A Systems Engineering Vision:
Quantifying Future Adaptability and Maintainability,
as the basis for Architecture Decisions - something we have
not been good enough
at engineering into systems.
Tom Gilb
Tom@Gilb.com

MASTER 2016t

www.gilb.com

Abstract.

» Software system
maintenance cost
are a substantial
part of the life
cycle costs.

They can easily
steal all available
effort away from

Cl BIRation m

ACQUISITION

Installatio

Toof

OPERATIONS
and
NAINTENANCE

new development.

September 12, 2014

www.gilb.com

System Lifetime Expectancy:
Capers Jones: Think 18-25 Years

Tl 10 Etiml Ll Expecnsy o Apltios o el o Repcome SOFTWARE
Mot Ot 15 e i of ke yor o s oplymont el ot e Longh of v poporonal b 2o sl

Domesle~~ Sysams 4 Ghtln
M Web Ousowse Cnbedded Commortl Gowrmen Wity

Pouts ot Peh Poeds P P Poxh Awop
Siten P

1 140 100 50 00 |] ' |

{0) fl) il 30)1 W' 1

10 W i) i 04 il %0 50’ (%
1000 il i) 1l 60 ol BlX 0’ 6
10,000 {60 §00 0 130 I u B0’ {54
1000 00 {000 1100 1500 10 1) nn' W
1,000,000 S0 200 a 16,0 000 A0 B0’ un
My f 46 04 i) i (1% 14 10

Copyright © 2008 by Capers Jones & Associates LLC. All rights 3
12/09/2014 reserved. Used with permission of the author, 15 April 2008

Table 5: Major Kinds of Work Performed Under the Gener

Term “Maintenance”
Capers Jones 2014

Major Enhancements (new features of > 20 function points)

Minor Enhancements (new features of < 5 function points)
Maintenance (repairing defects for good will)

Warranty repairs (repairing defects under formal contract)

Customer support (responding to client phone calls or problem reports)
Error-prone module removal (eliminating very troublesome code segments)
Mandatory changes (required or statutory changes)

Complexity or structural analysis (charting control flow plus complexity metrics)
Code restructuring (reducing cyclomatic and essential complexity)
Optimization (increasing performance or throughput)

Migration (moving software from one platform to another)

Conversion (Changing the interface or file structure)

Reverse engineering (extracting latent design information from code)
Reengineering (transforming legacy application to modern forms)

Dead code removal (removing segments no longer utilized)

Dormant application elimination (archiving unused software)
Nationalization (modifying software for international use)

Mass updates such as Euro or Year 2000 Repairs

Refactoring, or reprogramming applications to improve clarity
Retirement (withdrawing an application from active service)

Field service (sending maintenance members to client locations)
Reporting bugs or defects to software vendors

Installing updates received from software vendors

Abstract

| believe that this is
because

« maintainability is, as good as
never, systematically

engineered into the software.

« QOur so-called software
architects bear a primary
responsibility for this, but
they do not engineer to
targets.

* They just throw in customs

and habits that seem
appropriate.

September 12, 2014

Management

..................
Routing
Protocol
-

*Input

Redistribution
Manager

IMmerface
Manager

4 Routing
Table .
Manager . Other
Routes
k|, oo
Combined . Protocols
Routing -

Table

Interface
Information
.........

Local
Inmerface
Information

Forwarding
Table

Did you ever see ideas like
performance and quality, for example

‘Portability Levels’

in a software architecture diagram?

www.gilb.com

5

My Main Assertion to Management

 We need to

define our maintainability requirements
quantitatively,

* Set quality investment targets that
will pay off,

 pursue long-term engineered
improvement of the systems, and

then 1 6

« farchitect’ and ‘engineer’ the Quality through
resulting system.

Engineering Design

 Traditional disciplines may already in
principle understand this discipline,

* some may not understand it,
- some may simply not apply the
engineering understanding that is

out there
September 12, 2014 www.gilb.com

The Maintainability Problem

+ Software systems are built
under high pressure to meet deadlines,
and with initial emphasis on performance, reliability, and usability.

 The software attributes relating to later changes in the software
- maintainability attributes are:

 never specified quantitatively up front in the software
quality requirements

* never architected to meet the non-specified maintainability
quality requirements

 never built to the unspecified architecture to meet the
unspecified requirements

* never tested before software release

« never measured during the lifetime of the system. T R pe——

c
l ~-I

Y Y)

Translormational Platform

“A number of people expressed the opinion that code is often not NP || - - \
designed for change. Thus, while the code meets its operatlonal“::.‘:.;'.::; { OO ' UL ' A ' '
specification, _— e o
for maintenance purposes it is poorly designed and documented .. Fstferm i i
“ [Dart 93]

* In short,

* there is no engineering approach to software
maintainability.

September 12, 2014 www.gilb.com

What do we do in practice today?

* we might bullet point some high-level objectives

* (‘e Easy to maintain’)
* which are never taken seriously

* we might even decide the technology we will use to reach the
vague ideal

* (“e Easy to maintain through modularization, object JAL UEQR 2007

orientation and state of the art standard tools”) - =

* larger institutions might have ‘software architects’ who carry
out certain customs, such as

* decomposition of the software,

* choice of software platforms and software tools -
generally intended to help - hopefully.

* But with no specific resulting level or type of
maintainability in mind.

 we might recommend more and better tools, but totally fail to
suggest an engineering approach [Dart 93].

We could call this a ‘craft’ approach.

It is not ‘engineering’ or ‘architecture’ in the normal sense.

September 12, 2014 www.gilb.com

Broader Maintainability Concepts

Maintainability in the strict engineering

sense is usually taken to mean bug

fixing.

| have however been using it thus far
to describe any software change

activity or process.

We could perhaps better call it
‘software change ability’.

Different classes of change, will have

different requirements related to them

« and consequently different
technical solutions.

It is important that we be very clear
* in setting requirements,

« and doing corresponding design,
« exactly what types of change we

are talking about.

September 12, 2014

Performance

Quality

www.gilb.com

Availability

Adaptability

Reliability
Maintainability
Integrity

Threat

—Security

Flexibility

Connectability
Tailorability

Extendibility
Interchangeability

— pgradeability

Installability
Portability

— |mproveability

Principles of Software Maintainability

* | would like to
suggest a set of =
principles about { F¥=¥'
software X |
maintainability,
* in order to giv

this talk a
framework:

Body Maintenance: {Relax, Exercise, Breathing, Diet, Positive Thinking and Meditation}.
September 12, 2014 www.gilb.com

1. The Conscious Design Principle:

* Maintainability must be

consciously desighed into a
system:

failure to design to a
set of levels of
maintainability

* means the resulting
maintainability is both
bad and random.

