30/10/2007 0:50

Quality Manifesto:

Software Quality is a Systems Engineering Job

Tom Gilb
Result Planning Limited
Tom.Gilb@INCOSE.org

Copyright © 2008 by Tom Gilb. .

Abstract.

The main idea with this paper is to wake up software engineers, and maybe some systems
engineers, about quality. The software engineers (sorry, ‘softcrafters’) seem to think there is
only one type of quality (lack of bugs), and only one place where bugs are found (in
programs). My main point here is that the quality question is much broader in scope. The
only way to get total necessary quality in software, is to treat the problem like a mature
systems engineer. That means to recognize all critically interesting types of quality for your
system. It means to take an architecture and engineering approach to delivering necessary
quality. It means to stop being so computer program-centric, and to realize that even in the
software world, there a lot more design domains than programs. And the software world is
intimately entwined with the people and hardware world, and cannot simply try to solve their

quality problems in splendid isolation. I offer some principles to bring out these points.

A Quality Manifesto

A group of my friends spent the Summer of 2007 emailing discussions about a Software
Quality Manifesto. I was so unhappy with the result that I decided to write my own. At least |

was unhampered by the committee.

Headline:
‘Software Quality’ is a Systems Engineering Job.

Slogan:

Proposition:

“Excellent system qualities are a continuous management and engineering challenge, with

no perfect solutions”.

Corollary:

“when management and engineering fail to execute their quality responsibilities
professionally, the quality levels are accidental; and probably unsatisfactory to most
stakeholders.”

Quality Manifesto/Declaration

System Quality can be viewed as a set of quantifiable performance attributes, that describe

how well a system performs for stakeholders, under defined conditions, and at a given time.

System Stakeholders judge past, present, and future quality levels; in relationship to own
their perceived needs/values.

System Engineers can analyze necessary, and desirable, quality levels; and plan, and manage

to deliver, a set of those quality levels, within given constraints, and available resources.

Quality Management is responsible for prioritizing the use of resources, to give a
satisfactory fit, for the prioritized levels of quality: and for trying to manage the delivery of a

set of qualities - that maximize value for cost - to defined stakeholders.

Quality Principles Heuristics for Action: An Overview.
1. Quality Design: Ambitious Quality Levels are designed in, not tested in. This applies to

work processes and work products.

2. Software Environment: “Software” Quality is totally dependent on its resident system
quality, and does not exist alone; ‘software qualities’ are dependent on a defined system’s

qualities — including stakeholder perceptions and values.

3. Quality Entropy: Existing or planned quality levels will deteriorate in time, under the

pressure of other prioritized requirements, and through lack of persistent attention.

4. Quality Management: Quality levels can be systematically managed to support a given
quality policy. Example : “Value for money first”, or “Most competitive World Class Quality

Levels”.

5. Quality Engineering: A set of quality levels can be technically engineered, to meet

stakeholder ambitions, within defined constraints, and priorities.

6. Quality Perception: Quality is in the eyes of the beholder: objective system quality levels

may be simultaneously valued as great for some stakeholders, and ferrible for others.

7. Design Impact on Quality: any system design component, whatever its intent, will likely
have unpredictable main effects, and side effects, on many other quality levels, many

constraints, and many resources.

8. Real Design Impacts: you cannot be sure of the totality of effects, of a design for quality,
on a system, except by measuring them in practice; and even then, you cannot be sure the

measure is general, or will persist.

9. Design Independence: Quality levels can be measured, and specified, independently of

the means (or designs) needed to achieve them

10. Complex Qualities: many qualities are best defined as a subjective, but useful, set of
elementary quality dimensions; this depends on the degree of control you want over the

separate quality dimensions.'

" CE Chapter 5, download, http://www.gilb.com/community/tiki-

download file.php?fileId=26 will give rich illustration to this point. See for

example Maintainability, Adaptability and Usability.

Quality Principles Heuristics for Action: detailed remarks

1. Quality Design: Ambitious Quality Levels are designed in, not tested in. This applies to

work processes and work products.

There is far too much emphasis on testing and reviews, as a means to deal with defects and
bugs. It is a well-known paradigm that you ‘do not test quality into a system, you design it

in’. We can look at this problem from both an economic and an effectiveness point of view.

