
Slide 1!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 1!

Competitive

Systems Engineering
How to do systems engineering in hot competition.
Detailed pragmatic and unconventional techniques.

Tutorial
June 2008 INCOSE Symposium, Utrecht Holland

One Day

Instructor: Tom Gilb

Result Planning Limited

Copyright © 2008 by Tom Gilb, Used by INCOSE with
permission for the 2008 International Symposium event.

Slide 2!

“Competitive” Engineering?

Competitive Engineering

•! Keeps the engineers
focus on
–! Winning

–! Beating Competition

–! Improving your
competitive position

–! Making your product or
system the best

–! Looking at the future of
competition

•! Not just what it

•! But, what will be

Engineering

•! Design to Specifications

•! Even if specifications are
–! ‘uncompetitive’

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 2!

Slide 3!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 3!

Detailed Tutorial Outline:
The Competitive Tools

•! Planguage: a quantified
planning language.

•! Integrating benchmarks
and requirement targets

•! Quantified Quality Control
of specifications

•! Impact Estimation Tables
for quantified evaluation of
design

•! Evolutionary Project
Management

Consider the Performance of :

A flower

• fragrance

• attractiveness

• pollen quantity

• toxicity

• bloom frequency

A person

• balance

• intelligence

• courtesy

• helpfulness

A car

• comfort

• safety

• speed

• capacity

Slide 4!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 4!

Tutorial Objectives: Insight into Competitive Tools

•! 1. Become aware of
entirely new ideas.

•! 2. Be able to evaluate if
these apply to
participant’s work.

•! 3. Be aware of how to
get more detailed
information on the
subjects.

•! 4. Enthuse participants
with the attractiveness
of the ideas presented.

Slide 5!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 5!

Platform Strategy!

Standards!

Development!

Program Management!Systecture (Systems Architecture) *564!

Other Engineering!Systems Engineering *223!

Engineering *224!

Data Structures Strategy!

Application Portfolio Strategy!

Methods !

Strategy!

Project !

(The)!

Architecture!

*192!

(Artifacts)!

Requirement!

Specification!

*508!

Design!

Specification!

*586!

Impact !

Estimation!

Table!

Standards *138!

- Security Standards!

-!Interface Standards!

-!Requirement !

 Specification !
 Standards!

- Other!

Evo Step!

Specification!

*370!

Evo!

Plan!

*322!

Architecture!

Specification!

*617!

Impact Estimation!

*283!
Design Process!

*046 !

Design !

Engineering !

*501!

Requirements!

Process!

*612!

Evolutionary!

Project Management!

(Evo) *355!

Architecture!

Process *499!

Engineering
Hierarchy

Specification Types

Processes

Engineering

Concepts

Slide 6!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 6!

Platform Strategy!

Standards!

Development!

Program Management!Systecture (Systems Architecture) *564!

Other Engineering!Systems Engineering *223!

Engineering *224!

Data Structures Strategy!

Application Portfolio Strategy!

Methods !

Strategy!

Project !

(The)!

Architecture!

*192!

(Artifacts)!

Requirement!

Specification!

*508!

Design!

Specification!

*586!

Impact !

Estimation!

Table!

Standards *138!

- Security Standards!

-!Interface Standards!

-!Requirement !

 Specification !
 Standards!

- Other!

Evo Step!

Specification!

*370!

Evo!

Plan!

*322!

Architecture!

Specification!

*617!

Impact Estimation!

*283!
Design Process!

*046 !

Design !

Engineering !

*501!

Requirements!

Process!

*612!

Evolutionary!

Project Management!

(Evo) *355!

Architecture!

Process *499!

Engineering
Hierarchy

Specification Types

Processes

Engineering

Concepts

Slide 7!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 7!

Part 1: Planguage:
a COMPETITIVE quantified planning language.

•! A Planning Language - an
engineering language

•! A systems engineering
language (software,
management)

•! Concept Glossary

•! Graphical Language

•! Control of Multiple
dimensions: Performance,
Costs, Constraints

•! Extendible, Tailorable, Open

•! Rich views, traceability,
configuration management

•! Risk Management

•! Priority Management

Slide 8!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 8!

A Planning Language - an engineering language

Used for
–!Systems

Analysis

–!Requirements

–!Contracting
specs

–!Design -
Architecture

–!Presentation

–!Spec Quality
Control

–!Project
Management

Slide 9!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 9!

A systems engineering language
(also software, management)

•! Generic Ends-Means process
•! Well-defined standards

–! Specification rules
–! Requirements and design processes
–! One page - modules
–! Reuse of generic standards

•! Suitable for
–! Top management strategy
–! Marketing product plans
–! Software engineering
–! Systems engineering
–! Specific engineering

•! Aircraft for example

Planguage standards!

Slide 10!Why is Planguage ‘Competitive’?

•! It focuses on high level and
critical stakeholder needs

•! It is very specific about when
results must be delivered

•! It is quantitative about all
critical values and qualities

•! It gives us tools to prioritize
essentials more intelligently

•! It integrates risk analysis
into all plans dynamically

•! It looks at ‘value for
resources’ continuously

•! It exploits realistic project
feedback continuously

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 10!

Slide 11!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 11!

Concept Glossary: Crystal Clear Competitive Concepts

•!Glossary Purpose.

•! The central purpose of this
Planguage glossary is
–! to define ‘Concepts’ –

–! not words.

•! These concepts have many
‘names’
–! (or ‘tags’ in Planguage) and

attributes.
Requirement
Concept *026 January 23rd 2008

A ‘requirement’ is a
stakeholder-prioritized
future state.

Slide 12!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 12!

Graphical Language: Notation for Systems Engineering
(well maybe ‘International’ competitiveness)

•! For many concepts we have
defined graphical symbols

•! Keyed Icons: <-
–! So that symbols can be keyed

in combination with text
specification

–! Similar to corresponding
drawn icons

•! Drawn icons: !
–! Suitable for graphical

presentation

•! Why?
–! International language

–! Avoids debates over word
choice

–! Short notation

Slide 13!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 13!

Control of Multiple dimensions:
Performance, Costs, Constraints

•! Planguage specializes in
–! trying to get control over

•! multiple and
•! dynamically changing
•! critical system attributes,

–! through quantified
•! requirement specification,
•! design impact analysis and
•! measurement tactics.

•! This helps you compete in
a complex environment!

Slide 14!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 14!

Extendible, Tailorable, Open: Competitive Thru Tailoring

•! Planguage:
–! Free of cost, & royalties
–! Easy to extend

–! Easy to modify locally
•! Corporate

•! Project level
•! National language

–! Designed for re-use and
tailoring of reused elements

Specific

Specification

Language

Specific Product

Specifications

Specific Project

Work Process

Specific

Process

Language

PLANGUAGE

Generic

Work

Process

Descriptions

and

Rules

RS, DS, IE,

EVO & SQC

Specific

Project Work

Process

Descriptions

(including Rules)

Product

Language

Project Input

Specifications

Generic

Process

Language

Specification Language

‘Planguage’
Generic

Version

including

Templates

(Specific)

Project Language

I

II

III

Planguage

as presented

in this book

Project

Specific

Version

Project

Process

Slide 15!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 15!

Rich views, traceability, configuration management:
Competitive Insights

•! Some Planguage parameters which
define relationships.

–! Authority

–! Source

–! Owner

–! Author

–! Implementer

–! Impacts

–! Supports

–! Supported By

–! Version

–! Derived From

–! Sub-component of

–! Sub-components {list}

–! Dependencies

–! Contract

–! Test Case

–! Scenario

–! Model

–! And more!

Slide 16!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 16!

Risk Management: Competitive Necessity

•! Planguage integrates specific
tools for risk specification
–! with more general tools for risk

recognition and risk analysis
–! in a single integrated

specification language.

•! This is a competitive
approach to risk management

Slide 17!

Competitiveness: Defining it. 1 of 3

Competitiveness

Ambition: Largest 3rd party
developer mobile community,
demonstrably superior on all Key
Use Cases to any competitor. <-
CEO 19 April 2004.

Enterprise Credentials <-6.8 SPS,
Initially. Now defined

Type: Strategic Business Objective.
__
Version: 4/22/04 9:43 am

Confidentiality: EXAMPLE

Spec Owner: Simon X

Result Responsible: MARY

Source: <?>

Past [H1 2004]: ~ 0% <-CEO.
Rationale: there are few enterprises
that today use their phones beyond
simple voice. <-CEO

Ambition: ensure that Corporate licensees
have more than X% of Enterprise
deployment,

Scale: % Market Share of defined
Enterprise (default All Enterprise) deployment
that Corporate Licensees have.

Enterprise: defined as: phones used by
Fortune 1000 and SME (Small Medium
Enterprise)/SOHO (Small Office Home Office)
for services and communication beyond
simple voice.

Measurement Process [Longer Term]:
<Gartner/IDC/other analyst to produce the
stats>.

Measurement Process [H2 short term]:
<count the number of network operators
actually currently supporting Corporate
Licensees in Corporate (hopefully Enterprise)
Sales.> In addition, we can look at licensee
spend on SXXB (Corporate Enterprise
Advisory Board).

April 21, 2008! Slide 17!© Tom@Gilb.com www.Gilb.com !

Slide 18!

Competitiveness: Goals 2 of 3

Goal [H1 2005, Enterprise, If
this market actually emerges]
25% ±10%? <-CEO. !

Assertion: this market will
suddenly emerge <-CEO!

Goal [H2 2006]: 40%±10%?
<-CEO!

Goal [2010] 70% ±20%? <-
Guess CEO!

Fail [H2 2006, If this market
emerges]: < 25% <-CEO!

Rationale: (Fundamental
Objective, Big Bill Sidelined)
ensuring that Big Bill does not
secure Dominance (<more than
2x relative market share> <-
CEO) in enterprise terminals.!

Value: <Big Bill are not able to
leverage their dominance in the
corporate sector to break into
Enterprise consumer market.>
Corporate protects its market
share in consumer area.>. <A
very big number £> <-CEO!

April 21, 2008! Slide 18!© Tom@Gilb.com www.Gilb.com !

Slide 19!

Competitiveness: Risk 3 of 3

Risks (of not meeting Goal):
R1: pressure to include consumer market PREQs
in the product drives out the PREQs required for
Enterprise. <-CEO
R2: core enterprise partners fail to invest
alongside Corporate. <-CEO
R3: Corporate licensees fail to invest
<sufficiently> to support Corporate and the
licensees ambitions. Note their marketing people
have same conflict as in R1.<-CEO
R4. Corporate geographic footprint blinds it to the
Enterprise market. The fact we are strong in
Europe, will be in Japan, but small position in
USA. <-CEO
R5. Big Owner developments of Enterprise
enabling technology are located within Big Owner
layers of technology, and are therefore blocked to
other Corporate licensees who are not Big Owner
licensees.<-CEO
R6. RXX BB are refused to support Corporate OS
– Corporate licensees are refused to license RIXX
technology because of patent risks. <-CEO
R7: if Big Bill bundling of phones plus Exchange
server 2003 is a market-winning proposition. Their
classic bundling strategy is applied. <- CEO
R8: others…. Can be added , but not now.

Issues (to be resolved):
I1: can we get Gartner to measure this
market in a way we find acceptable (not the
PC market tradition they have)? <-CEO
I2: will licensees support SEAB? <-CEO

I3: How will EU anti trust ruling on Big Bill be
implemented.? If bundling is blocked, or
API’s are opened by EU, or then MS
proposition is weakened.<- CEO
I4: can Corporate ensure effective
cooperation between Series 60 and UIQ to
allow Enterprise vendors access to the entire
Corporate base with minimum effort? <-CEO
I5. etc.

Dependencies (must be in place before we
can reach Goal):
D1: none?

Impacted by:
Middleware Provider Support, Operator
Endorsement, Analyst Support, SEAB and
SEAC Support. <- 2.5 and 2.6 EGMP,
Data Services? <- 2.6 EGMP,

Supports: Big Bill Sidelined

Is Part of Competitiveness April 21, 2008! Slide 19!© Tom@Gilb.com www.Gilb.com !

Slide 20!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 20!

Dynamic Priority Management:
Competitive Use of Scarce Resources

•! Priority is
–! Claim on scarce or limited resources

•! Is a function of
–! Constraint type (Survival, ..)

–! Target type (Goal, ..)

–! Remaining gap to constraint or target
level & [qualifiers]

–! Remaining budgeted resources; and
their constraint and target levels

•! Priority is dynamically computable!
•! Priority is also related to other

specification parameters such as
–! Authority

–! Sponsor

–! Source

Slide 21!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 21!

Part 2: Integrating competitive benchmarks and competitive requirement targets

•! Systems analysis
benchmarks are integrated
with setting future
requirements.

•! This improves Competitive
Analysis and Competitive
Engineering Specification
–! Scales: powerful flexible

measures to compete with

–! Meters: practical ways to
measure performance levels

–! Benchmarks: Past, Record,
Trend

–! Targets: Goal, Stretch, Wish,
Ideal

–! Constraints: Fail, Survival

Slide 22!

‘Function: ‘what a system does’.
Requiring ‘Functions’ that are ‘designs’ is uncompetitive

•!Functions are often confused with other specifications, like:

•!‘Features’ (innovations, compared with other systems)

•!Means to ends (like ‘designs’, ‘architecture’, ‘strategies’)

•!Use Cases (human to system interaction sequences,

•!which may be partly ‘analysis’ (‘what is’),

•!or ‘design (what we might want).

•!DANGER: If you accept, or cause, the confusion,

(requiring designs, that are not really ‘required’)

•!You are likely to get uncompetitive designs,

•!Meaning you get worse performance and costs,

•!Than you could have gotten.

•!Planguage is extremely conscious of the difference,

•!and tries to make sure you do get your competitive opportunities.

Function
Symbol = !

‘Oval’!

Design

Symbol =
Rectangle!

Function !

Design!

Function !

?

April 21, 2008! Slide 22!© Tom@Gilb.com www.Gilb.com !

Slide 23!‘Requirement’: Defined
Concept *026 Version January 23rd 2008

•! A ‘requirement’ is a

–! “stakeholder-prioritized future state”.

•! Some consequences of this definition:

–! requirements are not ‘absolute’

–! a requirement’s effective priority’ is variable, and depends on many factors, like
•! Value of doing it, cost of doing it, related constraints,

•! stakeholder power, formal requirement inclusion.

–! Planguage helps you intelligently manage requirement priorities, so that you get maximum value for your limited
resources (= ‘competitiveness’).

Requirement *026

Function

Requirement

*074

Performance

Requirement

*100

(Objective)

Resource

Requirement

*431

Design

Constraint

*181

Condition

Constraint

*498

Function

Target

*420

Function

Constraint

*469

Performance

Target

*439 (goal)

Performance

Constraint

*438

Resource

Target

*436 (budget)

Resource

Constraint

*478

Quality Requirement

*453
Resource Saving Requirement

*622
Workload Capacity Requirement

*544

Vision

*422

Mission

 *097

Goal

*109

Budget

*480

Stretch

*404
Wish

*244

Fail

*098

Survival

*440

Stretch

*404

Wish

*244

Fail

*098

Survival

*440

Some!

Formally !

Defined!

Requirement!

Concepts and!

types!

April 21, 2008! Slide 23!© Tom@Gilb.com www.Gilb.com !

Slide 24!‘Requirement’ – a competitive concept

•! A clear understanding
and agreement about
what a ‘requirement’ is

–!Allows you to be more
competitive

–! by focusing on

•! REAL COMPETITIVE
NEEDS

•! At a competitively high
level

–!Where the power and
leverage and decision-
making is.

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 24!

Slide 25!3 views of a system: Powerful distinctions

April 21, 2008! Slide 25!© Tom@Gilb.com www.Gilb.com !

Slide 26!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 26!

Systems analysis benchmarks are integrated with setting future requirements.

Adaptability:

Type: Quality Requirement.

Scale: the calendar time in hours needed to re-configure the

defined [Base Configuration] to any

other defined [Target Configuration] using defined [Methods] and
defined [Reconfiguration Staff].

Expert Reconfiguration: Defined As:

 {Base Configuration = Novice Setup,

 Target Configuration = Expert Setup,

 Methods = Selection of Library Reconfiguration Process,

 Reconfiguration Staff = Qualified Expert}.

======== Benchmarks ==================================

Past [Expert Reconfiguration, Version 0.3, Asian Market]: < 1 hour.

========= Goals (Performance Targets)===================

Authority [Goals]:Federal Drug Administration.

Goal [Expert Reconfiguration, Deadline = Version 1.0]: < 0.5 hours.

Goal [Expert Reconfiguration, Deadline = Version 2.0]: < 0.1 hours.

========== Constraints ================================

Fail [All USA Products]: < 0.7 hours.