“THE MACICIAN o b

September 12, 2014 www.gilb.com

Conscious Design

 Clarify

— Robust -
« 200 Days Between Restarts

* Find Solutions
— Triple Redundant Systems 7 -

» Verify Solutions f
— 400 Days average achieved =

1O 1O 110 12
September 12, 2014 www.gilb.com

2. The Many-Splendored Thing Principle.

Maintainability is o™

 a wide set of change- S o

quality types, @ \ l Y
’ gpr%%';nasawfe\s/ar]ety of sgg ETERNAL WELLNESS
- so we must clearly define 3 4 I N

what quality type we are %

trying to engineer. Like: %,,OM

» Portability, scalablllty,
maintainability?

/ Hygienic qualm> ﬁmnonal quah>
\ (Safety) (hcalth)
— Amnmmc qnah\

(environmental and |

\moral V. alues/

e —

,/anctiona! qual;l}\ —
il

/ T Olr’g;nolepdc qnalit\\

Symbolic qualm — (ple:mu ¢)

\ (cultural) / / Social quality \ \) /
- \Cebngio))

Cazes-Valettes, 200]

13
shitpitiwvwwoyoutube.com/watch?v=X-JiKAlvTRo = Nat King Cole “Love is...’

http://www.youtube.com/watch?v=X-JiKA1vTRo

1he "Mailntainabllity” Genheric breakdowhn 1nto >UbD-
problems

1. Problem Recognition Time. 5. Correction Hypothesis Time

How can we reduce the time from bug
actually occurs until it is recognized and g Quality Control Time
reported?

2. Administrative Delay Time:

How can we reduce the time from bug
reported, until someone begins action on

it? 8. Local Test Time
3. Tool Collection Time.

How can we reduce the time delay to collect 9 Field Pilot Test Time
correct, complete and updated
information to analyze the bug: source

code, changes, database access, reports, 10- Change Distribution Time
similar reports, test cases, test outputs.

4. Problem Analysis Time. 11. Customer Installation Time
Etc. for all the following phases defined,
and implied, in the Scale scope above.

7. Change Time

12. Customer Damage Analysis Time

13. Customer Level Recovery Time

14. Customer QC of Recovery Time

14

September 12, 2014 www.gilb.com

11 Sub-Attributes of Fixing Faults

Maintainability:
Mean Time To Repair,
a Fault MTTR

i i i ! i i

Aspects of Maintainability

A More Tailored Breakdown

Real Customer Case 2006

12/09/2014 www.gilb.com

17

Rock Solid Robustness: wawy optlendored

 Type: @unpter Product Quality Requirement.

* Includes:
— {Sa{twme Downtime,
_ Reotore Speed,
 stalilits
— Faalt Prevention Capability,
— Fawlt Vsolation Capability,
— Fault Aualyois Capability,
— Fandwane Debugging Capability}.

18

September 12, 2014 www.gilb.com

15.00%

===Software Downtime:

| J=la] |

10.00%

15.00%

Type: Software Quality Requirement. Version: 25 October 2007.

Part of: Rock Solid Robustness.

Ambition: to have minimal downtime due to software failures <- HFA 6.1
Issue: does this not imply that there is a system wide downtime requirement?

Scale: <mean time between forced restarts for
defined [Activity], for a defined [Intensity].>

FailH[anz I12e1lease or Evo Step, Activity = Recompute, Intensity = Peak Level] 14 days <-

Goal [By 20087, Activity = Data Acquisition, Intensity = Lowest level] : 300 days ??
Stretch: 600 days.

19
September 12, 2014 www.gilb.com

Restore Speed:

Type: Software Quality Requirement. Version: 25 October 2007.
Part of: Rock Solid Robustness

Ambition: Should an error occur (or the user otherwise desire to do
so), the system shall be able to restore the system to a
previously saved state in less than 10 minutes. <-6.1.2 HFA.

Social comrbuson 10

Scale: Duration from Initiation of Restore g “”“. |

Natural

to Complete and verified state of a —
defined [Previous: Default =
Immediately Previous]] saved state.

Society

Initiation: defined as {Operator Initiation, System Initiation, ?}.
Default = Any.

Goal [Initial and all subsequent released and
Evo steps] 1 minute?

Fail [Initial and all subsequent released and
Evo steps] 10 minutes. <- 6.1.2 HFA

Catastrophe: 100 minutes.

20

September 12, 2014 www.gilb.com

Testability: e

Type: Software Quality Requirement.
Part of: Rock Solid Robustness |

W teioe

Initial Version: 20 Oct 2006 — | W}
Version: 25 October 2007. =
Status: Demo draft, =

Stakeholder: {Operator, Tester}.

Ambition: Rapid-duration automatic testing of

<critical complex tests>, with extreme operator setup and
initiation.

Scale: the duration of a defined [Volume] of testing, or a

defined [Type], by a defined [Skill Level] of system operator,
under defined [Operating Conditions].

Goal [All Customer Use, Volume = 1,000,000 data items, Type = WireXXXX Vs DXX, Skill = First
Time Novice, Operating Conditions = Field, {Sea Or Desert}. <10 mins.

Design Hypothesis: Tool Simulators, Reverse Cracking Tool, Generation gf.simulated telemetry
igrames entirely in software, Application specific sophistication, for drilling - recorded mode
simulation by playing back the dump file, Application test harness console <-6.2.1 HFA

Another Real (Doctored) Example:
Financial Corp. Top Level Project requirements
$60,000,000 in 1 Year Spend but

DO YOU SEE ANYTHING RELATED TO

’ MAINTAINABILITY?

Ve W W e W e e Wer A e s W A e e

regionally disparate systems
2. Single global portfolio management system.
3. Reduce overall spending with a reduction in redundant
initiatives.
4. Governance structures - system agnostic.
5. All projects in project portfolio system.

6. Reduce development project spend on low priority work

with better alignment between Technology and business
demand.

7. Project portfolio Framework, Business Value metrics for
prioritization.

8. Reduction in cost over runs.
9. Definition criteria for project success.
10. Metrics and exception reporting for cost management.
11. Linkage of actual costs to forecast.
12. Increase revenue with a faster time to market.
13. Knowledge management, project ramp up templates.