From an economic point of view, it pays off, by one or two orders of magnitude, to solve
problems early. 44%-64% of all coding defects are the results of defects in specifications
(requirements, design) given to programmers [Inspection for Managers [ATT, TRW], as
reference for this and other facts about test and reviews]. The cost of removal of defects at

late stages explodes by 10x to 100x and more. A stitch in time saves nine.

From an effectiveness point of view, both tests and reviews are ineffective. The range of
effectiveness is roughly 25% to 75% (probability of actually detecting defects that are
present. [Insp. For Mgt., Capers Jones]. Jones reckons that if we had an effective series of
about 11 reviews and tests, we could only remove a maximum of 95% of the injected defects.
My conclusion is that ‘cleaning up injected defects’ is a hopeless cause. There are better

options.

The interesting option is that "an ounce of prevention of worth a pound of cure’. We have to
learn to avoid the infection of defects in the first place. It is clear that we can reduce the
injection rates by at least 100 to 1. Most requirements documents today (my personal client
measurements) contain about 100 major defects per page (300 words). The standard that
advanced developers (IBM [Humphrey], NASA) have long since established is a tolerance
(process exit level) of less than 1.0 majors/page (IBM : 0.25, NASA : 0.10). This is the
primary focus of CMMI Level 5 (Defect Prevention Process [Mays, Robert, IBM]. It takes
my clients about 6 months to reduce injection by factor ten, and another 2-3 years by another
factor 10. This is obviously more cost-effective than waiting until we can test for defects, or

until customers complain.

2. Software Environment: “Software” Quality is totally dependent on its resident system
quality, and does not exist alone; ‘software qualities’ are dependent on a defined system’s

qualities — including stakeholder perceptions and values.

We tend to treat software quality as something inherently resident in the software itself. But
all qualities (example Security, Usability, Maintainability, Reliability) are highly dependent
on people, their qualifications, and they way the use systems. The consequence is that we
must plan, specify and design with a stronger eye to identifying and controlling the factors
that actually decide the system quality. We have to engineer the system as a whole, not just
the ‘code’). We must be systems engineers, not program engineers. This has large
implications for how we train people, how we organize our work, and how we motivate
people. We will also have to shift emphasis from the technology itself (the means) to the

results we actually need (the ends, quality requirement levels).

3. Quality Entropy: Existing or planned quality levels will deteriorate in time, under the

pressure of other prioritized requirements, and through lack of persistent attention.

Even the concept of numeric quality levels, for most qualities — example usability, security,
adaptability — is alien to most software engineers, and to far too many systems engineers. But

the basic concept of quantified quality levels is old and well established in engineering.

In spite of this poor starting environment, of too many people satisfied with using words
(‘easy to use’) instead of numbers (30 minutes to learn task X by Employee type Y’), we
need to not merely achieve planned quality levels upon initial delivery and acceptance of
systems. We need to imbed in the systems the measurement of these qualities, and the
warning systems needed to tell us they are deteriorating or drastically fallen. We need to
expect to take action to improve the quality levels back to planned levels, and perhaps

improve them even more in the future.

4. Quality Management: Quality levels can be systematically managed to support a given
quality policy. Example: “Value for money first”, or “Most competitive World Class Quality

Levels”.

It is useful management if there is a policy about the levels of quality we aspire to, both at a
corporate level, and a project level. We cannot really allow isolated individuals to make their
dream levels of quality be taken as requirements, without due balance towards the priorities
of the other competing levels. And we need to keep our eyes on available resources and

technological limits and opportunities.

We need to decide if we are there to ‘be the state of the art’ (as Rockwell explained to me

once) of ‘get the most value for money’, as others need to worry about.

A policy like this might be generally useful: “Quality levels will be engineered to a level that
gives us arguably high return on the investment needed to get them there, and so that the

levels do not steal resources for other parallel investment opportunities in quality, or

elsewhere.”.

5. Quality Engineering: A set of quality levels can be technically engineered, to meet

stakeholder ambitions, within defined constraints, and priorities.

It is a tricky business to decide which numeric quality levels are appropriate. Initially we
cannot decide the right levels in isolation. We need to know about the larger environment,
both the environment for the single quality attribute, and for the set of attributes — for their

environment.