Fail [Expert Reconfiguration, Deadline = Version 2.0]: < 0.5 hours.

Survival [Expert Reconfiguration, European Market]: < 1 working
day.

?

?

?

Past: any useful reference

point. A performance or

resource level achieved, in

say, your old product or a

competitor’s organization

Record: best in some class, state

of the art. Something to beat. A

challenge for you. An extreme

Past

Trend: a future

estimate based

on the Past

Limit: a level needed

for system survival

Plan: the practical

level needed for

satisfaction,

happiness, joy and

100% full payment!

Wish: a level valued by a

stakeholder, but which might

not be feasible. Project is not

committed to it

Stretch: a level that is valued,

yet presents a challenge to attain
+

Must: a level needed

to avoid a system failure

of some kind

[]
Survival

Goal

Slide 27!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 27!

Benchmark/Requirement Integration
improves Competitive Analysis and Competitive Engineering Specification

•! Competitive Analysis
–! Make sure your own and

competitor levels (Past,
Record) are

•! analyzed and specified

•! together with future
requirements (Trend)

•! Competitive Engineering
–! Make sure you not only specify

the balanced ‘Goal’

–! but that marketing information
about ‘Wish’ is captured.

•! Even if they cannot be satisfied
just now!

–! Make sure that the engineer is
challenged by a ‘Stretch’ goal

Slide 28!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 28!

Scale: The Quantification Foundation

Scale! -|-|-! ! !
Concept *132 August 17, 2004!

•"A scale of measure defines a

single scalar attribute dimension. !

•" It helps us ‘quantify’.!

•" It is the basis for quantifying

variable attributes. !

All scalar numeric level estimates, specifications, or
measurements, are used with an implied (nearby and

previous), or explicit, reference to a defined scale of measure. !

"!

A ‘Scale:’ parameter specification defines the units of

measure, and includes any other useful context, including
scale qualifiers (‘for defined [Tasks]’), normalizers (‘per

week’), and environment specification (‘for Expert

Hackers’). !

"!

Some elements of the context of a scale of measure, but never
the units of measure themselves, may be specified outside the

Scale specification; for example in target qualifiers, or in

term definitions.

User Friendly:

Type: Quality Requirement. “Teotihuacan”

Ambition: To consistently exceed Competitor’s
ease of learning.

Scale: Time to Master

 a defined [Task]

 by defined [Learner].
Meter: <Use good academic practice, do at least
10 Tasks, with at least 5 Learner Types and at
least 50 people>.

Record [Competitor AA, Product XYZ, Task = Dial
Out, Learner = Novice]: 2 minutes <- Our
current tests.

Goal [Our Company, Product ABC, Task = Dial

Out, Learner = Novice]: < 10 seconds <-

Marketing Requirement 4.5.7.

Master: Defined as: ability to pass a suitable

approved test.

Slide 29!Defined ‘Scale’ : Basic Competitive Tool

•! Demands
comparative
thinking.

•! Unambiguously
clear

•! Team Aligned
with Business

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 29!

1. Central to The Corporations business strategy is to be the

world’s premier integrated <domain> service provider.

2. Will provide a much more efficient user experience

3. Dramatically scale back the time frequently needed after the

last data is acquired to time align, depth correct, splice, merge,

recompute and/or do whatever else is needed to generate the

desired products

4. Make the system much easier to understand and use than
has been the case for previous system.

5. A primary goal is to provide a much more productive system

development environment than was previously the case.

6. Will provide a richer set of functionality for supporting next-

generation logging tools and applications.

7. Robustness is an essential system requirement (see rewrite in

example below)

8. Major improvements in data quality over current practices

Real Example of Lack of Scales!

This lack of clarity cost them $100,000, 000!

Slide 30!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 30!

Meters: practical ways to measure performance levels.
To Give us facts and know how to compete better

Meter -|?|- Concept *093 April 18, 2003!

•! A Meter parameter is used
to
–! identify, or specify,

–! the definition of a practical
measuring device, process,
or test

–! that has been selected for use
in measuring a numeric value
(level) on a defined Scale.

Repair:

Ambition: Improve the speed of repair of faults substantially, under
given conditions.

Scale: Hours to repair or replace, from fault occurrence to when
customer can use faultlessly, where they intended.

Meter [Product Acceptance]: A formal test
in field with at least 20 representative
cases,

 [Field Audit]: Unannounced field
testing at random.

================ Benchmarks
============================

Past [Product = Phone XYZ, Home Market, Qualified Dealer Shop]:

{0.1 hours at Qualified Dealer Shop +

0.9 hours for the Customer to transit to/from Qualified Dealer Shop}

Record [Competitor Product XX]: 0.5 hours average.

"Because they drive a spare to the customer office."

Trend [USA Market, Large Corporate Users]: 0.3 hours. "As on-site
spares for large customers."

=========== Targets
=======================================

Goal [Next New Product Release, Urban Areas, Personal Users]: 0.8
hours in total,

 [Next New Product Release, USA Market, Large Corporate
Users]: 0.2 hours

 <-Marketing Requirement, 3 February This Year.

=========== Constraints
====================================

Fail [Next New Product Release, Large Corporate Users]: 0.5 hours
or less on average

<-Marketing Requirement, 3 February This Year.

“… there is nothing more important for the transaction of business than use of
operational definitions.”

W. Edwards Deming, 1986 (Out of the Crisis, MIT Press)

Slide 31!

Meter: The Measuring Process:
Competitive Feedback Early and Frequently

Stream gaging along the
Verde River, Arizona

Diagram of a stream cross
section showing the location

of velocity measurements

(white dots) that must be
acquired during gaging.

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 31!

Slide 32!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 32!

Benchmarks: Past, Record, Trend
Benchmarks tell us where we are, or will be, in relation to competitors

•! Past: A relevant benchmark level
already achieved by an existing
system (our own, competitive, or any
other system) that is worth
consideration.

•! Record: A ‘Past’, which is the best
known result [in some defined area].
A 'state-of-the-art' value.

•! Trend: An extrapolation of past data,
trends and emerging technology to a
defined [time and place].

–! Aside from our own project’s plans
to improve this level, what future
levels are likely to be achieved by
others?

–! What will we be competing with?

 Usability [New Product Line, Major Markets]:

Ambition: To achieve a low average time-to-learn to use our
telephone answerer, under various conditions.

Scale: Average number of minutes for defined [representative user

and all their household family members over 5 years old] to
learn to use defined [basic daily use functions] correctly.

Meter [Product Acceptance]: A formal test in field with at least 20
representative cases,

 [Field Audit]: Unannounced field testing at random.

========= Benchmarks ==========

Past [Product XYZ, Home Market, People
between 30 and 40 years old, in homes in
Urban Areas, <For one explanation &
demo>]: 10 minutes.

Record [Competitor Product XX, Field Trials]: < 5
minutes?> <- one single case reported,

Trend [USA Market, S Corporation, By Initial

Release]: 10 seconds <- Public Market
Intelligence Report.

======== Constraint =====================

Must [Next New Product Release, Children over 10]: 5 minutes

<- Marketing Requirements 3 February Last Year.

========= Targets ================

Plan [Next New Product Release, Urban Areas, Personal Users]: 5
minutes total,

 [Next New Product Release, USA Market, Large Corporate

Users]: 5 minutes <- Marketing Requirements 3 February Last
Year.

Stretch [Next Year]: (Record - 10%).

Slide 33!

Benchmarks are the
basis for setting future

competitive goals

•!Benchmark Levels

•! Are ‘systems analysis

•!Determine where you are ‘now’

•!Past, Now

•!Where you might be in future

•!Trend

•!Where competitors are now

•!Past, Record

•!Where they might be in the future

•!Trend

•!Can tell us ‘state of the art’

•!Record

April 21, 2008! Slide 33!

Wooden sankofa bird – !

From the country of Ghana !

a wooden representation of !

the fabled Sankofa Bird. !

The Sankofas' head is !

always turned backwards,!

 thus "facing the past." !

The Sankofa represents !

the old African adage!

 "Always remember the past !

for therein lies the future,!

 if forgotten..." !

We are destined to repeat it. !

Slide 34!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 34!

Targets: Goal, Stretch, Wish, Ideal
The Competitive Requirement or Need

•! Goal: A future required level
–! under [defined conditions], which

–! at least has to be achieved to claim success in

meeting a requirement.

–! A signal to stop investing in levels better than this level;
•! because the value gained is insufficient to justify additional costs.

•! Budget: a ‘Goal’ level for costs.

•! Stretch: A future desired and valued level,
under [defined conditions], which is
designed to challenge people to exceed
Plan levels.

•! Wish: A future desired level, which is valued
by a stakeholder.

–! The requirement is not planned or promised yet;

–! due to technical or cost reasons – or lack of
evaluation,

–! but it is recorded, and kept in the requirement

database (even if not acceptable now),

–! so that it can be borne in mind as a future competitive
opportunity.

•! Ideal: a future desired level which is perfect.

 Usability [New Product Line, Major Markets]:
Ambition: To achieve a low average time-to-learn to use our telephone

answerer, under various conditions.
Scale: Average number of minutes for defined [representative user and

all their household family members over 5 years old] to learn to
use defined [basic daily use functions] correctly.

Meter [Product Acceptance]: A formal test in field with at least 20
representative cases,

 [Field Audit]: Unannounced field testing at random.

========= Benchmarks ========================
Past [Product XYZ, Home Market, People between 30 and 40 years old,

in homes in Urban Areas, <For one explanation & demo>]: 10
minutes.

Record [Competitor Product XX, Field Trials]: < 5 minutes?> <- one
single case reported,

 [USA Market, S Corporation]: 10 seconds <- Public Market
Intelligence Report.

======== Constraint =====================

Fail [Next New Product Release, Children over 10]: 5 minutes
<- Marketing Requirements 3 February Last Year.

========= Targets ================

Goal [Next New Product Release, Urban Areas,
Personal Users]: 5 minutes total,

 [Next New Product Release, USA Market,
Large Corporate Users]: 5 minutes <-
Marketing Requirements 3 February Last
Year.

Stretch [Next Year]: (Record - 10%).

Wish [Ultimately] <few seconds>

Ideal: 0 seconds.

---[----->?--->+--->------!--]---->O---[--!------>--->+--->?-------]---->

Resource

Constraints:

Resource

Targets:
Wish Stretch Budget

Performance

Constraints:

Performance

Targets:
Goal Stretch Wish

Survival Fail Survival
Survival Fail Survival

Slide 35!

Targets
Your Vision of Being Competitive

Competitive Levels of
performance

•! Speculation, Subjective
•! Can be adjusted as we

learn what is competitive
•! Have unknown costs

•! Have unknown side effects

•! Can be adjusted as we
learn costs and effects

•! Priority of a target varies
depending on
–! Costs

–! Many factors like power,
value, policy

Target Priority Varies

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 35!

Slide 36!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 36!

Targets
Numeric Points On A Scale:

Your Vision of Competitiveness

---[----->?--->+--->------!--]---->O---[--!------>--->+--->?-------]---->

Resource

Constraints:

Resource

Targets:
Wish Stretch Budget

Performance

Constraints:

Performance

Targets:
Goal Stretch Wish

Survival Fail Survival
Survival Fail Survival

Slide 37!Some Constraints: Respect while being competitive

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 37!

Slide 38!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 38!

Constraint Levels: Fail, Survival:
 Respect Constraints - to avoid Failure

•! Fail Concept *098 April 21, 2003

–! ‘Failure’ signals an undesirable and
unacceptable system state.

–! A Fail parameter is used to specify a Fail level
constraint; it sets up a failure condition.

–! A Fail level specifies a point at which a system
or attribute failure state can occur.

–! A single specified number (like Fail: 90%) is
assumed to be the leading edge of a Failure

Range.

•! Survival Concept *440 March 3, 2003!

–! Survival is a state where the
system can exist.

•! Outside the survival range is a ‘dead’ system caused by a
specific attribute level being outside the survival range.

–! For example, ‘frozen to death’ or
‘suffocated’.

•! A Survival parameter specifies the upper or lower
acceptable limits under specified conditions [time, place,
event], for a scalar attribute.

•! It is a constraint notion used to express the attribute levels,
which define the survival of the entire system.

 Usability [New Product Line, Major Markets]:

Ambition: To achieve a low average time-to-learn to use our telephone
answerer, under various conditions.

Scale: Average number of minutes for defined [representative user and all

their household family members over 5 years old] to learn to use
defined [basic daily use functions] correctly.

Meter [Product Acceptance]: A formal test in field with at least 20
representative cases,

 [Field Audit]: Unannounced field testing at random.

========= Benchmarks ========================

Past [Product XYZ, Home Market, People between 30 and 40 years old, in

homes in Urban Areas, <For one explanation & demo>]: 10 minutes.

Record [Competitor Product XX, Field Trials]: < 5 minutes?> <- one single
case reported,

 [USA Market, S Corporation]: 10 seconds <- Public Market
Intelligence Report.

======== Constraints=====================

Fail [Next New Product Release, Children over
10]: 5 minutes

<- Marketing Requirements 3 February Last Year.

Survival [Next New Product Release, Children
over 10]: 10 minutes

========= Targets ================

Goal [Next New Product Release, Urban Areas, Personal Users]: 5 minutes

total,

 [Next New Product Release, USA Market, Large Corporate Users]: 5
minutes <- Marketing Requirements 3 February Last Year.

Stretch [Next Year]: (Record - 10%).

---[----->?--->+--->------!--]---->O---[--!------>--->+--->?-------]---->

Resource

Constraints:

Resource

Targets:
Wish Stretch Budget

Performance

Constraints:

Performance

Targets:
Goal Stretch Wish

Survival Fail Survival
Survival Fail Survival

Slide 39!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 39!

Enthoven on Numbers

•! “Numbers are a part of our
language.

•! Where a quantitative matter is
being discussed,
–! the greatest clarity of thought is

achieved by using numbers

–! instead of avoiding them,

–! even when uncertainties are
present.

•! This is not to rule out judgment
and insight.
–! Rather, it is to say, that

–! judgments and insights need,

–! like everything else,

–! to be expressed with clarity

–! if they are to be useful.”

•! Alain Enthoven, June 1963, Naval War

College, Newport Rhode Island (see note for more detail),
Hughes98, Rescuing Prometheus p164

See the note for more detail on Enthoven!

Slide 40!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 40!

Part 3: Quantified Quality Control of specifications
Competing By Stopping “Garbage In” Earlier

•! Quality Control of Specification (SQC)

•! The quantified Exit and Entry controls

•! Reviewing the Quality of a specification’s ‘Competitiveness’

•! How does Planguage help QC?

•! How does Planguage help Reviews?

•! How does QC impact competitiveness?

Slide 41!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 41!

Quality Control of Specification (SQC)

•! Spec QC is done
–! when the input (other) work process meets entry conditions (E)

–! According to a defined QC process (T)

–! And is released to other process when exit conditions are met (X)

–! And is done by comparison with other related documents and spec rules
(Input)

–! Producing reports and process control statistics (Output)

Slide 42!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 42!

Quality Control of Specification: Detail (2)

Slide 43!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 43!

The quantified Exit and Entry controls

•! Entry and Exit Condition example:

•! Maximum estimated 1.0 Major defects per logical
page remaining.

Slide 44!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 44!

The quantified Exit and Entry controls (2)
Assumptions:!

1) 30 major defects/page have been found during SQC. !

2) Your SQC effectiveness is 60% and your SQC is a statistically stable process). !

3) One sixth of your attempts to fix defects fail (One sixth is average failure to fix.) !

4) New defects are injected during your attempts to fix defects at 5%. !

5) The uncertainty factor in the estimation of remaining defects is ± 30%. !

Probably remaining major defects in each (logical) page = !

‘probably unidentified majors’ + ‘bad fix majors’ + ‘majors Injected’ !

Let E = Effectiveness expressed as a percentage (%) = 60% !

Probably unidentified majors = major defects acknowledged-by-editor for each page at Edit * (100 – E) / E !

= 30 major defects/page found * (100 - 60) / 60 = 20 major defects/page. !

Bad Fix Majors = One sixth of fixed majors = So, of 30 attempted fixes, !

! 5 major defects in each page are not fixed. !

Majors Injected = 5% of majors attempted to be fixed = 1.5 major defects/page. !

Probably remaining major defects/page = 20 + 5 + 1.5 = 26.5 remaining major defects/page !

Taking into account the uncertainty factor of ± 30% and rounding down to the nearest whole !

number gives 26 ± 7 Remaining Major Defects/Page !

(Minimum = 19, Maximum = 33 remaining major defects/page). !

Slide 45!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 45!

