 7 3.77 1.91
In-depth information 10 5 7 6.10 0.57
Processing efficiency 10 3 7 5.80 1.23

Processing speed 10 2 7 5.00 2.05
Personalization 10 3 7 5.60 1.43

Website design

Product selection 10 2 7 5.80 1.40
Protection of privacy 10 4 7 6.00 1.41

Feelings of safety 10 4 7 6.00 1.41 Privacy and security
Adequate security 10 2 7 5.50 1.84

Order received 10 1 7 5.20 1.99
On time delivery 10 1 7 5.20 1.99 Fulfillment and

reliability
Order accurate 10 1 7 5.20 1.99

Willingness to respond 10 1 7 5.70 1.95
Desire to fix issues 10 1 7 5.70 1.95

WEBSITE
QUALITY

Customer service
Promptness of service 10 1 7 5.70 1.95

Agile Methods 110

There were an adequate number of data points on agile methods and project outcomes to

analyze the relationships within and between these groups of variables. A total of 27 Internet

addresses were provided, but only 10 of them were for e-commerce websites versus information

websites. The data points represent values on a seven-point Likert type scale. The means were

quite high for agile methods, which may mean that respondents agreed with statements about

these variables. The means for project outcomes were lower, which means respondents were a

little more conservative about their statements with regards to benefits. The means for website

quality were higher, but the low number of Internet addresses would prove problematic for

examining the relationships between agile methods and website quality. The latter could have

been avoided by asking for self-reported data on website quality in addition to an Internet

address of an e-commerce website for an independent assessment of its quality.

Demographic Data

Demographic data were collected for job function, years of experience, number of

employees, annual revenues, and industry sector. The response rate for demographic data was

quite high: (a) 250 respondents for job function, (b) 252 respondents for years of experience, (c)

245 respondents for number of employees, (d) 161 respondents for annual revenue, and (e) 230

respondents for industry sector. Software engineers represented the largest job function at 33%.

However, 38% of the job functions ranged from executives to project managers. The largest

group of respondents had 11 to 15 years of experience, came from firms with under 20

employees, and came from firms with under $1 million in annual revenues. The largest industry

sectors were manufacturing, information, finance, and professional. The ratio of respondents for

demographic data to agile methods data was quite high. Early pilot testing indicated respondents

would be hesitant to provide demographic data. However, this was not the case after all.

Agile Methods 111

Table 14. Demographic Data on Agile Methods, Benefits, and Website Quality

Demographic Scale Attribute Response (%)

1 Executive 16 (6%)

2 Director 15 (6%)

3 Sr. Manager 27 (11%)

4 Project Manager 37 (15%)

5 Chief Engineer 11 (4%)

6 Systems Engineer 13 (5%)

7 Webmaster 5 (2%)

8 Network Engineer 0 (0%)

9 Database Admin 2 (1%)

10 Program Analyst 13 (5%)

11 Software Engineer 80 (32%)

12 System Admin 5 (2%)

13 Other 26 (10%)

Job function

Total 250 (100%)

1 0-5 33 (13%)

2 6-10 45 (18%)

3 11-15 56 (22%)

4 16-20 41 (16%)

5 21-25 37 (15%)

6 26-30 18 (7%)

7 31-35 13 (5%)

8 36-More 9 (4%)

Years of experience

Total 252 (100%)

1 1-19 43 (18%)

2 20-49 24 (10%)

3 50-99 22 (9%)

4 100-249 26 (11%)

5 250-499 24 (10%)

6 500-999 16 (7%)

7 1,000-2,499 21 (9%)

8 2,500-4,999 16 (7%)

9 5,000-9,999 11 (4%)

10 10,000-24,999 12 (5%)

11 25,000-49,999 9 (4%)

Number of employees

12 50,000-99,999 6 (2%)

Agile Methods 112

Demographic Scale Attribute Response (%)

13 100,000-More 15 (6%)

Total 245 (100%)

1 0-$999,000 35 (22%)

2 $1,000,000-$9,999,999 30 (19%)

3 $10,000,000-$24,999,999 18 (11%)

4 $25,000,000-$49,999,999 14 (9%)

5 $50,000,000-$99,999,999 12 (7%)

6 $100,000,000-$249,999,999 8 (5%)

7 $250,000,000-$499,999,999 8 (5%)

8 $500,000,000-$999,999,999 5 (3%)

9 $1,000,000,000-More 31 (19%)

Annual revenue

Total 161 (100%)

1 Agriculture 1 (0%)

2 Mining 1 (0%)

3 Utilities 2 (1%)

4 Construction 0 (0%)

5 Manufacturing 28 (11%)

6 Wholesale 2 (1%)

7 Retail 7 (3%)

8 Transportation 3 (1%)

9 Information 52 (21%)

10 Finance 22 (9%)

11 Real Estate 2 (1%)

12 Professional 63 (26%)

13 Management 5 (2%)

14 Administrative 1 (0%)

15 Educational 15 (6%)

16 Health Care 8 (3%)

17 Arts 8 (3%)

18 Accommodation 1 (0%)

19 Other 18 (7%)

20 Public Admin 7 (3%)

Industry sector

Total 230 (100%)

Agile Methods 113

Agile Methods Data

Summary analysis. A summary analysis of the data from the main survey instrument of

agile methods was performed (as shown in Table 15). The data were grouped by the four major

factors of agile methods: (a) iterative development, (b) customer feedback, (c) well-structured

teams, and (d) flexibility. It was further broken down into the 20 variables associated with the

four major factors of agile methods, five variables per factor. Finally, the data were organized

horizontally according to a seven-point Likert-type scale used to solicit the responses: (a)

strongly disagree, (b) disagree, (c) somewhat disagree, (d) neutral, (e) somewhat agree, (f) agree,

and (g) strongly agree. The number of responses per variable was also shown. A score for the

responses to each variable was shown as well. Two pieces of data were shown for each

combination of variable and scale-item: (a) the number of responses per scale item and (b) the

percentage of the total number of responses for each variable represented. For iterative

development, the majority of the respondents answered with strongly agree, with the exception

of operational releases. For customer feedback, the majority of respondents strongly agreed with

feedback solicited, agreed with feedback received, somewhat agreed with feedback frequency,

agreed with feedback quality, and strongly agreed with feedback incorporated. This revealed a

minor trend in which feedback is solicited from customers, but not always received, not always

received frequently, and is not always of the best quality. For well-structured teams, the majority

of the respondents agreed with team leader, vision and strategy, goals and objectives, and

schedules and timelines, while strongly agreeing with small team size. For flexibility, small size

should have been better phrased as small change, and portable design should have been qualified

with “Java virtual machine” in parentheses to strengthen these responses. These data generally

show the ability of the survey instrument to measure compliance with agile methods.

Agile Methods 114

Table 15. Agile Methods Data Summary

1 2 3 4 5 6 7
Factor Variable Strongly

Disagree Disagree Somewhat
Disagree Neutral Somewhat

Agree Agree Strongly
Agree

Responses Score

Time-boxed
releases 14 (6%) 23 (9%) 22 (9%) 13 (5%) 38 (15%) 59 (24%) 80 (32%) 249 5.15 / 7 (73.55%)

Operational
releases 10 (4%) 18 (7%) 19 (8%) 17 (7%) 50 (20%) 84 (34%) 51 (20%) 249 5.15 / 7 (73.55%)

Small
releases 10 (4%) 24 (10%) 18 (7%) 25 (10%) 34 (14%) 64 (26%) 71 (29%) 246 5.13 / 7 (73.34%)
Frequent
releases 27 (11%) 30 (12%) 17 (7%) 23 (9%) 34 (14%) 50 (20%) 66 (27%) 247 4.70 / 7 (67.21%)

ITERATIVE
DEVELOPMENT

Numerous
releases 9 (4%) 18 (7%) 11 (4%) 26 (10%) 35 (14%) 67 (27%) 82 (33%) 248 5.38 / 7 (76.79%)

Feedback
solicited 6 (2%) 14 (6%) 12 (5%) 20 (8%) 38 (15%) 72 (29%) 87 (35%) 249 5.55 / 7 (79.23%)
Feedback
received 4 (2%) 16 (6%) 24 (10%) 17 (7%) 55 (22%) 77 (31%) 56 (22%) 249 5.24 / 7 (74.87%)
Feedback
frequency 7 (3%) 34 (14%) 35 (14%) 37 (15%) 60 (24%) 44 (18%) 29 (12%) 246 4.45 / 7 (63.59%)
Feedback

quality 25 (10%) 35 (14%) 39 (16%) 37 (15%) 44 (18%) 45 (18%) 21 (9%) 246 4.05 / 7 (57.90%)

CUSTOMER
FEEDBACK

Feedback
incorporated 6 (2%) 8 (3%) 12 (5%) 13 (5%) 44 (18%) 80 (32%) 86 (35%) 249 5.67 / 7 (81.01%)

Team
leader 9 (4%) 11 (4%) 20 (8%) 27 (11%) 43 (17%) 84 (33%) 57 (23%) 251 5.25 / 7 (74.96%)

Vision and
strategy 11 (4%) 20 (8%) 23 (9%) 29 (12%) 60 (24%) 79 (32%) 28 (11%) 250 4.82 / 7 (68.91%)

Goals and
objectives 3 (1%) 12 (5%) 22 (9%) 24 (10%) 57 (23%) 95 (38%) 36 (14%) 249 5.20 / 7 (74.35%)
Schedules

and timelines 6 (2%) 15 (6%) 26 (11%) 25 (10%) 59 (24%) 67 (27%) 48 (20%) 246 5.07 / 7 (72.42%)

WELL-
STRUCTURED

TEAMS

Small
team size 6 (2%) 10 (4%) 10 (4%) 13 (5%) 16 (6%) 63 (25%) 131 (53%) 249 5.96 / 7 (85.08%)

Small
size 13 (5%) 44 (18%) 18 (7%) 61 (24%) 51 (20%) 38 (15%) 24 (10%) 249 4.22 / 7 (60.24%)

Simple
design 8 (3%) 28 (11%) 21 (8%) 37 (15%) 47 (19%) 67 (27%) 41 (16%) 249 4.82 / 7 (68.79%)

Modular
design 6 (2%) 11 (4%) 14 (6%) 23 (9%) 49 (20%) 87 (35%) 58 (23%) 248 5.38 / 7 (76.90%)

Portable
design 38 (15%) 41 (17%) 20 (8%) 32 (13%) 36 (15%) 43 (17%) 38 (15%) 248 4.08 / 7 (58.29%)

FLEXIBILITY

Extensible
design 4 (2%) 16 (6%) 23 (9%) 23 (9%) 51 (20%) 75 (30%) 59 (24%) 251 5.24 / 7 (74.84%)

Agile Methods 115

Correlational analysis. A correlational analysis of the 20 variables of agile methods

was performed (as shown in Table 16). There were five variables associated with each of the

four major factors of agile methods. As expected the five variables associated with each of the

four major factors of agile methods were closely correlated (using Pearson correlations). The

four major factors of agile methods are: (a) iterative development, (b) customer feedback, (c)

well-structured teams, and (d) flexibility. Within the first group, iterative development, the

highest correlation was between small releases and operational releases, small releases and

frequent releases, and small releases and numerous releases. Within the second group, customer

feedback, the highest correlations were between feedback solicited and feedback received,

feedback solicited and feedback incorporated, and feedback frequency and feedback quality.

Within the last two groups, well-structured teams and flexibility, the highest correlations were

between vision and strategy and goals and objectives, and small size and simple design. With

some exceptions, this analysis indicates the variables of agile methods were well-chosen.

Variable analysis. A linear regression of the 20 variables of agile methods was also

performed (as shown in Table 17). Within the first group, iterative development, the highest

adjusted R2 values were between operational releases and small releases, small releases and

frequent releases, and small releases and numerous releases. Within the second group, customer

feedback, the highest adjusted R2 values were between feedback solicited and feedback received,

feedback received and feedback frequency, and feedback frequency and feedback quality. Within

the third group, well-structured teams, the highest adjusted R2 values were between vision and

strategy and goals and objectives. Within the fourth group, flexibility, the highest adjusted R2

values were between small size and simple design and modular design and extensible design.

Overall, the highest adjusted R2 values seem to be within the second group, customer feedback,

but each major group of variables is closely related. This analysis further indicates the variables

were well-chosen and reliably describe and represent the individual factors of agile methods.

Agile Methods 116

Table 16. Agile Methods Data Correlational Analysis (Pearson Correlations)

Variable

T
im

e-
bo

xe
d

re
le

as
es

O
pe

ra
ti

on
al

re

le
as

es

S
m

al
l

re
le

as
es

Fr
eq

ue
nt

re

le
as

es

N
um

er
ou

s
re

le
as

es

Fe
ed

ba
ck

so

lic
it

ed

Fe
ed

ba
ck

re

ce
iv

ed

Fe
ed

ba
ck

fr

eq
ue

nc
y

Fe
ed

ba
ck

qu

al
it

y

Fe
ed

ba
ck

in

co
rp

or
at

ed

T
ea

m

le
ad

er

V
is

io
n

an
d

st
ra

te
gy

G
oa

ls
 a

nd

ob
je

ct
iv

es

S
ch

ed
ul

es

&
 t

im
el

in
es

S
m

al
l

te
am

 s
iz

e

S
m

al
l

si
ze

S
im

pl
e

de
si

gn

M
od

ul
ar

de

si
gn

P
or

ta
bl

e
de

si
gn

E
xt

en
si

bl
e

de
si

gn

Time-boxed
releases 1.000 0.391 0.511 0.522 0.437 0.328 0.264 0.313 0.272 0.311 0.312 0.306 0.271 0.333 -0.008 0.238 0.237 0.353 0.201 0.273

Operational
releases 0.391 1.000 0.558 0.373 0.446 0.237 0.296 0.204 0.344 0.337 0.242 0.267 0.256 0.126 0.157 0.277 0.286 0.277 0.065 0.238

Small
releases 0.511 0.558 1.000 0.599 0.570 0.355 0.335 0.299 0.415 0.412 0.229 0.338 0.381 0.270 0.144 0.390 0.416 0.433 0.233 0.416
Frequent
releases 0.522 0.373 0.599 1.000 0.458 0.255 0.265 0.322 0.358 0.213 0.222 0.369 0.371 0.309 0.070 0.320 0.330 0.430 0.295 0.413

Numerous
releases 0.437 0.446 0.570 0.458 1.000 0.353 0.376 0.231 0.286 0.381 0.200 0.285 0.363 0.159 0.147 0.205 0.241 0.359 0.143 0.330

Feedback
solicited 0.328 0.237 0.355 0.255 0.353 1.000 0.742 0.567 0.536 0.733 0.208 0.255 0.247 0.153 0.173 0.339 0.325 0.336 0.194 0.335
Feedback
received 0.264 0.296 0.335 0.265 0.376 0.742 1.000 0.688 0.667 0.682 0.245 0.386 0.365 0.252 0.142 0.300 0.330 0.359 0.137 0.376
Feedback
frequency 0.313 0.204 0.299 0.322 0.231 0.567 0.688 1.000 0.758 0.509 0.331 0.464 0.396 0.348 0.018 0.319 0.304 0.284 0.237 0.321
Feedback

quality 0.272 0.344 0.415 0.358 0.286 0.536 0.667 0.758 1.000 0.494 0.265 0.421 0.399 0.253 0.078 0.335 0.383 0.318 0.257 0.370
Feedback

incorporated 0.311 0.337 0.412 0.213 0.381 0.733 0.682 0.509 0.494 1.000 0.251 0.285 0.298 0.162 0.223 0.314 0.405 0.438 0.185 0.391
Team
leader 0.312 0.242 0.229 0.222 0.200 0.208 0.245 0.331 0.265 0.251 1.000 0.600 0.540 0.524 -0.011 0.228 0.225 0.310 0.236 0.256

Vision and
strategy 0.306 0.267 0.338 0.369 0.285 0.255 0.386 0.464 0.421 0.285 0.600 1.000 0.798 0.550 0.078 0.395 0.420 0.350 0.271 0.442

Goals and
objectives 0.271 0.256 0.381 0.371 0.363 0.247 0.365 0.396 0.399 0.298 0.540 0.798 1.000 0.550 0.087 0.370 0.391 0.363 0.258 0.437
Schedules

and timelines 0.333 0.126 0.270 0.309 0.159 0.153 0.252 0.348 0.253 0.162 0.524 0.550 0.550 1.000 -0.009 0.209 0.183 0.294 0.137 0.245
Small

team size -0.008 0.157 0.144 0.070 0.147 0.173 0.142 0.018 0.078 0.223 -0.011 0.078 0.087 -0.009 1.000 0.177 0.204 0.024 -0.114 0.109
Small
size 0.238 0.277 0.390 0.320 0.205 0.339 0.300 0.319 0.335 0.314 0.228 0.395 0.370 0.209 0.177 1.000 0.712 0.453 0.268 0.478

Simple
design 0.237 0.286 0.416 0.330 0.241 0.325 0.330 0.304 0.383 0.405 0.225 0.420 0.391 0.183 0.204 0.712 1.000 0.487 0.345 0.588

Modular
design 0.353 0.277 0.433 0.430 0.359 0.336 0.359 0.284 0.318 0.438 0.310 0.350 0.363 0.294 0.024 0.453 0.487 1.000 0.377 0.594

Portable
design 0.201 0.065 0.233 0.295 0.143 0.194 0.137 0.237 0.257 0.185 0.236 0.271 0.258 0.137 -0.114 0.268 0.345 0.377 1.000 0.353

Extensible
design 0.273 0.238 0.416 0.413 0.330 0.335 0.376 0.321 0.370 0.391 0.256 0.442 0.437 0.245 0.109 0.478 0.588 0.594 0.353 1.000

Note. Data in red italics are not significant.

