
www.gilb.com

A Systems Engineering Vision:  
Quantifying Future Adaptability and Maintainability,  

as the basis for Architecture Decisions - something we have
not been good enough  

at engineering into systems.  
Tom Gilb  

 Tom@Gilb.com  
  
  

MASTER 2016t

September 12, 2014
1

www.gilb.com

Abstract.  

• Software system
maintenance costs
are a substantial
part of the life
cycle costs.

• They can easily
steal all available
effort away from
new development.

September 12, 2014
2

Copyright © 2008 by Capers Jones & Associates LLC. All rights
reserved. Used with permission of the author, 15 April 2008

System Lifetime Expectancy:  
Capers Jones: Think 18-25 Years

12/09/2014
3

Table 5: Major Kinds of Work Performed Under the Generic
Term “Maintenance”  
Capers Jones 2014

1. Major Enhancements (new features of > 20 function points)
2. Minor Enhancements (new features of < 5 function points)
3. Maintenance (repairing defects for good will)
4. Warranty repairs (repairing defects under formal contract)
5. Customer support (responding to client phone calls or problem reports)
6. Error-prone module removal (eliminating very troublesome code segments)
7. Mandatory changes (required or statutory changes)
8. Complexity or structural analysis (charting control flow plus complexity metrics)
9. Code restructuring (reducing cyclomatic and essential complexity)
10. Optimization (increasing performance or throughput)
11. Migration (moving software from one platform to another)
12. Conversion (Changing the interface or file structure)
13. Reverse engineering (extracting latent design information from code)
14. Reengineering (transforming legacy application to modern forms)
15. Dead code removal (removing segments no longer utilized)
16. Dormant application elimination (archiving unused software)
17. Nationalization (modifying software for international use)
18. Mass updates such as Euro or Year 2000 Repairs
19. Refactoring, or reprogramming applications to improve clarity
20. Retirement (withdrawing an application from active service)
21. Field service (sending maintenance members to client locations)
22. Reporting bugs or defects to software vendors
23. Installing updates received from software vendors

www.gilb.com

Abstract

• I believe that this is
because
• maintainability is, as good as

never, systematically
engineered into the software.

• Our so-called software
architects bear a primary
responsibility for this, but
they do not engineer to
targets.

• They just throw in customs
and habits that seem
appropriate.

Did you ever see ideas like
 performance and quality, for example

‘Portability Levels’
in a software architecture diagram?

September 12, 2014
5

www.gilb.com

My Main Assertion to Management
• We need to

• define our maintainability requirements
quantitatively,

• Set quality investment targets that
will pay off,

• pursue long-term engineered
improvement of the systems, and
then

• ‘architect’ and ‘engineer’ the
resulting system.

• Traditional disciplines may already in
principle understand this discipline,

• some may not understand it,
• some may simply not apply the

engineering understanding that is
out there

September 12, 2014
6

www.gilb.com

The Maintainability Problem 
• Software systems are built

• under high pressure to meet deadlines,
• and with initial emphasis on performance, reliability, and usability.

• The software attributes relating to later changes in the software
– maintainability attributes are:

• never specified quantitatively up front in the software
quality requirements

• never architected to meet the non-specified maintainability
quality requirements

• never built to the unspecified architecture to meet the
unspecified requirements

• never tested before software release
• never measured during the lifetime of the system.

“A number of people expressed the opinion that code is often not
designed for change. Thus, while the code meets its operational
specification,

 for maintenance purposes it is poorly designed and documented
“ [Dart 93]

• In short,

• there is no engineering approach to software
maintainability.

September 12, 2014
7

www.gilb.com

What do we do in practice today?
• we might bullet point some high-level objectives

• (‘• Easy to maintain’)
• which are never taken seriously

• we might even decide the technology we will use to reach the
vague ideal

• (“• Easy to maintain through modularization, object
orientation and state of the art standard tools”)

• larger institutions might have ‘software architects’ who carry
out certain customs, such as

• decomposition of the software,
• choice of software platforms and software tools –

generally intended to help – hopefully.
• But with no specific resulting level or type of

maintainability in mind.
• we might recommend more and better tools, but totally fail to

suggest an engineering approach [Dart 93].
• We could call this a ‘craft’ approach.
• It is not ‘engineering’ or ‘architecture’ in the normal sense.

September 12, 2014
8

www.gilb.com

Broader Maintainability Concepts
• Maintainability in the strict engineering

sense is usually taken to mean bug
fixing.

• I have however been using it thus far
to describe any software change
activity or process.