Reviewing the Quality of a specification’s ‘Competitiveness’

•! Entry Condition:
–! Low-defect exit from Specification Rules

QC
•! So it is complete, clear, consistent, correct

•! Different people (Senior)
–! Different Rules, ask them

•! About idea value

•! About other investments

•! About competition

•! About economics

•! About risks

•! Different Evaluation
–! Not ‘defects’

•! (Rules decide!)

–! Go or no-go to next stage of development
•! (Exit, numeric objective)

–! Responsible recommendations
•! What to do if 100 Majors/Page?

–! Status determination
•! (Approved, Clarity Exit, Content Exit, Not

Exit, Draft Not Reviewed…)

Spec

Draft
Spec QC Spec

Review

Spec

OK
Exit Exit

QC & Spec Rules (Clarity)!

1.! Performance requirements must be
quantified!

2.! Sources must be specified for all details!
3.! Unambiguous to readership!

4.! Clear enough to test!

5.! Consistent with sources and siblings!

Competitiveness Rules. (Content)!

1.! Number one in market performance levels!
2.! Number one in cost levels!

3.! Number one in service levels!
4.! Number one in distribution capability!

Slide 46!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 46!

How does Planguage help Spec Quality Control?
•! Planguage:

–! Provides specific standards to check for defects (rules, exit conditions, entry conditions)

–! Provides well defined and integrated processes for QC and all related processes of specification
and project management

–! Contains structures which enable efficient cross checking of information by people and computers.

–! Contains a consistent set of standards and concepts for all types of specification - ‘once learned
applies to all’

 1988 89 90 91 92 93 94 95

Achieving Project Predictability at Raytheon

Cost at Completion as a % of Budget
150%

140%

130%

120%

110%

100%

From 43% overrun …

… to 3% plus-or-minus

Slide 47!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 47!

How does Planguage help Reviews?

•! It ensures
–!intelligible and

consistent
specifications

–!Numeric exit from
SQC before review

–!so that reviews are
based on a solid
foundation - and do
not waste senior
people’s time, with
sloppy work

Spec

Draft
Spec QC Spec

Review

Spec

OK
Exit Exit

Slide 48!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 48!

How does Spec QC impact competitiveness?

•! Indirectly

–! By avoiding rework (40%+ of total project cost if you are not careful!)

–! Speeds up projects by factor 2 to 3 (ex. Raytheon 95 SEI, below))

Productivity

170%
Increase

 88 89 90 91 92 93 94 95

Slide 49!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 49!

POSSIBLE PURPOSES FOR USING SQC

- Reducing Time-to-Delivery

- Measuring the Quality of a Document

- Measuring the Quality of the Process producing the Document

- Enabling Estimation of the Number of Remaining Defects

- Identifying Defects

- Removing Defects

- Preventing additional ‘Downstream’ Defects being generated by removing existing Defects

- Improving the Engineering Specification Process

- Improving the SQC Process

- On-the-Job Training for the Checkers

- Training the SQC Team Leader

- Certifying the SQC Team Leader

- Peer Motivation

- Motivating the Managers

- Helping the Specs Writer

- Reinforcing Conformance to Standards

- Capturing and Re-using Expert Knowledge (by use of Rules and Checklists)

- Reducing Costs

- Team Building

- Fun – a Social Occasion

Slide 50!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 50!

Part 4: Impact Estimation Tables for quantified evaluation of design.
Finding competitive designs

•! What is a ‘design’?
(architecture, solution)

•! What are the principles of
evaluating a design?

•! How do we evaluate a single
dimension of impact?

•! How can we evaluate all
dimensions of impact?

•! What uses can we put
impact estimation to?

•! How does Impact Estimation
relate to Planguage?

•! How do we specify a design
with impacts?

Slide 51!

Version April 21, 2008! www.Gilb.com!

Impact Estimation!

Slide 51!

Evidence - by Thomas and John

"The most formidable weapon against
errors of every kind is reason."

--Thomas Paine

"Facts are stubborn things; and whatever
may be our wishes, our inclinations, or the
dictates of our passions, they cannot alter

the state of facts and evidence.”

 --John Adams

Slide 52!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 52!

What is a ‘design’? (architecture, solution)

Design Idea! !

Concept *047 March 15, 2003 !

•! A design idea is
–! anything

–! that will satisfy

–! some requirements.

•! A set of design ideas
–! is usually needed to solve a larger

‘design problem’.
•!

SCALAR REQUIREMENT SPECIFICATION

Participation: Scale: % of worldwide membership participating. Goal:

10%.

Representation: Scale: % of worldwide membership represented
within defined <groups>.

 Goal [Age under 25 or equating to <student status>]: 10%.

Information: Scale: % of talks rated as ‘good’ or better (5+ on
feedback sheet scale). Goal: 50%.

Conviction: Scale: % participants wanting to return next conference.
Goal: 80%.

Influence: Scale: % participants who <improve as result of the

conference>.

 Past: 90%, Goal: 95%.

Fun: Scale: % participants rating the conference-city quality as ‘good’

or better (5+ on feedback sheet scale).

 Past: 45%. Plan: 60%.

Cost: Resource Budget: Scale: total cost for an individual participant
including travel costs.

 Fail: $2,000. Goal: $1,200 or less.

DESIGN SPECIFICATION (simple version)

 Central: Choose a location in the membership center of
gravity (New York?)

Youth: Suggest and support local campaigns to finance

‘sending’ a young representative to conference.

Facts: Review all submitted papers on <content>.

London: Announce that the conference is to be in London

next time.

Diploma: Give diplomas for attendance, and additional
diplomas for individual tutorial courses.

Events: Have entertainment activities organized every
evening: river tours, etc.

Discounts: Get discounts on airfare and hotels.

Slide 53!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 53!

Example of a (Real, partial) Design Specification using Planguage

Tag: OPP Integration.

Type: Design Idea [Architectural].
============ Basic Information ========================
Version:
Status:

Quality Level:
Owner:
Expert:
Authority:

Source: System Specification Volume 1 Version 1.1, SIG, February 4. - Precise reference <to be supplied by Andy>.

Gist: The X-999 would integrate both ‘Push Server’ and ‘Push Client’ roles of the Object Push Profile (OPP).
Description: Defined X-999 software acts in accordance with the <specification> defined for both the Push Server and Push Client roles of the

Object Push Profile (OPP).

Only when official certification is actually and correctly granted; has the {developer or supplier or any real integrator, whoever it really is doing the
integration} completed their task correctly.

This includes correct proven interface to any other related modules specified in the specification.
Stakeholders: Phonebook, Scheduler, Testers, <Product Architect>, Product Planner, Software Engineers, User Interface Designer, Project Team

Leader, Company engineers, Developers from other Company product departments which we interface with, the supplier of the TTT, CC.
“Other than Owner and Expert. The people we are writing this particular requirement for”

============= Design Relationships =========================
Reuse of Other Design:
Reuse of this Design:
Design Constraints:

Sub-Designs:
============== Impacts Relationships =======================
Impacts [Intended]: Interoperability.
Impacts [Side Effects]:

Impacts [Costs]:
Impacts [Other Designs]:
Value:
Interoperability: Defined As: Certified that this device can exchange information with any other device produced by this project.
============= Impact Estimation/Feedback ======================

Impact Percentage [Interoperability, Estimate]: <100% of Interoperability objective with other devices that support OPP on time is estimated to be
the result>.

============== Priority and Risk Management ========================
Assumptions: There are some performance requirements within our certification process regarding probability of connection and transmission

etc. that we do not remember <-TG.
Dependencies:
Risks: <none identified>.
We do not ‘understand’ fully (because we don’t have information to hand here) our certification requirements, so we risk that our design will fail

certification. <-TG
Priority:
Issues:

============== Location of Specification ========================
Location of Master Specification: <Give the intranet web location of this master specification>.

Slide 54!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 54!

What are the principles of evaluating a design?

•! Avoid violating constraints

•! Meet Target and Function requirements

Design IdeaDesign

Ideas

Requirements
Required Changes in

System Attributes

and any Constraints

Function Requirement
•Function Target

•Function Constraint

Performance Requirement
•Objective

•Performance Constraint

Budget
•Budget Target

•Budget Constraint

Design Constraint

Condition Constraint

 Design Classes:

• Function (Function Design)

• Performance (Performance Design)

• Resource (Resource Design)

• Constraint (Constraint Design)

Binary

Binary

Binary

Scalar

Scalar

Does the Design Idea’s functionality match

the system’s existing and/or required

functionality? Yes/No

Does it conflict with any function constraint? Yes/No

What is the quantitative impact of this Design Idea

on the Performance Requirements?

What is the quantitative impact of this Design Idea

on the Budgets?

Does the design of the Design Idea conflict with

any of the system’s Design Constraints? Yes/No

Does any aspect of the Design Idea conflict with

any of the system’s Condition Constraints? Yes/No

Slide 55!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 55!

How do we evaluate a single dimension of impact?

•! We must estimate or measure the numeric cumulative
impact of the design

–! on a defined Scale,

–! using a defined Meter,

–! with respect to target and constraint levels.

Slide 56!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 56!

How can we evaluate all dimensions of impact?

•! We can use an Impact (Estimation) Table

Design
Ideas

Objectives

Central Youth Facts London Diploma Events Discounts
Total

Participation 80%±50% 60%±70% 0%±50% 0%±50% 30%±50% 20%±50% 30%±50% 220%±370%

Representation 80%±50% 80%±50% 10%±50% 0%±50% 10%±50% 20%±50% 50%±40% 250%±340%

Information 0%±50% 20%±40% 80%±50% 0%±20% 20%±50% 0%±50% 0%±30% 120%±290%

Conviction 0%±10% 20%±50% 60%±30% 80%±50% 10%±50% 80%±50% 0%±50% 250%±290%

Influence 0%±50% 40%±40% 60%±50% 0%±50% 80%±50% 80%±50% 0%±50% 260%±340%

Fun 50%±50% 40%±50% 10%±50% 0%±0% 0%±0% 80%±50% 0%±0% 180%±200%

Total 210%

±260%

260%

±300%

220%

±280%

80%

±220%

150%

±250%

270%

±300%

80%

±220%

Budgets

Cost
10% 10% 10% 10% 1%±5% 50%±50% 80%±50% 171%±105%

Benefit–to-
Cost Ratio

210%/10% 260%/10% 220%/10% 80%/10% 150/1 270/50 80/80

Slide 57!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 57!

What uses can we put impact estimation to?
IE can be used for a wide variety of purposes including:

1. Evaluating a single design idea. How good is the idea for us?

2. Comparing two or more design ideas to find a winner, or set of winners. Use IE, if you want to set up an argument against a prevailing popular,
but weak design idea!

3. Gaining an architectural overview of the impact of all the design ideas on all the objectives and budgets. Are there any negative side effects?
What is the cumulative effect?

4. Obtaining systems engineering views of specific components, or specific performance aspects.

Are we going to achieve the reliability levels?

5. Analyzing risk: evaluating a design with regard to ‘worst case’ uncertainty and minimum credibility.

6. Planning evolutionary project delivery steps with regard to value and cost.

7. Monitoring, for project management accounting purposes, the progress of individual evolutionary project delivery steps and, the progress to
date compared against the requirement specification or management objectives.

8. Predicting future costs, project timescales and performance levels.

9. Understanding organizational responsibility in terms of performance and budgets by organizational function.

 In 1992, Steve Poppe pioneered this use at executive level while at British Telecom, North America.

10. Achieving rigorous quality control of a design specification prior to management reviews and approval.

11. Presenting ideas to committees, management boards, senior managers, review boards and customers for approval.

12. Identifying which parts of the design are the weakest (risk analysis). If there are no obvious alternative design ideas, any ‘weak links’ should
be tried out earliest, in case they do not work well (risk management). This impacts scheduling.

13. Enabling configuration management of design, design changes, and change consequences.

14. Permitting delegation of decision-making to teams. Teams can achieve better internal progress control using IE, than they can from
repeatedly making progress reports to others, and acting on others’ feedback.

15. Presenting overviews of very large, complex projects and systems by using hierarchical IE tables. Aim for a one page top-level IE view for
senior management.

16. Enabling cross-organizational co-operation by presenting overviews of how the design ideas of different projects contribute towards
corporate objectives. Any common and conflicting design ideas can be identified. This is important from a customer viewpoint; different
projects might well be delivering to the same customer interface.

17. Controlling the design process. You can see what you need, and see if your idea has it by using an IE table. For example, which design idea
contributes best to achieving usability? Which one costs too much?

18. Strengthening design. You can see where your design ideas are failing to impact sufficiently on the objectives; and this can provoke thought
to discover new design ideas or modify existing ones.

19. Helping informal reasoning and discussion of ideas by providing a framework model in our minds of how the design is connected to the
requirements.

20. Strengthening the specified requirements. Sometimes, you can identify a design idea, that has a great deal of popular support, but doesn’t
appear to impact your requirements. You should investigate the likely impacts of the design idea with a view to identifying additional
stakeholder requirements. This may provide the underlying reason for the popular support. You might also identify additional types of
stakeholders.

Slide 58!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 58!

Deeper Into Estimation Parameters?

Learning:

Ambition: Make it substantially
easier for our users to
learn tasks <- Marketing.

Scale: Average time for a
defined [User Type: default
UK telesales trainee] to
learn a defined [User Task:
default Response] using
<our product’s instructional
aids>.

Response: Task: Give correct
answer to simple request.

Past [last year]: 60 minutes.

GN: Goal [By start of next
year]: 20 minutes.

GA: Goal [By start of year after
next]: 10 minutes.

On-line

Support

On-line

Help

Picture

Handbook

On-line Help +

Access Index

Learning
Past: 60min. <<-> Plan: 10min.

Scale Impact 5 min. 10 min. 30 min. 8 min.

Scale Uncertainty ±3min. ±5 min. ±10min. ±5 min.

Percentage Impact 110% 100% 67% (2/3) 104%

Percentage Uncertainty ±6%
(3 of 50

minutes)

±10% ±20%? ±10%

Evidence Project

Ajax,

1996, 7

min.

Other

Systems

Guess Other

Systems

 + Guess

Source Ajax

report, p.6

World

Report p.17

John B. World Report

p.17 + John

B.

Credibility 0.7 0.8 0.2 0.6

Development Cost 120K 25K 10K 26K

Benefit-To-Cost Ratio 110/120 =

0.92

100/25 =

4.0

67/10 =

6.7

104/26 =

4.0

Credibility-adjusted

B/C Ratio

(to 1 decimal place)

0.92*0.7

= 0.6

4.0*0.8

= 3.2

6.7*0.2

= 1.3

4.0*0.6

= 2.4

Notes:

Time Period is two years.

Longer

timescale to

develop

Picture Handbook: Gist: Produce a radically changed handbook that uses pictures and concrete !

examples to instruct, without the need for any other text. !

Slide 59!

Version April 21, 2008! www.Gilb.com!

Impact Estimation!

Slide 59!

Real (NON-CONFIDENTIAL version) example of an initial draft of setting the

objectives that engineering processes must meet.

Slide 60!

Version April 21, 2008! www.Gilb.com!

Impact Estimation!

Slide 60!

Strategy Impact Estimation:
for a $100,000,000 Organizational Improvement Investment

Slide 61!

Version April 21, 2008! www.Gilb.com!

Impact Estimation!

Slide 61!

Nordic Road Building Software IE:
Selecting the most competitive investments

Slide 62!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 62!

How do we specify a design with impacts?

A Template to make us think competitively
Tag: <Unique Name Capitalized>

Type: Design Idea.

Version: <date and or version number of last change>

Owner: < originator, champion, expert, maintainer, architect, systems engineer>

Description: <describe the design in a dozen, or more, words. The detail should be sufficient to guarantee the
expected impacts and costs estimated below>.

Reuse: <if a currently available component or design is specified, then give it’s tag or reference code here to indicate that a known
component is being applied>

Constraint: <if this design is a reflection of attempting to adhere to any known design constraints, then that should be noted here with
reference one or more of the constraint tags or identities>.

============== Real Expected Impact Section ================

Primary Impacts: <give the main impact or impacts which this design is expected to have on an objective . These
are its main justification for existence!>.

Secondary Impacts: <list expected secondary impacts, good or bad>.

Cost Impacts: <give at least rough impacts on defined budget constraints>.

============== More Formal Impact Estimation =================

Real Impact on defined Scale: <give expected impact result on the Scale defined, when implemented>

%Impact on Specific Goal: <Convert real impact to % impact relative to the main planned level: 100% means
meets defined Plan level on time>.

± %Uncertainty: <give optimistic/pessimistic % deviation, like ±20%, based on best and worst real observations>.

Evidence: <give the observed numbers, facts, dates, places where you have data about this designs impact>

Source: <give the person or written source of your evidence>

Credibility: <Credibility 0.0 low to 1.0 high. Rate the quality of your estimates, based on the historic data you
have>

--------- Repeat this sequence for any other major impact objectives you believe justify the specification effort
here.