IR TR e e A T el L TR T

September 12, 2014 www.gilb.com

3. The Multi-Level Requirement
Principle.

* The levels of
maintainability we
decide to require can ES
« partly ‘constrai

* a necessary mlmmum of
ability to avoid failure,

* and partly deSIrable
‘target’ levels

* that are determined by
what pays off to invest

in.

23
September 12, 2014

Software Downtime: muttiple Levels

Type: Software Quality Requirement. Version: 25 October 2007.
Part of: Rock Solid Robustness.

Ambition: to have minimal downtime due to software failures <- HFA 6.1

Issue: does this not imply that there is a system wide downtime
requirement?

Scale: <mean time between forced restarts for defined [Activity], for a
defined [Intensity].>

—Fail [Any Release or Evo Step, Activity =
Recompute, Intensity = Peak Level] 14
days <- HFA 6.1.1

Goal [By 20087, Activity = Data
Acquisition, Intensity = Lowest level] :
300 days ??

Stretch: 600 days.

~September 12, 2014 www.gilb.com

24

Restore Speed: Multiple Levels

Type: Software Quality Requirement. Version: 25 October 2007.

Part of: Rock Solid Robustness
Ambition: Should an error occur (or the user otherwise desire to do so), the system shall

be able to restore the system to a previously saved state in less than 10 minutes.

<-6.1.2 HFA.
Scale: Duration from Initiation of Restore to Complete and verified state of a defined

[Previous: Default = Immediately Previous]] saved state.
Initiation: defined as {Operator Initiation, System Initiation, ?}. Default = Any.

oal [Initial and all subsequent released

and Evo steps] 1 minute?
Fail [Initial and all subsequent released
and Evo steps] 10 minutes. <- 6.1.2 HFA

Catastrophe: 100 minutes.

25

September 12, 2014 www.gilb.com

4. The Payoff Level Principle.

* The levels of maintainability 'A . By
it pays off to invest in,
* depend on many factors -

* but certainly on the system M,,
lifetime expectancy, ik

Installation 2%

« the criticality/illegality/cost i imvestment 13%”
of not being able to change
correctly or change in time, Investment/ § Retums

« and the cost and availability Cost
of necessary skilled
professionals to carry out
the changes.

Busine: s Process b

IT Project

September 12, 2014 www.gilb.com

5. The Priority Dynamics Principle.

* The maintainability
requirements must BTN |
compete for priority O =
- for limited AR

resources AL RN
e with all other L N '-”’-'Mc‘_zu’_--..
requirements. | AL DN ol g

* We cannot simply N S
demand arbitrary S A
desired levels of
maintainability.

CAREER

The Engineering Solution

There are many small and less
critical software systems where

S
« engineering the maintainability/ /\‘{j i/
would not be interesting, ,§ {f._,-'\;‘ 7—F //

« or would not pay off. g /2/ /z@?

« Nobody cares. Sk VAR «:'::' -
This talk is addressed to the vast ~/e’$’$/¢, s Vax 2/ /o
number of current situations S - o "'\9&,{,, i
where S

ecay,” A — y

« the total size of software, oy S, - v

- the growth of software g ,-;\;;;.f L

annually, a \:gf i

 the cost of maintenance }f" -

annually - are all causing
management to wonder -

* Is there a better way?’

September 12, 2014 www.gilb.com

The method is straightforward,
and it is well-understood engineering
in ‘real’ engineering disciplines.

In simple terms it is:

1. Define the maintainability
requirements quantitatively.

2. Design to meet those requirements,

if possible and economic. i
3. Implement the designs : —

and test that they meet the § s

required levels. ; —
4. Quality Control that the design } T

continues to meet the required [Smemt—i 'Qi. ‘

maintainability quality levels,
and take action in the case of

Time To Recover

degradatio“, AT Mard (1 St L ovet COmcive D0l 00 S0 Db
to get back to current required = E=EEETT E—
levels. o I e .

0K Fne BARD I CAT 300 DYl ard il Do 300w o 0 Mg
Bl g w30 vd e s s o Sves vyl ol
rogiahry repur ety s shar ey 29

September 12, 2014 www.gilb.com

Let us take a simplified tour of the method.

Requirement specification (using ‘Planguage’ [Gilb 2005]:

Bug Fixing Speed:

Type: Software Product Quality Requirement.

Scope: Product Confirmit [Version 12.0 and on] g,_,_;*

Ambition Level: Fast enough bug fixing so that it is a non-issue with our
customers.

Scale of Measure: Average Continuous Hours from Bug occurs and is
observed in any user environment, until it is correctly corrected and
sufficiently tested for safe release to the field, and the change is in fact
installed at, at least, one real customer, and all consequences of the bug
have been recovered from at the customer level.

Meter: QA statistics on bug reports and bug fixes.

Past [Release 10.0] 36 hours <- QA Statistics

Fail [Release 12.0, Bug Level = Major] 6 hours <- QA Directors Plan

Goal [Release 12.0, Bug Level = Catastrophic] 2 hours <- QA Directors Plan.
Goal [Release 14.0, Bug Level = Catastrophic] 1 hour <- QA Directors Plan.

Planguage Intelligibility

* It should be possible to read this specification,
« slowly,
« even for those not trained in Planguage,
« and to be able to explain exactly what the requirement is.

* Notice especially the ‘Scale of Measure’.

 Scale of Measure:

» Average Continuous Hours from Bug occurs and is observed in any
user environment,

« until it is correctly corrected and sufficiently tested for safe release
to the field,

« and the change is in fact installed at,
« at least, one real customer,

* and all consequences of the bug have been recovered from at the
customer level.

* It encompasses the entire maintenance life cycle
« from first bug effect observation
« until customer level correction in practice.

* That is a great deal more than just some programmer staring at code
and seeing the bug and patching it.

* The corresponding design
* will have to encompass many processes and technologies.

31

September 12, 2014 www.gilb.com

Summary

* Technical Management must take
responsibility for
— Specification
— design engineering
— financing
— Prioritization
— of the long term operational

- adaptability characteristics
* of their systems

* It won’t happen B
Brunel
— if you leave it to the techies.
— Why should they care?