Agile Methods 117

Table 17. Agile Methods Data Variable Analysis (Adjusted R2 Values)

Variable

T
im

e-
bo

xe
d

re
le

as
es

O
pe

ra
ti

on
al

re

le
as

es

S
m

al
l

re
le

as
es

Fr
eq

ue
nt

re

le
as

es

N
um

er
ou

s
re

le
as

es

Fe
ed

ba
ck

so

lic
it

ed

Fe
ed

ba
ck

re

ce
iv

ed

Fe
ed

ba
ck

fr

eq
ue

nc
y

Fe
ed

ba
ck

qu

al
it

y

Fe
ed

ba
ck

in

co
rp

or
at

ed

T
ea

m

le
ad

er

V
is

io
n

an
d

st
ra

te
gy

G
oa

ls
 a

nd

ob
je

ct
iv

es

S
ch

ed
ul

es

&
 t

im
el

in
es

S
m

al
l

te
am

 s
iz

e

S
m

al
l

si
ze

S
im

pl
e

de
si

gn

M
od

ul
ar

de

si
gn

P
or

ta
bl

e
de

si
gn

E
xt

en
si

bl
e

de
si

gn

Time-boxed
releases 1.000 0.149 0.258 0.269 0.187 0.104 0.066 0.095 0.070 0.093 0.094 0.090 0.069 0.107 -0.004 0.053 0.052 0.121 0.036 0.071

Operational
releases 0.149 1.000 0.309 0.136 0.196 0.052 0.084 0.038 0.115 0.110 0.055 0.067 0.062 0.012 0.021 0.073 0.078 0.073 0.000 0.053

Small
releases 0.258 0.309 1.000 0.356 0.322 0.122 0.109 0.085 0.168 0.166 0.049 0.111 0.141 0.069 0.017 0.148 0.169 0.184 0.050 0.170
Frequent
releases 0.269 0.136 0.356 1.000 0.206 0.061 0.067 0.100 0.125 0.041 0.045 0.133 0.134 0.092 0.001 0.098 0.105 0.181 0.083 0.167

Numerous
releases 0.187 0.196 0.322 0.206 1.000 0.121 0.138 0.049 0.078 0.142 0.036 0.078 0.128 0.021 0.017 0.038 0.058 0.125 0.016 0.105

Feedback
solicited 0.104 0.052 0.122 0.061 0.121 1.000 0.549 0.319 0.284 0.535 0.040 0.061 0.057 0.019 0.026 0.112 0.102 0.109 0.034 0.109
Feedback
received 0.066 0.084 0.109 0.067 0.138 0.549 1.000 0.471 0.442 0.463 0.056 0.145 0.130 0.060 0.016 0.086 0.105 0.125 0.015 0.138
Feedback
frequency 0.095 0.038 0.085 0.100 0.049 0.319 0.471 1.000 0.573 0.256 0.106 0.212 0.153 0.117 -0.004 0.098 0.089 0.077 0.052 0.100
Feedback

quality 0.070 0.115 0.168 0.125 0.078 0.284 0.442 0.573 1.000 0.241 0.066 0.174 0.155 0.060 0.002 0.108 0.143 0.097 0.062 0.133
Feedback

incorporated 0.093 0.110 0.166 0.041 0.142 0.535 0.463 0.256 0.241 1.000 0.059 0.078 0.085 0.022 0.046 0.095 0.160 0.188 0.030 0.149
Team
leader 0.094 0.055 0.049 0.045 0.036 0.040 0.056 0.106 0.066 0.059 1.000 0.357 0.289 0.271 -0.004 0.048 0.047 0.092 0.052 0.062

Vision and
strategy 0.090 0.067 0.111 0.133 0.078 0.061 0.145 0.212 0.174 0.078 0.357 1.000 0.636 0.300 0.002 0.152 0.173 0.119 0.069 0.192

Goals and
objectives 0.069 0.062 0.141 0.134 0.128 0.057 0.130 0.153 0.155 0.085 0.289 0.636 1.000 0.299 0.033 0.134 0.149 0.128 0.063 0.188
Schedules

and timelines 0.107 0.012 0.069 0.092 0.021 0.019 0.060 0.117 0.060 0.022 0.271 0.300 0.299 1.000 -0.004 0.040 0.030 0.082 0.015 0.056
Small

team size -0.004 0.021 0.017 0.001 0.017 0.026 0.016 -0.004 0.002 0.046 -0.004 0.002 0.033 -0.004 1.000 0.027 0.038 -0.004 0.009 0.008
Small
size 0.053 0.073 0.148 0.098 0.038 0.112 0.086 0.098 0.108 0.095 0.048 0.152 0.134 0.040 0.027 1.000 0.505 0.202 0.068 0.225

Simple
design 0.052 0.078 0.169 0.105 0.058 0.102 0.105 0.089 0.143 0.160 0.047 0.173 0.149 0.03 0.038 0.505 1.000 0.234 0.115 0.343

Modular
design 0.121 0.073 0.184 0.181 0.125 0.109 0.125 0.077 0.097 0.188 0.092 0.119 0.128 0.082 -0.004 0.202 0.234 1.000 0.138 0.350

Portable
design 0.036 0.000 0.050 0.083 0.016 0.034 0.015 0.052 0.062 0.030 0.052 0.069 0.063 0.015 0.009 0.068 0.115 0.138 1.000 0.121

Extensible
design 0.071 0.053 0.170 0.167 0.105 0.109 0.138 0.100 0.133 0.149 0.062 0.192 0.188 0.056 0.008 0.225 0.343 0.350 0.121 1.000

Note. Data in red italics are not significant.

Agile Methods 118

Factor analysis. An analysis of the four major factors of agile methods was performed

(as shown in Table 18). Linear regression was used to build statistical models between each

factor. The four major factors of agile methods were found to be related to one another using this

analysis: (a) iterative development, (b) customer feedback, (c) well-structured teams, and (d)

flexibility. This analysis was designed to see whether the major factors of agile methods were

related, whereas prior analysis was used to study the relationships between individual variables.

The strongest adjusted R2 values were between iterative development and flexibility, customer

feedback and flexibility, and well-structured teams and flexibility. The F-values were good and

the significance was high, with no value exceeding zero. The lowest adjusted R2 values were

between iterative development and customer feedback, iterative development and well-structured

teams, and customer feedback and well-structured teams. This analysis indicates the individual

factors are related to one another and reliably represent the major elements of agile methods.

Table 18. Agile Methods Factor Analysis

Factor Statistic
Iterative

development
Customer
feedback

Well-structured
teams

Flexibility

Adjusted R2 value 1.000 0.231 0.185 0.284

F-value n/a 15.071 11.602 19.656 Iterative
development

Significance n/a 0.000 0.000 0.000

Adjusted R2 value 0.220 1.000 0.201 0.230

F-value 14.577 n/a 13.039 15.357 Customer
feedback

Significance 0.000 n/a 0.000 0.000

Adjusted R2 value 0.194 0.192 1.000 0.241

F-value 12.599 12.422 n/a 16.286 Well-structured
teams

Significance 0.000 0.000 n/a 0.000

Adjusted R2 value 0.258 0.227 0.233 1.000

F-value 17.674 15.069 15.491 n/a Flexibility

Significance 0.000 0.000 0.000 n/a

Agile Methods 119

Model analysis. Four statistical models were constructed between the four major factors

of agile methods and the remaining factors (as shown in Table 19). All four factors of agile

methods: iterative development, customer feedback, well-structured teams, and flexibility, had

equally high adjusted R2 values. Furthermore, the F-values and significance of the models were

also high. Beta values for each of the independent variables were moderately high, the t-values

were good, and the significance for each of the independent variables was high. The strongest

model was flexibility as a function of iterative development, customer feedback, and well-

structured teams. The weakest model was well-structured teams as a function of iterative

development, customer feedback, and flexibility. This analysis indicates that the factor, variable,

and item selection for agile methods was more than adequate for measuring compliance with

agile methods. This analysis indicates the aggregated factors are related to one another and Table

16 through Table 19 indicate the main survey instrument of agile methods is reliable and valid.

Table 19. Agile Methods Model Analysis

Model Statistic
Iterative

development
Customer
feedback

Well-structured
teams

Flexibility

Adjusted R2 0.339 0.336 0.325 0.358
F-value 43.062 42.571 40.490 46.787 (Model)

Significance 0.000 0.000 0.000 0.000
Beta 1.007 0.992 2.362 0.921

t-value 2.623 2.633 8.751 2.692 (Constant)

Significance 0.009 0.009 0.000 0.008
Beta n/a 0.251 0.180 0.222

t-value n/a 4.112 3.618 3.995 Iterative
development

Significance n/a 0.000 0.000 0.000
Beta 0.260 n/a 0.171 0.233

t-value 4.112 n/a 3.367 4.145 Customer
feedback

Significance 0.000 n/a 0.001 0.000
Beta 0.284 0.261 n/a 0.296

t-value 3.618 3.367 n/a 4.264 Well-structured
teams

Significance 0.000 0.001 n/a 0.000
Beta 0.278 0.283 0.235 n/a

t-value 3.995 4.415 4.264 n/a Flexibility

Significance 0.000 0.000 0.000 n/a

Agile Methods 120

Benefit Data

Summary analysis. A summary analysis of the benefit data was performed (as shown in

Table 20). The estimates were rather conservative and generally spread evenly across all of the

categories. In fact, the data tend to be skewed toward the lower end of the scale. (Note that the

agile methods data is skewed toward the upper end of the scale.) The largest group of responses

rated cost, quality, and cycle time benefits in the 0 to 10% range. Productivity benefits were

rated in the 11% to 25% range. Customer satisfaction benefits were rated in the 75% to 100%

range. The average score for the variables and scale-items was just under 50%. One observation

is that 25% of the respondents cited a range of customer satisfaction benefits almost twice as

high as the other four benefit variables. While the data are slightly skewed toward the lower end

of the benefit scale, it is important to note that the average response is about 50%. What this

means is that half of the respondents cited benefits for agile methods in excess of 50%. About

half of the respondents reported data relating to the benefits of agile methods, but when benefit

data were reported, half of these reported benefits in excess of 50% for each criterion.

Table 20. Benefit Data Summary

1 2 3 4 5 6 7

Variable 0 to
10%

11% to
25%

26% to
50%

51% to
75%

76% to
100%

101% to
200%

201% or
more

Responses Score

Cost 31 (26%) 23 (19%) 23 (19%) 18 (15%) 9 (7%) 14 (11%) 4 (3%) 122 3.07 / 7
(43.91%)

Productivity 27 (18%) 28 (19%) 24 (17%) 27 (19%) 19 (13%) 16 (11%) 4 (3%) 145 3.32 / 7
(47.49%)

Quality 30 (20%) 23 (15%) 28 (19%) 19 (13%) 19 (13%) 23 (15%) 7 (5%) 149 3.48 / 7
(49.66%)

Cycle
Time

26 (19%) 24 (17%) 18 (13%) 25 (18%) 19 (14%) 15 (11%) 11 (8%) 138 3.55 / 7
(50.72%)

Customer
Satisfaction 25 (18%) 14 (10%) 24 (18%) 14 (10%) 33 (25%) 15 (11%) 11 (8%) 136 3.77 / 7

(53.89%)

Agile Methods 121

Correlational analysis. A correlational analysis of the five benefit variables was

performed (as shown in Table 21). The five benefit variables were: (a) cost, (b) productivity, (c)

quality, (d) cycle time, and (e) customer satisfaction. The five benefit variables were closely

correlated (using Pearson correlations). In fact, all of the Pearson correlations were extremely

high, with the lowest Pearson correlation being 0.748. The strongest correlation was between the

benefit variables of cost and productivity. The weakest correlation was between the benefit

variables of quality and cycle time. Most of the correlations were extremely close in range and

there were no consistently high or low patterns of correlations between variables. Sometimes,

benefit variables are considered to be orthogonal in nature (e.g., cost and quality). For instance,

quality may be considered expensive to obtain. Therefore, one benefit variable has to be traded

off for another. Surprisingly, these correlations revealed no such perceptions of benefit variables.

These data indicate unusually high levels of agreement between respondents about the benefits

of agile methods and may be worthy of further investigation in future research studies.

Table 21. Benefit Data Correlational Analysis (Pearson Correlations)

Variable Statistic Cost Productivity Quality Cycle
Time

Customer
Satisfaction

Pearson 1.000 0.902 0.824 0.839 0.793
Significance n/a 0.000 0.000 0.000 0.000 Cost

N 122 121 120 113 113

Pearson 0.902 1.000 0.769 0.829 0.785
Significance 0.000 n/a 0.000 0.000 0.000 Productivity

N 121 145 144 133 130

Pearson 0.824 0.769 1.000 0.748 0.854
Significance 0.000 0.000 n/a 0.000 0.000 Quality

N 120 144 149 136 134

Pearson 0.839 0.829 0.748 1.000 0.795
Significance 0.000 0.000 0.000 n/a 0.000 Cycle

Time
N 113 133 136 138 129

Pearson 0.793 0.785 0.854 0.795 1.000

Significance 0.000 0.000 0.000 0.000 n/a
Customer

Satisfaction
N 113 130 134 129 136

Agile Methods 122

Variable analysis. A linear regression of the five benefit variables was also performed

(as shown in Table 22). This analysis exhibited the highest adjusted R2 values, F-values, and

significance values found in this study. For instance, the highest adjusted R2 value was 0.812,

between the benefit variables of cost and productivity. This means that more than 81% of the

variation is explained by these two variables. The lowest adjusted R2 value was 0.557, between

the benefit variables of quality and cycle time. While 56% of the variation is explained between

the variables of quality and cycle time, which is very respectable, this is a stark contrast to the

earlier value of 81%. This may indicate perceived tradeoffs between major classes of benefit

variables. For instance, there may be some lingering perceptions that cycle time must be

sacrificed for quality. Even if this were so, a 56% adjusted R2 value is still very high, which may

indicate that perceptions about tradeoffs involving the high cost-of-quality may be dissipating.

This analysis indicates that the respondents unanimously agreed with statements concerning the

benefits of agile methods and the data about the benefits of agile methods are reliable and valid.

Table 22. Benefit Data Variable Analysis (Adjusted R2 Values)

Variable Statistic Cost Productivity Quality Cycle
Time

Customer
Satisfaction

Adjusted R2 1.000 0.812 0.676 0.701 0.625
F-value n/a 519.787 248.762 263.247 187.784 Cost

Significance n/a 0.000 0.000 0.000 0.000

Adjusted R2 0.812 1.000 0.589 0.685 0.614
F-value 519.787 n/a 205.707 274.472 205.977 Productivity

Significance 0.000 n/a 0.000 0.000 0.000

Adjusted R2 0.676 0.589 1.000 0.557 0.727
F-value 248.762 205.707 n/a 170.435 354.390 Quality

Significance 0.000 0.000 n/a 0.000 0.000

Adjusted R2 0.701 0.685 0.557 1.000 0.629
F-value 263.247 274.472 170.435 n/a 218.351 Cycle

Time
Significance 0.000 0.000 0.000 n/a 0.000

Adjusted R2 0.625 0.614 0.727 0.629 1.000

F-value 187.784 205.977 354.390 218.351 n/a
Customer

Satisfaction
Significance 0.000 0.000 0.000 0.000 n/a

Agile Methods 123

Model analysis. Five statistical models were constructed between the five benefit

variables and the remaining variables (as shown in Table 23). All five benefit variables—cost,

productivity, quality, cycle time, and customer satisfaction—had high adjusted R2 values.

Furthermore, the F-values and significance of the models was extremely high. Four out of five

statistical models had high adjusted R2 values, which explained 85% of the variation between the

variables. Only one adjusted R2 value was substantially below the 85% threshold. Cycle time had

an adjusted R2 value of almost 80%, which is very high. The F-values for these were some of the

highest in this study. There were some minor breakdowns in the significance of the individual

Beta values (shown in italics). This analysis was performed to test the reliability and validity of

the data for later analysis of the potential relationships between agile methods and their benefits.

The high adjusted R2 values in the top row provide strong evidence that agile methods are related

to improvements in cost efficiency, productivity, quality, cycle time, and customer satisfaction.

Table 23. Benefit Data Model Analysis

Variable Statistic Cost Productivity Quality Cycle
Time

Customer
Satisfaction

Adjusted R2 0.854 0.863 0.848 0.786 0.852
F-value 157.912 169.476 149.692 99.504 155.410 (Model)

Significance 0.000 0.000 0.000 0.000 0.000
Beta -0.136 0.201 0.111 0.166 0.276

t-value -0.897 1.392 0.683 0.839 1.720 (Constant)
Significance 0.372 0.167 0.496 0.403 0.088

Beta 1.000 0.573 0.194 0.371 -0.066
t-value n/a 7.578 1.872 3.021 -0.623 Cost

Significance n/a 0.000 0.064 0.003 0.534
Beta 0.625 1.000 0.225 0.322 0.026

t-value 7.578 n/a 2.088 2.470 0.233 Productivity
Significance 0.000 n/a 0.039 0.015 0.816

Beta 0.170 0.180 1.000 -0.197 0.686
t-value 1.872 2.088 n/a -1.662 9.558 Quality

Significance 0.064 0.039 n/a 0.100 0.000
Beta 0.219 0.174 -0.133 1.000 0.331

t-value 3.021 2.470 -1.662 n/a 4.473 Cycle
Time

Significance 0.003 0.015 0.100 n/a 0.000
Beta -0.057 0.021 0.685 0.491 1.000

t-value -0.623 0.233 9.558 4.473 n/a
Customer

Satisfaction
Significance 0.534 0.816 0.000 0.000 n/a

Note. Data in red italics are not significant.

Agile Methods 124

Website Quality Data

Summary analysis. A summary analysis of the data from the measurement instrument

for website quality was performed (as shown in Table 24). The data were grouped by the four

major factors of website quality: (a) website design, (b) privacy and security, (c) fulfillment and

reliability, and (d) customer service. It was further broken down into the 14 variables associated

with the four major factors of website quality. Finally, the data were organized horizontally

according to a seven-point Likert-type scale used to solicit the responses: (a) strongly disagree,

(b) disagree, (c) somewhat disagree, (d) neutral, (e) somewhat agree, (f) agree, and (g) strongly

agree. The number of responses per variable was also shown. A score for the responses to each

variable was shown as well. Two pieces of data were shown for each combination of variable

and scale-item: (a) the number of responses per scale item and (b) the percentage of the total

number of responses for each variable represented. For website design, the majority of the

respondents answered with agree, and strongly agree for processing speed. For privacy and

security, the majority of respondents strongly agreed with protection and privacy, feelings of

safety, and adequate security. For fulfillment and reliability, the majority of the responses were

equally assigned to agree and strongly agree for order received, on-time delivery, and order

accurate. For customer service, the majority of respondents answered strongly agree for

willingness to respond, desire to fix issues, and promptness of service. These data generally

show the ability of the measurement instrument to gauge perceptions of website quality. The data

were arranged from left to right to show the degree to which the evaluator strongly disagreed,

disagreed, somewhat disagreed, was neutral, somewhat agreed, agreed, or strongly agreed with

perceptions of website quality. As shown, the largest issues seem to be slow processing speed,

inadequate product selection, and in some cases inadequate security and failure to deliver.

Agile Methods 125

Table 24. Website Quality Data Summary

1 2 3 4 5 6 7
Factor Variable Strongly

Disagree Disagree Somewhat
Disagree Neutral Somewhat

Agree Agree Strongly
Agree

Responses Score

In-depth
information 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (10%) 7 (70%) 2 (20%) 10 6.1 / 7 (87.14%)

Processing
efficiency 0 (0%) 0 (0%) 1 (10%) 0 (0%) 2 (20%) 4 (40%) 3 (30%) 10 5.8 / 7 (82.86%)

Processing
speed 0 (0%) 2 (20%) 1 (10%) 1 (10%) 0 (0%) 3 (30%) 3 (30%) 10 5.0 / 7 (71.43%)

Personalization 0 (0%) 0 (0%) 1 (10%) 2 (20%) 0 (0%) 4 (40%) 3 (30%) 10 5.6 / 7 (80.00%)

WEBSITE
DESIGN

Product
selection 0 (0%) 1 (10%) 0 (0%) 0 (0%) 0 (0%) 7 (70%) 2 (20%) 10 5.8 / 7 (82.86%)

Protection
of privacy 0 (0%) 0 (0%) 0 (0%) 3 (30%) 0 (0%) 1 (10%) 6 (60%) 10 6.0 / 7 (85.71%)

Feelings
of safety 0 (0%) 0 (0%) 0 (0%) 3 (30%) 0 (0%) 1 (10%) 6 (60%) 10 6.0 / 7 (85.71%) PRIVACY AND

SECURITY

Adequate
security 0 (0%) 1 (10%) 0 (0%) 3 (30%) 0 (0%) 1 (10%) 5 (50%) 10 5.5 / 7 (78.57%)

Order
received 1 (10%) 0 (0%) 1 (10%) 1 (10%) 1 (10%) 3 (30%) 3 (30%) 10 5.2 / 7 (74.29%)

On time
delivery 1 (10%) 0 (0%) 1 (10%) 1 (10%) 1 (10%) 3 (30%) 3 (30%) 10 5.2 / 7 (74.29%)

FULFILLMENT
AND

RELIABILITY
Order

accurate 1 (10%) 0 (0%) 1 (10%) 1 (10%) 1 (10%) 3 (30%) 3 (30%) 10 5.2 / 7 (74.29%)

Willingness
to respond 1 (10%) 0 (0%) 0 (0%) 1 (10%) 1 (10%) 2 (20%) 5 (50%) 10 5.7 / 7 (81.43%)

Desire to
fix issues 1 (10%) 0 (0%) 0 (0%) 1 (10%) 1 (10%) 2 (20%) 5 (50%) 10 5.7 / 7 (81.43%)

CUSTOMER
SERVICE

Promptness
of service 1 (10%) 0 (0%) 0 (0%) 1 (10%) 1 (10%) 2 (20%) 5 (50%) 10 5.7 / 7 (81.43%)

Agile Methods 126

Correlational analysis. A correlational analysis of the 14 variables of website quality

was performed (as shown in Table 25). There were five variables associated with the first factor

and three variables associated the last three factors of website quality. Many of the variables

associated with each of the four major factors of website quality were closely correlated (using

Pearson correlations). The four major factors of website quality are: (a) website design, (b)

privacy and security, (c) fulfillment and reliability, and (d) customer service. Within the first

group, website design, the highest correlations were between in-depth information and

processing efficiency, processing efficiency and processing speed, and processing efficiency and

personalization. Within the second group, privacy and security, the highest correlation was

between protection of privacy and feelings of safety. Within the last two groups, fulfillment and

reliability and customer service, all of the variables had a surprisingly high one-to-one

correlation. With a few notable exceptions, this analysis indicates the variables of website quality

were closely related within categories of variables, but not between categories of variables.