• We could perhaps better call it
‘software change ability’.

• Different classes of change, will have
different requirements related to them,

• and consequently different
technical solutions.

• It is important that we be very clear
• in setting requirements,
• and doing corresponding design,
• exactly what types of change we

are talking about.
•

September 12, 2014
9

www.gilb.com

Principles of Software Maintainability

• I would like to
suggest a set of
principles about
software
maintainability,
• in order to give

this talk a
framework:

Body Maintenance: {Relax, Exercise, Breathing, Diet, Positive Thinking and Meditation}.

September 12, 2014
10

www.gilb.com

1. The Conscious Design Principle:

• Maintainability must be
consciously designed into a
system:
• failure to design to a

set of levels of
maintainability

• means the resulting
maintainability is both
bad and random.

September 12, 2014
11

www.gilb.com

Conscious Design

• Clarify
– Robust !

• 200 Days Between Restarts

• Find Solutions
– Triple Redundant Systems ?

• Verify Solutions
– 400 Days average achieved!

September 12, 2014
12

www.gilb.com

2. The Many-Splendored Thing Principle.

• Maintainability is
• a wide set of change-

quality types,
• under a wide variety of

circumstances:
• so we must clearly define

what quality type we are
trying to engineer. Like:

• Portability, scalability,
maintainability?

http://www.youtube.com/watch?v=X-JiKA1vTRo = Nat King Cole “Love is…” September 12, 2014
13

http://www.youtube.com/watch?v=X-JiKA1vTRo

www.gilb.com

The ‘Maintainability’ Generic Breakdown into Sub-
problems

1. Problem Recognition Time.
 How can we reduce the time from bug

actually occurs until it is recognized and
reported?

2. Administrative Delay Time:
 How can we reduce the time from bug

reported, until someone begins action on
it?

3. Tool Collection Time.
How can we reduce the time delay to collect

correct, complete and updated
information to analyze the bug: source
code, changes, database access, reports,
similar reports, test cases, test outputs.

4. Problem Analysis Time.
 Etc. for all the following phases defined,

and implied, in the Scale scope above.

5. Correction Hypothesis Time

6. Quality Control Time

7. Change Time

8. Local Test Time

9. Field Pilot Test Time

10. Change Distribution Time

11. Customer Installation Time

12. Customer Damage Analysis Time

13. Customer Level Recovery Time

14. Customer QC of Recovery Time

September 12, 2014
14

11 Sub-Attributes of Fixing Faults

Maintainability:
Mean Time To Repair,

a Fault MTTR

Total
MTTR

Aspects of Maintainability

www.gilb.com

A More Tailored Breakdown

Real Customer Case 2006

12/09/2014
17

www.gilb.com

Rock Solid Robustness: many splendored

• Type: Complex Product Quality Requirement.
• Includes:

– {Software Downtime,
– Restore Speed,
– Testability,
– Fault Prevention Capability,
– Fault Isolation Capability,
– Fault Analysis Capability,
– Hardware Debugging Capability}.

•

September 12, 2014
18

www.gilb.com

Software Downtime:

Type: Software Quality Requirement. Version: 25 October 2007.
Part of: Rock Solid Robustness.
Ambition: to have minimal downtime due to software failures <- HFA 6.1
Issue: does this not imply that there is a system wide downtime requirement?

Scale: <mean time between forced restarts for
defined [Activity], for a defined [Intensity].>

Fail [Any Release or Evo Step, Activity = Recompute, Intensity = Peak Level] 14 days <-

HFA 6.1.1

Goal [By 2008?, Activity = Data Acquisition, Intensity = Lowest level] : 300 days ??
Stretch: 600 days.

September 12, 2014
19

www.gilb.com

Restore Speed:
Type: Software Quality Requirement. Version: 25 October 2007.
Part of: Rock Solid Robustness
Ambition: Should an error occur (or the user otherwise desire to do

so), the system shall be able to restore the system to a
previously saved state in less than 10 minutes. <-6.1.2 HFA.

Scale: Duration from Initiation of Restore

to Complete and verified state of a
defined [Previous: Default =
Immediately Previous]] saved state.

Initiation: defined as {Operator Initiation, System Initiation, ?}.

Default = Any.

Goal [Initial and all subsequent released and

Evo steps] 1 minute?

Fail [Initial and all subsequent released and
Evo steps] 10 minutes. <- 6.1.2 HFA

Catastrophe: 100 minutes.