============== Other Useful Parameters for Design Specification =========

Risks: <name any factors, which can threaten your estimated impact or bring it to the lowest levels specified>

Assumptions: <state any implied unvoiced, threatening assumptions which if false could threaten your estimates>

Expert: < name and give contact (email?) a useful technical expert in our company or otherwise available to us on this design idea>.

Authority: <name and give contact information to the leading authorities in our co. or elsewhere on this technology. Reference papers
or books for example and websites>

Web Location of Master Specification: <give intranet web location of this master specification>.

Slide 63!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 63!

Part 5: Evolutionary Project Management

•! The fundamentals of an Evo step

•! How does Planguage support Evo
project management?

•! How do you plan an Evo step in
Planguage?

•! How does Evo relate to
requirements?

•! How does Evo relate to Design?

•! How does Evo relate to Risk?

•! How does Evo relate to process
improvement?

•! How does Evo relate to
competitiveness?

Strategic

Management

Cycle

Development

Cycle

Delivery

Cycle

‘The Head’

‘The Body’

Result Cycle

Backroom

Frontroom

Production

Cycle
Backroom

Feedback ‘Go’

Presented by:
Trond Johansen

Software Development Manager

Evo in Confirmit

Passionate People Career Development Leading Technology !

Presentation overview

"! Evo in short

"! Evolutionary project management

"! Requirements

"! Designs &Solutions

"! Evo planning, IET, FIRM Evo cycle

"! Evo’s impact on Confirmit product qualities

"! Benefits of Evo for clients

Passionate People Career Development Leading Technology !

Characteristics of Evo

"! Evo is characterized by:

–! Focus on quantified stakeholder values and product qualities

•! Features & functionality comes as a result of these

–! Frequent deliveries, two-weeks development cycle

–! Frequent feedback from stakeholders

–! Measurements and metrics – Numbers can provide evidence of whether
we are heading in the right direction with respect to the product qualities.

Method developed by Tom Gilb (www.gilb.com) and applied by Nokia, Intel, Microsoft,
Ericsson, Sun Microsystems, Phillips, HP etc

Passionate People Career Development Leading Technology !

Overview of Evo

"! Find stakeholders (End users, super-users, support department, IT
operations, marketing etc) – focus on the most important ones

"! Define the stakeholders real needs and what product qualities that can
fulfill these needs.

"! Identify past/status of product qualities and your goal (how much you
want to improve).

"! Identify possible designs/solutions for meeting your goals

"! Develop a step-by-step plan for delivering, not solutions, but
improvements to Stakeholder Values & Product Quality goals.
–! Deliveries every second week!

–! Measure: are we moving towards our goals?

A comprehensive description of the method can be found in
“Competitive Engineering” by Tom Gilb

Passionate People Career Development Leading Technology !

Requirement management in Evo

"! Evo is different from other standard requirement processes which
mostly focus on function requirements. Evo focus on product quality
requirements, because it is the quality requirements that separate one
product from another.

"! Example: Consider a spell checker in word and a paper based
dictionary, which one do you prefer, and why? The core feature set is
pretty much the same, checkiiiiinggng your spelling..

–! Superior product qualities: Performance.Speed, Usability

Passionate People Career Development Leading Technology !

Defining requirements

"! We try to define our requirements according to a basic standard (in
“Competitive Engineering”, Rules by Tom Gilb):

–! Clear & Unambiguous

–! Testable

–! Measurable

–! No Solutions/designs. How often haven’t we seen statements like this:”The
screen must contain a button that does x y z”, instead of focusing on the
workflow they are trying to optimize

–! Stakeholder Focus

•! The ones that pay for the product: productivity, scalability, performance

•! The ones that use the system: Usability, intuitiveness

Passionate People Career Development Leading Technology !

Product quality - example

"! Usability.Productivity

–! Scale: Time in minutes to set up a typical specified MR-report (what
to measure)

–! Past: 65 min, Tolerable: 35 min, Goal: 25 min

–! (end result was 20 min !)

–! Meter: Candidates with Reportal experience and with knowledge of
MR-specific reporting features performed a set of predefined steps to
produce a standard MR Report (how to measure)

"! The focus is on the day-to-day operations of our users, not a list of
features that they might or might not like. We know that increased
efficiency will be appreciated!

Passionate People Career Development Leading Technology !

Design Ideas

"! For every quality requirement we look for possible Design Ideas

"! E.g. for Quality Requirement: Usability.Productivity we identified the
following Design Ideas:

–! DesignIdea.Recoding Estimated Impact 20 Minutes

–! DesignIdea.MRTotals 13

–! DesignIdea.Categorizations 8

–! DesignIdea.TripleS 3

–! ..and many more

"! We evaluated all these, and specified in more detail those we believed
would add the most value (take us closer to the goal)

"! A chosen Design Idea = Solution

Passionate People Career Development Leading Technology !

Solutions

"! A Solution is defined as a code change with the intention of improving
a product quality. Such code changes are in most cases new features,
but it can also be tuning of existing code. A Solution can also be
implementation of a core functional requirement.

"! A Solution is a work item with defined attributes. The most important
attributes for a Solution is:

–! Summary: WHAT the solution does

–! Rationale: WHY this is a smart thing to do

–! A description of what the Solution consist of. It should be detailed enough
for your peer to understand.

•! GUI tasks (UI components: new screens, buttons etc)

•! Database tasks (new tables, columns etc)

•! New classes, methods etc

•! Tests (Automated and manual)

Passionate People Career Development Leading Technology !

Evo planning

"! We collect the most promising and include them in an Evo plan (also
called Impact Estimation Table: IET)

"! The IET is our tool for controlling the qualities and deliver
improvements to real stakeholders, or as close as we can get to them.
(e.g. Our own support department acting as clients)

"! One Evo step = 2 weeks!

Passionate People Career Development Leading Technology !

Evo planning - example

"! IET for MR Project – Confirmit 8.5

"! Solution: Recoding

–! Make it possible to recode variable on the fly from Reportal.

–! Estimated effort: 4 days

Passionate People Career Development Leading Technology !

Product quality versus code quality

"! Evo is focusing on delivering improvements to product qualities

"! These product qualities materialize themselves as designs/solutions,
often as new features/functionality

"! To control the code quality of these new features we have put
together a simple checklist in our IET framework

Passionate People Career Development Leading Technology !

Evo planning – value vs. cost

"! Project management meetings

–! In the project management meetings, each project leader present the
results from the previous step (IET) as well as the content of next Evo step
(one week)

–! Possible new Solutions are discussed and weighted against each other:
Most value for development resources

Passionate People Career Development Leading Technology !

From concepts to day to day operations

"! Confirmit’s Evo implementation has the following attributes

–! Product Qualities

–! Design Ideas

–! Solutions

–! Evo Step

–! IET

–! Project Management Meetings

–! Design Review Meetings

"! How are these connected in order to form our Evo development
process?

Passionate People Career Development Leading Technology !

Evo cycles

Friday Feature team & Project Management Meeting: Review the quality
of last Evo step and discuss design ideas for next step.

Monday Write detailed Solutions and present them in design review
meeting. Short debrief meeting with project team

Tuesday -
Friday

Development

Monday Development & Get feedback from all stakeholders. Timing can be
adjusted by the project

Tuesday Development

Wednesday Development, finalize Evo step

Thursday Feature team (Maintenance) and project planning

Passionate People Career Development Leading Technology !

Evo Step 1 Evo Step 2 Evo Step n

Design

Test

Code

Deploy &

Feedback

Plan

Passionate People Career Development Leading Technology !

Evo’s impact on Confirmit 8.5 product qualities: Top 5

Product quality Past End state

Usability.Productivity: Time for the system to generate a
defined complex survey

7200 secs 15 secs

Usability.Productivity: Time to set up a typical specified Market
Research report

65 min 20 min

Usability.Productivity: Time to grant a set of end-users access
to a report set and distribute report login info

80 min 5 min

Usability.Intuitiveness: The time it takes a medium
experienced programmer to create a complete and correct data
transfer definition with Confirmit web services without any user

documentation or other aid

15 min 5 min

Performance.Runtime.Concurrency: Maximum number of
simultaneously respondents executing a survey with a click rate
of 20 seconds and a response time <500 ms given a defined

[Survey complexity] and a defined [Server configuration,
Typical]

250 users 6000 users

COMPETITIVE RESULTS: Large, rapid and regular improvement in user-appreciated attributes

Passionate People Career Development Leading Technology !

Evo’s impact on Confirmit 9.0 product qualities

Product quality Customer value

Intuitiveness: Probability that an inexperienced user can
intuitively figure out how to set up a defined Simple Survey
correctly

Probability
increased by 175%

Productivity: Time in minutes for a defined advanced user, with
full knowledge of 9.0 functionality, to set up a defined advanced
survey correctly

Time reduced by
38%

Productivity: Time (in minutes) to test a defined survey and
identify 4 inserted script errors, starting from when the
questionnaire is finished to the time testing is complete and is

ready for production. (Defined Survey: Complex survey, 60
questions, comprehensive JScripting.)

Time reduced by
83% and error
tracking increased

by 25%

COMPETITIVE RESULTS: Large, rapid and regular improvement in user-appreciated attributes

! Intuitiveness!!

Passionate People Career Development Leading Technology !

Evo’s impact

on Confirmit 9.0 (2nd Quarter)

product qualities

Number of responses

increased by 1400%!

Number of responses a database can contain if

the generation of a defined table should be run

in 5 seconds.!

Performance!

Number of panelists

increased by 700%!

Ability to accomplish a bulk-update of X

panelists within a timeframe of Z second! !

Scalability!

Performance!

Product quality!

Number of panelists

increased by 1500% !

Max number of panelists that the system can

support without exceeding a defined time for

the defined task, with all components of the

panel system performing acceptable.!

Customer value !Description!

COMPETITIVE RESULTS: Large, rapid and regular improvement in user-appreciated attributes

Passionate People Career Development Leading Technology !

Evo as a tool for prioritization

"! One of the strengths of Evo is the method’s power of focusing on
delivering value for clients versus cost of implementation.

"! Evo enables us to re-prioritize the next development-steps based
on weekly feedback from our stakeholders

–! What seemed important at the start of the project may be replaced by
other solutions based on gained knowledge from previous steps.

Passionate People Career Development Leading Technology !

Benefits of Evo for clients

"! Identifying REAL stakeholder values in order for Confirmit to
understand how Confirmit can maximize operating efficiency for the
clients

"! Deliver improvements to stakeholder values week by week, focusing
on the most valuable (low hanging fruits) first

"! Evo embraces changing requirements! (traditional development
methods don’t, e.g. waterfall model)

–! By getting client feedback weekly/bi-weekly on developed functionality we
make sure that we stay on the right track

Passionate People Career Development Leading Technology !

Green Week: Improving Maintainability 1 week/month

Slide 86!Primary Evo Concept:
Deliver Potential Value

•! Incremental Value Delivery to Stakeholders

Stake-
holders

Potential Value
Plan Do

 Act Study

!"#$%&'$()*+#,$

-.#/#0$12$1$3#4.56$7389$()*+#$

April 21, 2008! Slide 86!© Tom@Gilb.com www.Gilb.com !

Slide 87!Deliver the highest value for
resources

HIGHEST AVAILABLE Incremental Value Delivery to Stakeholders

Plan Do

 Act Study

30%

5%

-15% 22%

40%

80% 15%

0%

1%

Stake-
holders

Potential Value

April 21, 2008! Slide 87!© Tom@Gilb.com www.Gilb.com !

Slide 88!

Evo Concept:
Potential Value to Many

•! Incremental Value Deliveries to Many Stakeholders

Stake-
holders

Potential Value
Plan Do

 Act Study

April 21, 2008! Slide 88!© Tom@Gilb.com www.Gilb.com !

Slide 89!E v o C o n c e p t : S h o r t T e r m F e e d b a c k

“This looks like a change I can get value from!”

•! Initial Feedback from Stakeholders, after Evo Cycle delivery

Stake-
holder

s
Potential Value

Plan Do

 Act Study
7#:*#.�$-1+;#$

April 21, 2008! Slide 89!© Tom@Gilb.com www.Gilb.com !

Slide 90!

Long-Term Real Value Feedback
“This is the real value we have gotten to date, and what we expect to get

in the future!”

•! 2 Kinds of Feedback from Stakeholders, when
value increment is really exploited in practice after
delivery

Stake-
holders

Potential Value

Plan Do

 Act Study 7#:*#.�$-1+;#$<5='$

Realized

Value Stake-
holders

>#1+.?#0$-1+;#$<5=':41@'5$

April 21, 2008! Slide 90!© Tom@Gilb.com www.Gilb.com !

Slide 91!

Study critical factors in your environment
“Budget cut, Deadline nearer, New CEO, Cheaper Technology”

•! 2 Kinds of Feedback from Stakeholders, when value increment is really exploited in practice after delivery.

•! Combined with other information from the relevant environment. Like budget, deadline,
technology, politics, laws, marketing changes.

Stake-
holders

Potential Value

Plan Do

 Act Study !"#$"%&"'()*+,"-./01-

Realized

Value Stake-
holders

2"*+%3"'()*+,"-./01#4*51/-

Stake-
holders

Stake-
holders

Stake-
holders

Stake-
holders

678"#-

9#%5$*+-

:*$71#;-

April 21, 2008! Slide 91!© Tom@Gilb.com www.Gilb.com !

Slide 92!Gilb’s Evo Method
Used Widely at HP

and Studied ‘Scientifically’

92!

http://www.gilb.com/community/tiki-download_file.php?fileId=65

Slide 93!

Sharma Upadhyayula MIT Study Sample Based on Gilb’s Evo Projects

93!

Slide 94!The Persinscom IT System Case

94!

Slide 95!

Slide 95!

US Army Example: PERSINSCOM: Personnel System

Slide 96!

Slide 96!

Sample of Objectives/Strategy definitions
US Army Example: PERSINSCOM:

Personnel System
Example of a real Impact Estimation table from a Pro-Bono Client (US DoD, US Army, PERSINSCOM).

Thanks to the Task Force, LTC Dan Knight and Br. Gen. Jack Pallici for full support in using my methods.

Source: Draft, Personnel Enterprise, IMA End-State 95 Plan, Vision 21, 2 Dec. 1991. “Not procurement sensitive”.

Example of one of the Objectives:

Customer Service:

Gist: Improve customer perception of quality of service provided.

Scale: Violations of Customer Agreement per Month.

Meter: Log of Violations.

Past [1991] Unknown Number !State of PERSCOM Management Review

Record [NARDAC] 0 ? ! NARDAC Reports 1991

Must : <better than Past, Unknown number> !CG

Plan [1991, PERSINCOM] 0 “Go for the Record” ! Group SWAG

Technology Investment:

Exploit investment in high return technology. Impacts: productivity, customer service and conserves resources.

An example of one of the strategies defined.

•! Example of one of the Objectives:

Customer Service:

Type: Critical Top level Systems Objective

Gist: Improve customer perception of quality of service provided.

Scale: Violations of Customer Agreement per Month.

Meter: Log of Violations.

Past [Last Year] Unknown Number #State of PERSCOM Management Review

Record [NARDAC] 0 ? # NARDAC Reports Last Year

Fail : <must be better than Past, Unknown number> #CG

Goal [This Year, PERSINCOM] 0 “Go for the Record” # Group SWAG

Technology Investment:

Exploit investment in high return technology.

Impacts: productivity, customer service and conserves resources.

•! An example of one of the strategies defined.

Slide 97!

The Evo Planning Week at DoD

•! Monday
–! Define top Ten critical objectives, quantitatively

–! Agree that thee are the main points of the effort/project

•! Tuesday
–! Define roughly the top ten most powerful strategies, for

enabling us to reach our Goals on Time

•! Wednesday
–! Make an Impact Estimation Table for Objectives/Strategies

–! Sanity Test: do we seem to have enough powerful
strategies to get to our Goals, with a reasonable safety
margin?

•! Thursday
–! Divide into rough delivery steps (annual, quarterly)

–! Derive a delivery step for ‘Next Week’

•! Friday
–! Present these plans to approval manager (Brigadier

General Palicci)
–! get approval to deliver next week

97!

Slide 98!Next weeks Evo Step??

•! “You won’t believe we never thought of this, Tom!’

•! The step:
–! When the Top General Signs in
–! Move him to the head of the queue

•! Of all people inquiring on the system.

98!

Slide 99!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 99!

The fundamentals of an Evo step:
Decomposing for early competitive advantage

•! An Evo step must
–! Try to deliver some

planned function and/
or performance
values to some
stakeholders

–! Maximize the
efficiency (value to
cost ratio) of the
delivery

–! Give useful feedback
before scaling up (risk
management)

–! Give project teams
practical experience
in technology,
engineering
processes, and
stakeholder feedback

How to decompose systems into small evolutionary steps: (a list of practical tips)
1 Believe there is a way to do it, you just have not found it yet!