12/09/2014 www.gilb.com

32

END OF 30 MINUTE PRESENTATION

« THE REMAINING SLIDES ARE TO GIVE SOME
DETAIL FOR THOSE WHO WOULD LIKE TO
KNOW HOW TO QUANTIFY FUTURE

ADAPTABILITY FOR SYSTEMS ENGINEERING
PURPOSES.

* AND TO GIVE SOME IDEA OF A POSSIBE

ARCHITECTURE FOR RECHING SOME SUCH
OBJECTIVES.

12/09/2014

ey

Let us take a look at a possible first draft of some design. "
ideas:

* Note: | have intentionally suggested so
dramatic architecture,

— in an effort to meet the radically improve
requirement level.

* The reader need not take any design mgrs,tyom,askas
Ser]OUSly Museum of the North

in Fairbanks

* This is an example of trying to solve the
problem, using engineering techniques
(redundancy)

— that have a solid scientific history.

1. Problem Recognition Time. -

* Design: Automated N-version distinct
software comparison [Inacio 1998]

— at selected critical customer sites,
— to detect potential bugs automatically.

Active o

September 12, 2014 www.gilb.com

35

Trillium | Distributed Fault-Tolerant/High-
Availability (DFT/HA) Core

Complete recovery during failure.
— This feature is available in both pure fault-tolerant and distributed fault-tolerant systems.

— When a failure occurs, failed protocol layers are able to completely recover stable state
information.

— All pé'gtocol resources present in a stable state during the failure are maintained on the
standby.

Application restart on processor loss.

— This feature is applicable to pure distributed systems. If a processor in a pure distributed
system fails, applications on the failed processor may be restarted on available processors to
provide service for subsequent user traffic.

Survive up to n-1 faults.

— DFT protocol layers may survive up to n-1 faults without loss of service where n is the
number of processors over which the protocol layer was distributed.

— With the lost application restart feature enabled, a distributed protocol layer may continue
to provide full service until the last processor in the system fails.

— User defined system operations. Advanced distributed system operations such as dynamic
load balancing may be implemented using basic services provided by the core software.

Graceful node shutdown.

— The system manager provides an operation to gracefully shutdown a node and an option to
redistribute the protocol load onto remaining processors in the system

— . The load redistribution is completely transparent to the system users.
Maintenance operations.
— The system manager provides an operation to swap the states of an active andgstan

e :E"“\’“
— This functionality may be used to perform maintenance operations on the s%k%w ”
Shutting it down MTP -3 -

— . These operations are completely transparent to the system users and will'net interr
service provided by the system. 7

Processar 5

2. Administrative Delay Time:

« Design: Direct digital report
— from distinct software discrepancies

— to our global,
3 zone,
o 24/7

* bug analysis service.

September 12, 2014 www.gilb.com

3. Tool Collection Time.

* Design: All necessary tools are electronic,

— and collection is based on
e customers installed version and its fixes.

— The distinct software, bug capture
« collects local input sequences.

Active

September 12, 2014 www.gilb.com

—.
4. Problem Analysis Time.

« Analyst Selection:

— Design: The fastest bug analysts are

« selected based on actual past performance
statistics, and

* rewarded in direct relation to their timing
— for analyzing root cause, or correct fix.

39
September 12, 2014 www.gilb.com

ey (=)
5. Correction Hypothesis Time

* Design: Same design as Analyst Selection,

— but applies to correct change specification
speed statistics.

40
September 12, 2014 www.gilb.com

~
-

-~
g -
15

6. Quality Control Time

* Design: Rigorous
— 30 minute or less inspection
— of change spec by other bug analysts,

— with reward for finding major defects
» as judged by our defect standards.

Compare Evaluate

Repeatable & Automated

As Built Part

41
September 12, 2014 www.gilb.com

/. Change Time

Design: Changes are applied
—in parallel with QC,
— and modified only if change defects found in

QC.

BACKUP
» MODEL
o 9 =

DOCUMENT

¥y

VALIDATE

=)
" 4

UPDATE

‘ ENHANCE ‘
Q’ « @ 42

SECURE
(A

September 12, 2014 WWW.gI1lb.com

8. Local Test Time
* Design: Automated -

Test. Based on \ Rogosien | wegraton
distinct software . Funcaons i
independent) ChangeS

Usability

Compatbiaty Usat
ng

— to distinct Testng
modules, and

— running reasonable | s
test sets, e

— until further notice g/ g
y |

/

— or failure. [pogormance. | ocatzton

Testing

43
September 12, 2014 www.gilb.com

A

___.._a;.,'l“

9. Field Pilot Test Time

Design: | G

— After 30 minutes \ Rgusion | imegration G
successful Local Test Funcsons sysmm
esting estn

— the changes are
implemented —

 at a customer pilot
site

— for more realistic \ Testng

testing, |

» in operation,

» in distinct . Testing

User Accpt
software safe
P
mode. = ",I'_m:“ Localization

T”ﬂn@
Testing
September 12, 2014 www.gilb.com G

may =}
10. Change Distribution Time

Incident Handling Process

1
Awareness:

PSIRT is Notified of
Security Incident

* Design: All necessary
changes are

—readied and

— uploaded for custome
download,

— even before Local Te
Begin,

— and changed only
* if tests fail.

2
Active Managoment:
PSIRT Priortizes &
identifies Resources

Feedback from
Customer and Cisco
Internal Input

6
Notification:
Released 10 All

3
Fix Determined:
FSIRT Coordinates Fix
& Impact Assessment

Simultaneously

WWwW.Cisco . com/galpsirt/

4
Communication Plan:
PSIRT Sets Timeframe
& Notification Format

Mitigation:
PSIRT Involves
Experts and
Executives

* Security Responses
o Security Advisones
» Technical Tips

* Product Bulledns

The incident handling process can take hours or months—
depandng on the scope
September 12, 2014

www.gilb.com

ey
11. Customer Installation Time ™

* Design: Customer is given options of
— manual or
— automatic changes,
— under given circumstances

Conventional 1
Processes
1 —owload ::1 Cchventiosal File
' 1ZIF, C2D, =AR)
2 I |Exh'a:t|0r | Irstalaticn
Cl | hsta la |0|
NOSWebInstall‘B !
--..-.-.-.I
lDI » .
uel=lus ’ getPlus®, NOSSO”
M S Oow Saved Time R NOS-Installer®
Ir ‘-L'clll'dl.iLI'I "
NC.S-Instalze | stdliduen

Tima

“Tv

September 12, 2014 www.gilb.com

12. Customer Damage Analysis Time

Design:
<local customer solution>.