September 12, 2014
20

www.gilb.com

Testability:
Type: Software Quality Requirement.
Part of: Rock Solid Robustness
Initial Version: 20 Oct 2006
Version: 25 October 2007.
Status: Demo draft,
Stakeholder: {Operator, Tester}.
Ambition: Rapid-duration automatic testing of

 <critical complex tests>, with extreme operator setup and
initiation.

Scale: the duration of a defined [Volume] of testing, or a
defined [Type], by a defined [Skill Level] of system operator,
under defined [Operating Conditions].

Goal [All Customer Use, Volume = 1,000,000 data items, Type = WireXXXX Vs DXX, Skill = First
Time Novice, Operating Conditions = Field, {Sea Or Desert}. <10 mins.

Design Hypothesis: Tool Simulators, Reverse Cracking Tool, Generation of simulated telemetry

frames entirely in software, Application specific sophistication, for drilling – recorded mode
simulation by playing back the dump file, Application test harness console <-6.2.1 HFA

September 12, 2014
21

www.gilb.com

Another Real (Doctored) Example:  
Financial Corp. Top Level Project requirements  

$60,000,000 in 1 Year Spend ……. but  

1. Reduce the costs associated with managing redundant /
regionally disparate systems.

2. Single global portfolio management system.
3. Reduce overall spending with a reduction in redundant

initiatives.
4. Governance structures - system agnostic.
5. All projects in project portfolio system.
6. Reduce development project spend on low priority work

with better alignment between Technology and business
demand.

7. Project portfolio Framework, Business Value metrics for
prioritization.

8. Reduction in cost over runs.
9. Definition criteria for project success.
 10. Metrics and exception reporting for cost management.
11. Linkage of actual costs to forecast.
12. Increase revenue with a faster time to market.
13. Knowledge management, project ramp up templates.

DO YOU SEE ANYTHING RELATED TO
MAINTAINABILITY?

September 12, 2014
22

www.gilb.com

3. The Multi-Level Requirement
Principle.

• The levels of
maintainability we
decide to require can be
• partly ‘constraints’,

• a necessary minimum of
ability to avoid failure,

• and partly desirable
‘target’ levels

• that are determined by
what pays off to invest
in.

September 12, 2014
23

www.gilb.com

Software Downtime: Multiple Levels
Type: Software Quality Requirement. Version: 25 October 2007.
Part of: Rock Solid Robustness.
Ambition: to have minimal downtime due to software failures <- HFA 6.1
Issue: does this not imply that there is a system wide downtime

requirement?

Scale: <mean time between forced restarts for defined [Activity], for a

defined [Intensity].>

Fail [Any Release or Evo Step, Activity =
Recompute, Intensity = Peak Level] 14
days <- HFA 6.1.1

Goal [By 2008?, Activity = Data
Acquisition, Intensity = Lowest level] :
300 days ??

Stretch: 600 days.

September 12, 2014

24

www.gilb.com

Restore Speed: Multiple Levels
Type: Software Quality Requirement. Version: 25 October 2007.
Part of: Rock Solid Robustness
Ambition: Should an error occur (or the user otherwise desire to do so), the system shall

be able to restore the system to a previously saved state in less than 10 minutes.
<-6.1.2 HFA.

Scale: Duration from Initiation of Restore to Complete and verified state of a defined
[Previous: Default = Immediately Previous]] saved state.

 Initiation: defined as {Operator Initiation, System Initiation, ?}. Default = Any.

Goal [Initial and all subsequent released
and Evo steps] 1 minute?

Fail [Initial and all subsequent released
and Evo steps] 10 minutes. <- 6.1.2 HFA

Catastrophe: 100 minutes.

 September 12, 2014
25

www.gilb.com

4. The Payoff Level Principle.

• The levels of maintainability
it pays off to invest in,
• depend on many factors –

• but certainly on the system
lifetime expectancy,

• the criticality/illegality/cost
of not being able to change
correctly or change in time,

• and the cost and availability
of necessary skilled
professionals to carry out
the changes.

September 12, 2014
26

www.gilb.com

5. The Priority Dynamics Principle.

• The maintainability
requirements must
compete for priority
• for limited

resources
• with all other

requirements.
• We cannot simply

demand arbitrary
desired levels of
maintainability.

September 12, 2014
27

www.gilb.com

The Engineering Solution
• There are many small and less

critical software systems where
• engineering the maintainability

would not be interesting,
• or would not pay off.
• Nobody cares.