Variable analysis. A linear regression of the 14 variables of website quality was also

performed (as shown in Table 26). Within the first group, website design, the highest adjusted R2

values were between in-depth information and processing efficiency, processing efficiency and

processing speed, and processing efficiency and personalization. Within the second group,

privacy and security, the highest adjusted R2 values were between protection of privacy and

feelings of safety. Within the third group, fulfillment and reliability, all of the variables had a

surprisingly high one-to-one correlation. Within the fourth group, customer service, all of the

variables also had a surprisingly high one-to-one correlation. Overall, most, if not all of the

groups had high adjusted R2 values. This was especially true for the last two groups. There

seemed to be some problems with low correlations in the first and second groups, website design

and privacy and security. Again, this analysis indicates the variables are correlated within

individual categories and the website quality instrument exhibits basic reliability and validity.

Agile Methods 127

Table 25. Website Quality Data Correlational Analysis (Pearson Correlations)

Variable

In
-d

ep
th

in

fo
rm

at
io

n

P
ro

ce
ss

in
g

ef
fi

ci
en

cy

P
ro

ce
ss

in
g

sp
ee

d

P
er

so
na

li-
za

ti
on

P
ro

du
ct

se

le
ct

io
n

P
ro

te
ct

io
n

of
 p

ri
va

cy

Fe
el

in
gs

of

 s
af

et
y

A
de

qu
at

e
se

cu
ri

ty

O
rd

er

re
ce

iv
ed

O
n

ti
m

e
de

liv
er

y

O
rd

er

ac
cu

ra
te

W
ill

in
gn

es
s

to
 r

es
po

nd

D
es

ir
e

to

fi
x

is
su

es

P
ro

m
pt

ne
ss

of

 s
er

vi
ce

In-depth
information 1.000 0.828 0.667 0.602 0.308 0.554 0.554 0.478 0.571 0.571 0.571 0.734 0.734 0.734

Processing
efficiency 0.828 1.000 0.792 0.834 0.362 0.831 0.831 0.589 0.791 0.791 0.791 0.854 0.854 0.854

Processing
speed 0.667 0.792 1.000 0.719 0.309 0.650 0.650 0.940 0.707 0.707 0.707 0.861 0.861 0.861

Personalization 0.602 0.834 0.719 1.000 0.734 0.934 0.934 0.633 0.539 0.539 0.539 0.551 0.551 0.551

Product
 selection 0.308 0.362 0.309 0.734 1.000 0.562 0.562 0.388 -0.064 -0.064 -0.064 0.057 0.057 0.057

Protection
of privacy 0.554 0.831 0.650 0.934 0.562 1.000 1.000 0.555 0.593 0.593 0.593 0.605 0.605 0.605

Feelings
of safety 0.554 0.831 0.650 0.934 0.562 1.000 1.000 0.555 0.593 0.593 0.593 0.605 0.605 0.605

Adequate
security 0.478 0.589 0.940 0.633 0.388 0.555 0.555 1.000 0.486 0.486 0.486 0.729 0.729 0.729

Order
received 0.571 0.791 0.707 0.539 -0.064 0.593 0.593 0.486 1.000 1.000 1.000 0.792 0.792 0.792

On time
delivery 0.571 0.791 0.707 0.539 -0.064 0.593 0.593 0.486 1.000 1.000 1.000 0.792 0.792 0.792

Order
accurate 0.571 0.791 0.707 0.539 -0.064 0.593 0.593 0.486 1.000 1.000 1.000 0.792 0.792 0.792

Willingness
to respond 0.734 0.854 0.861 0.551 0.057 0.605 0.605 0.729 0.792 0.792 0.792 1.000 1.000 1.000

Desire to
fix issues 0.734 0.854 0.861 0.551 0.057 0.605 0.605 0.729 0.792 0.792 0.792 1.000 1.000 1.000

Promptness
of service 0.734 0.854 0.861 0.551 0.057 0.605 0.605 0.729 0.792 0.792 0.792 1.000 1.000 1.000

Note. Data in red italics are not significant.

Agile Methods 128

Table 26. Website Quality Data Variable Analysis (Adjusted R2 Values)

Variable

In
-d

ep
th

in

fo
rm

at
io

n

P
ro

ce
ss

in
g

ef
fi

ci
en

cy

P
ro

ce
ss

in
g

sp
ee

d

P
er

so
na

li-
za

ti
on

P
ro

du
ct

se

le
ct

io
n

P
ro

te
ct

io
n

of
 p

ri
va

cy

Fe
el

in
gs

of

 s
af

et
y

A
de

qu
at

e
se

cu
ri

ty

O
rd

er

re
ce

iv
ed

O
n

ti
m

e
de

liv
er

y

O
rd

er

ac
cu

ra
te

W
ill

in
gn

es
s

to
 r

es
po

nd

D
es

ir
e

to

fi
x

is
su

es

P
ro

m
pt

ne
ss

of

 s
er

vi
ce

In-depth
information 1.000 0.646 0.375 0.283 -0.018 0.220 0.220 0.133 0.242 0.242 0.242 0.481 0.481 0.481

Processing
efficiency 0.646 1.000 0.580 0.658 0.022 0.652 0.652 0.266 0.578 0.578 0.578 0.696 0.696 0.696

Processing
speed 0.375 0.580 1.000 0.456 -0.017 0.350 0.350 0.869 0.437 0.437 0.437 0.709 0.709 0.709

Personalization 0.283 0.658 0.456 1.000 0.538 0.857 0.857 0.326 0.202 0.202 0.202 0.216 0.216 0.216

Product
 selection -0.018 0.022 -0.017 0.538 1.000 0.230 0.230 0.045 -0.120 -0.120 -0.120 -0.121 -0.121 -0.121

Protection
of privacy 0.220 0.652 0.350 0.857 0.230 1.000 1.000 0.221 0.270 0.270 0.270 0.287 0.287 0.287

Feelings
of safety 0.220 0.652 0.350 0.857 0.230 1.000 1.000 0.221 0.270 0.270 0.270 0.287 0.287 0.287

Adequate
security 0.133 0.266 0.869 0.326 0.045 0.221 0.221 1.000 0.140 0.140 0.140 0.472 0.472 0.472

Order
received 0.242 0.578 0.437 0.202 -0.120 0.270 0.270 0.140 1.000 1.000 1.000 0.581 0.581 0.581

On time
delivery 0.242 0.578 0.437 0.202 -0.120 0.270 0.270 0.140 1.000 1.000 1.000 0.581 0.581 0.581

Order
accurate 0.242 0.578 0.437 0.202 -0.120 0.270 0.270 0.140 1.000 1.000 1.000 0.581 0.581 0.581

Willingness
to respond 0.481 0.696 0.709 0.216 -0.121 0.287 0.287 0.472 0.581 0.581 0.581 1.000 1.000 1.000

Desire to
fix issues 0.481 0.696 0.709 0.216 -0.121 0.287 0.287 0.472 0.581 0.581 0.581 1.000 1.000 1.000

Promptness
of service 0.481 0.696 0.709 0.216 -0.121 0.287 0.287 0.472 0.581 0.581 0.581 1.000 1.000 1.000

Note. Data in red italics are not significant.

Agile Methods 129

Factor analysis. An analysis of the four major factors of website quality was performed

(as shown in Table 27). Linear regression was used to build statistical models between each

factor. The four major factors of website quality proved to be related to one another using this

analysis: (a) website design, (b) privacy and security, (c) fulfillment and reliability, and (d)

customer service. This analysis was designed to see whether the major factors of website quality

were related, whereas prior analysis was used to study the relationships between individual

variables. The strongest adjusted R2 values were between customer service and website design,

privacy and security and website design, and customer service and fulfillment and reliability.

The F-values were good and the significance was also good in all but four instances. The lowest

adjusted R2 values were between fulfillment and reliability and privacy and security and website

design and fulfillment and reliability. Two more factors, and perhaps three, are correlated at the

0.10 level, though the minimum threshold of reliability used in this study is the 0.05 level. This

analysis indicates the website quality instrument is reliable and valid at the factor-level.

Table 27. Website Quality Factor Analysis

Factor Statistic
Website
Design

Privacy
and Security

Fulfillment
and Reliability

Customer
Service

Adjusted R2 value 1.000 0.860 0.585 0.899

F-value n/a 12.086 3.535 17.058 Website
Design

Significance n/a 0.016 0.122 0.008

Adjusted R2 value 0.831 1.000 0.211 0.472

F-value 23.147 n/a 2.206 5.025 Privacy
and Security

Significance 0.001 n/a 0.181 0.044

Adjusted R2 value 0.297 0.308 1.000 0.581

F-value 4.808 5.002 n/a 13.477 Fulfillment
and Reliability

Significance 0.060 0.056 n/a 0.006

Adjusted R2 value 0.480 0.486 0.581 1.000

F-value 9.294 9.516 13.477 n/a
Customer
Service

Significance 0.016 0.015 0.006 n/a

Note. Data in red italics are not significant.

Agile Methods 130

Model analysis. Four statistical models were constructed between the four major factors

of website quality and the remaining factors (as shown in Table 28). Three out of four factors of

website quality: website design, privacy and security, and customer service, had high adjusted R2

values. Furthermore, the F-values and significance of these three models was also good. While

Beta values for each of the independent variables seemed high, the t-values were low, and the

significance for many of the independent variables was also low. The strongest model was

privacy and security as a function of website design, fulfillment and reliability, and customer

service. The weakest model was fulfillment and reliability as a function of website design,

privacy and security, and customer service. This analysis indicates the factor, variable, and item

selection for website quality were adequate. All models are valid at the 0.10 level of significance

and Beta values become significant for three more factors. This analysis further indicates the

aggregated factors are related to one another and Table 25 through Table 28 indicate the survey

instrument for website quality is reliable and valid.

Table 28. Website Quality Model Analysis

Model Statistic
Website
Design

Privacy
and Security

Fulfillment
and Reliability

Customer
Service

Adjusted R2 0.809 0.812 0.446 0.597
F-value 13.709 13.941 3.411 5.447 (Model)

Significance 0.004 0.004 0.094 0.038
Beta 1.1275 -0.548 0.245 -0.814

t-value 1.799 -0.521 0.092 -0.371 (Constant)
Significance 0.122 0.621 0.930 0.723

Beta n/a 1.041 0.011 0.336
t-value n/a 3.959 0.009 0.359 Website

Design
Significance n/a 0.007 0.993 0.732

Beta 0.695 n/a 0.107 0.297
t-value 3.959 n/a 0.106 0.356 Privacy

and Security
Significance 0.009 n/a 0.919 0.734

Beta 0.001 0.017 n/a 0.521
t-value 0.001 0.106 n/a 1.959 Fulfillment

and Reliability
Significance 0.993 0.919 n/a 0.098

Beta 0.057 0.070 0.749 n/a
t-value 0.359 0.356 1.959 n/a

Customer
Service

Significance 0.732 0.734 0.098 n/a
Note. Data in red italics are not significant.

Agile Methods 131

Agile Methods and Benefits

Correlational analysis. A correlational analysis between the agile methods and benefit

variables was performed (as shown in Table 29). There were 20 variables associated with the

four major factors of agile methods and five benefit variables. Most of the agile methods and

benefit variables were closely related using Pearson correlations. All of the variables associated

with the agile factors of iterative development and customer feedback were correlated to all five

benefit variables. Most of the variables associated with the agile factors of well-structured teams

and flexibility were also correlated to all five benefit variables. High response ratings for small

team size caused issues with its correlations, along with low response ratings for portable design.

With a few exceptions, this analysis shows all agile methods and benefit variables were related

(i.e., higher compliance with agile methods results in greater benefits across the board).

Table 29. Agile-Benefit Data Correlational Analysis (Pearson Correlations)

Factor Variable Cost Productivity Quality Cycle
time

Customer
Satisfaction

Time-boxed releases 0.398 0.311 0.417 0.323 0.376
Operational releases 0.403 0.409 0.454 0.388 0.387

Small releases 0.409 0.413 0.439 0.425 0.378
Frequent releases 0.350 0.254 0.419 0.326 0.310

Iterative
development

Numerous releases 0.369 0.279 0.369 0.243 0.308
Feedback solicited 0.385 0.273 0.331 0.219 0.330
Feedback received 0.472 0.336 0.372 0.301 0.338

Feedback frequency 0.503 0.326 0.402 0.344 0.351
Feedback quality 0.592 0.409 0.464 0.449 0.438

Customer
feedback

Feedback incorporated 0.432 0.364 0.352 0.285 0.315
Team leader 0.239 0.232 0.225 0.204 0.173

Vision and strategy 0.383 0.339 0.376 0.252 0.306
Goals and objectives 0.380 0.322 0.417 0.278 0.367

Schedules and timelines 0.232 0.144 0.233 0.174 0.175

Well-structured
teams

Small team size 0.146 0.187 0.194 0.133 0.104
Small size 0.401 0.370 0.412 0.223 0.280

Simple design 0.415 0.406 0.487 0.321 0.383
Modular design 0.375 0.331 0.411 0.305 0.303
Portable design 0.185 0.122 0.238 0.072 0.170

Flexibility

Extensible design 0.356 0.347 0.408 0.285 0.356
Note. Data in red italics are not significant.

Agile Methods 132

Variable analysis. A linear regression of the agile methods and benefit variables was

also performed (as shown in Table 30). Most of the agile methods and benefit variables had high

adjusted R2 values. The adjusted R2 values between the iterative development, customer

feedback, and benefit variables were the highest. In general, the adjusted R2 values between the

agile methods and cost and quality benefit variables were the highest. Once again, high response

ratings for small team size caused problems with its adjusted R2 values, along with low response

ratings for portable design. The response ratings for small team size were so high, that it may

warrant removal from the survey instrument and perhaps even this dataset to enhance the

analysis. The opposite was true of portable design, because it had a low response rating. The

intention of portable design was to represent the use of cross-platform Java applications. This

analysis indicates the correlations between agile methods and their benefits were rather weak,

averaging around 12%, whereas strong correlations would have been 30%, 60%, or even 90%.

Table 30. Agile-Benefit Data Variable Analysis (Adjusted R2 Values)

Factor Variable Cost Productivity Quality Cycle
time

Customer
Satisfaction

Time-boxed releases 0.151 0.090 0.168 0.097 0.135
Operational releases 0.155 0.162 0.201 0.144 0.144

Small releases 0.161 0.165 0.188 0.174 0.136
Frequent releases 0.115 0.058 0.170 0.100 0.089

Iterative
development

Numerous releases 0.128 0.071 0.130 0.052 0.088
Feedback solicited 0.141 0.068 0.103 0.041 0.102
Feedback received 0.217 0.106 0.133 0.084 0.107

Feedback frequency 0.247 0.100 0.156 0.112 0.117
Feedback quality 0.345 0.161 0.210 0.196 0.186

Customer
feedback

Feedback incorporated 0.180 0.127 0.118 0.074 0.093
Team leader 0.049 0.047 0.044 0.035 0.023

Vision and strategy 0.140 0.109 0.135 0.057 0.087
Goals and objectives 0.138 0.097 0.169 0.070 0.128

Schedules and timelines 0.046 0.014 0.048 0.023 0.023

Well-structured
teams

Small team size 0.013 0.028 0.031 0.010 0.003
Small size 0.154 0.131 0.164 0.043 0.072

Simple design 0.165 0.159 0.232 0.096 0.140
Modular design 0.133 0.103 0.163 0.086 0.085
Portable design 0.026 0.008 0.050 -0.002 0.021

Flexibility

Extensible design 0.120 0.114 0.160 0.074 0.120
Note. Data in red italics are not significant.

Agile Methods 133

Factor analysis. An analysis of the four major factors of agile methods and the five

benefit variables was performed (as shown in Table 31). Linear regression was used to build

statistical models between each factor of agile methods and benefit variables. The four major

factors of agile methods proved to be related to the benefit variables using this analysis: (a) cost,

(b) productivity, (c) quality, (d) cycle time, and (e) customer satisfaction. This analysis was

designed to see whether the five benefit variables were related to the four factors of agile

methods, whereas prior analysis was used to study the relationships between individual variables.

The strongest adjusted R2 values were between the benefit variables of cost and quality and the

four factors of agile methods: (a) iterative development, (b) customer feedback, (c) well-

structured teams, and (d) flexibility. The F-values were good and the significance was also good

in all five instances. The adjusted R2 values were interesting, but not extremely high (e.g., 90%).

This analysis indicates the factors of agile methods only had an average correlation of 17% to the

benefit variables, whereas the Pearson correlations in Table 29 indicated stronger correlations.

Table 31. Agile-Benefit Factor Analysis

Factor Statistic Cost Productivity Quality
Cycle
Time

Customer
Satisfaction

Adjusted R2 value 0.211 0.184 0.290 0.196 0.187

F-value 6.988 7.147 12.455 7.347 6.890 Iterative
development

Significance 0.000 0.000 0.000 0.000 0.000

Adjusted R2 value 0.346 0.161 0.193 0.170 0.157

F-value 13.146 6.301 7.800 6.451 5.803 Customer
feedback

Significance 0.000 0.000 0.000 0.000 0.000

Adjusted R2 value 0.116 0.100 0.154 0.052 0.101

F-value 4.074 4.097 6.224 2.465 3.938 Well-structured
teams

Significance 0.002 0.002 0.000 0.036 0.002

Adjusted R2 value 0.171 0.169 0.241 0.098 0.137

F-value 5.698 6.576 10.033 3.840 5.086 Flexibility

Significance 0.000 0.000 0.000 0.003 0.000

Agile Methods 134

Model analysis. Five statistical models were constructed between the five benefit

variables and the four major factors of agile methods (as shown in Table 32). All five benefit

variables—cost, productivity, quality, cycle time, and customer satisfaction—had high adjusted

R2 values. Furthermore, the F-values and significance of these five models was also good. There

were mixed results for the Beta values of each of the independent variables. The Beta values for

iterative development and customer feedback were high and significant. However, few of the

Beta values for well-structured teams and flexibility were strongly correlated. The t-values were

low and the significance for well-structured teams and flexibility was low. The strongest model

was quality as a function of iterative development, customer feedback, well-structured teams,

and flexibility. The weakest model was cycle time as a function of iterative development,

customer feedback, well-structured teams, and flexibility. This analysis indicates the aggregated

factors of agile methods have an average correlation to the benefit variables of 29%, which is

ample evidence the variables are related, but not strongly (e.g., 60%, 90%, or greater).