We need to learn to specify this environment together with the requirement ideas themselves.
It will be easier to make decisions about the relative levels of quality and their priority if we

have a decisive set of facts about each attribute. For example, it is useful to know things like

the:

o Value for a level

o The stakeholders for a quality and for various levels

o The timing needs of levels of quality

o The planned strategies and their expected costs for reaching given levels

And quite a few other things — that will help us reason about the right levels of quality.

Elementary scalar requirement template <with hints

Tag: <Tag name of the elementary scalar requirement:.
Type:
<[Performance Requirement: {Quality Reguirement,

Resource Saving Requrement,

Worklcad Capacity Requirement},
Resource Requirement: [Financial Requireameant,

Time Requrement,

Headcount Requirement,

others;i=.

Basic Information
Verslon: <Date or other version number:.

Status: < {Draft, SQC Exited, Approved, Reected) .
Quality Level: <Maximum remaning maor detects/page, sample size, date.
Owner. <Hole/s-mall'name of the person responsble for this specification .

Stakeholders: <Name any stakehoiders with an interest in this specification=.

Gist: <Bnef gescription, capturing the essential meaning of the requirement .

Description: <Optional, ful descrpton of the requirement.

Ambition: <Summarize the ambition level of only the targets below. Give the overall real
ambition level in 5-20 words>.

= Scale of Measure ====================zzz====
Scale: <Scale of measure for the requirement (States the units of measure for all the targets,
constraints and benchmarks) and the scale qualfiers=.

= TR _— Measuremen! =======sssssssssssawsszsas
Meter. < The method to be used to obtain measurements on the defined Scale>.
s============ Benchmarks ============= "Past Numeric Values" s=ssmss=s

Past [<when, where, if>]: <Past or current level. State If it is an estimate> <- <Sourca:.
Record [<when, where, =] <State-of-the-art level> <- <Source=.

Trend [<when, where, If>]: <Pradiction of rate of change or future state-of-the-art level> <-
<Source>.

Goal/Budget [<when, where,). <Planned target level> <- <Source=.
Stretch [<when, where,). <Motivating ambition level> <- <Source:.
Wish [<when, where, if>]: <Dream level (unbudgeted) > <- <Sourca .

ss==——=—====== Constraints ========—oo—s “Specific Restrictions” =———=======—
Fall [<when, where, =] <Fallure level> <- <Source=.
Survival [<when, where, If>]: <Survival level> <- <Source>.

Relatenships
Is Part Of: <Refer to the tags of any supra-requirements (complex requirements) that this
requirement is part of. A hierarchy of tags (For exampie, A.B.C) is preferable:.

Is Impacted By: <Refer to the tags of any design ideas that impact this requirement> «<-
<Source>.

Impacts: <Name any requ rements or designs or plans that are impacted significantly by this=.
Pnerity and Risk Management ===== =======
Rationale: <Justify why this requirement exists>.

Value: <Name [stakehoider, time, place, event): Quantdy, or express in words, the vale
claimed as a result of delivering the requirement:.

Assumptions: < State any assumpions made in connaction with this requiremeant > <- < Sourca .
Dependencles: <State anythng that achieving the planned requirement level is dependent
ons <- <Source.

Risks: < List or refer to tags of anything that could cause delay or negative impact> <- <Source>.
Priority: <List the tags of any system elements that must be implemented before or after this
requirement:-.

Issues: <State any Known ISsues>.

Figure 1: an example of a template that tries to collect some of the information that | think we ought to
know about in order to decide how to prioritize particular levels of quality for a single attribute. [CE

book, page 135]

6. Quality Perception: Quality is in the eyes of the beholder: objective system quality levels

may be simultaneously valued as great for some stakeholders, and ferrible for others.

The point is that any real complex large system will have many different stakeholders. Even
one stakeholder category [Novice User, Call Center Manager] can have many individuals,
with highly individual needs and priorities. The result will inevitably be a compromise. But
we can make that compromise as intelligent as possible. We do not have to design systems
with only one level for all stakeholders. We can consciously decide to have different quality

levels of the same quality, for different stakeholders, at different times and situations.

For example:

Learnability:
Scale: the time needed for a defined [Stakeholder] to Master a defined [Process].
Goal [Stakeholder = Top Manager, Process = Get Report] 5 minutes.