• This talk is addressed to the vast
number of current situations
where
• the total size of software,
• the growth of software

annually,
• the cost of maintenance

annually – are all causing
management to wonder – ‘

• Is there a better way?’
• September 12, 2014

28

www.gilb.com

The method is straightforward,  
and it is well-understood engineering 

 in ‘real’ engineering disciplines.
• In simple terms it is:
1. Define the maintainability

requirements quantitatively.
2. Design to meet those requirements,
 if possible and economic.
3. Implement the designs

 and test that they meet the
required levels.

4. Quality Control that the design
continues to meet the required
maintainability quality levels,

 and take action in the case of
degradation,

 to get back to current required
levels.

September 12, 2014
29

www.gilb.com

Let us take a simplified tour of the method.

Requirement specification (using ‘Planguage’ [Gilb 2005]:

Bug Fixing Speed:
Type: Software Product Quality Requirement.
Scope: Product Confirmit [Version 12.0 and on]
Ambition Level: Fast enough bug fixing so that it is a non-issue with our

customers.
Scale of Measure: Average Continuous Hours from Bug occurs and is

observed in any user environment, until it is correctly corrected and
sufficiently tested for safe release to the field, and the change is in fact
installed at, at least, one real customer, and all consequences of the bug
have been recovered from at the customer level.

Meter: QA statistics on bug reports and bug fixes.
Past [Release 10.0] 36 hours <- QA Statistics
Fail [Release 12.0, Bug Level = Major] 6 hours <- QA Directors Plan
Goal [Release 12.0, Bug Level = Catastrophic] 2 hours <- QA Directors Plan.
Goal [Release 14.0, Bug Level = Catastrophic] 1 hour <- QA Directors Plan.

September 12, 2014
30

www.gilb.com

 Planguage Intelligibility
• It should be possible to read this specification,

• slowly,
• even for those not trained in Planguage,
• and to be able to explain exactly what the requirement is.

•
• Notice especially the ‘Scale of Measure’.

• Scale of Measure:
• Average Continuous Hours from Bug occurs and is observed in any

user environment,
• until it is correctly corrected and sufficiently tested for safe release

to the field,
• and the change is in fact installed at,

• at least, one real customer,
• and all consequences of the bug have been recovered from at the

customer level.

• It encompasses the entire maintenance life cycle
• from first bug effect observation
• until customer level correction in practice.

• That is a great deal more than just some programmer staring at code
and seeing the bug and patching it.

• The corresponding design
• will have to encompass many processes and technologies.

September 12, 2014
31

www.gilb.com

Summary
• Technical Management must take

responsibility for
– Specification
– design engineering
– financing
– Prioritization
– of the long term operational

• adaptability characteristics
• of their systems

• It won’t happen
– if you leave it to the techies.
– Why should they care?
12/09/2014

32

Brunel

www.gilb.com

END OF 30 MINUTE PRESENTATION

• THE REMAINING SLIDES ARE TO GIVE SOME
DETAIL FOR THOSE WHO WOULD LIKE TO
KNOW HOW TO QUANTIFY FUTURE
ADAPTABILITY FOR SYSTEMS ENGINEERING
PURPOSES.

• AND TO GIVE SOME IDEA OF A POSSIBE
ARCHITECTURE FOR RECHING SOME SUCH
OBJECTIVES.

12/09/2014
33

www.gilb.com

Let us take a look at a possible first draft of some design
ideas:  

• Note: I have intentionally suggested some
dramatic architecture,
– in an effort to meet the radically improved

requirement level.
• The reader need not take any design too

seriously.
• This is an example of trying to solve the

problem, using engineering techniques
(redundancy)
– that have a solid scientific history.

September 12, 2014
34

University of Alaska's
Museum of the North

 in Fairbanks

www.gilb.com

1. Problem Recognition Time.  

• Design: Automated N-version distinct
software comparison [Inacio 1998]
– at selected critical customer sites,
– to detect potential bugs automatically.

September 12, 2014
35

www.gilb.com

Trillium | Distributed Fault-Tolerant/High-
Availability (DFT/HA) Core

• Complete recovery during failure.
– This feature is available in both pure fault-tolerant and distributed fault-tolerant systems.
– When a failure occurs, failed protocol layers are able to completely recover stable state

information.
– All protocol resources present in a stable state during the failure are maintained on the

standby.
• Application restart on processor loss.

– This feature is applicable to pure distributed systems. If a processor in a pure distributed
system fails, applications on the failed processor may be restarted on available processors to
provide service for subsequent user traffic.