Table 32. Agile-Benefit Model Analysis

Model Statistic Cost Productivity Quality Cycle
Time

Customer
Satisfaction

Adjusted R2 0.361 0.242 0.377 0.238 0.250
F-value 17.970 12.439 23.260 11.649 12.185 (Model)

Significance 0.000 0.000 0.000 0.000 0.000
Beta -1.572 -0.807 -1.955 -1.103 -0.648

t-value -2.424 -1.244 -3.067 -1.386 -0.864 (Constant)
Significance 0.017 0.216 0.003 0.168 0.389

Beta 0.248 0.277 0.433 0.467 0.372
t-value 2.078 2.352 3.805 3.541 2.812 Iterative

development
Significance 0.040 0.020 0.000 0.001 0.006

Beta 0.462 0.231 0.205 0.276 0.302
t-value 4.052 2.042 1.853 2.164 2.340 Customer

feedback
Significance 0.000 0.043 0.066 0.032 0.021

Beta 0.021 0.075 0.043 0.069 0.015
t-value 0.150 0.549 0.315 0.438 0.097 Well-structured

teams
Significance 0.881 0.584 0.754 0.662 0.923

Beta 0.186 0.227 0.383 0.074 0.168
t-value 1.493 1.881 3.188 0.553 1.241 Flexibility

Significance 0.138 0.062 0.002 0.581 0.217
Note. Data in red italics are not significant.

Agile Methods 135

Agile Methods and Website Quality

Correlational analysis. A correlational analysis between the variables of agile methods

and website quality was performed (as shown in Table 33). There were 20 variables associated

with the four major factors of agile methods: (a) iterative development, (b) customer feedback,

(c) well-structured teams, and (d) flexibility. There were 14 variables associated with the four

major factors of website quality: (a) website design, (b) privacy and security, (c) fulfillment and

reliability, and (d) customer service. Few if any of the variables of agile methods and website

quality were closely related using Pearson correlations. There were some spurious correlations

between time-boxed releases and website design and privacy and security. There were more

spurious correlations between small size and website quality. However, the majority of agile

methods and website quality variables were not related using Pearson correlations. This is

important, because the basic objective of this study was to help prove these relations existed.

This analysis indicates the variables of agile methods are not related to website quality, even

using Pearson correlations, which tend to be sensitive to minute correlations between variables.

Variable analysis. A linear regression between the variables of agile methods and

website quality was also performed (as shown in Table 34). Few if any of the variables of agile

methods and website quality had high adjusted R2 values. There were some spuriously high

adjusted R2 values between time-boxed releases and website design and privacy and security.

There were more spuriously high adjusted R2 values between small size and website quality,

particularly fulfillment and reliability. However, the majority of agile methods and website

quality variables did not have high adjusted R2 values in common. Once again, this is important,

because the basic objective of this study was to help prove these relations existed. These weak

relationships are primarily due to the small volume of data collected for website quality. Had

self-reported data on website quality been collected, as it had for benefit data, the relationships

between the variables may have been stronger. This analysis indicates the variables of agile

methods and website quality had little or no strong correlations.

Agile Methods 136

Table 33. Agile-Website Quality Data Correlational Analysis (Pearson Correlations)

Variable

In
-d

ep
th

in

fo
rm

at
io

n

P
ro

ce
ss

in
g

ef
fi

ci
en

cy

P
ro

ce
ss

in
g

sp
ee

d

P
er

so
na

li-
za

ti
on

P
ro

du
ct

se

le
ct

io
n

P
ro

te
ct

io
n

of
 p

ri
va

cy

Fe
el

in
gs

of

 s
af

et
y

A
de

qu
at

e
se

cu
ri

ty

O
rd

er

re
ce

iv
ed

O
n

ti
m

e
de

liv
er

y

O
rd

er

ac
cu

ra
te

W
ill

in
gn

es
s

to
 r

es
po

nd

D
es

ir
e

to

fi
x

is
su

es

P
ro

m
pt

ne
ss

of

 s
er

vi
ce

Time-boxed
releases 0.434 0.639 0.668 0.867 0.630 0.904 0.904 0.668 0.462 0.462 0.462 0.496 0.496 0.496

Operational
releases -0.033 -0.225 -0.275 -0.211 -0.288 -0.044 -0.044 -0.325 -0.082 -0.082 -0.082 -0.229 -0.229 -0.229

Small
releases 0.229 0.393 0.135 0.448 0.411 0.623 0.623 0.126 0.224 0.224 0.224 0.324 0.324 0.324
Frequent
releases 0.086 0.070 -0.239 0.034 0.018 0.303 0.303 -0.233 0.018 0.018 0.018 0.050 0.050 0.050

Numerous
releases 0.220 0.122 0.073 0.349 0.715 0.318 0.318 0.176 -0.151 -0.151 -0.151 0.039 0.039 0.039

Feedback
solicited 0.456 0.203 -0.047 -0.054 -0.096 0.136 0.136 -0.078 -0.029 -0.029 -0.029 0.290 0.290 0.290
Feedback
received 0.055 -0.240 -0.265 -0.413 -0.322 -0.220 -0.220 -0.253 -0.047 -0.047 -0.047 -0.008 -0.008 -0.008
Feedback
frequency 0.286 0.132 -0.026 -0.038 -0.271 0.191 0.191 -0.147 0.353 0.353 0.353 0.194 0.194 0.194
Feedback

quality -0.179 -0.139 -0.364 -0.277 -0.161 -0.038 -0.038 -0.334 -0.021 -0.021 -0.021 0.019 0.019 0.019
Feedback

incorporated 0.131 0.270 -0.008 -0.077 -0.298 0.043 0.043 -0.177 0.496 0.496 0.496 0.337 0.337 0.337
Team
leader 0.146 -0.135 -0.161 -0.116 -0.158 0.039 0.039 -0.195 0.055 0.055 0.055 -0.128 -0.128 -0.128

Vision and
strategy 0.084 -0.298 -0.231 -0.465 -0.311 -0.336 -0.336 -0.203 -0.157 -0.157 -0.157 -0.038 -0.038 -0.038

Goals and
objectives 0.178 -0.219 -0.262 -0.377 -0.241 -0.238 -0.238 -0.274 -0.135 -0.135 -0.135 -0.052 -0.052 -0.052
Schedules

and timelines 0.521 0.338 0.367 0.185 -0.018 0.311 0.311 0.290 0.360 0.360 0.360 0.481 0.481 0.481
Small

team size -0.177 -0.406 -0.511 -0.483 -0.263 -0.278 -0.278 -0.416 -0.431 -0.431 -0.431 -0.249 -0.249 -0.249
Small
size -0.464 -0.618 -0.854 -0.613 -0.209 -0.455 -0.455 -0.746 -0.676 -0.676 -0.676 -0.586 -0.586 -0.586

Simple
design -0.115 -0.343 -0.415 -0.344 0.022 -0.213 -0.213 -0.259 -0.520 -0.520 -0.520 -0.209 -0.209 -0.209

Modular
design -0.289 0.056 -0.168 0.036 0.049 0.122 0.122 -0.164 0.096 0.096 0.096 0.031 0.031 0.031

Portable
design -0.170 0.078 -0.258 0.101 0.275 0.136 0.136 -0.287 0.097 0.097 0.097 -0.049 -0.049 -0.049

Extensible
design 0.339 0.192 0.030 0.330 0.612 0.395 0.395 0.118 -0.118 -0.118 -0.118 0.118 0.118 0.118

Note. Data in red italics are not significant.

Agile Methods 137

Table 34. Agile-Website Quality Data Variable Analysis (Adjusted R2 Values)

Variable

In
-d

ep
th

in

fo
rm

at
io

n

P
ro

ce
ss

in
g

ef
fi

ci
en

cy

P
ro

ce
ss

in
g

sp
ee

d

P
er

so
na

li-
za

ti
on

P
ro

du
ct

se

le
ct

io
n

P
ro

te
ct

io
n

of
 p

ri
va

cy

Fe
el

in
gs

of

 s
af

et
y

A
de

qu
at

e
se

cu
ri

ty

O
rd

er

re
ce

iv
ed

O
n

ti
m

e
de

liv
er

y

O
rd

er

ac
cu

ra
te

W
ill

in
gn

es
s

to
 r

es
po

nd

D
es

ir
e

to

fi
x

is
su

es

P
ro

m
pt

ne
ss

of

 s
er

vi
ce

Time-boxed
releases 0.086 0.335 0.377 0.721 0.321 0.794 0.794 0.378 0.115 0.115 0.115 0.152 0.152 0.152

Operational
releases -0.124 -0.068 -0.040 -0.075 -0.032 -0.123 -0.123 -0.007 -0.117 -0.117 -0.117 -0.066 -0.066 -0.066

Small
releases -0.066 0.048 -0.104 0.101 0.065 0.312 0.312 -0.107 -0.069 -0.069 -0.069 -0.007 -0.007 -0.007
Frequent
releases -0.117 -0.120 -0.061 -0.124 -0.125 -0.022 -0.022 -0.064 -0.125 -0.125 -0.125 -0.122 -0.122 -0.122

Numerous
releases -0.071 -0.108 -0.119 0.012 0.450 -0.011 -0.011 -0.090 -0.099 -0.099 -0.099 -0.123 -0.123 -0.123

Feedback
solicited 0.109 -0.079 -0.123 -0.122 -0.115 -0.104 -0.104 -0.118 -0.124 -0.124 -0.124 -0.030 -0.030 -0.030
Feedback
received -0.122 -0.060 -0.046 0.067 -0.008 -0.071 -0.071 -0.053 -0.123 -0.123 -0.123 -0.125 -0.125 -0.125
Feedback
frequency -0.033 -0.105 -0.124 -0.123 -0.043 -0.084 -0.084 -0.101 0.016 0.016 0.016 -0.082 -0.082 -0.082
Feedback

quality -0.089 -0.103 0.024 -0.039 -0.096 -0.123 -0.123 0.000 -0.124 -0.124 -0.124 -0.125 -0.125 -0.125
Feedback

incorporated -0.123 -0.060 -0.143 -0.136 -0.042 -0.141 -0.141 -0.107 0.138 0.138 0.138 -0.013 -0.013 -0.013
Team
leader -0.101 -0.105 -0.096 -0.110 -0.097 -0.123 -0.123 -0.082 -0.122 -0.122 -0.122 -0.107 -0.107 -0.107

Vision and
strategy -0.117 -0.025 -0.065 0.119 -0.016 0.002 0.002 -0.079 -0.097 -0.097 -0.097 -0.123 -0.123 -0.123

Goals and
objectives -0.089 -0.071 -0.048 0.035 -0.060 -0.061 -0.061 -0.040 -0.104 -0.104 -0.104 -0.122 -0.122 -0.122
Schedules

and timelines 0.180 0.003 0.027 -0.087 -0.125 -0.016 -0.016 -0.030 0.021 0.021 0.021 0.136 0.136 0.136
Small

team size -0.090 0.060 0.169 0.138 -0.047 -0.038 -0.038 0.069 0.084 0.084 0.084 -0.055 -0.055 -0.055
Small
size 0.117 0.305 0.695 0.298 -0.076 0.108 0.108 0.502 0.389 0.389 0.389 0.261 0.261 0.261

Simple
design -0.110 0.007 0.069 0.008 -0.124 -0.074 -0.074 -0.050 0.179 0.179 0.179 -0.076 -0.076 -0.076

Modular
design -0.031 -0.121 -0.093 -0.124 -0.122 -0.108 -0.108 -0.095 -0.115 -0.115 -0.115 -0.124 -0.124 -0.124

Portable
design -0.093 -0.118 -0.050 -0.114 -0.040 -0.104 -0.104 -0.032 -0.114 -0.114 -0.114 -0.122 -0.122 -0.122

Extensible
design 0.004 -0.084 -0.124 -0.003 0.296 0.050 0.050 -0.109 -0.109 -0.109 -0.109 -0.109 -0.109 -0.109

Note. Data in red italics are not significant.

Agile Methods 138

Factor analysis. An analysis of the four major factors of agile methods and the four

major factors of website quality was performed (as shown in Table 35). Linear regression was

used to build statistical models between each of the four factors of agile methods and the four

factors of website quality. Few factors of agile methods, if any at all, proved to be related to any

of the factors of website quality. There was one rare exception, which exhibited a high adjusted

R2 value between iterative development and privacy and security. There were some more high

adjusted R2 values between well-structured teams and privacy and security, flexibility and

website design, and flexibility and privacy and security. These were significant at the 0.10 level,

though the 0.05 level has been used as a strict cutoff to judge all correlations and statistical

relationships. Had more data been collected on website quality, through self-report data, the

statistical models between the factors of agile methods and website quality may have been

related. The factors of agile methods were not correlated to a composite model of eTailQ either.

This analysis indicates the factors of agile methods and website quality had little or no strong

correlations, with the exception of iterative development and privacy and security (e.g., 86%).

Table 35. Agile-Website Quality Factor Analysis

Factor Variable
Website
design

Privacy
and security

Fulfillment
and reliability

Customer
Service

eTailQ

Adjusted R2 value 0.546 0.860 -0.120 -0.187 0.326

F-value 3.163 12.053 0.807 0.716 1.872 Iterative
development

Significance 0.144 0.016 0.599 0.644 0.282

Adjusted R2 value -0.869 -0.725 0.425 -0.495 -0.531

F-value 0.256 0.328 2.184 0.470 0.445 Customer
feedback

Significance 0.912 0.869 0.276 0.784 0.799

Adjusted R2 value 0.540 0.729 -0.049 0.420 0.558

F-value 3.115 5.840 0.915 2.301 3.272 Well-structured
teams

Significance 0.147 0.056 0.549 0.220 0.137

Adjusted R2 value 0.740 0.656 0.038 0.287 0.538

F-value 6.126 4.438 1.072 1.726 3.099 Flexibility

Significance 0.052 0.087 0.487 0.309 0.148

Note. Data in red italics are not significant.

Agile Methods 139

Model analysis. Five statistical models were constructed between the four major factors

of website quality (including a composite model called eTailQ) and the four major factors of

agile methods (as shown in Table 36). Two of the models, privacy and security and fulfillment

and reliability as a function of iterative development, customer feedback, well-structured teams,

and flexibility had high adjusted R2 values (and were statistically significant). The composite

model, eTailQ was significant at the 0.10 level, which was far above the minimum threshold for

significance used in this analysis. About half of the Beta values associated with the factors of

iterative development, customer feedback, well-structured teams, and flexibility were statistically

significant. Only one of the models, fulfillment and reliability, had a high adjusted R2 value,

good F-value, high significance, and statistically significant Beta values. The weakest model was

the customer service model, though few of the models were very strong. This analysis indicates

the aggregated factors of agile methods are strongly correlated to two of the factors of website

quality (67% and 84%) and aggregated factors of website quality (e.g., 54%).

Table 36. Agile-Website Quality Model Analysis

Model Statistic Website
Design

Privacy and
Security

Fulfillment
Reliability

Customer
Service eTailQ

Adjusted R2 0.448 0.674 0.843 0.131 0.541
F-value 2.829 5.648 13.097 1.339 3.650 (Model)

Significance 0.142 0.043 0.007 0.372 0.094
Beta 6.583 6.520 6.568 6.154 6.474

t-value 5.516 5.760 5.812 2.364 4.834 (Constant)
Significance 0.003 0.002 0.002 0.064 0.005

Beta 0.745 1.029 0.634 0.632 0.758
t-value 3.071 4.470 2.761 1.193 2.783 Iterative

development
Significance 0.028 0.007 0.040 0.286 0.039

Beta 0.249 0.398 3.389 2.306 1.395
t-value 0.411 0.693 5.908 1.745 2.052 Customer

feedback
Significance 0.698 0.519 0.002 0.141 0.095

Beta -0.613 -0.809 -2.600 -1.791 -1.333
t-value -1.317 -1.832 -5.894 -1.763 -2.551 Well-structured

teams
Significance 0.245 0.126 0.002 0.138 0.051

Beta -0.528 -0.708 -1.876 -1.348 -1.031
t-value -1.721 -2.435 -6.462 -2.015 -2.997 Flexibility

Significance 0.146 0.059 0.001 0.100 0.030
Note. Data in red italics are not significant.

Agile Methods 140

Summary of Data Analysis

Using the data from Table 36, an analysis of the hypotheses and sub-hypotheses was

performed (as shown in Table 37). There was some evidence that iterative development was

correlated to website quality, website design, privacy and security, and fulfillment and reliability

at the 0.05 level. Customer feedback was correlated to website quality and fulfillment and

reliability at the 0.10 level. Well structured teams were negatively correlated to website quality

and fulfillment and reliability at the 0.10 level. Flexibility was negatively correlated to website

quality, privacy and security, fulfillment and reliability, and customer service at the 0.10 level.

However, our hypotheses were stated as positive correlations, so negative ones are viewed as

failed hypotheses. We cannot put too much confidence in these results due to the small amount

of data. The final analysis indicates iterative development and customer feedback are correlated

to factors of website quality (e.g., there is some evidence that half of our hypotheses are true).

Table 37. Agile-Website Quality Summary Analysis

Factors Hypothesis β t-value p-value
H1 Iterative development Website quality 0.758 0.039 p < 0.05
H1a Iterative development Website design 0.745 0.028 p < 0.05
H1b Iterative development Privacy and security 1.029 0.007 p < 0.05
H1c Iterative development Fulfillment and reliability 0.634 0.040 p < 0.05

Iterative
development

H1d Iterative development Customer service 0.632 0.286 p > 0.10
H2 Customer feedback Website quality 1.395 0.095 p < 0.10
H2a Customer feedback Website design 0.249 0.698 p > 0.10
H2b Customer feedback Privacy and security 0.398 0.519 p > 0.10
H2c Customer feedback Fulfillment and reliability 3.389 0.002 p < 0.05

Customer
feedback

H2d Customer feedback Customer service 2.306 0.141 p > 0.10
H3 Well-structured teams Website quality -1.333 0.051 p < 0.10
H3a Well-structured teams Website design -0.613 0.245 p > 0.10
H3b Well-structured teams Privacy and security -0.809 0.126 p > 0.10
H3c Well-structured teams Fulfillment and reliability -2.600 0.002 p < 0.05

Well-structured
teams

H3d Well-structured teams Customer service -1.791 0.138 p > 0.10
H4 Flexibility Website quality -1.031 0.030 p < 0.05
H4a Flexibility Website design -0.528 0.146 p > 0.10
H4b Flexibility Privacy and security -0.708 0.059 p < 0.10
H4c Flexibility Fulfillment and reliability -1.876 0.001 p < 0.05

Flexibility

H4d Flexibility Customer service -1.348 0.100 p = 0.10
Note. Data in red italics are not significant.

Agile Methods 141

DISCUSSION, RESULTS, AND CONCLUSIONS

The purpose of this section is to present a discussion, the results, and conclusions of our

analysis of the relationship between the use of agile methods and website quality. The objectives

were to measure the degree to which organizations use agile methods, measure the quality of

their websites, and then determine whether using agile methods improves website quality. There

were four major elements of this study with respect to agile methods and website quality: (a)

conceptual model, (b) survey instruments, (c) measurement data, and (d) data analysis. Our

research questions and hypotheses are summarized as, “Does use of iterative development,

customer feedback, well-structured teams, and flexibility improve e-commerce website quality?”

Based on Table 37, use of iterative development and customer feedback improved website

quality, but well-structured teams and flexibility did not (as shown in Figure 10). Finally, the

conceptual model proved useful and agile methods were correlated to other benefits.

Figure 10. Final conceptual model of agile methods and website quality.

Agile Methods 142

Discussion

Demographics. The summary of the demographic data from the main survey of agile

methods and website quality revealed some interesting findings (as shown in Figure 11). Of the

252 respondents: (a) 250 reported their job function, (b) 252 reported their years of experience,

(c) 245 reported their organization’s number of employees, (d) 161 reported their organization’s

total annual revenue, and (e) 230 reported the industry sector of their parent organization. For job

function, 80 (32%) of the people were software engineers representing the largest group of

respondents. Representing senior organizational personnel, 106 (42%) of the respondents ranged

from executive to chief engineer. This is both good and bad. On one hand, it may mean that agile

methods are a significant topic to senior organizational personnel. On the other hand, it may

mean that the use of agile methods is not that significant to technical personnel. For years of

experience, 56 (22%) of the respondents had 11-15 years of experience and 118 (47%) of the

respondents had more than 16 years of experience. Oftentimes, programmers only have a few

years of experience, so this may mean that agile methods may not be in use by less experienced

personnel. For number of employees, 115 (47%) of the respondents had less than 250 total

people in their organizations. However, 15 (6%) of the respondents had more than 100,000

personnel in their organizations. This may mean that only small to medium-sized organizations

are using agile methods. For annual revenue, 97 (60%) of the respondents were in organizations

with less than $25 million in sales. Only 31 (19%) were in organizations earning more than $1

billion. This is more evidence that larger organizations may be shunning agile methods in favor

of traditional ones. For industry sector, 143 (62%) of the respondents cited manufacturing,

information, or professional as the type of parent organization from which they came. Overall,

managers from small to medium-sized organizations tend to be interested in agile methods.