« We don’t have good
automation here.

« Assume none until proven
otherwise.

« We need to be aware of
— all reports sent

— and databases updated
that may need
correction.

Gearbox damage

T Oubrlomdy;ohdumgo =g

Examination and documentation
of the present damages
i

Project schedule and statement of costs

4
Order to repair e
i

Necessary operational sequences like production of
gears, procurement of bearings, assembling, etc.

v

Test run

© DR ©

47

September 12, 2014 www.gilb.com

-
13. Customer-Level-Recovery Time

* Design: QR ors i

+ same problem as et
Customer Damage ol presepndaneges
Analysis Time ijoctsd\odmoan;smementofoosts

* may be highly ~ —
local and manual. “?.z:‘mmamww

* Is it really out of e

?
our control: & R 4

48
September 12, 2014 www.gilb.com

;*l“

14. Customer QC of Recovery, Time.

* Design:
* 30-minute Quality Control
— of recovery results,

— assisted by our quality
standards,

— and for critical customers
— QC By our staff,

* From our office

* Or on customer site.

-.‘?i‘b

L -

¥
.I
-

49

September 12, 2014 www.gilb.com

Maintainability from A Value Stream
Point of View

You were taking aout Maint @nadility Generic Breakdown
In Toyota and Lean thisis called " Value Sream Mapoing”, eamgle:

+ Total Business Cost 114 days, Cost of Non Value: 112 days
+ Ocourrence: 2 x per day, delay per ocourrence: 10 min
Number of business people affected: 100
* Business Cost of Non Value: 2 x 10 min x 112 days x 100 people x 4008/ day = 187 k&
+ Net Cost of Value: 1.6 days @ ~3 people x 1.6 days x 1000/ day =5 k&

< Business Cost (problem causing time wasted) >
<+ Busmess > Development > e Business——»
Probiem Problem | | Problemto | | Problem Time Solving v
ocoming || secemieng | "liseel " hato database » ((B decision - " Amoated |1 Prodd » V&Y > Deployed > notoccurring
e, { | | | |1 1 L | L | 1 | |1 | | anymoee
Value - » Yalue delivered
10 sex 12 min 10 min % min $min 300 300 120
min mn min
5
oa Vakse Réays Séps 3éys Sdap | godays By i 7days |

12/09/2014 www.gilb.com

50

Main Point | ‘é';
Many Means o

« My main point is
— that each sub-process of .
the maintenance operation = <

— tends to require a separateMa y w5 Man)’
and distinct design (1 or

more designs each). Ends - I_mpac;ts

* There is nothing simple =" | - owm
— like software people seem e e e ol NexXt Slide

— that better code
structures,

— coding practices,
documentation,

— and tools

— will solve the maintenance
problem.

vOUCT. FCISITISCOIT HTpaCt CSLimiation 1dblc.

Designs
Design Ideas -> Technology ~ Business People Empowerment Principles of Business Process | Sum Requirements
Investmens Practices IMA Managemens Re-engineering

5 50% 10% 5% 5% 5% 60% 185%
Requirements icemen
Availabilicy 50% 5% 5-10% 0% 0% 200% 265%
20% <-> 99.5% Up time
Usability 50% 5-10% 5-10% 50% 0% 10% 130%
200 <-> 60 Requests by Users
Responsiveness 50% 10% 90% 25% 5% 50% 180%
70% <-> ECP's on time
Productivity 45% 100% 53% 303%
3:1 Return on Investment 50% R>D Impacts 15% 61% 251%
Morale
72 <-> 60 per month on Sick Leave
Darta Integrity 42% 10% 25% 5% 70% 25% 177%
88% <-> 97% Data Error %
Technology Adapeability 5% 30% 5% 60% 0% 60% 160%
75% Adapt Technology
Requirement Adapuability 80% 20% 60% 75% 20% 5% 260%
? <-> 2.6% Adapt to Change
Resource Adapubility 10% 80% 5% 50% 50% 75% 270%
2.IM <-> ? Resource Change
Cost Reduction 50% 40% 10% 40% 50% 50% 240%
FADS <-> 30% Total Funding
Sum of Performance 482% 280% 305% 390% 315% 649%
Money % of total budget 15% 4% 3% 4% 6% 4% 36%
Time % total work months/year 15% 15% 20% 10% 20% 18% 98%
Sum of Costs 30 19 23 14 26 22
Performance to Cost Ratio 16:1 14:7 13:3 27:9 12:1 29:5

General ‘Change Attribute’ Tailoring

* The following slides will give a
general set of patterns for
« defining and distinguishing
different classes of
‘maintenance’.

« But in your real world, you

Scale:
% of transactions

will want to tailor the successfully completed
definitions to your domain. by defined [Person]
« You can initially tailor doing defined [Task].

using the ‘Scale’ of
measure definition.

« And continued tailoring can Goal [Task = Update,
be done by defining Person = New Hire,
[conditions] in the > Deadline = Phase 3]

requirement level qu 60%

A generic set of performance measures, including several related to change.

For example: A
Code Portability:
Scale: I '

Effort in Hours
needed to Port

each 1000 Non-Commentary Lines of Code

from a defined [Home Environment]
to a defined [Target Environment],
using defined [Tools]

and defined [Personnel].

Goal
[Home Environment = {.net, Oracle,} ,

ironment

Portability Env

Target Environment = {Java++, Open Source, Linux},

Tools = Convert Open ,

Personnel = {Experienced Experts, India}]
hours.

September 12, 2014

60

www.gilb.com

Application
i Portability
<& = |nterface
Certified
Product
<« - Operational
Dependent Environment
Services

54

A Generic Set of Performance measures — including several related to ‘change’

154 Competitive Engineering

Performance
Performance
. —— Quality
Availability
Reliability
—— Asaptabaty Maintainability
Integrity
Threat
— Security
Adaptability
Flexibility
e Connectability
Tailorability
— Extendibility
—— Resource Saving Interchangeability
— m““ — Upgradeability
i Installability
—— Workdoad Capacty Portability
— Throughout — |mproveability
Response Time
— Storage Capacity
Figure 5.3
One cecomposiion possitiity for performance otritutes with emphasis on the detol of
the quclity alributes.

55

September 12, 2014 www.gilb.com

The attribute names used are arbitrary choices by the author.