• Survive up to n-1 faults.
– DFT protocol layers may survive up to n-1 faults without loss of service where n is the

number of processors over which the protocol layer was distributed.
– With the lost application restart feature enabled, a distributed protocol layer may continue

to provide full service until the last processor in the system fails.
– User defined system operations. Advanced distributed system operations such as dynamic

load balancing may be implemented using basic services provided by the core software.
• Graceful node shutdown.

– The system manager provides an operation to gracefully shutdown a node and an option to
redistribute the protocol load onto remaining processors in the system

– . The load redistribution is completely transparent to the system users.
• Maintenance operations.

– The system manager provides an operation to swap the states of an active and standby node.
– This functionality may be used to perform maintenance operations on the system without

shutting it down
– . These operations are completely transparent to the system users and will not interrupt

service provided by the system.

September 12, 2014

36

www.gilb.com

2. Administrative Delay Time:

• Design: Direct digital report
– from distinct software discrepancies
– to our global,

• 3 zone,
• 24/7
• bug analysis service.

September 12, 2014
37

www.gilb.com

3. Tool Collection Time.

• Design: All necessary tools are electronic,
– and collection is based on

• customers installed version and its fixes.

– The distinct software, bug capture
• collects local input sequences.

September 12, 2014
38

www.gilb.com

4. Problem Analysis Time.
• Analyst Selection:

– Design: The fastest bug analysts are
• selected based on actual past performance

statistics, and
• rewarded in direct relation to their timing

– for analyzing root cause, or correct fix.

September 12, 2014
39

www.gilb.com

5. Correction Hypothesis Time

• Design: Same design as Analyst Selection,
– but applies to correct change specification

speed statistics.

September 12, 2014
40

www.gilb.com

6. Quality Control Time
• Design: Rigorous

– 30 minute or less inspection
– of change spec by other bug analysts,
– with reward for finding major defects

• as judged by our defect standards.

September 12, 2014
41

www.gilb.com

7. Change Time

• Design: Changes are applied
– in parallel with QC,
– and modified only if change defects found in

QC.

September 12, 2014
42

www.gilb.com

8. Local Test Time
• Design: Automated

Test. Based on
distinct software (2

independent) changes
– to distinct

modules, and
– running reasonable

test sets,
– until further notice
– or failure.

September 12, 2014
43

www.gilb.com

9. Field Pilot Test Time
• Design:

– After 30 minutes
successful Local Test

– the changes are
implemented

• at a customer pilot
site

– for more realistic
testing,

» in operation,
» in distinct

software safe
mode.

September 12, 2014
44

www.gilb.com

10. Change Distribution Time

• Design: All necessary
changes are
– readied and
– uploaded for customer

download,
– even before Local Tests

Begin,
– and changed only

• if tests fail.

September 12, 2014

www.gilb.com

11. Customer Installation Time
• Design: Customer is given options of

– manual or
– automatic changes,
– under given circumstances

September 12, 2014
46

www.gilb.com

12. Customer Damage Analysis Time

• Design:
• <local customer solution>.
• We don’t have good

automation here.
• Assume none until proven

otherwise.
• We need to be aware of

– all reports sent
– and databases updated

that may need
correction.

•

September 12, 2014
47

www.gilb.com

13. Customer-Level-Recovery Time

• Design:
• same problem as

Customer Damage
Analysis Time

• may be highly
local and manual.

• Is it really out of
our control?

September 12, 2014
48

www.gilb.com

14. Customer QC of Recovery, Time.
• Design:
• 30-minute Quality Control

– of recovery results,
– assisted by our quality

standards,
– and for critical customers
– QC By our staff,

• From our office
• or on customer site.

•

September 12, 2014
49

www.gilb.com

Maintainability from A Value Stream
Point of View

12/09/2014
50

www.gilb.com

Main Point

• My main point is
– that each sub-process of

the maintenance operation
– tends to require a separate

and distinct design (1 or
more designs each).

• There is nothing simple
– like software people seem

to believe,
– that better code

structures,
– coding practices,

documentation,
– and tools
– will solve the maintenance

problem.

September 12, 2014
51

Many Means

Many

Ends

Many

Impacts

Next Slide

DoDef. Persinscom Impact Estimation Table:  

Requirements

Designs

R! D Impacts

www.gilb.com

General ‘Change Attribute’ Tailoring
• The following slides will give a

general set of patterns for
• defining and distinguishing

different classes of
‘maintenance’.

• But in your real world, you
will want to tailor the
definitions to your domain.
• You can initially tailor

using the ‘Scale’ of
measure definition.

• And continued tailoring can
be done by defining
[conditions] in the
requirement level qualifier.