Agile Methods 143

Figure 11. Summary of demographics from agile methods and website quality survey.

Agile Methods 144

Agile methods. The summary of response data from the main survey of agile methods

and website quality also revealed some interesting findings (as shown in Figure 12). With some

exceptions, the majority of the respondents either agreed or strongly agreed with all 20 questions

about agile methods. Regarding the four major factors of agile methods, iterative development

and well-structured teams were the ones to which respondents most agreed and strongly agreed.

At least on the surface, customer feedback and flexibility were examples of factors to which

respondents least agreed. By and large, the majority of the respondents asked their customers for

feedback on software iterations and fewer respondents actually received feedback from their

customers. Even fewer respondents received feedback from their customers in a timely manner

and only half of them received high quality feedback from their customers, but nearly all of the

respondents incorporated feedback they did receive from their customers. Agile methods may or

may not be helping people overcome these systemic issues to traditional software development

methods with regard to getting customer feedback. For well-structured teams, the majority of the

respondents agreed with all statements, but strongly agreed with small team size. Small team size

may simply have evolved into a cliché within the software industry, and the magnitude of the

response rate to small team size skewed the analysis of the data in a negative way. However,

many software teams fail from having more personnel than necessary, so small team size should

not be removed from the survey instrument or data. Only 6% of the respondents came from

organizations in excess of 100,000 people, so maybe small team size can be removed as a

constraint for small organizations (since they use small teams by default). One argument is that

the survey instrument accurately gauges use of agile methods, while bias toward the higher end

of the scales may also be argued. Low correlations between agile methods, benefits, and website

quality may indicate the presence of bias by the respondents to answer positively.

Agile Methods 145

Figure 12. Summary of responses from agile methods survey.

Agile Methods 146

Benefits. The summary of benefit data from the main survey of agile methods and

website quality also revealed some interesting findings (as shown in Figure 13). Self-reported

benefit data were collected to help gauge the effects of using agile methods in the interim period

before the final website data were collected and correlated to agile methods. Only 138 (55%) of

the respondents supplied data about the benefits of using agile methods, which is significant in of

itself. This may indicate that 45% of the respondents were not confident enough to make

assertions about the benefits of agile methods. Some argue that self-reported data is biased by

nature, while others rely principally upon self-reported data when analyzing the costs and

benefits of software methods. The estimates of cost efficiency, productivity, quality, and cycle-

time collected by this study were relatively conservative and tended to be in the lower ranges. As

an exception, the largest group of respondents stated that customer satisfaction improved with

the use of agile methods by 76% to 100%. The median score for all self-reported benefit data

was 3.44, which indicates that the majority of respondents felt agile methods did not increase the

value of any one category of benefits by more than 50%. As we saw earlier, the responses

towards the main survey of agile methods were biased towards the upper end of the scales, while

responses to self-reported benefit data were skewed toward the lower end of the scales. This

resulted in some interesting correlations between agile methods and self-reported benefit data.

Cost efficiency and productivity were the least reported benefits of agile methods, and quality,

cycle-time, and customer satisfaction were the most often cited benefits of agile methods. There

were good correlations between all of the benefit data, meaning the data were evenly reported.

Only cost and quality were significantly correlated to all of the factors of agile methods. While it

was useful to collect self-reported benefit data in the interim period when the study was in-

progress, it would have been useful to collect self-reported data about website quality as well.

Agile Methods 147

PRODUCTIVITY

3%
11%

13%

19%

17%

19%

18%
0 to 10%
11% to 25%
26% to 50%

51% to 75%
76% to 100%
101% to 200%
201% or more

CYCLE TIME

8%

11%

14%

18% 13%

17%

19%

0 to 10%

11% to 25%
26% to 50%
51% to 75%
76% to 100%
101% to 200%
201% or more

COST

26%

19%

19%

15%

7%

11%

3%

0 to 10%
11% to 25%
26% to 50%

51% to 75%
76% to 100%
101% to 200%
201% or more

QUALITY

5%

15%

13%

13%
19%

15%

20%0 to 10%
11% to 25%

26% to 50%
51% to 75%
76% to 100%
101% to 200%
201% or more

CUSTOMER
SATISFACTION

18%

10%

18%

10%

25%

11%

8%
0 to 10%
11% to 25%
26% to 50%
51% to 75%

76% to 100%
101% to 200%
201% or more

Figure 13. Summary of responses from benefit survey.

Agile Methods 148

Website quality. The summary of website quality data from the main survey of agile

methods and website quality was simple, but interesting (as shown in Figure 14). The 14-point

eTailQ instrument was used to assess the quality of websites supplied by the respondents to the

main survey of agile methods. Approximately 27 respondents supplied Internet addresses of

websites for further quality analysis. Of these, 10 of the Internet addresses met the criteria for

being classified as e-commerce websites, versus informational websites. A product was ordered

from each of the 10 e-commerce Internet addresses and the eTailQ instrument was used to judge

the completed end-to-end transaction (since that is what eTailQ was designed to measure). As

the transactions were transpiring, the data with respect to website design, privacy and security,

fulfillment and reliability, and customer services was supplied. Only after the products were

received was this phase of the study considered complete. Then, an analysis of the website

quality data ensued, including a correlational analysis to agile methods. The majority of ratings

for website design were in the agree range. The ratings for privacy and security were in the

strongly agree range. The ratings for fulfillment and reliability were in the agree to strongly

agree range. The ratings of customer service were in the strongly agree range. Note that all of the

responses were skewed toward the agree to strongly agree range. This was also true of the agile

methods data. In fact, the average score of responses to agile methods was about 5, whereas the

average score for website quality was 5.7. So the data with regard to agile methods and website

quality seemed to be skewed in the same direction. The eTailQ instrument itself has proven to be

reliable under repeated field testing on large numbers of respondents. From this discussion, we

conclude that these were reasonably accurate ratings of the 10 e-commerce websites resulting

from the main survey of agile methods. The only obvious weakness is the low volume of data

(e.g., 10), which could have been averted if self-reported data were collected.

Agile Methods 149

Figure 14. Summary of responses from website quality assessment.

Agile Methods 150

Results

Benefits. Based on Table 32, the relationships between agile methods and website

quality showed some interesting and significant findings (as shown in Figure 15). To provide

some context, very good relationships would be in the 0.800 or 0.900 range, which would mean

the beta values were correlated and had good explanatory power. The strongest relationship is

between iterative development and cycle-time. The weakest relationship is between customer

feedback and quality. (Note that the numbers in parentheses represent statistical significance and

numbers in red italics are insignificant, e.g., higher numbers in parentheses are less significant.

The significant relationships are mostly at the 0.05 level, while some are at the 0.10 level.) While

individual correlations between the factors and variables of agile methods and benefits were

good, grouped relationships like these tend to point out inconsistencies. For instance, the

reported benefits between the four factors of agile methods were not consistent.

Figure 15. Summary of relationships between agile methods and benefits.

Agile Methods 151

Website Quality. Based on Table 37, the sub-hypotheses associated with the conceptual

model further depict the relationships between the factors of agile methods and website quality

(as shown in Figure 16). Use of iterative development was related to improved website design,

privacy and security, and fulfillment and reliability. Customer feedback was related to improved

fulfillment and reliability. However, the majority of the sub-hypotheses between customer

feedback, well-structured teams, flexibility, and the four major factors of website quality were

either non-existent or negative. While data was collected from 250 respondents on agile

methods, data was only available on 10 websites, so we can’t put too much emphasis on either

the positive or the negative correlations. More data on websites would increase our confidence in

the results, but would not guarantee any more positive or negative correlations between the

factors of agile methods and website quality. (Note that the data shown in red italics indicate

little or no statistical significance.)

Figure 16. Summary of relationships between agile methods and website quality.

Agile Methods 152

Limitations

There were several limitations associated with this study: (a) use of a new conceptual

model of agile methods, (b) use of a new survey instrument of agile methods, (c) use of self-

selected respondents, and (d) use of a small number of websites for correlation to agile methods.

First, our conceptual model was custom-designed for this study, and it will require further trial

testing to determine its reliability and validity before it is complete. Second, our agile methods

survey instrument was also custom-designed for this study, and it will require further trial testing

and analysis to determine the extent to which it is reliable and valid. Third, it is difficult to

measure the degree to which the use of self-selected respondents biased our responses about

agile methods, because they may have been proponents of agile methods. Fourth, we definitely

needed a larger sample of websites for our analysis to be meaningful, which may have been

possible if we had collected self-reported data from a larger industry sector. Lastly, we did not

analyze the quality of websites using traditional methods, and we omitted speed-of-delivery from

the conceptual model, which may be a major benefit of agile methods.

Lessons

There were several lessons we learned from our study, which could help other scholars

with similar studies. First, choose a larger and slower industry to study and use a general-purpose

model of software quality to maximize the amount of data one can possibly obtain. Second, use

cognitive interviews to pre-test surveys, interview novices and experts alike, and conduct trial-

runs and pilot surveys to evaluate your survey instruments early. Fourth, use online survey

websites to collect data, especially ones that are inexpensive, flexible, and easy-to-use, rather

than conducting phone, snail-mail, email, or traditional paper surveys. Fifth, use popular web

blogs to promote surveys instead of email surveys, of which good ones are hard to find. Sixth,

keep your conceptual models and survey instruments as small as possible. Seventh, collect self-

reported checkpoint data as interim stop-gap measures and provide incentives to respondents.

Lastly, try to find a regular forum or blog for conducting multiple shorter data collection cycles.

Agile Methods 153

Contributions

There were several major contributions of this study. First, we developed a new

conceptual model of agile methods. Second, we developed a general-purpose survey instrument

to measure the use of agile methods. (These are considered both contributions and limitations,

because they are novel yet untested.) Third, we collected original measurements from 250

respondents on the use of agile methods, which may be useful to other scholars. Fourth, we

identified best-of-breed models for measuring the quality of e-commerce websites, which was no

easy task considering over 50 scholarly models have been devised in the last 10 years alone.

Fifth, we presented our conceptual model at a major academic conference and vetted our

preliminary design. Sixth, we published a short article summarizing our initial survey results in a

British journal specializing in information systems quality issues. Seventh, our literature review

has been selected to be published as a chapter in a scholarly textbook on computer science.

Conclusions

Does use of agile methods improve the quality of Internet websites used for the $2 trillion

electronic commerce industry by U.S. firms? Does the use of iterative development, customer

feedback, well-structured teams, and flexibility lead to higher quality Internet websites? A

survey of 250 respondents was conducted to help determine whether the use of agile methods is

linked to website quality. The results of this study showed that the use of iterative development

and customer feedback is linked to higher website quality, but not well-structured teams and

flexibility. However, agile methods were linked to other benefits such as improvements in cost

efficiency, productivity, quality, cycle time, and customer satisfaction. Other contributions of

this study include a history of agile methods, a conceptual framework, survey instruments, a

repository of original data, and a roadmap for conducting future studies of agile methods.

Agile Methods 154

Conceptual model. A goal of this study was to identify or develop a conceptual model

of agile methods to measure the relationships between use of agile methods and website quality.

There are many types and kinds of agile methods in-use, so one of our challenges was to identify

or develop a conceptual model, which could measure the common properties of agile methods.

Our first preference would have been to use a conceptual model with proven properties of

reliability and validity, which could avert the risks of developing a new model of agile methods.

Failing that, we were left with the task of analyzing the properties of agile methods, devising a

new conceptual model of agile methods, and then using it to collect original measurement data.

Our new conceptual model of agile methods seemed to have proven useful for measuring the

common properties of multiple agile methods, based on measurements from 250 respondents.

Benefit data. Benefits were collected as interim measures to gauge the effects of agile

methods apart from the main goal of studying links between agile methods and website quality.

Little is known about the costs and benefits of using agile methods to develop software products,

which precipitated this study of the relationships involving agile methods and website quality.

There were strong correlations between the benefit variables, and composite statistical models

also reinforced the existence of these relationships, which indicates the benefit data were

reliable. Furthermore, there were correlations between the use of agile methods and the benefit

data, which indicates both the conceptual model of agile methods and the benefit data may be

reliable. Perhaps, a more sophisticated model of costs and benefits could have been used to test

and reinforce the existence of the relationships between agile methods and benefit data.

Website quality. Another goal of this study was to identify or develop an instrument for

accurately gauging the quality of websites and then relate their quality to use of agile methods.

Fortunately, an analysis of literature on website quality revealed the existence of nearly 50

Agile Methods 155

scholarly models of website quality produced in the last 10 years, which simplified this aspect.

Our challenge was to sort through the models and make a determination about the one best suited

for measuring website quality, which could easily be integrated with a model of agile methods.

The eTailQ model of website quality seemed suitable for our purposes, since its theoretical tenets

were based on measuring the entire e-commerce transaction and it was small and very reliable.

An analysis of the website quality data collected as part of this study indicates that the eTailQ

instrument was a suitable choice for measuring website quality.

Agile methods and website quality. The fundamental purpose of this study was to

help determine whether using agile methods to produce e-commerce websites improves their

quality. Using our conceptual model of agile methods, we collected measurement data from over

250 respondents, and analysis of this data indicated it had reasonably good reliability and

validity. Furthermore, our 250 respondents volunteered Internet addresses of 27 websites they

created using agile methods, 10 of which met the criteria for being classified as e-commerce

websites. Using the eTailQ model of website quality, we assessed the quality of the 10 websites

based on completed end-to-end transactions, and analysis of this data was reasonably reliable and

valid. Extensive analysis of these data using linear regression revealed weak relationships at best

between the use of agile methods and website quality measured using the eTailQ instrument.

E-commerce industry. The $2 trillion U.S. e-commerce industry was the context and

backdrop of this study of the relationships between the use of agile methods and website quality.

Today, there are over 100 million websites and $130 billion of these revenues come from what is

known as the business-to-consumer sector, such as online shopping websites like Amazon, Inc.

So one of the fundamental assumptions of this study was that a reasonable amount of our

respondents would be developing e-commerce websites, which may not be a good assumption.

Agile Methods 156

Only 10 out of 250 respondents reported the Internet addresses of e-commerce websites they

produced, which indicates that only 4% of our respondents are producing e-commerce websites.

If this is correct, then 96% of our respondents are producing software products other than e-

commerce websites, and a model of software quality should have been used suitable to them.

Perhaps measuring the quality of commercial, shrink-wrapped software is more appropriate.

Research method. We used a two-phase, quasi-longitudinal study to measure the

relationships between use of agile methods to produce e-commerce websites and their quality.

This was a reasonable research design to help ensure the reliability and validity of our data (e.g.,

an independent assessment of the quality of websites made by respondents using agile methods).

Pilot surveys indicated that our respondents would report a low number of Internet addresses,

precipitating our decision to collect stop-gap, checkpoint data on the benefits of agile methods.

In hindsight, we should have continued with our two-phase, quasi-longitudinal study of agile

methods and website quality, but collected self-reported data on website quality using eTailQ.

This may not have solved our problem of obtaining such a small number of Internet addresses,

but it may have yielded more useful correlations between agile methods and website quality.

Data analysis. Our principal method of data analysis for examining the relationships

between agile methods and website quality was correlational analysis and linear regression. The

large volume of data made it prohibitive to continue looking for curvilinear, log-linear, and

quadratic relationships between the data, and our analysis did not indicate this would be fruitful.

Furthermore, we did not perform a factor analysis of the data by adding or removing variables

and factors to look for the best possible-fit between the agile methods and website quality data.

In fact, a factor analysis would have been contrary to the fundamental goals and objectives of

this study, which were to analyze the factors of agile methods in toto, rather than a best-fit

Agile Methods 157

model. However, the analysis we did perform was rather thorough, and we did find many

relationships within and between the data of agile methods, their benefits, and website quality.

Final Summary

The purpose of this study was to help determine whether the use of agile methods to

develop e-commerce websites improved their quality. Our study revealed some relationships

between the use of agile methods and website quality based on data from 250 respondents and 10

websites. However, the relationships were weak and it would require more data to substantiate

these relationships and find stronger correlations between agile methods and website quality. We

also developed a general-purpose conceptual model of agile methods, an original survey

instrument, and we collected original data on the use of agile methods worthy of further study.

Finally, we collected stop-gap measures of benefits which were correlated to agile methods.

Agile Methods 158

RECOMMENDATIONS FOR FUTURE WORK

The purpose of this section is present recommendations for future work with regard to the

study of relationships between the use of agile methods and the quality of e-commerce websites.

We conducted a textbook study formulating a research problem, conducting a literature review,

designing a conceptual model, identifying a research method, and collecting and analyzing data.

We did some things right, some things wrong, and we learned a lot of valuable lessons about

how to improve the outcomes of scholarly research, including compressing the research cycle.

Recommendations for future work include studying a broader industry sector, refining the

conceptual model, scaling the research scope, and carefully selecting proper outcome measures.

More recommendations include reexamining our research method, carefully selecting our source

of data, and ensuring the success of our data collection. Some of these recommendations are

short-term improvements and some are long-term improvements.

Industry Sector

Initially, we chose to study the $2 trillion U.S. e-commerce industry. Experience has

shown that this is a very narrow industry sector and data collection is proved very challenging.

At first glance, a broader industry sector seems more appropriate, such as the U.S. government or

military sector, since the U.S. spends $400 billion on defense and employs millions of workers.

However, it may be best to broaden the industry sector to an entire category such as information

technology, engineering, or manufacturing, or even all three. Or, perhaps it would be better to

study the factors of information system outcomes common to as many industry sectors as

possible. For instance, the title of this research study could have been posited like this, “The

Effects of Agile Methods on Information Systems Quality within the U.S. Marketplace.” In

doing so, we increase the population of respondents to this study and the likelihood of success.

Agile Methods 159

Research Scope

The purpose of this study was to examine the outcomes of the factors of agile methods,

such as using iterative development, customer feedback, well-structured teams, and flexibility.

Recent literature reinforces the value of these principles, especially early prototypes, market

focus, cross-functional teams, and flexibility of policies, processes, and manufacturing materials.

The classical formula for successful technology management includes people, process, and

technology, of which agile methods embodies all three. Agile methods imply that use of talented

personnel outweighs the process, so perhaps we need to reexamine the quality of personnel.

What this implies is that we may want to broaden the scope of future studies of agile methods to

include more organizational-level issues. Whereas agile methods tend to be associated with the

use of small programming teams, team sizes of several hundred people have been successful

even with flexible new product development processes similar to those of agile methods.

Conceptual Model

Another recommendation for future work would be to refine the conceptual model. More

study is needed to identify the optimal subfactors of agile methods, especially well-structured

teams and flexibility. Another tactic would be to focus the research and attempt four smaller

studies to pin down the subfactors of iterative development, customer feedback, well-structured

teams, and flexibility. There is a great need to validate individual conceptual models of iterative

development, customer feedback, well-structured teams, and flexibility. In some cases, iterative

development is too slow and in some cases it is too fast. What is the optimal pace for iterative

development? What are the issues of customer feedback? How large can teams become before

they stop being agile? What does software flexibility really mean? Is speed-of-delivery the major

benefit of agile methods (versus traditional measures such as information systems quality)?