I have never seen an exception in 33 years of doing this within many varied cultures.
2 Identify obstacles, but don't use them as excuses: use your imagination to get rid of them!
3 Focus on some usefulness for the stakeholders: users, salesperson, installer, testers or
customer. However small the positive contribution, something is better than nothing.
4 Do not focus on the design ideas themselves, they are distracting, especially for small initial
cycles. Sometimes you have to ignore them entirely in the short term!
5 Think one stakeholder. Think ‘tomorrow’ or ‘next week.’ Think of one interesting improvement.
6 Focus on the results (You should have them defined in your targets. Focus on moving
towards the Plan levels).
7 Don't be afraid to use temporary-scaffolding designs. Their cost must be seen in the light of
the value of making some progress, and getting practical experience.
8 Don't be worried that your design is inelegant; it is results, that count, not style.
9 Don't be afraid that the stakeholders won't like it. If you are focusing on the results they want,
then by definition, they should like it. If you are not, then do!
10 Don't get so worried about "what might happen afterwards" that you can make no practical
progress.
11 You cannot foresee everything. Don't even think about it!
12 If you focus on helping your stakeholder in practice, now, where they really need it, you will
be forgiven a lot of ‘sins’!
13 You can understand things much better, by getting some practical experience (and removing
some of your fears).
14 Do early cycles, on willing local mature parts of your user/stakeholder community.
15 When some cycles, like a purchase-order cycle, take a long time, initiate them early, and do
other useful cycles while you wait. This is called ‘backroom concurrent engineering’.
16 If something seems to need to wait for ‘the big new system’, ask if you cannot usefully do it
with the ‘awful old system’, so as to pilot it realistically, and perhaps alleviate some 'pain' in the
old system.
17 If something seems too costly to buy, for limited initial use, see if you can negotiate some
kind of ‘pay as you really use’ contract. Most suppliers would like to do this to get your
patronage, and to avoid competitors making the same deal.
18 If you can't think of some useful small cycles, then talk directly with the real ‘customer’,
stakeholders, or end user. They probably have dozens of suggestions.
19 Talk with end users and other stakeholders in any case, they have insights you need.
20 Don't be afraid to use the old system and the old ‘culture’ as a launching platform for the
radical new system. There is a lot of merit in this, and many people overlook it.

Slide 100!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 100!

How does Planguage support Evo project management?
Planguage makes sure we are continuously focused on our clear competitive goals

•! Well-defined
requirements are the
project management

–! result delivery targets and

–!constraints

•! Well-defined designs,
and quantified impact

estimates help control

–! the delivery and

–! implementation process

Slide 101!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 101!

How do you plan an Evo step in Planguage?
By Being explicit about Competitiveness of the Step!

Step Name: Tutorial [7777, Basic].

Stakeholder: Marketing, XX (<agreed, Next Friday>).

Step Implementor: <XX>.

Step Content: HCTD :<Hard Copy Text document> <- Can do 1 week MMM.

. Basic minimal functions

. Step by Step Instructions, in English

. Focus on sales aspects, not how to do it (not yet, in this step)

. Go to specific web sites

. Pinpoint some characteristics of what we see on the terminal

. Compared with what we see on a PC or other terminal

. What instructions should be on the terminal to begin

. Questionnaire for Stakeholder

. Intended audience: Marketing

. Process for Testing with Stakeholder (example observation, times)

. No illustrations, just text.

Step Value: Stakeholder: TTT: Saleability: <some possibility of value>.

Stakeholder: Developers: <value of feedback on a tutorial>.

Step Cost: 10 hours per page, < 10 hours <-MMM.

Step Constraints: Must be deliverable within 1 calendar week.

At Least 3 hours of TTT’s time for input and trial feedback.

Step Dependencies: <Feature list of WWW and 7777 WWW Browser> <-MMM.

Slide 102!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 102!

How does Evo relate to requirements?

•! Evo relates directly, measurably, testably, early and
frequently to unfulfilled requirements.

•! Evo is always seeking the most efficient way to
close the requirements gap and complete a project

•! The primary measure of Evo project progress is the
degree of stakeholder satisfaction (in terms of
agreed requirements) as a result of delivered Evo
steps.

Step->

Target

Require-

ment

STEP1

Plan

%

(of

Target)

actual

%

deviation

%

STEP2 to

STEP20

Plan %

plan

cumulated

to here %

STEP21

[CA,NV,WA]

Plan %

plan

cumulated

to here %

STEP22

[all others]

Plan %

plan

cumulated

to here %

PERF-1 5 3 -2 40 43 40 83 -20 63

PERF-2 10 12 +2 50 62 30 92 60 152

PERF-3 20 13 -7 20 33 20 53 30 83

COST-A 1 3 +2 25 28 10 38 20 58

COST-B 4 6 +2 38 44 0 44 5 49

Slide 103!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 103!

How does Evo relate to Design?
By Making Sure the Most Competitive Designs

are delivered early and provably

•! Evo implements designs
selectively depending on
priority.

•! Designs can be implemented
partially (example in one
geographic market or system
component) in a single step.

•! Evo allows us to be sure that
the designs give maximum
value/cost

•! Evo allows us to verify
–! by measurement

–! that designs deliver value/cost
estimated

–! before we commit on a large
scale

TIME

PLACE:
LOCATION:

Geographic

Location /

User Type /
User Role /

Market

& others

EVO

PLAN

Design

Idea A

in USA

to

Customer

Services

?

? ?

Design

Idea X

 in

UK +

France

to Sales

Design

Idea X

in USA,

Site B

to Sales

Managers

Design

Idea Y

in USA

to all

Sales

Staff

2%

SYSTEM

PLACE: PART:
System

Function

/ System

Component

RESOURCES

(COSTS)

 PERFORMANCE

Slide 104!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 104!

How does Evo relate to Risk?
It gives excellent practical control over risks to your competitiveness

•! Evo reduces risk of
deviation from plans
–!By doing projects in

early and small
increments

–!By ‘learning’ from
practical experience

–!And correcting bad
specifications

–!By grasping and
integrating new
opportunities outside
the project (technology,
customer, economics)

BASIC EVO PLANNING PolICY!

1:Financial Budget: No project cycle shall
exceed 2% of total financial budget before

delivering some measurable, required results
to the user.!

2:Deadline: No project cycle will exceed 2%

of total project time (one week for a one year
project) before delivering some measurable,

required results to the user.!
3:Priority: Project cycles which provide the

best ratio of required results to utilized

resources (highest benefit-to-cost ratios),
must be delivered first to the stakeholders.!

Slide 105!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 105!

How does Evo relate to process improvement?

•! Evo can measure
–! the success of current

processes against
expectations,

–! or new experimental ones
against expectations

•! Evo can signal the need for
process improvement and
verify that such improvement
has taken place

•! Evo can help you
–! early in the project,

–! continuously,

–! and helps to train new people
•! in the adopted processes

•! by frequent cycles of practice
and feedback

Time

Backroom

‘KITCHEN’

Frontroom

‘RESTAURANT’

Step 1 Step 2

Step 1

Step 2

Step 3

Potential Next Step

(Step 4)

Step 3

A

B

C

D

E

F

G

H

E

G
C

F

B

H

A

D

Result Cycle

 for F

Development

Cycle

Production

Cycle

Delivery

Cycle

Degree of Backroom Task

Completed during the Frontroom

Step Delivery Cycle

Slide 106!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 106!

How does Evo relate to competitiveness?

•! Evo is focused on
delivery of
quantified specified
stakeholder value

•! Evo is ‘agile’
–!and can change

plans, designs,
processes, and
requirements -

–! in order to deliver
the most competitive
solutions

–!early, gradually, and
with smart priorities.

Product

0% 100%

Plan

Must

Must

Reliability

Performance

Impact

of

Step 1

Impact

of

Step 1

Impact

of

Step 2

Impact

of

Step 2

Impact

of

Step 3

Slide 107!

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 107!

Summary

 Planguage gives you
tools to be more
competitive.

•! The entire set of
Planguage tools also
applies to

–!software engineering

–!and top management
planning

•! (see ‘Priority Management’
book at www.gilb.com)

Slide 108!If we have more time ….

•! Or we might skip to
these during the main
presentation

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 108!

Slide 109!

Designing Maintainability in Software Engineering:
a Quantified Approach.

Tom Gilb
Result Planning Limited

Tom.Gilb@INCOSE.org

Version April 15 2008

April 21, 2008! 109!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 110!Abstract.

•! Software system
maintenance costs
are a substantial
part of the life
cycle costs.

•! They can easily
steal all available
effort away from
new development.

April 21, 2008! 110!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 111!

System Lifetime Expectancy:
Capers Jones

April 21, 2008!

<-=14>?%+@A$14-BBBA?%+@A$14---$

111!

Slide 112!Abstract

•! I believe that this is
because
•! maintainability is, as good as

never, systematically
engineered into the software.

•! Our so-called software
architects bear a primary
responsibility for this, but
they do not engineer to
targets.

•! They just throw in customs
and habits that seem
appropriate.

Did you ever see ideas like!

 performance and quality, for example

‘Portability Levels’ !

in a software architecture diagram?!

April 21, 2008! 112!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 113!Abstract

•! We need to
•! define our maintainability requirements

quantitatively,

•! Set quality investment targets that will
pay off,

•! pursue long-term engineered
improvement of the systems, and then

•! ‘architect’ and ‘engineer’ the resulting
system.

•! Traditional disciplines may already in
principle understand this discipline,

•! some may not understand it,

•! some may simply not apply the
engineering understanding that is out
there

April 21, 2008! 113!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 114!

The Maintainability Problem

•! Software systems are built under high pressure
to meet deadlines, and with initial emphasis on
performance, reliability, and usability.

•! The software attributes relating to later changes
in the software – maintainability attributes are:

•! never specified quantitatively up front in
the software quality requirements

•! never architected to meet the non-
specified maintainability quality
requirements

•! never built to the unspecified architecture
to meet the unspecified requirements

•! never tested before software release

•! never measured during the lifetime of the
system.

“A number of people expressed the opinion that
code is often not designed for change. Thus,
while the code meets its operational
specification,

 for maintenance purposes it is poorly
designed and documented “ [Dart 93]

•! In short, there is no engineering approach to

software maintainability.

April 21, 2008! 114!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 115!

What do we do in practice today?
•! we might bullet point some high-level objectives

•! (‘• Easy to maintain’)

•! which are never taken seriously

•! we might even decide the technology we will use to
reach the vague ideal

•! (“• Easy to maintain through modularization,
object orientation and state of the art standard
tools”)

•! larger institutions might have ‘software architects’
who carry out certain customs, such as

•! decomposition of the software,

•! choice of software platforms and software
tools – generally intended to help – hopefully.

•! But with no specific resulting level or type of
maintainability in mind.

• we might recommend more and better tools, but
totally fail to suggest an engineering approach
[Dart 93].

•! We could call this a ‘craft’ approach.

•! It is not ‘engineering’ or ‘architecture’ in the normal
sense.

April 21, 2008! 115!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 116!Principles of Systems Maintainability

•! I would like to
suggest a set of
principles about
software
maintainability,
•! in order to give

us a framework:

Body Maintenance: {Relax, Exercise, Breathing, Diet, Positive Thinking and Meditation}. !

April 21, 2008! 116!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 117!1. The Conscious Design Principle:

•! Maintainability must be
consciously designed into a
system:

•! failure to design to a set
of levels of
maintainability

•!means the resulting
maintainability is both
bad and random.

April 21, 2008! 117!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 118!Conscious Design

•! Clarify

–!Robust $
•! 200 Days Between

Restarts

•! Find Solutions

–!Triple Redundant
Systems ?

•! Verify Solutions

–! 400 Days average
achieved!

April 21, 2008! 118!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 119!2.! The Many-Splendored Thing Principle.

•! Maintainability is
•! a wide set of change-quality

types,
•! under a wide variety of

circumstances:
•! so we must clearly define

what quality type we are
trying to engineer. Like:

•! Portability, scalability,
maintainability?

http://www.youtube.com/watch?v=X-JiKA1vTRo = Nat King Cole “Love is…”!

April 21, 2008! 119!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 120!Real Example of Lack of Scales (Repeated)

•! Notice in this real
case

–! No numbers
•! No targets

•! No Constraints

–! No benchmarks

–! No [Qualifiers]
•! Where

•! If

•! Dates

–!No sources

–!No
Justifications

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 120!

1. Central to The Corporations business strategy is to be the

world’s premier integrated <domain> service provider.

2. Will provide a much more efficient user experience

3. Dramatically scale back the time frequently needed after the

last data is acquired to time align, depth correct, splice, merge,

recompute and/or do whatever else is needed to generate the

desired products

4. Make the system much easier to understand and use than
has been the case for previous system.

5. A primary goal is to provide a much more productive system

development environment than was previously the case.

6. Will provide a richer set of functionality for supporting next-

generation logging tools and applications.

7. Robustness is an essential system requirement (see rewrite in

example below)

8. Major improvements in data quality over current practices

This lack of clarity cost $100,000, 000!

Slide 121!

Rock Solid Robustness: many splendored

•! Type: Complex Product Quality Requirement.

•! Includes:

–! {Software Downtime,

–! Restore Speed,

–!Testability,

–!Fault Prevention Capability,

–!Fault Isolation Capability,

–! Fault Analysis Capability,

–! Hardware Debugging Capability}.

•!
April 21, 2008! 121!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 122!Software Downtime:

Type: Software Quality Requirement. Version: 25 October 2007.
Part of: Rock Solid Robustness.

Ambition: to have minimal downtime due to software failures <- HFA 6.1
Issue: does this not imply that there is a system wide downtime requirement?

Scale: <mean time between forced restarts for
defined [Activity], for a defined [Intensity].>

Fail [Any Release or Evo Step, Activity = Recompute, Intensity = Peak Level] 14
days <- HFA 6.1.1

Goal [By 2008?, Activity = Data Acquisition, Intensity = Lowest level] : 300 days ??

Stretch: 600 days.

April 21, 2008! 122!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 123!Restore Speed:

Type: Software Quality Requirement. Version: 25 October 2007.
Part of: Rock Solid Robustness

Ambition: Should an error occur (or the user otherwise desire to do
so), the system shall be able to restore the system to a
previously saved state in less than 10 minutes. <-6.1.2 HFA.

Scale: Duration from Initiation of
Restore to Complete and verified state
of a defined [Previous: Default =
Immediately Previous]] saved state.

Initiation: defined as {Operator Initiation, System Initiation, ?}.
Default = Any.

Goal [Initial and all subsequent released
and Evo steps] 1 minute?

Fail [Initial and all subsequent released
and Evo steps] 10 minutes. <- 6.1.2 HFA

Catastrophe: 100 minutes.

April 21, 2008! 123!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 124!Testability:

Type: Software Quality Requirement.
Part of: Rock Solid Robustness

Initial Version: 20 Oct 2006

Version: 25 October 2007.

Status: Demo draft,

Stakeholder: {Operator, Tester}.

Ambition: Rapid-duration automatic testing of

 <critical complex tests>, with extreme operator setup and
initiation.

Scale: the duration of a defined [Volume] of testing, or a
defined [Type], by a defined [Skill Level] of system
operator, under defined [Operating Conditions].

Goal [All Customer Use, Volume = 1,000,000 data items, Type = WireXXXX Vs DXX, Skill = First
Time Novice, Operating Conditions = Field, {Sea Or Desert}. <10 mins.

Design Hypothesis: Tool Simulators, Reverse Cracking Tool, Generation of simulated telemetry
frames entirely in software, Application specific sophistication, for drilling – recorded mode
simulation by playing back the dump file, Application test harness console <-6.2.1 HFA

April 21, 2008! 124!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 125!Another Real (Doctored) Example:
Financial Corp. Top Level Project

requirements

1. Reduce the costs associated with managing redundant /
regionally disparate systems.

2. Single global portfolio management system.

3. Reduce overall spending with a reduction in redundant
initiatives.

4. Governance structures - system agnostic.

5. All projects in project portfolio system.
6. Reduce development project spend on low priority

work with better alignment between Technology and
business demand.

7. Project portfolio Framework, Business Value metrics for
prioritization.

8. Reduction in cost over runs.

9. Definition criteria for project success.
 10. Metrics and exception reporting for cost management.
11. Linkage of actual costs to forecast.

12. Increase revenue with a faster time to market.
13. Knowledge management, project ramp up templates.

DO YOU SEE ANYTHING RELATED TO MAINTAINABILITY?

April 21, 2008! 125!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 126!3. The Multi-Level Requirement
Principle.