* They only start to take on meaning when defined,
* with a Scale of measure.
* There are no accepted or acceptable standards here,
and certainly not for software.
Even in hardware engineering, there is an accepted pattern — such as ‘‘Scale: Mean Time to
Repair”.
* But it is accepted that we have to further define such concepts locally,
* such as the meaning of ‘Repair’.

Find where Glossary Term is used

Source via the Index

Type \ l o

English Name (Glossary Term)

Concept Number *nnn

Keyed lcon Concept Main Definition
Drawn Icon N
Related Concepts / T otes
Synonyms

Abbreviation Acronym

September 12, 2014 www.gilb.com

Maintainability Measures

* Here are some of the general
patterns we can use to define and
distinguish the different classes of
change processes on software.

* First the ‘Bug lemﬁ pattern (from
which we derived the example at
the beginning of this talk).

156 Competitive Engineering

Maintainabllity:

Type: Complex Quality Requirement.

Includes: {Problem Recognition, Administrative Delay, Tool Collection, Problem Analysis,
Change Specification, Quality Control, Modification Implementation, Modification Testing {Unit
Testing, Integration Testing, Beta Testing, System Testing}, Recovery).

Problem Recognition:
Scale: Clock hours from defined [Fault Occurrence: Default: Bug occurs in any use or test of
system)] until fault officially recognized by defined [Recognition Act: Default: Fault is logged
electronically).
Administrative Delay:
Scale: Clock hours from defined [Recognition Act) until defined [Correction Action) initiated and
assigned to a defined [Maintenance Instance).
Tool Collection:
Scale: Clock hours for defined [Maintenance Instance: Default: Whoever is assigned) to
acquire all defined [Tools: Default: all systems and information necessary 1o analyze, comect
and quality control the correction).
Problem Analysis:
Scale: Clock tme for the assigned defined [Maintenance Instance) to analyze the fault symp-
foms and be able to begin to formulate a correction hypothesis,
Change Specification:
Scale: Clock hours needed by defined [Maintenance Instance)] to fully and correctly describe
the necessary correction actions, according to current applicable standards for this.
Note: This includes any additional time for corrections after quality control and tests.
Quality Control:
Scale: Clock hours for quality control of the correction hypothesis (against relevant standards).
Modification Implementation:
Scale: Clock hours 10 carry out the correction activity as planned. “Includes any necessary
corrections as a result of quality control or testing.”
Modification Testing:
Unit Testing:
Scale: Clock hours to carry out defined [Unit Test] for the fault correction,
Integration Testing:
Scale: Clock hours to carry out defined [Integration Test) for the fault correction,
Beta Testing:
Scale: Clock hours to carry out defined [Beta Test] for the fault correction before official
release of the correction is permitted.
System Testing:
Scale: Clock hours to carry out defined [System Test] for the fault correction.
Recovery:
Scale: Clock hours for defined [User Type] to return system to the state it was in prior to the
fault and, 1o a state ready to continue with work.

m?%tweéﬂa%dmmmmmem Reliability Hand-
| book, McGraw Hill, 1966 (Ireson 1966).

‘.Mainminaﬁi[ity

COWL]OOHQHI'S,

cferivec[from a ﬁa'rc[ware

engineering view,

ac@otec[for S(Zﬁ"WClT' €.

Ol GOAL T35 TD WAITE
DUGFREE SOFTLARE
TLL PAY A TEN-DOLLAR
GONUS FOR DVERY BUOG
YOU FIND AND FIX,

|

Q

5 AGRAE Taet BOOTUBANAR A e

-
—
—
LU e Puaher s By sdaete e INTC)

58

Notice that Maintainability in the narrow sense
(fix bugs)
is quite separate from other ‘Adaptability’ concepts.

This is normal engineering,

* Which places fault repair together with
reliability and availability;

* Those 3 determine the immediate operational
characteristics of the system.

The other forms of adaptability are more about
potential future upgrades to the system,

* change, rather than repair.
Change and repair, have in common that

* our system architecture has to make it easy to 3 . ?id you ev.er
change, analyze and test. ' | - get the feeling
The system itself is unaware of your world was
* whether we are correcting a fault ¥ » about to change?

* orimproving the system.
The consequence is that

* much of the maintenance-impacting ‘design’
or ‘architecture’_

. benefits

* most of the types of maintenance (fix and
adapt).

[= ' , e
September 12, 2014 www.gilb.com

Here are a 4ewere Set of definitions for the

‘Adaptability' CcONCepLs.

Adaptability: ‘The efficiency with which a system can
be changed.’

Gist: Adaptability is a measure of a system’s ability to
change.

Includes: { a set of scalar variables, such as Portability}.

Note: probably not simple enough to define with a
single Scale.

Type: Complex Quality Attribute.

B . ﬁid you ever
i , - :
Since, . - get the feeling

if given sufficient resource, a system can be changed in
— almost any way,
the primary concern is with the amount of
— resources
(such as time, people, tools and finance)
needed to bring about specific changes
— (the change ‘cost’).

September 12, 2014 www.gilb.com

= your world was

about to change Q

60

The Adaptive Cycle

K: conservation
things change slowly;
resources ‘locked up’

Q: release .
alpha: re-organization/renewal Elhin'%sdchar'\ge very rapildy;
system boundaries tenuous; Ogde IUP ll'eSOUJCGS
innovations are possible suddenly release

Figure 3. The adaptive cycle, as a simple loop, showing possible changes between phases.

http://www.resalliance.org/564.php
12/09/2014 www.gilb.com

61

Adaptability:
Viewed as
Elementary or Complex concept..

Adaptability:
Type: Elementary Quality Requirement.

Scale: Time needed to adapt a defined [System]
from a defined [Initial State] to another
defined [Final State] using defined [Means].

© vy Dbl Toane 1001

Adaptability:
Type: Complex Quality Requiremer X
Includes: {Flexibility, Upgradeabili Voh o

K

“No system can be understood or managed
by focusing on it at a single scale.”

Multiple scales and cross-scale effects - "Panarchy”
No system can be understood or managed by focusing on it at a single scale.

« All systems (and SESs especially) exist and function at multiple scales of
space, time and social organization,

— and the interactions across scales are fundamentally important in
determining the dynamics of the system at any particular focal scale.

— This interacting set of hierarchically structured scales has been termed
a "panarchy” (Gunderson and Holling 2003).