Agile Methods 160

Outcome Measures

Our goal was to study the use agile methods for producing websites, so we latched on to

the notion of measuring website quality and we had 50 scholarly models from which to choose.

Another recommendation would be to broaden the scope from measuring website quality to the

identification of a small and reliable instrument for measuring information systems quality.

Remember that our survey of agile methods yielded 250 respondents and the Internet addresses

of only 27 websites. What if we could have chosen a scope that applied to all 250 respondents?

That would be the goal of a future study—Identify or develop a general-purpose model for

measuring information systems quality. Our study also resulted in data relating to the benefits of

using agile methods. This data was correlated to the use of agile methods. Another tactic would

be to study other information systems outcomes, such as the benefits of agile methods, including

customer satisfaction, which is commonly associated with the use of agile methods.

Research Method

We used survey research to collect our data, because we were interested in quantitative

outcomes and we wanted to collect a larger sample of data from which to draw conclusions.

Another recommendation would be to use qualitative research methods such as case studies,

interviews, and other small scale methods, which would yield less quantitative, but richer results.

There is evidence that information system developers do not use any method at all. Perhaps,

qualitative research methods would yield new conclusions about the way software is developed.

Another recommendation would be experimental research. That is, conduct a small scale

experiment to study of the effects and outcomes of using agile methods to develop software. Yet

another recommendation would be to completely reexamine the best way to collect data.

Perhaps, we can think of ways to achieve our objectives by analyzing existing data.

Agile Methods 161

Data Source

We utilized survey research as our primary data collection method, but the source of our

data came about rather haphazardly. One recommendation would be to carefully locate multiple

sources of data far in advance of data collection. For instance, we were able to yield data from

250 respondents by having our survey instrument mentioned on a popular Internet blog. Perhaps,

we need to identify the top 10 Internet blogs and figure out how to tap into their potential for

conducting information systems research. Another source of data would be to secure the

commitment of a small number of organizations for analysis. Yet another data source would be

to survey the customers of organizations using agile methods. Perhaps, we can identify the top

50 e-commerce websites and then determine how to gain access to their developers and survey

their use of agile methods. Perhaps avenues will open up in the future to survey certified web

masters or personnel certified in the use of agile methods.

Data Collection

Lastly, we endeavored to conduct a two-phase study of agile methods and website

quality. That is, we intended to survey the practices of software developers. Then, we intended to

analyze the quality of their websites. This seemed like a logical data collection strategy maintain

the objectivity of the study. However, it is important to collect checkpoint measures to ensure

outcome data are collected just in case the second phase of data collection does not yield useful

results. We collected checkpoint data on the benefits of agile methods, which proved very useful.

Therefore, we recommend that self-reported checkpoint data be collected on the outcome

measures of your choice. This procedure would help ensure that data are collected, which may be

useful for studying the relationships between the dependent and independent variables,

regardless of what happens during the second phase of the study.

Agile Methods 162

REFERENCES

Abdel-Hamid, T. K. (1988). The economics of software quality assurance: A simulation based
case study. MIS Quarterly, 12(3), 394-411.

Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002). Agile software development
methods: Review and analysis (478). Oulu, Finland: VTT Publications.

Accredited Standards Committee. (2006). The creation of ASC X12. Retrieved October 22, 2006,
from http://www.x12.org/x12org/about/X12History.cfm

Adrion, W. R., Branstad, M. A., & Cherniavsky, J. C. (1982). Validation, verification, and
testing of computer software. ACM Computing Surveys, 14(2), 159-192.

Agarwal, R., Prasad, J., Tanniru, M., & Lynch, J. (2000). Risks of rapid application
development. Communications of the ACM, 43(11), 177-188.

Agile Manifesto. (2001). Manifesto for agile software development. Retrieved November 29,
2006, from http://www.agilemanifesto.org

Akiyama, F. (1971). An example of software system debugging. Proceedings of the
International Federation for Information Processing Congress, Ljubljana, Yugoslavia,
353–379.

Alavi, M. (1985). Some thoughts on quality issues of end-user developed systems. Proceedings
of the 21st Annual Conference on Computer Personnel Research, Minneapolis,
Minnesota, USA, 200-207.

Albrecht, A. J. (1979). Measuring application development productivity. Proceedings of the IBM
Applications Development Joint SHARE/GUIDE Symposium, Monterrey, California,
USA, 83-92.

Allen, T. J. (1966). Studies of the problem solving process in engineering design. IEEE
Transactions on Engineering Management, 13(2), 72-83.

Ambler, S. W. (2006). Agile adoption rate survey: March 2006. Retrieved September 17, 2006,
from http://www.ambysoft.com/downloads/surveys/AgileAdoptionRates.ppt

American National Standards Institute. (1988). Information resource dictionary system (ANSI
X3.138-1988). New York, NY: Author.

Amey, W. W. (1979). The computer assisted software engineering (CASE) system. Proceedings
of the Fourth International Conference on Software Engineering, Munich, Germany,
111-115.

Anderson, A., Beattie, R., Beck, K., Bryant, D., DeArment, M., Fowler, M., et al. (1998).
Chrysler goes to extremes. Distributed Computing Magazine, 1(10), 24-28.

Agile Methods 163

Anderson, R. M. (1966). Management controls for effective and profitable use of EDP resources.
Proceedings of the 21st National Conference for the Association for Computing
Machinery, New York, NY, USA, 201-207.

Anonymous. (1965). A fascinating teller. Banking, 58(3), 95-95.

Anonymous. (1971). Tela-fax takes dead aim on checks, credit cards. Banking, 64(3), 52-53.

Anonymous. (1975). Bank patents its EFT system. Banking, 67(1), 88-88.

Arambewela, R., & Hall, J. (2006). A comparative analysis of international education
satisfaction using servqual [Special issue]. Journal of Services Research, 6, 141-163.

Arango, G. (1988). Domain engineering for software reuse (ICS-RTP-88-27). Irvine, CA:
University of California Irvine, Department of Information and Computer Science.

Arthur, L. J. (1985). Measuring programmer productivity and software quality. New York, NY:
John Wiley & Sons.

Athaide, G. A., Stump, R. L., & Joshi, A. W. (2003). Understanding new product co-
development relationships in technology based industrial markets. Journal of Marketing
Theory and Practice, 11(3), 46-58.

Augustine, S. (2005). Managing agile projects. Upper Saddle River, NJ: Prentice Hall.

Bachman, C. W. (1969). Data structure diagrams. ACM SIGMIS Database, 1(2), 4-10.

Bailey, J. E., & Pearson, S. W. (1983). Development of a tool for measuring and analyzing
computer user satisfaction. Management Science, 29(5), 530-545.

Baker, F. T. (1975). Structured programming in a production programming environment.
Proceedings of the First International Conference on Reliable Software, Los Angeles,
California, USA, 172-185.

Banker, R. D., & Kauffman, R. J. (1991). Reuse and productivity in integrated computer aided
software engineering: An empirical study. MIS Quarterly, 15(3), 375-401.

Barki, H., & Hartwick, J. (1994a). User participation, conflict, and conflict resolution: The
mediating roles of influence. Information Systems Research, 5(4), 422-438.

Barki, H., & Hartwick, J. (1994b). Measuring user participation, user involvement, and user
attitude. MIS Quarterly, 18(1), 59-82.

Barki, H., & Hartwick, J. (2001). Interpersonal conflict and its management in information
systems development. MIS Quarterly, 25(2), 195-228.

Barnes, S. J., & Vidgen, R. T. (2000). Webqual: An exploration of web site quality. Proceedings
of the Eighth European Conference on Information Systems, Vienna, Austria, 298-305.

Agile Methods 164

Barnes, S. J., & Vidgen, R. T. (2001). An evaluation of cyber bookshops: The webqual method.
International Journal of Electronic Commerce, 6(1), 11-30.

Baroudi, J. J., & Orlikowski, W. J. (1988). A short form measure of user information
satisfaction: A psychometric evaluation and notes on use. Journal of Management
Information Systems, 4(4), 44-59.

Basili, V. R., & Reiter, R. W. (1979). An investigation of human factors in software
development. IEEE Computer, 12(12), 21-38.

Basili, V. R., & Turner, J. (1975). Iterative enhancement: A practical technique for software
development. IEEE Transactions on Software Engineering, 1(4), 390-396.

Bauer, F. L. (1976). Programming as an evolutionary process. Proceedings of the Second
International Conference on Software Engineering, San Francisco, California, USA,
223-234.

Bauer, R. A., Collar, E., & Tang, V. (1992). The silverlake project: Transformation at IBM. New
York, NY: Oxford University Press.

Bechtolsheim, A. (1978). Interactive specification of structured designs. Proceedings of the 15th
Annual ACM IEEE Design Automation Conference, Las Vegas, Nevada, USA, 261-263.

Beck, K. (1999). Embracing change with extreme programming. IEEE Computer, 32(10), 70-77.

Beck, K. (2005). Extreme programming: Embrace change. Upper Saddle River, NJ: Pearson
Education.

Blili, S., Raymond, L., & Rivard, S. (1998). Impact of task uncertainty, end-user involvement,
and competence on the success of end-user computing. Information and Management,
33(3), 137-153.

Boehm, B. W. (1986). A spiral model of software development and enhancement. ACM
SIGSOFT Software Engineering Notes, 11(4), 14-24.

Boehm, B. W., & Ross, R. (1988). Theory W software project management: A case study.
Proceedings of the 10th International Conference on Software Engineering, Singapore,
30-40.

Boehm, B. W., Brown, J. R., Kaspar, H., & Lipow, M. (1973). Characteristics of software
quality (TRW-SS-73-09). Redondo Beach, CA: TRW Corporation.

Booch, G. (1981). Describing software design in ada. SIGPLAN Notices, 16(9), 42-47.

Borck, J., & Knorr, E. (2005). A field guide to hosted apps. Infoworld, 27(16), 38-44.

Bratman, H., & Court, T. (1975). The software factory. IEEE Computer, 8(5), 28-37.

Agile Methods 165

Bretthauer, D. (2002). Open source software: A history. Information Technology and Libraries,
21(1), 3-10.

Brown, J. R., & Lipow, M. (1975). Testing for software reliability. Proceedings of the First
International Conference on Reliable Software, Los Angeles, California, USA, 518-527.

Buckley, A., Tse, K., Rijken, H., & Eijgenhuijsen, H. (2002). Stock market valuation with real
options: Lessons from netscape. European Management Journal, 20(5), 512-526.

Byrd, T. A., & Turner, D. E. (2001). The exploratory examination of the relationship between
flexible IT infrastructure and competitive advantage. Information and Management,
39(1), 41-52.

Caccese, M. S., & Lim, C. H. (2005). Revised global investment performance standards:
Highlights and recommendations. Investment Lawyer, 12(12), 3-10.

Callahan, R. E. (1979). A management dilemma revisited: Must businesses choose between
stability and adaptability? Sloan Management Review, 21(1), 25-33.

Campbell-Kelly, M. (1995). Development and structure of the international software industry:
1950-1990. Business and Economic History, 24(2), 73-110.

Campbell-Kelly, M. (2001). Not only microsoft: The maturing of the personal computer software
industry: 1982-1995. Business History Review, 75(1), 103-146.

Card, D. N., & Glass, R. L. (1990). Measuring software design quality. Englewood Cliffs, NJ:
Prentice Hall.

Cardenas, A. F. (1977). Technology for automatic generation of application programs. MIS
Quarterly, 1(3), 49-72.

Carlson, B., Burgess, A., & Miller, C. (1996). Timeline of computing history. Retrieved October
21, 2006, from
http://www.computer.org/portal/cms_docs_ieeecs/ieeecs/about/history/timeline.pdf

Cavano, J. P., & McCall, J. A. (1978). A framework for the measurement of software quality.
Proceedings of the Software Quality Assurance Workshop on Functional and
Performance Issues, San Diego, California, USA, 133-139.

Cave, W. C., & Salisbury, A. B. (1978). Controlling the software life cycle: The project
management task. IEEE Transactions on Software Engineering, 4(4), 326-337.

Chen, Q., & Wells, W. D. (1999). Attitude toward the site. Journal of Advertising Research,
39(5), 27-37.

Chen, Y., Dios, R., Mili, A., Wu, L., & Wang, K. (2005). An empirical study of programming
language trends. IEEE Software, 22(3), 72-78.

Agile Methods 166

Cho, N., & Park, S. (2001). Development of electronic commerce user consumer satisfaction
index (ECUSI) for internet shopping. Industrial Management and Data Systems,
101(8/9), 400-405.

Chung, S. H., Rainer, R. K., & Lewis, B. R. (2003). The impact of information technology
infrastructure flexibility on strategic alignment and application implementation.
Communications of AIS, 2003(11), 191-206.

Clarke, E. M., & Wing, J. M. (1996). Formal methods: State of the art and future directions.
ACM Computing Surveys, 28(4), 626-643.

Coad, P., Lefebvre, E., & De Luca, J. (1999). Java modeling color with uml: Enterprise
components and process. Upper Saddle River, NJ: Prentice Hall.

Cockburn, A. (2002a). Agile software development. Boston, MA: Addison Wesley.

Cockburn, A. (2002b). Learning from agile software development: Part one. Crosstalk, 15(10),
10-14.

Codd, E. F. (1970). A relational model of data for large shared data banks. Communications of
the ACM, 13(6), 377-387.

Conte, S. D., Dunsmore, H. E., & Shen, V. Y. (1986). Software engineering metrics and models.
Menlo Park, CA: Benjamin Cummings.

Coutinho, J. S. (1973). Software reliability growth. Proceedings of the IEEE Symposium on
Computer Software Reliability, New York, New York, USA, 58-64.

Crosby, P. B. (1979). Quality is free. New York, NY: McGraw-Hill.

Cusumano, M. A. (1991). Japan’s software factories: A challenge to U.S. management. New
York, NY: Oxford University Press.

Cusumano, M. A., & Selby, R. W. (1995). Microsoft secrets: How the world’s most powerful
software company creates technology, shapes markets, and manages people. New York,
NY: The Free Press.

Cusumano, M. A., & Yoffie, D. B. (1998). Competing on internet time: Lessons from netscape
and its battle with microsoft. New York, NY: The Free Press.

D’Souza, D. F., & Wills, A. C. (1998). Objects, components, and frameworks with UML: The
catalysis approach. Reading, MA: Addison Wesley.

Davis, L., Dehning, B., & Stratopoulos, T. (2003). Does the market recognize IT-enabled
competitive advantage? Information and Management, 40(7), 705-716.

Day, F. W. (1983). Computer aided software engineering (CASE). Proceedings of the 20th
Conference on Design Automation, Miami Beach, Florida, USA, 129-136.

Agile Methods 167

Denning, J. (1971). Third generation computer systems. ACM Computing Surveys, 3(4), 175-
216.

Di Benedetto, C. A. (1999). Identifying the key success factors in new product launch. Journal of
Product Innovation Management, 16(6), 530-544.

Diaz, M., & Sligo, J. (1997). How software process improvement helped motorola. IEEE
Software, 14(5), 75-81.

Digital Focus. (2006). Agile 2006 survey: Results and analysis. Herndon, VA: Author.

Dijkstra, E. W. (1969). Notes on structured programming (T.H.-Report 70-WSK-03).
Eindhoven, Netherlands: Technological University of Eindhoven.

Dodd, G. G. (1969). Elements of data management systems. ACM Computing Surveys, 1(2), 117-
133.

Dolk, D. R., & Kirsch, R. A. (1987). A relational information resource dictionary system.
Communications of the ACM, 30(1), 48-61.

Doll, W. J., & Torkzadeh, G. (1988). The measurement of end user computing satisfaction. MIS
Quarterly, 12(2), 258-274.

Dreze, X., & Zufryden, F. (1997). Testing web site design and promotional content. Journal of
Advertising Research, 37(2), 77-91.

DSDM Consortium. (1995). Dynamic systems development methodology (Version 2.0). Kent,
UK: Dynamic Systems Development Method Consortium.

DSDM. (2007). DSDM public version 4.2. Retrieved March 5, 2007, from http://www.dsdm.org

Dunn, O. E. (1966). Information technology: A management problem. Proceedings of the Third
ACM IEEE Conference on Design Automation, New York, NY, USA, 5.1-5.29.

Dunsmore, H. E., & Gannon, J. D. (1979). Data referencing: An empirical investigation. IEEE
Computer, 12(12), 50-59.

Dunsmore, H. E., & Gannon, J. D. (1980). Analysis of the effects of programming factors on
programming effort. Journal of Systems and Software, 1(2), 141-153.

Dzida, W., Herda, S., & Itzfeldt, W. D. (1978). User perceived quality of interactive systems.
Proceedings of the Third International Conference on Software Engineering, Atlanta,
Georgia, USA, 188-195.

Edwards, H. K., & Sridhar, V. (2005). Analysis of software requirements engineering exercises
in a global virtual team setup. Journal of Global Information Management, 13(2), 21-41.

Ellis, G. H. (1967). The fed’s paperless payments mechanism. Banking, 67(60), 100-100.

Agile Methods 168

Elshoff, J. L. (1976). An analysis of some commercial PL/1 programs. IEEE Transactions on
Software Engineering, 2(2), 113-120.

Extreme Programming. (2006). Extreme programming: A gentle introduction. Retrieved March
5, 2007, from http://www.extremeprogramming.org

Fagan, M. E. (1976). Design and code inspections to reduce errors in program development. IBM
Systems Journal, 15(3), 182-211.

Feller, J., & Fitzgerald, B. (2002). Understanding open source software development. London,
England: Pearson Education.

Ferguson, P., Humphrey, W. S., Khajenoori, S., Macke, S., & Matvya, A. (1997). Results of
applying the personal software process. IEEE Computer, 30(5), 24-31.

Fichman, R. G., & Moses, S. A. (1999). An incremental process for software implementation.
Sloan Management Review, 40(2), 39-52.

Fink, M. (2003). The business and economics of linux and open source. Upper Saddle River, NJ:
Prentice Hall.

Fisher, A. C. (1968). Computer construction of project networks. Communications of the ACM,
11(7), 493-497.

Fitch, A. E. (1969). A user looks at DA: Yesterday, today, and tomorrow. Proceedings of the
Sixth ACM IEEE Conference on Design Automation, New York, NY, USA, 371-382.

Frakes, W. B., & Kang, K. (2005). Software reuse research: Status and future. IEEE
Transactions on Software Engineering, 31(7), 529-536.

Fujii, M. S. (1978). A comparison of software assurance methods. Proceedings of the First
Annual Software Quality Assurance Workshop on Functional and Performance Issues,
New York, New York, USA, 27-32.

Fulghum, D. A., & Wall, R. (2004). Is this war? Aviation Week and Space Technology, 160(6),
22-24.

Gaffney, J. E. (1981). Metrics in software quality assurance. Proceedings of the ACM
SIGMETRICS Workshop/Symposium on Measurement and Evaluation of Software
Quality, Las Vegas, Nevada, USA, 126-130.

Gane, C. (1987). Rapid systems development. New York, NY: Rapid Systems Development, Inc.

Germain, E., & Robillard, P. N. (2005). Engineering based processes and agile methodologies
for software development: A comparative case study. Journal of Systems and Software,
75(1/2), 17-27.

Gilb, T. (1977). Software metrics. Cambridge, MA: Winthrop Publishers.

Agile Methods 169

Goel, A. L., & Okumoto, K. (1979). Time dependent error detection rate model for software and
other performance measures. IEEE Transactions on Reliability, 28(3), 206-211.

Golden, W., & Powell, P. (2004). Inter organizational information systems as enablers of
organizational flexibility. Technology Analysis and Strategic Management, 16(3), 299-
325.

Goldman, S., Nagel, R., & Preiss, K. (1995). Agile competitors and virtual organizations:
Strategies for enriching the customer. New York, NY: Van Nostrand Rienhold.

Goodenough, J. B., & Gerhart, S. L. (1975). Toward a theory of test data selection. Proceedings
of the First International Conference on Reliable Software, Los Angeles, California,
USA, 493-510.