12/09/2014
53

Scale:
% of transactions

successfully completed
by defined [Person]

doing defined [Task].

Goal [Task = Update,
Person = New Hire,
 Deadline = Phase 3]

60%

www.gilb.com

A generic set of performance measures, including several related to change.
  

 For example:
Code Portability:
Scale:

 Effort in Hours
needed to Port
each 1000 Non-Commentary Lines of Code
from a defined [Home Environment]
to a defined [Target Environment],
 using defined [Tools]
and defined [Personnel].

Goal
[Home Environment = {.net, Oracle,} ,
Target Environment = {Java++, Open Source, Linux},
Tools = Convert Open ,
Personnel = {Experienced Experts, India}] 60

hours.

September 12, 2014
54

www.gilb.com

A Generic Set of Performance measures – including several related to ‘change’

September 12, 2014
55

www.gilb.com

The attribute names used are arbitrary choices by the author.
• They only start to take on meaning when defined,

• with a Scale of measure.
• There are no accepted or acceptable standards here,

• and certainly not for software.
• Even in hardware engineering, there is an accepted pattern – such as “Scale: Mean Time to

Repair”.
• But it is accepted that we have to further define such concepts locally,

• such as the meaning of ‘Repair’.

September 12, 2014
56

www.gilb.com

Maintainability Measures

• Here are some of the general
patterns we can use to define and
distinguish the different classes of
change processes on software.

• First the ‘Bug Fixing’ pattern (from
which we derived the example at
the beginning of this talk).

September 12, 2014
57

www.gilb.com

Maintainability
components, 

 derived from a hardware
engineering view,  

adopted for software.  

September 12, 2014
58

www.gilb.com

Notice that Maintainability in the narrow sense  
 (fix bugs)  

 is quite separate from other ‘Adaptability’ concepts.

• This is normal engineering,
• Which places fault repair together with

reliability and availability;
• Those 3 determine the immediate operational

characteristics of the system.
• The other forms of adaptability are more about

potential future upgrades to the system,
• change, rather than repair.

• Change and repair, have in common that
• our system architecture has to make it easy to

change, analyze and test.
• The system itself is unaware of

• whether we are correcting a fault
• or improving the system.

• The consequence is that
• much of the maintenance-impacting ‘design’

or ‘architecture’
• benefits
• most of the types of maintenance (fix and

adapt).

September 12, 2014
59

www.gilb.com

Here are a generic set of definitions for the
‘Adaptability’ concepts.

Adaptability: ‘The efficiency with which a system can
be changed.’

Gist: Adaptability is a measure of a system’s ability to
change.

Includes: { a set of scalar variables, such as Portability}.
 Note: probably not simple enough to define with a

single Scale.
Type: Complex Quality Attribute.

Since,
• if given sufficient resource, a system can be changed in

– almost any way,
• the primary concern is with the amount of

– resources
• (such as time, people, tools and finance)

• needed to bring about specific changes
– (the change ‘cost’).

September 12, 2014
60

www.gilb.com

The Adaptive Cycle

12/09/2014
61http://www.resalliance.org/564.php

www.gilb.com

Adaptability:  
Viewed as  

Elementary or Complex concept..

Adaptability:
Type: Elementary Quality Requirement.
Scale: Time needed to adapt a defined [System]

from a defined [Initial State] to another
defined [Final State] using defined [Means].

Adaptability:
Type: Complex Quality Requirement.
Includes: {Flexibility, Upgradeability}.

September 12, 2014
62

“No system can be understood or managed
by focusing on it at a single scale.”

 Multiple scales and cross-scale effects - "Panarchy"  
No system can be understood or managed by focusing on it at a single scale.

• All systems (and SESs especially) exist and function at multiple scales of
space, time and social organization,
– and the interactions across scales are fundamentally important in

determining the dynamics of the system at any particular focal scale.
– This interacting set of hierarchically structured scales has been termed

a "panarchy" (Gunderson and Holling 2003).

12/09/2014
63

http://www.resalliance.org/564.php

www.gilb.com

Flexibility:
Gist: ‘Flexibility’ concerns the

 ‘in-built’ ability of the system
to adapt,
or to be adapted,
 by its users,
 to suit conditions

 (without any fundamental system
modification

 by system development).
Type: Complex Quality Requirement.
Includes: {Connectability, Tailorability}.

See next 2 slides!
Possible Synonyms: Resilience, Robustness

September 12, 2014
64

www.gilb.com

Connectability:  
 ‘The cost to interconnect the system to its environment.’  