•! The levels of
maintainability we
decide to require cab be
•! partly ‘constraints’,

•!a necessary minimum of
ability to avoid failure,

•! and partly desirable
‘target’ levels
•! that are determined by

what pays off to invest
in.

April 21, 2008! 126!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 127!Software Downtime: Multiple Levels

Type: Software Quality Requirement. Version: 25 October 2007.
Part of: Rock Solid Robustness.

Ambition: to have minimal downtime due to software failures <- HFA 6.1

Issue: does this not imply that there is a system wide downtime requirement?

Scale: <mean time between forced restarts for defined [Activity], for a defined
[Intensity].>

Fail [Any Release or Evo Step, Activity =
Recompute, Intensity = Peak Level] 14
days <- HFA 6.1.1

Goal [By 2008?, Activity = Data
Acquisition, Intensity = Lowest level] :
300 days ??

Stretch: 600 days.

April 21, 2008! 127!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 128!Restore Speed: Multiple Levels
Type: Software Quality Requirement. Version: 25 October 2007.

Part of: Rock Solid Robustness

Ambition: Should an error occur (or the user otherwise desire to do so), the system
shall be able to restore the system to a previously saved state in less than 10

minutes. <-6.1.2 HFA.

Scale: Duration from Initiation of Restore to Complete and verified state of a
defined [Previous: Default = Immediately Previous]] saved state.

 Initiation: defined as {Operator Initiation, System Initiation, ?}. Default = Any.

Goal [Initial and all subsequent
released and Evo steps] 1 minute?

Fail [Initial and all subsequent
released and Evo steps] 10 minutes.
<- 6.1.2 HFA

Catastrophe: 100 minutes. April 21, 2008! 128!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 129!4. The Payoff Level Principle.

•! The levels of maintainability
it pays off to invest in,
•! depend on many factors –

•! but certainly on the system
lifetime expectancy,

•! the criticality/illegality/cost
of not being able to change
correctly or change in time,

•! and the cost and availability
of necessary skilled
professionals to carry out
the changes.

April 21, 2008! 129!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 130!5. The Priority Dynamics Principle.

•! The maintainability
requirements must
compete for priority
•! for limited

resources
•! with all other

requirements.

•! We cannot simply
demand arbitrary
desired levels of
maintainability.

April 21, 2008! 130!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 131!The Engineering Solution

•! There are many small and less
critical software systems where

•! engineering the
maintainability would not
be interesting,

•! or would not pay off.

•! Nobody cares.

•! This talk is addressed to the
vast number of current
situations where

•! the total size of software,

•! the growth of software
annually,

•! the cost of maintenance
annually – are all causing
management to wonder – ‘

•! Is there a better way?’

•!

April 21, 2008! 131!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 132!The method is straightforward,
and it is well-understood engineering

 in ‘real’ engineering disciplines.

•! In simple terms it is:
1. Define the maintainability

requirements quantitatively.
2. Design to meet those requirements,
 if possible and economic.
3. Implement the designs
 and test that they meet the

required levels.
4. Quality Control that the design

continues to meet the required
maintainability quality levels,

 and take action in the case of
degradation,

 to get back to current required levels.

April 21, 2008! 132!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 133!

Let us take a simplified tour of the method.

Requirement specification (using ‘Planguage’ [Gilb 2005]:

Bug Fixing Speed:

Type: Software Product Quality Requirement.

Scope: Product Confirmit [Version 12.0 and on]

Ambition Level: Fast enough bug fixing so that it is a non-issue with our
customers.

Scale of Measure: Average Continuous Hours from Bug occurs and
is observed in any user environment, until it is correctly
corrected and sufficiently tested for safe release to the field,
and the change is in fact installed at, at least, one real
customer, and all consequences of the bug have been
recovered from at the customer level.

Meter: QA statistics on bug reports and bug fixes.

Past [Release 10.0] 36 hours <- QA Statistics

Fail [Release 12.0, Bug Level = Major] 6 hours <- QA Directors Plan

Goal [Release 12.0, Bug Level = Catastrophic] 2 hours <- QA Directors
Plan.

Goal [Release 14.0, Bug Level = Catastrophic] 1 hour <- QA Directors
Plan.

April 21, 2008! 133!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

$ Next slide!

Slide 134!

 Planguage Intelligibility

•! It should be possible to read this specification,
•! slowly,

•! even for those not trained in Planguage,

•! and to be able to explain exactly what the requirement is.

•!
•! Notice especially the ‘Scale of Measure’.

•! Scale of Measure: Average Continuous Hours from
Bug occurs and is observed in any user
environment, until it is correctly corrected and
sufficiently tested for safe release to the field, and
the change is in fact installed at, at least, one real
customer, and all consequences of the bug have
been recovered from at the customer level.

•! It encompasses the entire maintenance life cycle
•! from first bug effect observation

•! until customer level correction in practice.

•! That is a great deal more than just some programmer staring at
code and seeing the bug and patching it.

•! The corresponding design
•! will have to encompass many processes and technologies.

•!

April 21, 2008! 134!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 135!The Breakdown into Sub-problems

Here is a list of the areas we need to design
for, and quite possibly have a secondary
target level for each:

1. Problem Recognition Time.

 How can we reduce the time from bug
actually occurs until it is recognized and
reported?

2. Administrative Delay Time:

 How can we reduce the time from bug
reported, until someone begins action on
it?

3. Tool Collection Time.

How can we reduce the time delay to collect
correct, complete and updated
information to analyze the bug: source
code, changes, database access,
reports, similar reports, test cases, test
outputs.

4. Problem Analysis Time.

 Etc. for all the following phases
defined, and implied, in the Scale scope
above.

5. Correction Hypothesis Time

6. Quality Control Time

7. Change Time

8. Local Test Time

9. Field Pilot Test Time

10. Change Distribution Time

11. Customer Installation Time

12. Customer Damage Analysis Time

13. Customer Level Recovery Time

14. Customer QC of Recovery Time

April 21, 2008! A$!'4BC.+DE*'4$///EC.+DE*'4$$$$ 135!

This model is based on one in Ireson (ed.): Reliability Handbook!

Slide 136!Let us take a look at a possible first draft of some
design ideas:

•! Note: I have intentionally
suggested some dramatic
architecture,
–! in an effort to meet the

radically improved
requirement level.

•! The reader need not take
any design too seriously.

•! This is an example of
trying to solve the
problem, using
engineering techniques
(redundancy)
–! that have a solid scientific

history.

April 21, 2008! 136!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

University of Alaska's !

Museum of the North!

 in Fairbanks!

Slide 137!

1. Problem Recognition Time.

•! Design: Automated N-version distinct
software comparison [Inacio 1998]

–! at selected critical customer sites,

–! to detect potential bugs automatically.

April 21, 2008! 137!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 138!Trillium | Distributed Fault-Tolerant/High-
Availability (DFT/HA) Core

•! Complete recovery during failure.
–! This feature is available in both pure fault-tolerant and distributed fault-tolerant systems.
–! When a failure occurs, failed protocol layers are able to completely recover stable state

information.
–! All protocol resources present in a stable state during the failure are maintained on the

standby.
•! Application restart on processor loss.

–! This feature is applicable to pure distributed systems. If a processor in a pure distributed
system fails, applications on the failed processor may be restarted on available processors
to provide service for subsequent user traffic.

•! Survive up to n-1 faults.
–! DFT protocol layers may survive up to n-1 faults without loss of service where n is the

number of processors over which the protocol layer was distributed.
–! With the lost application restart feature enabled, a distributed protocol layer may continue

to provide full service until the last processor in the system fails.
–! User defined system operations. Advanced distributed system operations such as dynamic

load balancing may be implemented using basic services provided by the core software.
•! Graceful node shutdown.

–! The system manager provides an operation to gracefully shutdown a node and an option
to redistribute the protocol load onto remaining processors in the system

–! . The load redistribution is completely transparent to the system users.
•! Maintenance operations.

–! The system manager provides an operation to swap the states of an active and standby
node.

–! This functionality may be used to perform maintenance operations on the system without
shutting it down

–! . These operations are completely transparent to the system users and will not interrupt
service provided by the system.

April 21, 2008!

! !

A$!'4BC.+DE*'4$///EC.+DE*'4$$$$ 138!

Slide 139!2. Administrative Delay Time:

•! Design: Direct
digital report

–! from distinct software
discrepancies

–! to our global,
•! 3 zone,

•! 24/7

•! bug analysis service.

April 21, 2008! 139!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 140!3. Tool Collection Time.

•! Design: All necessary tools are electronic,

–!and collection is based on
•! customers installed version and its fixes.

–!The distinct software, bug capture

•! collects local input sequences.

April 21, 2008! 140!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 141!4. Problem Analysis Time.

•! Analyst Selection:

–!Design: The fastest bug analysts are
•! selected based on actual past performance statistics,

and

•! rewarded in direct relation to their timing

–!for analyzing root cause, or correct fix.

April 21, 2008! 141!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 142!5. Correction Hypothesis Time

•! Design: Same design as Analyst Selection,

–! but applies to correct change specification speed
statistics.

April 21, 2008! 142!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 143!6. Quality Control Time

•! Design: Rigorous
–! 30 minute or less inspection

–!of change spec by other bug analysts,

–! with reward for finding major defects
•! as judged by our defect standards.

April 21, 2008! 143!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 144!7. Change Time

•! Design: Changes are applied

–! in parallel with QC,

–!and modified only if change defects found in QC.

April 21, 2008! 144!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 145!8. Local Test Time

•! Design:
Automated Test.
Based on distinct
software (2 independent)

changes

–! to distinct modules,
and

–!running reasonable
test sets,

–!until further notice

–!or failure.

April 21, 2008! 145!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 146!9. Field Pilot Test Time

•! Design:

–! After 30 minutes
successful Local Test

–! the changes are
implemented

•! at a customer pilot site

–! for more realistic
testing,

»! in operation,

»! in distinct
software safe
mode.

April 21, 2008! 146!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 147!10. Change Distribution Time

•! Design: All necessary
changes are

–!readied and

–!uploaded for customer
download,

–!even before Local Tests
Begin,

–!and changed only

•! if tests fail.

April 21, 2008! A$!'4BC.+DE*'4$///EC.+DE*'4$$$$ Slide 147!

Slide 148!11. Customer Installation Time

•! Design: Customer is given options of

–! manual or

–!automatic changes,

–!under given circumstances

April 21, 2008! 148!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 149!

12. Customer Damage Analysis Time

•! Design:

•! <local customer solution>.

•! We don’t have good

automation here.

•! Assume none until proven

otherwise.

•! We need to be aware of

–! all reports sent

–! and databases updated

that may need correction.

•! !

April 21, 2008! 149!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 150!13. Customer-Level-Recovery Time

•! Design:

•! same problem as
Customer Damage
Analysis Time

•! may be highly local
and manual.

•! Is it really out of
our control?

April 21, 2008! 150!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 151!14. Customer QC of Recovery, Time.

•! Design:

•! 30-minute Quality Control

–!of recovery results,

–!assisted by our quality

standards,

–!and for critical

customers

–!QC By our staff,

•!From our office

•!or on customer site.

•! !

April 21, 2008! 151!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 152!Main Point

•! My main point is

–! that each sub-process of the

maintenance operation

–! tends to require a separate

and distinct design (1 or

more designs each).

•! There is nothing simple

–! like software people seem to

believe,

–! that better code structures,

–! coding practices,

documentation,

–! and tools

–! will solve the maintenance
problem.

April 21, 2008! 152!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Many Means

Many

Ends

Many

Impacts

Next Slide!

Slide 153!DoDef. Persinscom Impact Estimation Table:

Requirements

Designs

R$ D

Impacts

April 21, 2008! Slide 153!© Tom@Gilb.com www.Gilb.com !

Slide 154!Broader Maintainability Concepts

•! Maintainability in the strict engineering
sense is usually taken to mean bug
fixing.

•! I have however been using it thus far

to describe any software change

activity or process.

•! We could perhaps better call it
‘software change ability’.

•! Different classes of change, will have
different requirements related to them,

•! and consequently different
technical solutions.

•! It is important that we be very clear

•! in setting requirements,

•! and doing corresponding design,

•! exactly what types of change we
are talking about.

April 21, 2008! 154!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 155!General ‘Change Attribute’ Tailoring

•! The following slides will give a
general set of patterns for

•! defining and distinguishing
different classes of
‘maintenance’.

•! But in your real world, you will
want to tailor the definitions to
your domain.

•! You can initially tailor using
the ‘Scale’ of measure
definition.

•! And continued tailoring can
be done by defining
[conditions] in the
requirement level qualifier.

April 21, 2008! A$!'4BC.+DE*'4$///EC.+DE*'4$$$$ 155!

Scale:
% of transactions

successfully completed
by defined [Person]

doing defined [Task].

Goal [Task = Update,

Person = New Hire,

 Deadline = Phase 3]

60%

Slide 156!

A generic set of performance measures,

including several related to change.

!For example:

Code Portability:

Scale:

 Effort in Hours

 needed to Port

 each 1000 Non-Commentary Lines of Code

 from a defined [Home Environment]

 to a defined [Target Environment],

 using defined [Tools]

 and defined [Personnel].

!

Goal

[Home Environment = {.net, Oracle,} ,

Target Environment = {Java++, Open Source, Linux},

Tools = Convert Open ,

Personnel = {Experienced Experts, India}] 60 hours.

!

April 21, 2008! 156!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 157!A Generic Set of Performance measures – including several related to ‘change’

April 21, 2008! 157!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 158!The attribute names used are arbitrary choices by the author.
•! They only start to take on meaning when defined,

•! with a Scale of measure.

•! There are no accepted or acceptable standards here,

•! and certainly not for software.

•! Even in hardware engineering, there is an accepted pattern – such as “Scale: Mean Time

to Repair”.

•! But it is accepted that we have to further define such concepts locally,

•! such as the meaning of ‘Repair’.

April 21, 2008! 158!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 159!Maintainability Measures

•! Here are some of the
general patterns we
can use to define and
distinguish the
different classes of
change processes on
software.

•! First the ‘Bug Fixing’
pattern (from which
we derived the
example at the
beginning of this talk).

April 21, 2008! 159!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 160!

!aintainabili"
#omponents,$

 derived %om &
hardwar'

engineering view, $
adop(d fo)
*oftware.+$

April 21, 2008! 160!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 161!Notice that Maintainability in the narrow sense
 (fix bugs)

 is quite separate from other ‘Adaptability’
concepts.

•! This is normal engineering,

•! Which places fault repair together with reliability and

availability;

•! Those 3 determine the immediate operational

characteristics of the system.

•! The other forms of adaptability are more about potential

future upgrades to the system,

•! change, rather than repair.

•! Change and repair, have in common that

•! our system architecture has to make it easy to

change, analyze and test.

•! The system itself is unaware of

•! whether we are correcting a fault

•! or improving the system.

•! The consequence is that

•! much of the maintenance-impacting ‘design’ or

‘architecture’

•! benefits

•! most of the types of maintenance (fix and adapt).

April 21, 2008! 161!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 162!Here are a generic set of definitions for the ‘Adaptability’
concepts.

Adaptability: ‘The efficiency with which a system can
be changed.’

Gist: Adaptability is a measure of a system’s ability to
change.

Includes: { a set of scalar variables, such as
Portability}.

 Note: probably not simple enough to define with
a single Scale.

Type: Complex Quality Attribute.

Since,

•! if given sufficient resource, a system can be changed in

–! almost any way,

•! the primary concern is with the amount of

–! resources

•! (such as time, people, tools and finance)

•! needed to bring about specific changes

–! (the change ‘cost’).

April 21, 2008! 162!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 163!

The Adaptive Cycle

April 21, 2008! A$!'4BC.+DE*'4$///EC.+DE*'4$$$$ 163!

http://www.resalliance.org/564.php!

Slide 164!Adaptability:
Viewed as

Elementary or Complex concept..

Adaptability:

Type: Elementary Quality Requirement.

Scale: Time needed to adapt a defined [System]
from a defined [Initial State] to another defined
[Final State] using defined [Means].

Adaptability:

Type: Complex Quality Requirement.

Includes: {Flexibility, Upgradeability}.

April 21, 2008! 164!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 165!“No system can be understood or managed by
focusing on it at a single scale.”

 Multiple scales and cross-scale effects - "Panarchy"
No system can be understood or managed by focusing on it at a single
scale.

•! All systems (and SESs especially) exist and function at multiple scales of
space, time and social organization,

–! and the interactions across scales are fundamentally important in
determining the dynamics of the system at any particular focal scale.

–! This interacting set of hierarchically structured scales has been termed
a "panarchy" (Gunderson and Holling 2003).

April 21, 2008! 165!http://www.resalliance.org/564.php!
© Tom@Gilb.com www.Gilb.com !

Slide 166!