Gosain, S., Malhotra, A., & El Sawy, O. A. (2004). Coordinating for flexibility in e-business
supply chains. Journal of Management Information Systems, 21(3), 7-45.

Goth, G. (2000). The team software process: A quiet quality revolution. IEEE Software, 17(6),
125-127.

Gounaris, S., Dimitriadis, S., & Stathakopoulos, V. (2005). Antecedents of perceived quality in
the context of internet retail stores. Journal of Marketing Management, 21(7/8), 669-700.

Grady, R. B. (1997). Successful software process improvement. Upper Saddle River, NJ: Prentice
Hall.

Grady, R. B., & Caswell, R. B. (1987). Software metrics: Establishing a company wide program.
Englewood Cliffs, NJ: Prentice Hall.

Guide International, Inc. (1986). Joint application design. Chicago, IL: Author.

Guinan, P. J., Cooprider, J. G., & Faraj, S. (1998). Enabling software development team
performance during requirements definition: A behavioral versus technical approach.
Information Systems Research, 9(2), 101-125.

Guzzo, R. A., & Dickson, M. W. (1996). Teams in organizations: Recent research on
performance and effectiveness. Annual Review of Psychology, 47(1), 307-338.

Halloran, T. J., & Scherlis, W. L. (2002). High quality and open source software practices.
Proceedings of the Second Workshop on Open Source Software Engineering, Orlando,
Florida, USA.

Halstead, M. H. (1972). Natural laws controlling algorithm structure? ACM SIGPLAN Notices,
7(2), 19-26.

Halstead, M. H. (1977). Elements of software science. New York, NY: Elsevier North Holland.

Agile Methods 170

Hansen, W. J. (1978). Measurement of program complexity by the pair (cyclomatic number,
operator count). ACM SIGPLAN Notices, 13(3), 29-33.

Hardin, K. (1960). Computer automation, work environment, and employee satisfaction: A case
study. Industrial and Labor Relations Review, 13(4), 559-567.

Hartwick, J., & Barki, H. (1994). Explaining the role of user participation in information system
use. Management Science, 40(4), 440-465.

Henry, S., & Kafura, D. (1981), Software structure metrics based on information flow. IEEE
Transactions on Software Engineering, 7(5), 510-518.

Herbold, R. J. (2002). Inside microsoft: Balancing creativity and discipline. Harvard Business
Review, 80(1), 73-79.

Herbst, P. G. (1962). Autonomous group functioning. London, England: Tavistock.

Highsmith, J. A. (2000). Adaptive software development: A collaborative approach to managing
complex systems. New York, NY: Dorset House.

Highsmith, J. A. (2002). Agile software development ecosystems. Boston, MA: Addison Wesley.

Hirschheim, R., Klein, H. K., & Lyytinen, K. (1996). Exploring the intellectual structures of
information systems development: A social action theoretic analysis. Accounting,
Management, and Information Technology, 6(1/2), 1-64.

Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Communications of the
ACM, 12(10), 576-583.

Hoare, C. A. R. (1978). Communicating sequential processes. Communications of the ACM,
21(8), 666-677.

Hoegl, M., & Gemuenden, H. G. (2001). Teamwork quality and the success of innovative
projects: A theoretical concept and empirical evidence. Organization Science, 12(4), 435-
449.

Hoisington, S. (1998). Information and analysis at IBM’s AS/400 division. Proceedings of the
10th Annual Minnesota Quality Conference, St. Paul, Minnesota, USA.

Holibaugh, R., Cohen, S., Kang, K., & Peterson, S. (1989). Reuse: Where to begin and why.
Proceedings of the Conference on Tri-Ada, Pittsburgh, Pennsylvania, USA, 266-277.

Hong, P., Vonderembse, M. A., Doll, W. J., & Nahm, A. Y. (2005). Role change of design
engineers in product development. Journal of Operations Management, 24(1), 63-79.

Horowitz, B. B. (1991). The importance of architecture in DoD software (Technical Report
M91-35). Bedford, MA: The Mitre Corporation.

Agile Methods 171

Huang, X. Z. (1984). The hypergeometric distribution model for predicting the reliability of
software. Microelectronics and Reliability, 24(1), 11-20.

Humphrey, W. S. (1987). Characterizing the software process: A maturity framework
(CMU/SEI-87-TR-011). Pittsburgh, PA: Software Engineering Institute.

Hunton, J. E., & Beeler, J. O. (1997). Effects of user participation in systems development: A
longitudinal field experiment. MIS Quarterly, 21(4), 359-388.

Iansiti, M., & MacCormack, A. (1997). Developing products on internet time. Harvard Business
Review, 75(5), 108-117.

Institute of Electrical and Electronics Engineers. (1990). IEEE standard glossary of software
engineering terminology (IEEE Std 610.12-1990). New York, NY: Author.

Ives, B., & Olson, M. H. (1984). User involvement and MIS success: A review of research.
Management Science, 30(5), 586-603.

Ives, B., Olson, M. H., & Baroudi, J. J. (1983). The measurement of user information
satisfaction. Communications of the ACM, 26(10), 785-793.

Jameson, K. W. (1989). A model for the reuse of software design information. Proceedings of
the 11th International Conference on Software Engineering, Pittsburgh, Pennsylvania,
USA, 205-216.

Janda, S., Trocchia, P. J., & Gwinner, K. P. (2002). Consumer perceptions of internet retail
service quality. International Journal of Service Industry Management, 13(5), 412-433.

Jelinski, Z., & Moranda, P. B. (1972). Software reliability research. In W. Freiberger (Ed.),
Statistical computer performance evaluation (pp. 465-484). New York, NY: Academic
Press.

Jiang, J. J., Chen, E., & Klein, G. (2002). The importance of building a foundation for user
involvement in information system projects. Project Management Journal, 33(1), 20-26.

Jin, Z. (2000). How product newness influences learning and probing and the linearity of its
development process. Creativity and Innovation Management, 9(1), 21-45.

Johnson, L. (1998). A view from the 1960s: How the software industry began. IEEE Annals of
the History of Computing, 20(1), 36-42.

Johnson, M. (2003). Agile methodologies: Survey results. Victoria, Australia: Shine
Technologies.

Jones, C. L. (1985). A process-integrated approach to defect prevention. IBM Systems Journal,
24(2), 150-165.

Agile Methods 172

Jones, T. C. (1978). Measuring programming quality and productivity. IBM Systems Journal,
17(1), 39-63.

Jorgensen, N. (2001). Putting it all in the trunk: Incremental software development in the freebsd
open source project. Information Systems Journal, 11(4), 321-336.

Joshi, A. W., & Sharma, S. (2004). Customer knowledge development: Antecedents and impact
on new product performance. Journal of Marketing, 68(4), 47-59.

Joshi, K., Perkins, W. C., & Bostrom, R. P. (1986). Some new factors influencing user
information satisfaction: Implications for systems professionals. Proceedings of the 22nd
Annual Computer Personnel Research Conference, Calgary, Canada, 27-42.

Kalakota, R., & Whinston, A. (1996). Electronic commerce: A manager's guide. Reading, MA:
Addison Wesley.

Kan, S. H. (1995). Metrics and models in software quality engineering. Reading, MA: Addison-
Wesley.

Kan, S. H., Dull, S. D., Amundson, D. N., Lindner, R. J., & Hedger, R. J. (1994). AS/400
software quality management. IBM Systems Journal, 33(1), 62-88.

Kaufman, S. (1966). The IBM information retrieval center (ITIRC): System techniques and
applications. Proceedings of the 21st National Conference for the Association for
Computing Machinery, New York, New York, USA, 505-512.

Kekre, S., Krishnan, M. S., & Srinivasan, K. (1995). Drivers of customer satisfaction in software
products: Implications for design and service support. Management Science, 41(9), 1456-
1470.

Khermouch, G., & Voight, J. (1997). Sequent computer seeks shop for image work: Uses
extreme sports to introduce product. Adweek Western Edition, 47(7), 5-5.

Knuth, D. E. (1963). Computer-drawn flowcharts. Communications of the ACM, 6(9), 555-563.

Kruchten, P. (2000). The rational unified process: An introduction. Reading, MA: Addison
Wesley.

Kruchten, P., Obbink, H., & Stafford, J. (2006). The past, present, and future of software
architecture. IEEE Software, 23(2), 22-30.

Kujala, S. (2003). User involvement: A review of the benefits and challenges. Behaviour and
Information Technology, 22(1), 1-16.

Langfred, C. W. (2000). The paradox of self-management: Individual and group autonomy in
work groups. Journal of Organizational Behavior, 21(5), 563-585.

Agile Methods 173

Larman, C. (2004). Agile and iterative development: A manager’s guide. Boston, MA: Pearson
Education.

Leblang, D. B., & Chase, R. P. (1984). Computer aided software engineering in a distributed
environment. Proceedings of the First ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments, Pittsburgh, Pennsylvania,
USA, 104-112.

Leiner, B., Cerf, V. G., Clark, D. D., Kahn, R. E., Kleinrock, L., Lynch, D. C., et al. (1997). The
past and future history of the internet. Communications of the ACM, 40(2), 102-108.

Li, T., & Calantone, R. J. (1998). The impact of market knowledge competence on new product
advantage: Conceptualization and empirical examination. Journal of Marketing, 62(4),
13-29.

Lim, J. S., Sharkey, T. W., & Heinrichs, J. H. (2003). New product development practices and
export involvement: An initial inquiry. International Journal of Innovation Management,
7(4), 475-499.

Lim, W. C. (1998). Managing software reuse: A comprehensive guide to strategically
reengineering the organization for reusable components. Upper Saddle River, NJ:
Prentice Hall.

Lindroos, K. (1997). Use quality and the world wide web. Information and Software Technology,
39(12), 827-836.

Lipow, M. (1982). Number of faults per line of code. IEEE Transactions on Software
Engineering, 8(4), 437-439.

Liskov, B., & Zilles, S. (1974). Programming with abstract data types. Proceedings of the ACM
SIGPLAN Symposium on Very High Level Languages, Santa Monica, California, USA,
50-59.

Littlewood, B. (1979). Software reliability model for modular program structure. IEEE
Transactions on Reliability, 28(3), 241-246.

Lo, B. (1992). Syntactical construct based APAR projection (Technical Report). San Jose, CA:
IBM Santa Teresa Research Laboratory.

Lombardi, L. (1961). Theory of files. Communications of the ACM, 4(7), 324-324.

Lucas, H. C. (1973). User reactions and the management of information services. Management
Informatics, 2(4), 165-162.

Lucas, H. C. (1974). Measuring employee reactions to computer operations. Sloan Management
Review, 15(3), 59-67.

Lundquist, E. (1996). When is internet time just too fast? PC Week, 13(32), 102-102.

Agile Methods 174

Lynch, J. E. (1990). The impact of electronic point of sale technology (EPOS) on marketing
strategy and retailer-supplier relationships. Journal of Marketing Management, 6(2), 157-
168.

Lynn, G. S., Skov, R. B., & Abel, K. D. (1999). Practices that support team learning and their
impact on speed to market and new product success. Journal of Product Innovation
Management, 16(5), 439-454.

Lyons, M. L. (1980). Measuring user satisfaction: The semantic differential technique.
Proceedings of the 17th Annual Conference on Computer Personnel Research, Miami,
Florida, USA, 79-87.

MacCormack, A. (1998). Managing adaptation: An empirical study of product development in
rapidly changing environments. Unpublished doctoral dissertation, Harvard University,
Boston, MA, United States.

MacCormack, A. (2001). Product development practices that work: How internet companies
build software. MIT Sloan Management Review, 42(2), 15-24.

MacCormack, A., Verganti, R., & Iansiti, M. (2001). Developing products on internet time: The
anatomy of a flexible development process. Management Science, 47(1), 133-150.

Madden, W., & Rone, K. (1984). Design, development, integration: Space shuttle flight software
system. Communications of the ACM, 27(9), 914-925.

Maish, A. M. (1979). A user's behavior toward his MIS. MIS Quarterly, 3(1), 39-52.

Mandell, L. (1977). Diffusion of EFTS among national banks. Journal of Money, Credit, and
Banking, 9(2), 341-348.

Martin, J. (1965). Programming real-time computer systems. Englewood Cliffs, NJ: Prentice
Hall.

Martin, J. (1991). Rapid application development. New York, NY: Macmillan.

McCabe, T. J. (1976). A complexity measure. IEEE Transactions on Software Engineering, 2(4),
308-320.

McIlroy, M. D. (1960). Macro instruction extensions of compiler languages. Communications of
the ACM, 3(4), 214-220.

McIntyre, S. C., & Higgins, L. F. (1988). Object oriented systems analysis and design:
Methodology and application. Journal of Management Information Systems, 5(1), 25-35.

McKeen, J. D., Guimaraes, T., & Wetherbe, J. C. (1994). The relationship between user
participation and user satisfaction: An investigation of four contingency factors. MIS
Quarterly, 18(4), 427-451.

Agile Methods 175

McKinney, V., Yoon, K., & Zahedi, F. (2002). The measurement of web customer satisfaction:
An expectation and disconfirmation approach. Information Systems Research, 13(3), 296-
315.

Melnik, G., & Maurer, F. (2005). A cross program investigation of student's perceptions of agile
methods. Proceedings of the 27th International Conference on Software Engineering, St.
Louis, Missouri, USA, 481-488.

Merwin, R. E. (1972). Estimating software development schedules and costs. Proceedings of the
Ninth Annual ACM IEEE Conference on Design Automation, New York, NY, USA, 1-4.

Middleton, R., & Wardley, P. (1990). Information technology in economic and social history:
The computer as philosopher’s stone or pandora’s box? Economic History Review, 43(4),
667-696.

Miller, L. A. (1974). Programming by non-programmers. International Journal of Man-Machine
Studies, 6(2), 237-260.

Millington, D., & Stapleton, J. (1995). Developing a RAD standard. IEEE Software, 12(5), 54-
56.

Mills, H. D. (1971). Chief programmer teams: Principles and procedures (IBM Rep. FSC 71-
5108). Gaithersburg, MD: IBM Federal Systems Division.

Mills, H. D., Linger, R. C., & Hevner, A. R. (1987). Box structured information systems. IBM
Systems Journal, 26(4), 395-413.

Milne, M.A. (1971). CLUSTR: A program for structuring design problems. Proceedings of the
Eighth Annual ACM IEEE Design Automation Conference, Atlantic City, New Jersey,
USA, 242-249.

Montalbano, M. (1962). Tables, flowcharts, and program logic. IBM Systems Journal, 1(1), 51-
63.

Moranda, P. B. (1979). An error detection model for application during software development.
IEEE Transactions on Reliability, 28(5), 325–329.

Motley, R. W., & Brooks, W. D. (1977). Statistical prediction of programming errors (RADC-
TR-77-175). Griffis AFB, NY: Rome Air Development Center.

Mowery, D. C., & Simcoe, T. (2002). Is the internet a US invention? An economic and
technological history of computer networking. Research Policy, 31(8/9), 1369-1387.

Musa, J. D. (1999). Software reliability engineering. New York, NY: McGraw Hill.

Musa, J. D., Iannino, A., & Okumoto, K. (1987). Software reliability: Measurement, prediction,
and application. New York, NY: McGraw Hill.

Agile Methods 176

Myers, G. J. (1976). Software reliability: Principles and practices. New York, NY: John Wiley
& Sons.

Myers, G. J. (1977). An extension to the cyclomatic measure of program complexity. SIGPLAN
Notices, 12(10), 61-64.

Naumann, J. D., & Jenkins, A. M. (1982). Prototyping: The new paradigm for systems
development. MIS Quarterly, 6(3), 29-44.

Neighbors, J. M. (1984). The draco approach to constructing software from reusable
components. IEEE Transactions on Software Engineering, 10(5), 564-574.

Nelson, K. M., & Cooprider, J. G. (2001). The relationship of software system flexibility to
software system and team performance. Proceedings of the 22nd International
Conference on Information Systems (ICIS 2001), New Orleans, Louisiana, USA, 23-32.

Nerlove, M. (2004). Programming languages: A short history for economists. Journal of
Economic and Social Measurement, 29(1-3), 189-203.

Nerur, S., Mahapatra, R., & Mangalaraj, G. (2005). Challenges of migrating to agile
methodologies. Communications of the ACM, 48(5), 73-78.

New York Stock Exchange (2006). NYSE timeline of technology. Retrieved October 23, 2006,
from http://www.nyse.com/about/history/timeline_technology.html

Northrop, L. M. (2002). SEI’s software product line tenets. IEEE Software, 19(4), 32-40.

Notkin, D. (1989). The relationship between software development environments and the
software process. Proceedings of the Third ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Development Environments, Boston,
Massachusetts, USA, 107-109.

O’Connor, C. M. (2005). Sarbanes oxley: Frying the small fry. Investment Dealers Digest,
71(25), 10-11.

O’Reilly, T. (1999). Lessons from open source software development. Communications of the
ACM, 42(4), 32-37.

O’Reilly, T. (2006). What is web 2.0: Design patterns and business models for the next
generation of software. Retrieved December 10, 2006, from
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html

Ohba, M. (1984). Software reliability analysis models. IBM Journal of Research and
Development, 21(4), 428-443.

Oldfather, P. M., Ginsberg, A. S., & Markowitz, H. M. (1966). Programming by questionnaire:
How to construct a program generator (RM-5128-PR). Santa Monica, CA: The RAND
Corporation.

Agile Methods 177

Oviedo, E. I. (1980). Control flow, data flow, and program complexity. Proceedings of the
Fourth International IEEE Computer Software and Applications Conference (COMPSAC
1980), Chicago, Illinois, USA, 146-152.

Palanisamy, R., & Sushil. (2003). Measurement and enablement of information systems for
organizational flexibility: An empirical study. Journal of Services Research, 3(2), 81-
103.

Palmer, S. R., & Felsing, J. M. (2002). A practical guide to feature driven development. Upper
Saddle River, NJ: Prentice Hall.

Panzl, D. J. (1976). Test procedures: A new approach to software verification. Proceedings of
the Second International Conference on Reliable Software, San Francisco, California,
USA, 477-485.

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12), 1053-1058.

Paul, S., Samarah, I. M., Seetharaman, P., & Mykytyn, P. P. (2004). An empirical investigation
of collaborative conflict management style in group support system based global virtual
teams. Journal of Management Information Systems, 21(3), 185-222.

Pavlicek, R. C. (2000). Embracing insanity: Open source software development. Indianapolis,
IN: Sams Publishing.

Pearson, S. W., & Bailey, J. E. (1980). Measurement of computer user satisfaction. ACM
SIGMETRICS Performance Evaluation Review, 9(1), 9-68.

Pham, H. (2000). Software reliability. Singapore: Springer Verlag.

Pigott, D. (2006). HOPL: An interactive roster of programming languages. Retrieved October
21, 2006, from http://hopl.murdoch.edu.au

Pine, B. J. (1989). Design, test, and validation of the application system/400 through early user
involvement. IBM System Journal, 28(3), 376-385.

Poppendieck, M., & Poppendieck, T. (2003). Lean software development: An agile toolkit for
software development managers. Boston, MA: Addison Wesley.

Potier, D., Albin, J. L., Ferreol, R., & Bilodeau, A. (1982). Experiments with computer software
complexity and reliability. Proceedings of the Sixth International Conference on
Software Engineering, Tokyo, Japan, 94-103.

Prewitt, E. (2004). The agile 100. CIO Magazine, 17(21), 4-7.

Prieto-Diaz, R. (1987). Domain analysis for reusability. Proceedings of the 11th Annual
International Computer Software and Applications Conference (COMPSAC 1987),
Tokyo, Japan, 23-29.

Agile Methods 178

Przasnyski, Z. H., & Tai, L. S. (1999). Stock market reaction to malcolm baldridge national
quality award announcements: Does quality pay? Total Quality Management, 10(3), 391-
400.