 Gist: The cost of connecting one
set of interfaces to defined
environments with other
interfaces

Part Of: Flexibility.

Scale: the Effort needed
to connect a defined [Home

Interface]

 to a defined [Target Interface]

 using defined [Methods]
with minimum allowed system

[Degradation].

September 12, 2014
65

www.gilb.com

Tailorability:  
 Gist: The cost to modify

the system to suit
defined future
conditions.

Part Of: Flexibility.
Type: Complex Quality

Requirement.
Includes: {Extendibility,

Interchangeability}.

September 12, 2014
66

Multiple Attributes of Wool Fiber !

www.gilb.com

Extendibility: Scalability

Extendibility:
Part Of: Tailorability.
Synonym: Scalability.
Scale: The cost to add to
 a defined [System]
 a defined [Extension Class]
 and defined [Extension Quantity]
 using a defined [Extension Means].

‘‘In other words, add such things as a new user
or

a new node.’’

Type: Complex Quality Attribute.

Includes: {Node Addability,
Connection Addability,
Application Addability,
Subscriber Addability}.

September 12, 2014
67

www.gilb.com

Interchangeability:  
‘The cost to modify use of system components.’

Interchangeability
Gist: This is concerned with the ability to modify
the system, to switch from using a certain set of
system components, to using another set.

Part Of: Tailorability.
Type: Elementary Quality Attribute.
“For example, this could be a daily occurrence
switching system mode from day to night use.”

Scale: the Effort needed to
 Successfully,
 without Intolerable Side Effects,

 replace a defined [Initial Set] of components,

 with a defined [Replacement Set] of
 system components,

 using defined [Means].

September 12, 2014
68

www.gilb.com

Upgradeability:  
 ‘The cost to modify the system fundamentally;  

either to install it, or to change out system components.’
Upgradeability:
Gist: This concerns the ability of the system

to be modified by the system
developers or system support in planned
stages (as opposed to unplanned
maintenance or tailoring the system).

Type: Complex Quality Requirement.
Includes: {Installability, Portability,

Improveability}.

Installability: ‘The cost to install in defined
conditions.’

Pattern: This concerns installing the system code
and also, installing it in new locations to extend
the system coverage. Could include conditions
such as the installation being carried out by a
customer or, by an IT professional on-site.

Portability: ‘The cost to move from location to

location.’
Scale: The cost to transport a defined [System] from

a
defined [Initial Environment] to a defined [Target
Environment] using defined [Means].
Type: Complex Quality Requirement.
Includes: {Data Portability,
Logic Portability,
Command Portability,
Media Portability}.

Improveability: ‘The cost to enhance the system.’
Gist: The ability to replace system components with
others, which possesses improved (function,

performance, cost and/or design) attributes.
Scale: The cost to add to a defined [System] a

defined
[Improvement] using a defined [Means].

September 12, 2014
69

www.gilb.com

This Basic ‘Adaptability’ Pattern  
Was Successfully Applied

• Hopefully this set of patterns
– gives you a departure point
– for defining those

maintenance attributes
– you might want to control,

quantitatively.

• The above adaptability definition

– was use to co-ordinate the
work

• of 5,000 software
engineers,

• and 5,000 hardware
engineers,

• in UK,
• in bringing out a new

product line at a
computer manufacturer.

• Where ‘Adaptability’ was
the Number One Product
Characteristic

– The Company became
profitable for the next 14
years..

September 12, 2014
70

Security Patterns

www.gilb.com

The Software Architect Role in Maintainability

The role of the software architect is:
• to participate in clarification of the requirements that will be used as

inputs to their architecture process.
• to insist that the requirements are testably clear: that means with

defined and agreed scales of measure, and defined required levels of
performance.

• to then discover appropriate architecture,
– capable of delivering those levels of performance, hopefully within resource

constraints, and

• estimate the probable impact of the architecture,
– on the requirements (Impact Estimation)

• define the architecture in such detail
– that the intent cannot be misunderstood by implementers,
– and the desired effects are bound to be delivered.

• monitor the developing system as the architecture is applied in
practice,

• and make necessary adjustments.
• finally monitor the performance characteristics throughout the

lifetime of the system,
– and make necessary adjustments to requirements
– and to architecture,
– in order to maintain needed system performance characteristics.