Flexibility:

Gist: ‘Flexibility’ concerns the!

! ‘in-built’ ability of the system !

! to adapt, !

! or to be adapted,!

! by its users,!

! to suit conditions!

 (without any fundamental system
modification!

 by system development). !

Type: Complex Quality Requirement. !

Includes: {Connectability, Tailorability}. !

! See next 2 slides!!

Possible Synonyms: Resilience,
Robustness !

"!

April 21, 2008! 166!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 167!Connectability:
 ‘The cost to interconnect the system to its

environment.’

Gist: The cost of connecting
one set of interfaces to
defined environments with
other interfaces

Part Of: Flexibility.

Scale: the Effort needed

to connect a defined [Home
Interface]

 to a defined [Target Interface]

 using defined [Methods]

with minimum allowed system
[Degradation].

April 21, 2008! 167!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 168!Tailorability:

Gist: The cost to modify
the system to suit
defined future
conditions.

Part Of: Flexibility.

Type: Complex Quality
Requirement.

Includes: {Extendibility,
Interchangeability}.

April 21, 2008! 168!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Multiple Attributes of Wool Fiber !!

Slide 169!

Extendibility: Scalability

Extendibility:

Part Of: Tailorability.

Synonym: Scalability.

Scale: The cost to add to

 a defined [System]

 a defined [Extension Class]

 and defined [Extension Quantity]

 using a defined [Extension Means].

‘‘In other words, add such things as a new
user or

a new node.’’

Type: Complex Quality Attribute.

Includes: {Node Addability,

Connection Addability,

Application Addability,

Subscriber Addability}.

April 21, 2008! 169!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 170!Interchangeability:
‘The cost to modify use of system components.’

Interchangeability
Gist: This is concerned with the ability to modify

the system, to switch from using a certain set of
system components, to using another set.

Part Of: Tailorability.
Type: Elementary Quality Attribute.

“For example, this could be a daily occurrence

switching system mode from day to night use.”

Scale: the Effort needed to

 Successfully,
 without Intolerable Side Effects,

 replace a defined [Initial Set] of components,
 with a defined [Replacement Set] of

system components,
 using defined [Means].

April 21, 2008! 170!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 171!Upgradeability:
 ‘The cost to modify the system fundamentally;

either to install it, or to change out system components.’

Upgradeability:

Gist: This concerns the ability of
the system to be modified by
the system developers or
system support in planned
stages (as opposed to
unplanned maintenance or
tailoring the system).

Type: Complex Quality Requirement.

Includes: {Installability, Portability,
Improveability}.

Installability: ‘The cost to install in defined conditions.’

Pattern: This concerns installing the system code and

also, installing it in new locations to extend the
system coverage. Could include conditions such as
the installation being carried out by a customer or,

by an IT professional on-site.

Portability: ‘The cost to move from location to location.’

Scale: The cost to transport a defined [System] from a

defined [Initial Environment] to a defined [Target

Environment] using defined [Means].

Type: Complex Quality Requirement.

Includes: {Data Portability,

Logic Portability,

Command Portability,

Media Portability}.

Improveability: ‘The cost to enhance the system.’

Gist: The ability to replace system components with

others, which possesses improved (function,
performance, cost and/or design) attributes.

Scale: The cost to add to a defined [System] a defined

[Improvement] using a defined [Means].

April 21, 2008! 171!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 172!This Basic ‘Adaptability’ Pattern
Was Successfully Applied

•! Hopefully this set of patterns

–! gives you a departure point

–! for defining those
maintenance attributes

–! you might want to control,
quantitatively.

•! The above adaptability definition

–! was use to co-ordinate the
work

•! of 5,000 software
engineers,

•! and 5,000 hardware
engineers,

•! in UK,

•! in bringing out a new
product line at a
computer manufacturer.

•! Where ‘Adaptability’ was
the Number One Product
Characteristic

–! The Company became
profitable for the next 14
years..

April 21, 2008! 172!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Security Patterns!

Slide 173!The Software Architect Role in Maintainability

The role of the software architect is:

• to participate in clarification of the requirements that will be used as
inputs to their architecture process.

• to insist that the requirements are testably clear: that means with
defined and agreed scales of measure, and defined required levels of
performance.

• to then discover appropriate architecture,
–! capable of delivering those levels of performance, hopefully within resource

constraints, and

• estimate the probable impact of the architecture,
–! on the requirements (Impact Estimation)

• define the architecture in such detail
–! that the intent cannot be misunderstood by implementers,

–! and the desired effects are bound to be delivered.

• monitor the developing system as the architecture is applied in
practice,

• and make necessary adjustments.

• finally monitor the performance characteristics throughout the
lifetime of the system,

–! and make necessary adjustments to requirements

–! and to architecture,

–! in order to maintain needed system performance characteristics.

April 21, 2008! 173!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 174!

Evaluating Maintainability Designs Using Impact
Estimation

•! See Powerpoint Notes for detailed written comment.

•!

April 21, 2008! 174!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 175!

Architecture Level Impact Estimation Table

•! See PPT Notes

April 21, 2008! 175!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 176!Engineering “Maintainability”: Green Week
Weekly ‘Refactoring’ at Confirmit

April 21, 2008! 176!A$!'4BC.+DE*'4$///EC.+DE*'4$$$$

Slide 177!Extra Slides for Competitive Engineering

•!Value Driven
Planning

April 21, 2008! © Tom@Gilb.com www.Gilb.com ! Slide 177!

Slide 178!

Value Driven
Planning:

10 Value
Principles

April 21, 2008! Slide 178!© Tom@Gilb.com www.Gilb.com !

Slide 179!

Value Driven Planning:
Stakeholders, Value Focus, Quantified, Stepwise

•! Value Driven Planning focuses on

•! the primary values of key stakeholders.

•! The technology used, and the project
processes used are sub-ordinate.

•! The critical stakeholder values are
quantified and trackable.

•! There is an assumption of

•! step by step achievement,

•! of learning at each step

•! and consequent action

•! to resolve problems of value achievement.

April 21, 2008! Slide 179!© Tom@Gilb.com www.Gilb.com !

Slide 180!

Gilb’s ‘Value Driven Planning’ Principles:

1. Critical Stakeholders determine the values

2. Values can and must be quantified

3. Values are supported by Value Architecture

4. Value levels are determined by timing, architecture effect, and
resources

5. Value levels can differ for different scopes (where, who)

6. Value can be delivered early

7. Value can be locked in incrementally

8. New Values can be discovered (external news, experience)

9. Values can be evaluated as a function of architecture (Impact
Estimation)

10. Value delivery will attract resources.

April 21, 2008! Slide 180!© Tom@Gilb.com www.Gilb.com !

Slide 181!

 Value Driven
Planning
Principles
 in Detail:

April 21, 2008! Slide 181!© Tom@Gilb.com www.Gilb.com !

Slide 182!1. Critical Stakeholders determine the values

Critical: “having a decisive or crucial !

importance in the success or failure of something ” <-
Dictionary

•! The primary and prioritized values we
need to deliver are determined by
–! analysis of the needs and values of

stakeholders
•! stakeholders who can determine whether we

succeed or fail.
•! We cannot afford to satisfy other (less

critical) levels, at other times and places,
yet.
–! Because that might undermine our ability to

satisfy the more critical stakeholders –
–! and consequently threaten our overall

project success.

April 21, 2008! Slide 182!© Tom@Gilb.com www.Gilb.com !

Slide 183!2. ‘Values’ can and must be quantified

•! Values can, if you want, be
expressed numerically.
–! With a defined scale of measure

–! with a deliverable level of performance

–! and with qualifier info [Where, When,
If]

•! Quantification is useful:
–! to clarify your own thoughts

–! to get real agreement to one clear
idea

–! to allow for varied targets and
constraints

–! to allow direct comparison with
benchmarks

–! to put in Request for bids, bids and
contracts

–! to manage project evolutionarily :
track progress

–! as a basis for measurement and
testing

–! to enable research on methods

April 21, 2008! Slide 183!© Tom@Gilb.com www.Gilb.com !

Slide 184!
•!Figure 1: Real (NON-CONFIDENTIAL version) example of an initial draft of setting

the objectives that engineering processes must meet.

April 21, 2008! Slide 184!© Tom@Gilb.com www.Gilb.com !

Slide 185!3. Values are supported by Value Architecture

•! Value Architecture: defined as:
–! anything you implement with a

view to satisfying stakeholder
values.

•! Value Architecture:
–! includes product/system

objectives
•! Which are a ‘design’ for

satisfying stakeholder values
–! Has a multitude of performance

and cost impacts
–! can impact a given system

differently, depending on what is
in the system, or what gets put in
later

–! Needs to try to maximize value
delivered for resources used.

April 21, 2008! Slide 185!© Tom@Gilb.com www.Gilb.com !

Slide 186!4. Value levels are determined by timing,
architecture effect, and resources

Value levels: defined as:
 the degree of satisfaction of value

needs.

Value level:
–! depends on when you observe

the level
•! The environment, the people, other

system performance characteristics
(security, speed, usability)

–! depends on the current
incremental power of particular
value architecture components

–! depends on resources available
both in development and
operation

April 21, 2008! Slide 186!© Tom@Gilb.com www.Gilb.com !

Slide 187! 5. Required Value levels can differ
for different scopes (where, who)

The level of value needed, and the
level of value delivered - for a
single attribute dimension (like
Ease of Use) can vary for:
–! different stakeholders

–! at different times
•! (peak, holiday, slack, emergency, early

implementation)

–! for different ‘locations’
–! countries, companies, industries

There is nothing simple like ‘one
level for all’

April 21, 2008! Slide 187!© Tom@Gilb.com www.Gilb.com !

Slide 188!• 6. Value can be delivered early

You do not have to wait until ‘the
project is done’ to deliver useful
stakeholder value satisfaction.

 You can intentionally target the
highest priority stakeholders, and
their highest priority value area,
and levels.
You can deliver them early and

continuously
You can learn what is possible

And what stakeholders really
value.

Discover new value ideas

Discover new stakeholders

Discover new levels of satisfaction

April 21, 2008! Slide 188!© Tom@Gilb.com www.Gilb.com !

Slide 189!• 7. Value can be locked in

incrementally

•! You can increment the value
satisfaction

–! towards longer term Goal levels

•! You can spread the value deliveries

–! that are proven in some places,

–!more widely in the next increments

•! This probably assumes that you have
really handed over real results to real
people.

–!Not just developed systems without
delivery

April 21, 2008! Slide 189!© Tom@Gilb.com www.Gilb.com !

Slide 190!8. New Values can be discovered
(external news, experience)

•! Expect, and try to discover,

–!entirely new stakeholder
values.

•! These will of course
emerge after you start

delivering some
satisfaction, because:

–! Stakeholders believe
you can help

–!Things change

April 21, 2008! Slide 190!© Tom@Gilb.com www.Gilb.com !

Slide 191! 9. Values can be evaluated as a
function of architecture (using ‘Impact Estimation’)

•! It is possible to get an overview
of
–! the totality of impacts

–! that your architecture

–! (all designs and strategies)

–! might have

–! on all your defined stakeholder
needs.

•! Use an Impact Estimation table

–! and you will be able to spot
opportunities for

•! high value and

•! low cost early deliveries
–! by analyzing the numbers on the

table

See next slide!

For enlargement!

April 21, 2008! Slide 191!© Tom@Gilb.com www.Gilb.com !

Slide 192!

Strategy Impact Estimation:
for a $100,000,000 Organizational Improvement Investment

Defined!

In earlier slide!

April 21, 2008! Slide 192!© Tom@Gilb.com www.Gilb.com !

Slide 193!10. Value delivery will attract resources.

•! If you are really good at delivering
value

–!You can expect to attract

•! even more funding

–!Managers like
•! to be credited with success

–! Money seeks
•! best interest rates

April 21, 2008! Slide 193!© Tom@Gilb.com www.Gilb.com !

Slide 194!Gilb’s Value Manifesto: A Management Policy?

1.! Really useful value, for real stakeholders will be
defined measurably.

No nice-sounding emotive words please.

2.! Value will be seen in light of total long term costs

as a decent return on investment.

3.! Powerful management devices, like motivation
and follow-up, will make sure that the value for
money is really delivered –

or that the failure is punished, and the success
is rewarded.

4.! The value will be delivered evolutionarily –

not all at the end.

5.! That is, we will create a stream of prioritized
value delivery to stakeholders, at the beginning
of our value delivery projects;

and continue as long as the real return on
investment is suitably large.

6.! The CEO is primarily responsible for making all
this happen effectively.

1.! The CFO will be charged with tracking all
value to cost progress.

2.! The CTO and CIO will be charged with
formulating all their efforts in terms of
measurable value for resources.

Source “Value Delivery in Systems Engineering” available at www.gilb.com

Unpublished paper http://www.gilb.com/community/tiki-download_file.php?fileId=137

April 21, 2008! Slide 194!© Tom@Gilb.com www.Gilb.com !

Slide 195!The Value Delivery Problem

•! Sponsors who order and pay
for systems engineering
projects, must justify their
money spent based on the
expected consequential
effects (hereafter called
‘value’) of the systems.

•!

•! The value of the technical
system is often expressed in
presentation slides and
requirements documents as
a set of nice-sounding
words, under various titles
such as “System
Objectives”, and “Business
Problem Definition”

April 21, 2008! Slide 195!© Tom@Gilb.com www.Gilb.com !

Slide 196!Some Assertions

Assertion 1. When top management allows large projects to proceed, with such badly formulated
primary objectives, then

–! they are responsible as managers for the outcome (failure).

–! They cannot plead ignorance.

Assertion 2. The failure of technical staff (project management) to react to the lack of primary
objective formulation by top management is also a total failure to do reasonable systems
engineering.

–! Management might have a poor requirements culture, but we should routinely save them
from themselves.

Assertion 3. Both top managers and project personnel can be trained and motivated to clarify and
quantify critical objectives routinely.

–! But until the poor external culture of education and practice changes, it may take strong
CEO action to make this happen in your corporation.

–! My experience is that no one else will fight for this.

Assertion 4. All top level system performance improvements, are by definition, variables.

–! So, we can expect to define them quantitatively.

–! We can also expect to be able to measure or test the current level of performance.

–! Words like ‘enhanced’, ‘reduced’, ‘improved’ are not serious systems engineering
requirements terms.

April 21, 2008! Slide 196!© Tom@Gilb.com www.Gilb.com !

Slide 197!For example:
(Real, engineering system, but doctored for anonymity)

1. Central to The Corporations business strategy is to be the world’s premier integrated <domain>
service provider.

2. Will provide a much more efficient user experience

3. Dramatically scale back the time frequently needed after the last data is acquired to time align,
depth correct, splice, merge, recompute and/or do whatever else is needed to generate the
desired products

4. Make the system much easier to understand and use than has been the case for previous
system.

5. A primary goal is to provide a much more productive system development environment than was
previously the case.

6. Will provide a richer set of functionality for supporting next-generation logging tools and
applications.

7. Robustness is an essential system requirement (see rewrite in example below)

8. Major improvements in data quality over current practices

April 21, 2008! Slide 197!© Tom@Gilb.com www.Gilb.com !

Slide 198!For Example:

I rewrote the top level
system requirement in
the above example
using Planguage [Gilb
2005]:

“7. Robustness is an

essential system

requirement.”

to be:

April 21, 2008! Slide 198!© Tom@Gilb.com www.Gilb.com !

Slide 199!Rock Solid Robustness:

•! Type: Complex Product
Quality Requirement.

•! Includes: {Software
Downtime, Restore
Speed, Testability, Fault
Prevention Capability,
Fault Isolation
Capability, Fault
Analysis Capability,
Hardware Debugging
Capability}.

•!
April 21, 2008! Slide 199!© Tom@Gilb.com www.Gilb.com !

Slide 200!Software Downtime:

Type: Software Quality Requirement. Version:
25 October 2007.

Part of: Rock Solid Robustness.

Ambition: to have minimal downtime due to
software failures <- HFA 6.1

Issue: does this not imply that there is a system
wide downtime requirement?

Scale: <mean time between forced restarts for

defined [Activity], for a defined [Intensity].>

Fail [Any Release or Evo Step, Activity =

Recompute, Intensity = Peak Level] 14 days
<- HFA 6.1.1

Goal [By 2008?, Activity = Data Acquisition,
Intensity = Lowest level] : 300 days ??

Stretch: 600 days.

April 21, 2008! Slide 200!© Tom@Gilb.com www.Gilb.com !

Slide 201!Restore Speed:

Type: Software Quality Requirement. Version:
25 October 2007.

Part of: Rock Solid Robustness

Ambition: Should an error occur (or the user
otherwise desire to do so), the system shall
be able to restore the system to a previously
saved state in less than 10 minutes. <-6.1.2
HFA.