Figure 4. "Pana etween scales 63
12/09/2014 http: //www resalllance org/564 php

Flexibility:

Gist: ‘Flexibility’ concerns the
‘in-built’ ability of the system
to adapt,
or to be adapted,
by its users,
to suit conditions

(without any fundamental system
modification

by system development). ~
The peer The education
Type: Complex Quality Requirement. ’ (_ focer factor
Includes: {Connectability, Tailorability}.
See next 2 slides!

Possible Synonyms: Resilience, Robustness

64
September 12, 2014 www.gilb.com

Connectability:
‘The cost to interconnect the system to its environment.’

Gist: The cost of connecting one
set of interfaces to defined
environments with other

THE INTERNET

interfaces Locd . Internet
ot oo Are al\e twork (- O Prjé':’|‘i'a-é?

Part Of: Flexibility. (LAN) \O/f/’j
Scale: the Effort needed o D e
to connect a defined [Home 1~ “-9; [P L Provider

Interface] o R (

1 ~ (___li‘:\e g —

to a defined [Target Interface] o— }Lﬂ[o ==

: - porate TWpbserver T/' =\
using defined [Methods] fuce __D A
with minimum allowed system A i,\,;;’g';%‘.%.ay

[Degradation]. Stations

65
September 12, 2014 www.gilb.com

Tailorability:

Gist: The cost to modify

the system to suit

defined future - ,

conditions. =
Part Of: Flexibility. SRS

Type: Gompler Qualit

Requirement.

Includes: {Extendibility,
Interchangeability}.

Multiple Attributes of Wool Fiber !
%

66
September 12, 2014 www.gilb.com

Extendibility: Scalability

Extendibility:
Part Of: Tailorability.
Synonym: Scalability.

Scale: The cost to add to - -
a defined [System] od’@ e~ 7~
a defined [Extension Class] e =7 2
and defined [EXtenSion Quantity] Time Critical Business Web Cbnients Time Sensitive Info

using a defined [Extension Means].

“In other words, add such things as a new user
or

a new node.”’

Aicent Mobile
Messaging Server

Type: Cenpter Quality Attribute.

o —
L))) ") J))) L)
Includes: {Node Addability, ’Aﬁ & 5 l% o t "l&
o° ,+* "+, Globa ile Opera ors

Connection Addability, =
Application Addability,

] k "E [5
s " P .
5 E r=s n
Subscriber Addability}. .1, B g % .

67
September 12, 2014 www.gilb.com

Interchangeability:
“The cost to modify use of system components.’

Interchangeability
Gist: This is concerned with the ability to modify

the system, to switch from using a certain set of
system components, to using another set.

Part Of: Tailorability.

Type: Elementary Quality Attribute.

“For example, this could be a daily occurrence
switching system mode from day to night use.”

Scale: the Effort needed to
Successfully,
without Intolerable Side Effects,
replace a defined [Initial Set] of components,

with a defined [Replacement Set] of
system components,

using defined [Means].

September 12, 2014 www.gilb.com

68

Upgradeability:
“The cost to modify the system fundamentally;
either to install it, or to change out system components.’

Upgradeability:

Gist: This concerns the ability of the system
to be modified by the system
developers or system support in planned
stages (as opposed to unplanned
maintenance or tailoring the system).

Type: Cempler Quality Requirement.
Includes: {Installability, Portability,

Improveability}.

Standby instance
provides for hot
upgradeability and
software fault

Active J Standby tolerance

os | os]

VMM J

Hardware

Installability: ‘The cost to install in defined
conditions.’

Pattern: This concerns installing the system code
and also, installing it in new locations to extend
the system coverage. Could include conditions
such as the installation being carried out by a
customer or, by an IT professional on-site.

Portability: ‘The cost to move from location to
location.’

Scale: The cost to transport a defined [System] from
a

defined [Initial Environment] to a defined [Target
Environment] using defined [Means].

Type: Complex Quality Requirement.

Includes: {Data Portability,

Logic Portability,

Command Portability,

Media Portability}.

Improveability: ‘The cost to enhance the system.’
Gist: The ability to replace system components with

others, which possesses improved (function,
performance, cost and/or design) attributes.

Scale: The cost to add to a defined [System] a
defined

* Hopefully this set of patterns This Basic ‘Adaptability’ Pattern
~ glves you a departure point Was Successfully Applied

— for defining those
maintenance attributes

— you might want to control, -
you might R -
quantitatively. = S . e
. . R Secire Bote Action B - s
 The above adaptability definition = = == ' . -
— was use to co-ordinate the = e
work Bl Bl - el
« of 5,000 software m D
engineers, | e ‘ Contaner anaged
+ and 5,000 hardware Dekncund - N
engineers, ;g T —
 in UK,
* in bringing out a new Symee Bumes: o= m‘::
product line at a - DR —
computer manufacturer. " . - :
* Where ‘Adaptability’ was - s ; Sycverree I
the Number One Product =

Characteristic

— The Company became
profitable for the next 14

years.. Security Patterns

70
September 12, 2014 www.gilb.com

The Software Architect Role in Maintainability

The role of the software architect is:

« to participate in clarification of the requirements that will be used as
inputs to their architecture process.

e to insist that the requirements are testably clear: that means with
defined and agreed scales of measure, and defined required levels o
performance.

 to then discover appropriate architecture,

— capable of delivering those levels of performance, hopefully within resource
constraints, and

» estimate the probable impact of the architecture,
— on the requirements (Impact Estimation)
» define the architecture in such detail
— that the intent cannot be misunderstood by implementers,
— and the desired effects are bound to be delivered.
« monitor the developing system as the architecture is applied in
practice,

« and make necessary adjustments.

« finally monitor the performance characteristics throughout the
lifetime of the system,
— and make necessary adjustments to requirements
— and to architecture,
— in order to maintain needed system performance characteristics.

71

September 12, 2014 www.gilb.com

Evaluating Maintainability Designs Using Impact Estimation

R G e e e I e) S) P
1
2 Step9
-1 Current
3] S Improvements Goals Recoding
4 {somated impact Actual impact
S| Uruts Unats % |Past Tolerable |Goal Units . ursts %
§ Usatuiity Replacatelity (feature count) b
7 100 10 500 2 ! 0
8 Usatelity Speed Newf esturesimpact ()
9 50 50 1000 0 15
10 1000 100 2000 0 1% $

0.0 0.0 0.0 0 0 10

Usatslity Intuitiveness (%)
000 00 00 0 &0 Ele

« See Powerpoint Notes for detailed written comment.