September 12, 2014
71

www.gilb.com

Evaluating Maintainability Designs Using Impact Estimation

• See Powerpoint Notes for detailed written comment.
•

September 12, 2014
72

www.gilb.com

Architecture Level Impact Estimation Table

• See PPT Notes

September 12, 2014
73

www.gilb.com

 
Engineering “Maintainability”: Green Week  

Weekly ‘Refactoring’ at Confirmit

September 12, 2014
74

www.gilb.com

Lecture Summary
• The many types of maintainability – ease

of change – characteristics needed in large
scale or critical software,
– can be architected
– and engineered using numeric

measurement
– and sound engineering principles,
– instead of conventional small scale

programming culture intuition.
• Real systems engineers will move towards

this mode of ‘real’ software engineering.

• We cannot continue to have the craft of
programming culture, dominate our systems
engineering practices –
• because software has become too critical a

component of every major system.
• The real engineers have to take control.
• The programmers will not wake up

without encouragement from real
engineers.

September 12, 2014
75

www.gilb.com

References
References
Gilb, Tom, Competitive Engineering, A Handbook For Systems Engineering, Requirements Engineering, and Software

Engineering Using Planguage, ISBN 0750665076, 2005, Publisher: Elsevier Butterworth-Heinemann. Sample
chapters will be found at Gilb.com.

Chapter 5: Scales of Measure:
http://www.gilb.com/community/tiki-download_file.php?fileId=26
Chapter 10: Evolutionary Project Management:
http://www.gilb.com/community/tiki-download_file.php?fileId=77

Gilb.com: www.gilb.com. our website has a large number of free supporting papers ,
slides, book manuscripts, case studies and other artifacts
 which would help the reader go into more depth

INCOSE Systems Engineering Handbook v. 3
INCOSE-TP-2003-002-03, June 2006 , www.INCOSE.org

[Dart 93] Susan Dart , Alan M. Christie , Alan W Brown
A Case Study in Software Maintenance, Technical Report CMU/SEI-93-TR-8 ,
ESC-TR-93-185 , June 1993

Chris Inacio: Software Fault Tolerance, Carnegie Mellon University
18-849b Dependable Embedded Systems, Spring 1998
http://www.ece.cmu.edu/~koopman/des_s99/sw_fault_tolerance/
Google N-Version Software for more information on distinct software and N-version software.

September 12, 2014
76

http://www.gilb.com/community/tiki-download_file.php?fileId=26
http://www.gilb.com
http://www.INCOSE.org
mailto:%3Cmailto:%20inacio@ece.cmu.edu%3E
http://www.ece.cmu.edu/~koopman/des_s99/sw_fault_tolerance/

www.gilb.com

BIOGRAPHY

Tom Gilb is an international consultant, teacher and author.
His 9th book is ‘Competitive Engineering: A Handbook

For Systems Engineering, Requirements Engineering, and
Software Engineering Using Planguage’ (August 2005
Publication, Elsevier) which is a definition of the
planning language ‘Planguage’.

• He works with major multinationals such as Credit
Suisse, Schlumberger, Bosch, Qualcomm, HP, IBM, Nokia,
Ericsson, Motorola, US DOD, UK MOD, Symbian, Philips,
Intel, Citigroup, United Health, and many smaller and
lesser known others. See www.Gilb.com . He can be
reached at: Planguage@mac.com

September 12, 2014
77

http://www.result-planning.com

www.gilb.com

 References

Gilb, Tom, Competitive Engineering, A Handbook For Systems Engineering, Requirements Engineering,
and Software Engineering Using Planguage, ISBN 0750665076, 2005, Publisher: Elsevier
Butterworth-Heinemann. Sample chapters will be found at Gilb.com.

Chapter 5: Scales of Measure:
http://www.gilb.com/community/tiki-download_file.php?fileId=26
Chapter 10: Evolutionary Project Management:
http://www.gilb.com/community/tiki-download_file.php?fileId=77

Gilb.com: www.gilb.com. our website has a large number of free supporting papers , slides, book

manuscripts, case studies and other artifacts which would help the reader go into more depth

INCOSE Systems Engineering Handbook v. 3
INCOSE-TP-2003-002-03, June 2006 , www.INCOSE.org

[Dart 93] Susan Dart , Alan M. Christie , Alan W Brown
A Case Study in Software Maintenance, Technical Report CMU/SEI-93-TR-8 ,
ESC-TR-93-185 , June 1993
Chris Inacio: Software Fault Tolerance, Carnegie Mellon University
18-849b Dependable Embedded Systems, Spring 1998
http://www.ece.cmu.edu/~koopman/des_s99/sw_fault_tolerance/
Google N-Version Software for more information on distinct software and N-version software.

September 12, 2014
78

www.gilb.com

Last Slide

12/09/2014
79

www.gilb.com12/09/2014
80