Scale: Duration from Initiation of Restore to
Complete and verified state of a defined
[Previous: Default = Immediately Previous]]
saved state.

Initiation: defined as {Operator Initiation, System
Initiation, ?}. Default = Any.

Goal [Initial and all subsequent released and Evo
steps] 1 minute?

Fail [Initial and all subsequent released and Evo
steps] 10 minutes. <- 6.1.2 HFA

Catastrophe: 100 minutes.

April 21, 2008! Slide 201!© Tom@Gilb.com www.Gilb.com !

Slide 202!Testability:

Type: Software Quality Requirement.
Part of: Rock Solid Robustness
Initial Version: 20 Oct 2006

Version: 25 October 2007.
Status: Demo draft,
Stakeholder: {Operator, Tester}.
Ambition: Rapid-duration automatic testing of <critical

complex tests>, with extreme operator setup and
initiation.

Scale: the duration of a defined [Volume] of testing, or a
defined [Type], by a defined [Skill Level] of system
operator, under defined [Operating Conditions].

Goal [All Customer Use, Volume = 1,000,000 data items,

Type = WireXXXX Vs DXX, Skill = First Time Novice,
Operating Conditions = Field, {Sea Or Desert}. <10
mins.

Design Hypothesis: Tool Simulators, Reverse Cracking

Tool, Generation of simulated telemetry frames
entirely in software, Application specific
sophistication, for drilling – recorded mode simulation
by playing back the dump file, Application test
harness console <-6.2.1 HFA

April 21, 2008! Slide 202!© Tom@Gilb.com www.Gilb.com !

Slide 203!the problem with conventional requirements

•! their source or authority

–! may be undocumented and unknown

•! they are probably not at all clear

–!about exactly what should happen,

–!where or when, or under which conditions

•! there is no contract,

–! to pay only upon such results being delivered

•! there is no specific design or architecture,

–! to enable the technical product to achieve the
requirements

April 21, 2008! Slide 203!© Tom@Gilb.com www.Gilb.com !

Slide 204!£50 million Wasted

•! The above example was the basis
in 1999 for a project that had
–! in 2006 spent over $100 million,

–! for 8 years
–! and had never delivered any value

whatsoever to the corporation.

•! There was never any quantified or
testable definition of the
requirements.

•! There was never any direct link
–! from the project activity,

requirements, or architecture,
–! to these primary top management

•! (CEO and next level directors)
objectives.

•! The project was doomed from the
start.

April 21, 2008! Slide 204!© Tom@Gilb.com www.Gilb.com !

Slide 205!

Another Real (Doctored) Example: Financial Corp. Top Level
Project requirements

1. Reduce the costs associated with managing redundant / regionally
disparate systems.

2. Single global portfolio management system.

3. Reduce overall spending with a reduction in redundant initiatives.
4. Governance structures - system agnostic.

5. All projects in project portfolio system.
6. Reduce development project spend on low priority work with better

alignment between Technology and business demand.

7. Project portfolio Framework, Business Value metrics for
prioritization.

8. Reduction in cost over runs.
9. Definition criteria for project success.
 10. Metrics and exception reporting for cost management.

11. Linkage of actual costs to forecast.
12. Increase revenue with a faster time to market.

13. Knowledge management, project ramp up templates.

April 21, 2008! Slide 205!© Tom@Gilb.com www.Gilb.com !

Slide 206!The Financial System

•! This project spent about $50 million, in a single year.

•! Responsible management, impatient for some results, discovered to their
horror, through an audit, that the above primary objectives had never
been clarified or taken seriously.

•! The responsible (‘former’) project manager had chosen to ignore the
opportunity, planned by a major component supplier, to clarify these
objectives.

•! The project manager spent a lot of effort obtaining ‘requirements from
users’,

–! but no further effort on these primary objectives above.

•! Serious effort was, after the audit, then immediately spent quantifying and
taking seriously these primary objectives.

•! It took a single day to draft a quantified version.

•! The quantified version made a clear distinction between

–! technical objectives (system quality – examples 2 and 5 above) and

–! stakeholder values (making the business better, examples 8 and 12
above).

April 21, 2008! Slide 206!© Tom@Gilb.com www.Gilb.com !

Slide 207!Another Assertion
Delivering Value

•! Assertion 5.

–! If the hardware/software
systems supplier is

•! not prepared to deal with
the system level that
delivers the value from
their product,

•! then someone,

–! internally or an
external contractor

•! needs to undertake the
project of delivering the
value expected.

April 21, 2008! Slide 207!© Tom@Gilb.com www.Gilb.com !

Slide 208!

Assertion 6.
Systems Engineering for Value

•! This ‘value delivery process’ is
–! likely to entail considerable human and

organizational aspects,
–! and little hardware and software technology.

•! So it may be inappropriate work for systems
engineers
–! who are not expert in, and committed to, the social,

political, and organizational aspects of systems
engineering.

•! But of course this ‘social’ ability
–! is a necessary and valid component of full

systems engineering –
–! or we cannot call it ‘systems’ engineering

–! and exclude the social, political system aspects.

•!

April 21, 2008! Slide 208!© Tom@Gilb.com www.Gilb.com !

Slide 209!

Value delivery is NOT
Technical Construction

April 21, 2008! Slide 209!© Tom@Gilb.com www.Gilb.com !

Slide 210!Do we need a Chief Value Officer?

April 21, 2008! Slide 210!© Tom@Gilb.com www.Gilb.com !

Slide 211!The Value Principles:

1. Value can always be articulated quantitatively, so that we can understand it, agree
to it, track it, contract for it and understand it in relation to costs.

2. Value is a result, delivered to a real set of stakeholders.
3. Value must be seen in light of lifetime total cost aspects, and must be as profitable

as alternative investments.
4. Value occurs through time, as a stakeholder experience: it is not delivered when a

system to enable it is delivered – only when that system is successfully used to
extract the value.

5. Value can be delivered early, and for part of one stakeholder’s domain. This
proves the value potential, and actually improves the real organization.

6. There is never a really sufficient reason to put off value delivery until large-scale
long-term investments are made. This is just a common excuse from the many
weak, ignorant, cowards who would like to spend a lot of money before being
held to account.

7. People who cannot deliver a little value early, in practice, cannot be entrusted to
deliver a lot of value for a larger investment.

8. The top management must be primarily responsible for making value delivery
happen in their organization. The specialist managers will never in practice take
the responsibility, unless they are aiming to take over the top job.

9. Value is a multiplicity of improvements, and certainly not all related to money or
savings – but we still need to quantify the value proposition in order to
understand it, and manage it.

10. If we prioritize highest value for money first, then we should normally experience
an immediate and continuous flow of dramatic results, that the entire organization
can value and

April 21, 2008! Slide 211!© Tom@Gilb.com www.Gilb.com !

Slide 212!

1. Value can always be articulated quantitatively, so that we can
understand it, agree to it, track it, contract for it and understand it in

relation to costs.

•! If all else fails, Google it!

! Corporate Agility Metric!

April 21, 2008! Slide 212!© Tom@Gilb.com www.Gilb.com !

Slide 213!2. Value is a result delivered to a real set of stakeholders.

•! Value is not ‘activated’ by a technical
performance characteristic alone,

–! like Usability, security or Robustness.

•! It is only created when it meets real people in
their everyday stakeholder situation of work:

–! Call Center, Battlefield Analyst, Corporate
Trader.

•! It has to save them time, or make their work
better.

•! The value created by the interaction with a
stakeholder type may be cumulated every
time the system is used for some new activity,
customer, transaction, or decision.

•! It may be cumulated by a very large number
of that type of stakeholder (10,000 sales
people). And through a very long time (years).

•! It is obvious from this common sense
observation that value is not created by the
technical system performance characteristics
(speedy response, user friendly),

–! but by making those technical system
characteristics available

•! in practice

•! to as many real people, and
•! as many transactions, and

•! for as long a time as possible.

April 21, 2008! Slide 213!© Tom@Gilb.com www.Gilb.com !

Slide 214!3. Value must be seen in light of lifetime total cost aspects, and
must be as profitable as alternative investments.

•! We cannot allow ourselves to be
blinded narrowly by quantified value.

•! We must constantly estimate, and manage
the value for money: the return on
investment.

•! And if the costs of delivering the value get
out of hand, and exceed the value –

–! it is time to either reengineer the system

–!or decommission it.

–!Who will do this if not some constant CVO
vigilance?

April 21, 2008! Slide 214!© Tom@Gilb.com www.Gilb.com !

Slide 215!

4. Value occurs through time, as a stakeholder experience: it is not
delivered when ‘a system to enable it’ is delivered – only when that

system is successfully used to extract the value.

•! A conscious strategy, and conscious formal plan, must be made to deploy a technical
system so that the value is delivered.

•! We have to deal with political problems – like power centers (trade unions, management
fiefdoms) and economic waste centers.

•! We have to motivate people to give up their comfortable older systems and deploy scary new
ones.

•! We have to support the correct use by
–! training, call centers, local consultancy, measurement and feedback on the technical system,

–! is it actually delivering what we need, in order to get people to use it at all, to use it well?

•! feedback on the stakeholder environments it is deployed in:
–! are they happy with it?

–! Do they have improvement suggestions?
–! Are there undesired variations in costs and benefits?

•! feedback on deployment to the entire scope of stakeholders,
–! in relation to time plans:

–! is it being deployed successfully rapidly enough?

•!
•! Obviously this should be the natural concern and use of true systems engineering.

–! But in fact, there is little in the training, the conferences, the handbooks [INCOSE SE Handbook], to verify
that systems engineering as a discipline has matured to the point where these concerns are safely
included.

–! We are still too much ‘engineers’ (techies); and know and care too little about value management, and
the organizational and management culture part of our domain.

April 21, 2008! Slide 215!© Tom@Gilb.com www.Gilb.com !

Slide 216!5. Value can be delivered early, and for part of one stakeholder’s
domain. This proves the value potential, and actually improves the real

organization.

•! Our systems development culture is still very much a ‘waterfall’ culture.
•! Finish the big system, and then deploy it [INCOSE SE Handbook 2-3,

and 3-2 for example].

•! There was no visible mention, in the Handbook, of a true evolutionary
life cycle (even though the US DoD adopted one for software at least
long ago, DoD Mil Std 498).

•! There is no notion of early, frequent and gradual delivery of results to
stakeholders, even though that has been practiced successfully in many
large military, space and software systems for decades [Larman].

•! Big Bang is still our mentality.
•! I helped Douglas/Boeing to do value delivery Evolutionary projects for

25 aircraft projects in 1990. It was an unknown concept for them, but it
was easily doable by every team we did it on; in real projects. We use
‘next week’ as our measure of when we would produce some useful
value.

•! I know that this sounds incredible and impossible to conventional ears.
But it is simple enough in practice, and very close indeed to weaponry
progress during the Second World War [Discovery Channel!].

April 21, 2008! Slide 216!© Tom@Gilb.com www.Gilb.com !

Slide 217!Intelligent Feedback About Value

April 21, 2008! Slide 217!© Tom@Gilb.com www.Gilb.com !

Slide 218!6. There is never a really sufficient reason to put off value delivery until
large-scale long-term investments are made.

This is just a common excuse from those who would like to spend a lot of
money before being held to account.

•! There are vested interests who will happily consume public and
private corporate money forever and deliver failure or little or no real value.

•! The consumer and their representatives seem happy to contract for effort,
but not contract for value.

•! I cannot believe there are so many foolish people with so much money as I
have had occasion to observe in practice

–! (example the $50 to $100 million wasted projects at the beginning of this paper,
which are in fact small by comparision with some; like documented DoD waste in
software engineering alone ($20 billion annually, many years ago).

•! This is not necessary! We could avoid it by contracting for value and results.
[Gilb, No Cure No Pay]. This is hardly on the agenda, and not discussed at
all in the INCOSE Handbook.

•! It would require two technical pieces of knowledge
–! The ability to quantify and measure value

–! The ability to decompose large projects into much smaller increments of value
delivery.

•! These exist, but the ‘will to contract for value’ does not.

•! Some management leadership please!

April 21, 2008! Slide 218!© Tom@Gilb.com www.Gilb.com !

Slide 219!7. People who cannot deliver a little value early in practice, cannot be
entrusted to deliver a lot of value for a larger investment.

•! Ericsson of Sweden, who learned
to deliver mobile telephone base
stations in 1990 in monthly
evolutionary steps observed this
principle (Jack Järkvik).

•! If you are going to spend
$100,000,000 before anything
happens, and nothing then does.
–! It might have been a good idea to

offer the project or supplier a mere
$1 million (1%)

•! and ask if they could create some of
the long-term projected value for that
1% of budget.

•! If they cannot, then there is no reason
to believe they will use your $100
million wisely.

•! If they can; do so, then feed them
millions, one at a time until it is no
longer profitable!

April 21, 2008! Slide 219!© Tom@Gilb.com www.Gilb.com !

Slide 220!
8. The top management must be primarily responsible for making value

delivery happen in their organization. The specialist managers will
never, in practice, take the responsibility, unless they are aiming to take

over the top job.

•! Top management, the CEO, needs to decide they are primarily responsible
for value for money, and dictate a policy of focus on ‘value for money’ (see
earlier in this paper for policy ideas).

•! One excellent CEO client of mine who did so, Robb Wilmott of ICL UK
(23,000 employees then), turned years of losses into 14 straight years of
profit for his computer company – unlike competitors, like IBM, at the time.
My observation was:

•! • it only happened because the CEO threatened all other top managers
with loss of power and budget if they did not ‘quantify the value’ they were
going to deliver

•! • they began to think clearly about their responsibilities, perhaps for the
first time

•! • it helps if the CEO is an engineer, not an MBA %
•! Another UK CEO, pulled the same trick – about 2003.

–! But had to fire the marketing director, and the sales director, for refusing to really play
ball.

–! Some directors have a real fear of being specific about what they are responsible for.
–! Interestingly the current Chairman of this company was one of the above-mentioned

ICL Directors (Marketing) who we trained to quantify, things like the primary new
product line vision, ‘Adaptability’ of his product.

April 21, 2008! Slide 220!© Tom@Gilb.com www.Gilb.com !

Slide 221!
9. ‘Value’ is a multiplicity of improvements, and certainly not all related

to money or savings – but we still need to quantify the value
proposition in order to understand it, and manage it.

•! I strongly dislike value schemes that try to turn all values into money. Do
they really think management understands no other concept?

•!

•! Peter Drucker, I think it was (Management By Objectives, in ‘The Practice
of Management’), established long ago that no corporation is driven by
money alone. Thus the Balanced Scorecard, to retain some non-financial
balance, I suppose.

•! If the value you are aiming at is for example, ‘increased potential customer
willingness to shortlist you’,

–! then there is an estimable money value for that,

–! but I would be afraid of losing focus on the short-listing, by converting this idea to
money.

•! You would need to measure the quantity of real short-listing to manage
that value, for example.

–! I believe you need to state and measure things directly,

–! especially of you want to track early lead indicators of value –

–! and keep people focused on a dynamic and changing situation.

April 21, 2008! Slide 221!© Tom@Gilb.com www.Gilb.com !

Slide 222!10. If we prioritize highest value for money first, then we should normally
experience an immediate and continuous flow of dramatic results, that the
entire organization can value and relate to. Be deeply suspicious of long-

term visions with no short-term proof.

•! We should try to skim the cream off the top.
–! With early realistic feedback, and changing technology and markets, we should be able to

avoid a dramatic diminishing return on investment for some time.

•! Projects, at one extreme, should be practically self-funding;
–! or at least not in need of huge initial budgets, then overspent by factor 3.14 (Pie instead of

‘piece of cake’) before management feels uncomfortable

•! You have a lot of choice, in spite of some dependencies,
–! to ‘cherry pick’ very high value for money, early deliveries.

–! Not exactly a new marketing technique –
•! but maybe alien to our Defence Supplier Systems Engineering mentality.

•! Again, if we contracted to pay them for value for money,
–! they would be more focussed on making it happen.

–! This is our problem, not theirs.

–! We fail to motivate suppliers to do the right thing for us.

•! We fail to even discuss this in our systems engineering literature.
–! We have progress payments, but not based on value delivery, early and frequently.

–! ‘Payment Schedules’ (sounds nice and bureaucratic) are mentioned in the SE Handbook,
but not ‘Value Payments’.

–! We need to extend the concept!

April 21, 2008! Slide 222!© Tom@Gilb.com www.Gilb.com !

Slide 223!Summary

•! Top management needs
to change their culture

–! to manage the actual
delivery of real value,

–! and not leave it to systems
engineers to drive this
change.

•! Systems Engineers can
execute the value
engineering and delivery –

–! but only top management
can make it happen.

April 21, 2008! Slide 223!© Tom@Gilb.com www.Gilb.com !