72
September 12, 2014 www.gilb.com

Architecture Level Impact Estimation Table

.............................. Deliverables
Telephony | Modularity | Tools | User GUI & | Security | Enterprise
Experience | Graphics

Business
Objective
Time to Market 10% 10% 15% | 0% 0% 0% 5%
Product Range 0% 30% 5% 10% 5% 5% 0%
Platform 10% 0% 0% 5% 0% 10% 5%
Technology
Units 15% 5% 5% 0% 0% 10% 10%

' | Operator 10% 5% 5% 10% 10% 20% 10%
Preference
Commoditization 10% -20% 15% | 0% 0% 5% 5%
Duplication 10% 0% 0% 0% 0% 5% 5%
Competitiveness 15% 10% 10% | 10% 20% 10% 10%
User Experience 0% 20% 0% 30% 10% 0% 0%
Downstream 5% 10% 0% 10% 0% 0% 5%
Cost Saving
Other Country 5% 10% 0% 10% 5% 0% 0%
Total Contribution 90% 80% 55% | 85% 50% 65% 55%
Cost (£EM) 0.49 1.92 0.81 1.21 2.68 0.79 0.60
Contribution to Cost Ratio 184 42 68 70 19 82 92

. See PPT Notes 73

September 12, 2014 www.gilb.com

Engineering “Maintainability”: Green Week
Weekly ‘Refactoring’ at Confirmit

Current San | wﬂ Coms Shep € tween 1) Shep T (wveeh 15 Speed

- e '-!:?(e 10 vc-cl I . . “pe

s e — — :Malntalnablllty

. m&? D “ s : I -

[o ":'z:' d w e : 330 -c-:: Nunlt TGStS

e — —— PeerTests

[T ST S S— . . ;

e T — S— —— : - TestDirectorTests

[R) - | s] " 0

-_'W:#:“* [) 100 '¢<l :

S— Robustness.Correctness

Robustness.Boundary
Conditions

ResourceUsage.CPU
Maintainability.DocCode

74

SynchronizationStatus

Lecture Summary

 The many types of maintainability - ease
of change - characteristics needed in large
scale or critical software,
— can be architected

— and engineered using numeric
measurement

— and sound engineering principles,

— instead of .conventional small scale
programming culture intuition.

+ Real systems engineers will move towards
this mode of ‘real’ software engineering.

* We cannot continue to have the craft of
programming culture, dominate our systems
engineering practices -

* because software has become too critical a SUI\/I‘\/[‘ARY?

component of every major system.
* The real engineers have to take control.

« The programmers will not wake up
without encouragement from real
engineers.

75

September 12, 2014 www.gilb.com

References

References

Gilb, Tom, Competitive Engineerin%,SA Handbook For Systems En ineerin%,l Requirements En%irI_leering, and goftwlare
-Heinemann. Sample

Engineering Using Planguage, ISBN 0750665076, 2005, Publisher: sevier Butterwort

chapters will be found at Gilb.com.

Chapter 5: Scales of Measure:
http://www.gilb.com/community/tiki-download file.php?fileld=26
Chapter 10: Evolutionary Project Management:
http://www.gilb.com/community/tiki-download file.php?fileld=77

Gilb.com: www.gilb.com. our website has a large number of free supporting papers ,
slides, book manuscripts, case studies and other artifacts
which would help the reader go into more depth

INCOSE Systems Engineering Handbook v. 3
INCOSE-TP-2003-002-03, June 2006 , www.INCOSE.org

[Dart 93] Susan Dart , Alan M. Christie , Alan W Brown
A Case Study in Software Maintenance, Technical Report CMU/SEI-93-TR-8 ,
ESC-TR-93-185, June 1993

Chris Inacio: Software Fault Tolerance, Carnegie Mellon University

18-849b Dependable Embedded Systems, Spring 1998
http://www.ece.cmu.edu/~koopman/des s99/sw_fault_tolerance/

Google N-Version Software for more information on distinct software and N-version software.

76
September 12, 2014 www.gilb.com

http://www.gilb.com/community/tiki-download_file.php?fileId=26
http://www.gilb.com
http://www.INCOSE.org
mailto:%3Cmailto:%20inacio@ece.cmu.edu%3E
http://www.ece.cmu.edu/~koopman/des_s99/sw_fault_tolerance/

BIOGRAPHY

. . . . //
Tom Gilb is an international consultant, teacher and author.

His 9t book is ‘Competitive Engineering: A Handbook
For Systems Engineering, Requirements Engineering, and
Software Engineering Using Planguage’ (August 2005
Publication, Elsevier) which is a definition of the
planning language ‘Planguage’.

« He works with major multinationals such as Credit
Suisse, Schlumberger, Bosch, Qualcomm, HP, IBM, Nokia,
Ericsson, Motorola, US DOD, UK MOD, Symbian, Philips,
Intel, Citigroup, United Health, and many smaller and
lesser known others. See www.Gilb.com . He can be
reached at: Planguage@mac.com

7
/e |

http://www.result-planning.com

References

Gilb, Tom, Competitive Engineering, A Handbook For Systems Engineering, Requirements Engineering,
and Software Engineering Using Planguage, ISBN 0750665076, 2005, Publisher: Elsevier
Butterworth-Heinemann. Sample chapters will be found at Gilb.com.

Chapter 5: Scales of Measure:
http://www.gilb.com/community/tiki-download file.php?fileld=26
Chapter 10: Evolutionary Project Management:
http://www.gilb.com/community/tiki-download_file.php?fileld=77

Gilb.com: www.gilb.com. our website has a large number of free supporting papers , slides, book
manuscripts, case studies and other artifacts which would help the reader go into more depth

INCOSE Systems Engineering Handbook v. 3
INCOSE-TP-2003-002-03, June 2006 , www.INCOSE.org

[Dart 93] Susan Dart , Alan M. Christie , Alan W Brown .
A Case Study in Software Maintenance, Technical Report CMU/SEI-93-TR-8 ,
ESC-TR-93-185, June 1993

Chris Inacio: Software Fault Tolerance, Carnegie Mellon University

18-849b Dependable Embedded Systems, Spring 1998
http://www.ece.cmu.edu/~koopman/des_s99/sw_fault_tolerance/
Google N-Version Software for more information on distinct software and N-version software.

78

September 12, 2014 www.gilb.com

Last Slide

12/09/2014

www.gilb.com

80