Radice, R. A., Harding, J. T., Munnis, P. E., & Phillips, R. W. (1985). A programming process
study. IBM Systems Journal, 24(2), 91-101.

Reid, R. H. (1997). Architects of the web: 1,000 days that build the future of business. New
York, NY: John Wiley & Sons.

Reifer, D. J. (2003). The business case for agile methods/extreme programming (XP).
Proceedings of the Seventh Annual PSM Users Group Conference, Keystone, Colorado,
USA, 1-30.

Rigby, P. J., Stoddart, A. G., & Norris, M. T. (1990). Assuring quality in software: Practical
experiences in attaining ISO 9001. British Telecommunications Engineering, 8(4), 244-
249.

Riordan, C. M., & Weatherly, E. W. (1999). Defining and measuring employee’s identification
with their work groups. Educational and Psychological Measurement, 59(2), 310-324.

Rondeau, P. J., Ragu-Nathan, T. S., & Vonderembse, M. A. (2006). How involvement, IS
management effectiveness, and end user computing impact IS performance in
manufacturing firms. Information and Management, 43(1), 93-107.

Rosen, S. (1969). Electronic computers: A historical survey. ACM Computing Surveys, 1(1), 7-
36.

Rosson, M. B., & Alpert, S. R. (1990). The cognitive consequences of object oriented design.
Human Computer Interaction, 5(4), 345-379.

Royce, W. W. (1970). Managing the development of large software systems. Proceedings of the
Western Electronic Show and Convention (WESCON 1970), Los Angeles, California,
USA, 1-9.

Rubey, R. J., & Hartwick, R. D. (1968). Quantitative measurement of program quality.
Proceedings of the 23rd ACM National Conference, Washington, DC, USA, 671-677.

Sammet, J. E. (1972a). An overview of programming languages for special application areas.
Proceedings of the Spring Joint American Federation of Information Processing
Societies Conference (AFIPS 1972), Montvale, New Jersey, USA, 299-311.

Sammet, J. E. (1972b). Programming languages: History and future. Communications of the
ACM, 15(7), 601-610.

Sarin, S., & McDermott, C. (2003). The effect of team leader characteristics on learning,
knowledge application, and performance of cross functional new product development
teams. Decision Sciences, 34(4), 707-739.

Agile Methods 179

Sassenburg, H. (2002). The nonsense of ROI. SPIder Koerier, 2(4), 4-5.

Sauer, C., Jeffery, D. R., Land, L., & Yetton, P. (2000). The effectiveness of software
development technical reviews: A behaviorally motivated program of research. IEEE
Transactions on Software Engineering, 26(1), 1-15.

Sawyer, S. (2001). Effects of intra group conflict on packaged software development team
performance. Information Systems Journal, 11(2), 155-178.

Schick, G. J., & Wolverton, R. W. (1978). An analysis of competing software reliability analysis
models. IEEE Transactions on Software Engineering, 4(2), 104-120.

Schneidewind, N. F., & Hoffmann, H. (1979). An experiment in software error data collection
and analysis. IEEE Transactions on Software Engineering, 5(3), 276-286.

Schulze, A., & Hoegl, M. (2006). Knowledge creation in new product development projects.
Journal of Management, 32(2), 210-236.

Schwaber, K. (1995). Scrum development process. Proceedings of the 10th Annual ACM
Conference on Object Oriented Programming Systems, Languages, and Applications
(OOPSLA 1995), Austin, Texas, USA, 117-134.

Schwaber, K. (2004). Agile project management with scrum. Redmond, WA: Microsoft Press.

Selz, D., & Schubert, P. (1997). Web assessment: A model for the evaluation and the assessment
of successful electronic commerce applications. Electronic Markets, 7(3), 46-48.

Shapiro, S. (1997). Splitting the difference: The historical necessity of synthesis in software
engineering. IEEE Annals of the History of Computing, 19(1), 20-54.

Shen, V. Y., Yu, T. J., Thebaut, S. M., & Paulsen, L. R. (1985). Identifying error prone software:
An empirical study. IEEE Transactions on Software Engineering, 11(4), 317-324.

Sherman, J. D., Souder, W. E., & Jenssen, S. A. (2000). Differential effects of the primary forms
of cross functional integration on product development cycle time. Journal of Product
Innovation Management, 17(4), 257-267.

Shooman, M. L. (1983). Software engineering. New York, NY: McGraw Hill.

Shooman, M. L., & Bolsky, M. I. (1975). Types, distribution, and test and correction times for
programming errors. Proceedings of the International Conference on Reliable Software,
Los Angeles, California, USA, 347-357.

Singh, N., & Sushil. (2004). Flexibility in product development for success in dynamic market
environment. Global Journal of Flexible Systems Management, 5(1), 23-34.

Smith, A. (1988). EDI: Will banks be odd man out? ABA Banking Journal, 80(11), 77-79.

Standish Group. (2000). Extreme chaos. West Yarmouth, MA: Author.

Agile Methods 180

Steinmueller, W. E. (1996). The U.S. software industry: An analysis and interpretive history. In
D. C. Mowery (Ed.), The international computer software industry (pp. 25-52). New
York, NY: Oxford University Press.

Stevens, W. P., Myers, G. J., & Constantine, L. L. (1974). Structured design. IBM Systems
Journal, 13(2), 115-139.

Stewart, K. J., & Gosain, S. (2006). The impact of ideology on effectiveness in open source
software development teams. MIS Quarterly, 30(2), 291-314.

Stump, R. L., Athaide, G. A., & Joshi, A. W. (2002). Managing seller buyer new product
development relationships for customized products: A contingency model based on
transaction cost analysis and empirical test. Journal of Product Innovation Management,
19(6), 439-454.

Sukert, A. N. (1979). Empirical validation of three software error prediction models. IEEE
Transactions on Reliability, 28(3), 199-205.

Sulack, R. A., Lindner, R. J., & Dietz, D. N. (1989). A new development rhythm for AS/400
software. IBM Systems Journal, 28(3), 386-406.

Sunazuka, T., Azuma, M., & Yamagishi, N. (1985). Software quality assessment technology.
Proceedings of the Eighth International Conference on Software Engineering, London,
England, 142-148.

Sutherland, J. (2004). Agile development: Lessons learned from the first scrum. Agile Project
Management Advisory Service Executive Update, 5(2), 1-4.

Swanson, E. B. (1976). The dimensions of maintenance. Proceedings of the Second International
Conference on Software Engineering, San Francisco, California, USA, 492-497.

Szymanski, D. M., & Hise, R. T. (2000). E-satisfaction: An initial examination. Journal of
Retailing, 76(3), 309-322.

Takeuchi, H., & Nonaka, I. (1986). The new product development game. Harvard Business
Review, 64(1), 137-146.

Tanenbaum, A. (2001). Modern operating systems. Englewood Cliffs, NJ: Prentice Hall.

Tang, V., & Collar, E. (1992). IBM AS/400 new product launch process ensures satisfaction.
Long Range Planning, 25(1), 22-27.

Teichroew, D., & Sayani, H. (1971). Automation of system building. Datamation, 17(16), 25-30.

Teorey, T. J., & Fry, J. P. (1980). The logical record access approach to database design. ACM
Computing Surveys, 12(2), 179-211.

Agile Methods 181

Thayer, C. H. (1958). Automation and the problems of management. Vital Speeches of the Day,
25(4), 121-125.

Thomas, D. (2005). Agile programming: Design to accommodate change. IEEE Software, 22(3),
14-16.

Thomke, S., & Reinertsen, D. (1998). Agile product development: Managing development
flexibility in uncertain environments. California Management Review, 41(1), 8-30.

Tiwana, A., & McLean, E. R. (2005). Expertise integration and creativity in information systems
development. Journal of Management Information Systems, 22(1), 13-43.

Turk, D., France, R., & Rumpe, B. (2005). Assumptions underying agile software development
processes. Journal of Database Management, 16(4), 62-87.

U.S. Census Bureau. (2006). E-stats. Washington, DC: Author.

U.S. Department of Commerce. (2003). Digital economy. Washington, DC: Author.

U.S. Department of Commerce. (2006). Information and communication technology: 2004.
Washington, DC: Author.

U.S. Department of Defense. (1976). Military standard: Technical reviews and audits for
systems, equipments, and computer software (MIL-STD-1521A). Hanscom AFB, MA:
Author.

Van Den Bosch, F., Ellis, J. R., Freeman, P., Johnson, L., McClure, C. L., Robinson, D., et al.
(1982). Evaluation of software development life cycle: Methodology implementation.
ACM SIGSOFT Software Engineering Notes, 7(1), 45-60.

Version One. (2006). The state of agile development. Apharetta, GA: Author.

Vise, D. A. (2005). The google story: Inside the hottest business, media, and technology success
of our time. New York, NY: Delcorte Press.

Waldstein, N. S. (1974). The walk thru: A method of specification design and review (TR
00.2536). Poughkeepsie, NY: IBM Corporation.

Wall, J. K., & Ferguson, P. A. (1977). Pragmatic software reliability prediction. Proceedings of
the Annual Reliability and Maintainability Symposium, Piscataway, New Jersey, USA,
485-488.

Walsh, D. A. (1977). Structured testing. Datamation, 23(7), 111-111.

Walsh, M. D. (1982). Evaluating user satisfaction. Proceedings of the 10th Annual ACM
SIGUCCS Conference on User Services, Chicago, Illinois, USA, 87-95.

Weber, C., Paulk, M., Wise, C., & Withey, J. (1991). Key practices of the capability maturity
model (CMU/SEI-91-TR-025). Pittsburgh, PA: Software Engineering Institute.

Agile Methods 182

Wegner, P. (1972). The vienna definition language. ACM Computing Surveys, 4(1), 5-63.

Wegner, P. (1980). The ada language and environment. ACM SIGSOFT Software Engineering
Notes, 5(2), 8-14.

Wegner, P., Scherlis, W., Purtilo, J., Luckham, D., & Johnson, R. (1992). Object oriented
megaprogramming. Proceedings on Object Oriented Programming Systems, Languages,
and Applications, Vancouver, British Columbia, Canada, 392-396.

Weinberg, G. M. (1971). The psychology of computer programming. New York, NY: Van
Nostrand Reinhold.

Weinberg, G. M., & Gressett, G. L. (1963). An experiment in automatic verification of
programs. Communications of the ACM, 6(10), 610-613.

Weissman, L. (1973). Psychological complexity of computer programs. ACM SIGPLAN Notices,
8(6), 92-95.

Whittaker, J. A. (2000). What is software testing? And why is it so hard? IEEE Software, 17(1),
70-79.

Williams, L., & Kessler, R. (2003). Pair programming illuminated. Boston, MA: Pearson
Education.

Wirth, N. (1971). Program development by stepwise refinement. Communications of the ACM,
14(4), 221-227.

Wolfinbarger, M., & Gilly, M. C. (2003). Etailq: Dimensionalizing, measuring, and predicting
etail quality. Journal of Retailing, 79(3), 183-198.

Woodward, M. R., Hennell, M. A., & Hedley, D. (1979). A measure of control flow complexity
in program text. IEEE Transactions on Software Engineering, 5(1), 45-50.

Xia, W., & Lee, G., (2005). Complexity of information systems development projects:
Conceptualization and measurement development. Journal of Management Information
Systems, 22(1), 45-83.

Yamada, S., Ohba, M., & Osaki, S. (1983). S shaped reliability growth modeling for software
error prediction. IEEE Transactions on Reliability, 32(5), 475-478.

Yoffie, D. B., & Cusumano, M. A. (1999). Building a company on Internet time: Lessons from
netscape. California Management Review, 41(3), 8-28.

Yoo, B., & Donthu, N. (2001). Developing a scale to measure the perceived quality of an internet
shopping site (sitequal). Quarterly Journal of Electronic Commerce, 2(1), 31-45.

Youngs, E. A. (1970). Error proneness in programming. Unpublished doctoral dissertation.
University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.

Agile Methods 183

Yourdon, E. (1976). The emergence of structured analysis. Computer Decisions, 8(4), 58-59.

Zhang, M. J. (2005). Information systems, strategic flexibility, and firm performance: An
empirical investigation. Journal of Engineering and Technology Management, 22(3),
163-184.

Zhao, L., & Deek, F. P. (2004). User collaboration in open source software development.
Electronic Markets, 14(2), 89-103.

Zolnowski, J. C., & Simmons, D. B. (1981). Taking the measure of program complexity.
Proceedings of the AFIPS National Computer Conference, Chicago, Illinois, USA, 329-
336.

Agile Methods 184

APPENDICES

Appendix A — Agile Methods Survey Instrument

Iterative Development

1. We develop software using time-based iterations, increments, or demonstrations.
2. We develop software using operational iterations, increments, or demonstrations (working
code).
3. We develop software using small iterations, increments, or demonstrations.
4. We develop software using daily, weekly, bi-weekly, or monthly iterations, increments, or
demonstrations.
5. We develop software using multiple (several) iterations, increments, or demonstrations.

Customer Feedback

6. We seek customer feedback on our software iterations, increments, or demonstrations.
7. We receive customer feedback on our software iterations, increments, or demonstrations.
8. We receive timely customer feedback on our software iterations, increments, or
demonstrations.
9. We receive a lot of (detailed) customer feedback on our software iterations, increments, or
demonstrations.
10. We incorporate customer feedback into our software iterations, increments, or
demonstrations.

Well-Structured Teams

11. Our software teams have clear administrative or technical leaders.
12. Our software teams have clear visions, missions, or strategies.
13. Our software teams have clear goals or objectives.
14. Our software teams have clear schedules or timelines.
15. Our software teams have a small size with no more than 10 people.

Flexibility

16. Our software is designed to be as small as possible.
17. Our software is designed to be as simple as possible.
18. Our software is designed to be modular or object-oriented.
19. Our software is designed to work on multiple operating systems.
20. Our software is designed to be changed, modified, or maintained.

Agile Methods 185

Appendix B — Website Quality Survey Instrument

Website Design (Wolfinbarger & Gilly, 2003)

1. The website provides in-depth information.
2. The site doesn’t waste my time.
3. It is quick and easy to complete a transaction at this website.
4. The level of personalization at site is about right, not too much or too little.
5. This website has good selection.

Privacy and Security (Wolfinbarger & Gilly, 2003)

6. I feel like my privacy is protected at this site.
7. I feel safe in my transactions with this website.
8. The website has adequate security features.

Fulfillment and Reliability (Wolfinbarger & Gilly, 2003)

9. You get what you ordered from this site.
10. The product is delivered by the time promised by the company.
11. The product that came was represented accurately by the websitee.

Customer Service (Wolfinbarger & Gilly, 2003)

12. The company is willing and ready to respond to customer needs.
13. When you have a problem, the website shows a sincere interest in solving it.
14. Inquiries are answered promptly.

Agile Methods 186

Appendix C — Research Project Notification and Human Subjects Protection Form

As outlined in UMUC Policy 130.25, Conducting Research Involving Human Subjects, all UMUC
students, staff, faculty, and individuals external to UMUC, who wish to conduct research involving
human subjects must adhere to this policy before conducting any research.

All researchers must complete the Research Project Notification and Human Subjects Protection Form
and receive all appropriate signatures before initiating any research. Please fill in each blank and provide
copies of any additional documents (i.e. draft questionnaires) as necessary.

If you have any questions about the form, ask your IRB representative.

Research Project Notification and Human Subjects Protection Form

Date: ___________April 4, 2007___________

Name of Proposer:____David F. Rico_______

Email: _dave@davidfrico.com__ Phone:___410-551-3813___

Fax: __________________________

Unit Representative: __________________________

Email: __________________________ Phone: __________________________

Fax: __________________________

1. Title of Project:

__Effects of Agile Methods on Website Quality for Electronic Commerce___

2. Purpose of the Project:

The purpose of this project is to survey information systems managers to measure their adherence to using
agile methods to manage the development of Internet websites and subsequent website quality.

3. Survey Instruments or Data Collection Methodology to be used.

A. Interview, focus group, questionnaire, or other?

___Interview, Questionnaire_______
If other, please explain.

B. Online, regular mail, face-to-face, or other ?

__Face-to-face cognitive interviews to validate instrument, Online survey for data collection_

Agile Methods 187

If other, please explain.

C. Please attach a copy of each instrument if it has been prepared. If not, explain how it will be
developed.

See Appendix A - Agile Methods Survey Instrument and Appendix B - Website Quality Survey

4. Research Design including population and sample, if applicable.

A. UMUC Students, Staff, Faculty, or other?

__Software Developers, Graduate Students__
If other, please explain.

B. Sample Size_6 for cognitive interviews, 1,800 for agility, 200 for website quality survey_

C. What information will be collected (e.g. any potentially sensitive subjects such as drug use,
etc) ?

a. Stage 0: Reactions of 6 programmers to survey instruments.
b. Stage I: Software development practices of 1,800 programmers.
c. Stage II: Assessments of website quality by 200 graduate students.

D. What data other than the respondents' answers will be sought (e.g. via access to UMUC
records)?

n/a

E. How will the privacy and confidentiality of the human subjects be recorded and stored?

a. No personal identity data will be recorded (e.g., firm, address, phone numbers, addresses, etc.).
b. Responses to surveys will be stored on researchers personal computer for statistical analysis.
c. URLs of websites (e.g., http://www.google.com) will not be revealed.

F. How will the analysis protect the respondent's right to privacy (e.g., if less than five people are
in a table cell, how will their identity remain anonymous)?

a. No personal identity data will be recorded (e.g., firm, address, phone numbers, addresses, etc.).
b. Responses to surveys will be stored on researchers personal computer for statistical analysis.
c. URLs of websites (e.g., http://www.google.com) will not be revealed.

Agile Methods 188

5. Signature Approvals

Proposer Verification

__X__I have read and understand the UMUC Policy 130.25 and the procedures for completing the
Research Project Notification and Human Subjects Protection Form. I have completed the Research
Project Notification and Human Subjects Protection Form fully and accurately. I agree to comply with
UMUC Policy 130.25.

________________________________ _______________
Research Proposer Date

Course Instructor Approval

______I have determined that the proposed research involves minimal risk and is limited to individuals
within the proposer's course and is approved.

___X___I have determined that there may be a risk to human subjects and will forward the application
form to the appropriate IRB representative.

________________________________ _______________
Course Instructor Date

Please return form to the Proposer or forward to IRB representative, as appropriate.

IRB Representative Approval

______I have determined that the proposed research involves minimal risk and is approved.

______I have determined that the proposed research involves more than minimal risk and/or is being
completed by an individual external to UMUC and must be forwarded to the IRB to complete a full
review.

________________________________ _______________
IRB Representative Date

Please return form to the Proposer within 7 working days or forward to full IRB, as appropriate.
IRB Full Board Approval

The IRB has completed a full review. The proposed research has been:

___________ approved. ___________ disapproved.

Explanation:

Agile Methods 189

______________________________ _______________
IRB Chairperson Date

Please return form to the Proposer within 10 working days.

Appropriate Research Office Approval

______I have determined that the proposed research will not denigrate the integrity of UMUC data
collection nor will it put an undue burden on UMUC and UMUC data collection and surveying.

______I have determined that the proposed research should not be undertaken. Please see the attached
memo for further explanation of this decision.

Please indicate with an “X” which individual has made the determination and then sign on the line
provided below:
_____ Vice President, Accountability and Planning, UMUC-Adelphi
_____ Director, Office of Institutional Research, UMUC-Asia
_____ Director, Office of Institutional Planning, UMUC-Europe

________________________________ _______________
Appropriate Research Staff Date

Please return form to the Proposer within 7 working days.

Abstracts of all proposals will be kept for two years in the UMUC-Adelphi Office of Institutional
Accountability, Planning, and Research. All completed research forms, electronic research files,
proposals, research reports and data collection instruments must be stored in the UMUC-Adelphi

Office of Institutional Accountability, Planning, and Research for two years.