Goal [Stakeholder = Offshore Clerk, Process = Create New Account] 1 hour.

7. Design Impact on Quality: any system design component, whatever its intent, will likely
have unpredictable main effects, and side effects, on many other quality levels, many

constraints, and many resources.

I see far too much narrow reasoning, of the type: “we are going to achieve great quality X
using technology X, Y and Z”. This reasoning is not with numbers, but only nice words. Yet |

have seen in it $100 million projects, often!

We have to learn to specify, analyze and think in terms of ‘multiple numeric impacts of many
designs, on our many critical quality and cost requirements’. Quality Function Deployment
(QFD) takes this position, but I am not happy with the way in which numbers are used in
QFD) — too subjective., too undefined [QFD].

We need to systematically, as best we can, estimate all the multiple effects or each significant

design.

On-line On-line Picture On-line Help +
Support Help Handbook Access Index
Learning
Past: 60min. <<-> Plan: 10min.
Scale Impact S min. 10 min. 30 min. 8 min.
Scale Uncertainty +3min. +5 min. +10min. +5 min.
Percentage Impact 110% 100% 67% (2/3) 104%
Percentage Uncertainty +6% +10% +20%?? +10%
(3 of 50
minutes)
Evidence Project Other Guess Other
Ajax, Systems Systems
1996, 7 + Guess
min.
Source Ajax World John B. World Report
report, p.6 | Report p.17 p.17 + John
B.
Credibility 0.7 0.8 0.2 0.6
Development Cost 120K 25K 10K 26K
Benefit-To-Cost Ratio 110/120 = | 100/25 = 67/10 = 104/26 =
0.92 4.0 6.7 4.0
Credibility-adjusted 0.92*%0.7 4.0*0.8 6.7%0.2 4.0%0.6
B/C Ratio =0.6 =32 =13 =24
(to 1 decimal place)
Notes: ~ Longer
Time Period is two years. mgzizﬂ;to

Figure 2: A systematic analysis of 4 designs on one quality level (10 minutes). This is an impact

estimation table. [CE, page 267].

8. Real Design Impacts: you cannot be sure of the totality of effects, of a design for quality,
on a system, except by measuring them in practice; and even then, you cannot be sure the

measure is general, or will persist.

I have seen books, papers, and project specifications for software that confidently predict a
good result (not usually quantified) from a particular design, solution, architecture or

strategy. Maybe it is easier to be confident if no particular numeric impact is ever asserted.

In normal engineering, no matter what the engineering handbook says, no matter what we

would like to believe; the prudent engineer takes the trouble to measure the real effects.

We need to carefully do early measurements, then repeat measurements when scaling up, at
acceptance times, and later in long-term operation. In we can never take critical qualities for

granted, or as if they are stable.

We can plan this in advance to a reasonable degree:

Learnability:

Scale: minutes to learn a Task by a User.

Meter [Weekly Development, 2 Users, 10 Normal tasks]

Meter [Acceptance Test, Duration 60 day, 200 Users, 10 normal tasks, 20 extreme tasks]

Meter [Normal Operation, Sampling Frequency 2%, Tasks = All Defined]

Each ‘Meter’ specification defines or sketches a different intended test to measure the quality

level.

9. Design Independence: Quality levels can be measured, and specified, independently of

the means (or designs) needed to achieve them.

There is far too much immediately coupling of named design ideas, with named quality

types. “We will improve product agility using structured tools’ — type of specification.

We need to focus our specifications on the quality levels we require, and studiously avoid

mentioning our favored design idea in the same sentence.

Specifying a ‘design’, when you need to focus on the quality level, should be considered a
major defect in the specification. Dozens or more such ‘false requirements’ per page of

‘requirements’ are not uncommon in our ‘software’ culture.

10. Complex Qualities: many qualities are best defined as a subjective, but useful, set of
elementary quality dimensions; this depends on the degree of control you want over the

separate quality dimensions.”

I think there is too little awareness of the fact that quality words often are the name of a set of
qualities. The only way to define such complex qualities is to list all the components of the

set. Only in this way will we understand what the real requirements are.

We need to learn the general patterns of the most common qualities, as in the example below.

2CE Chapter 5, download, http://www.gilb.com/community/tiki-

download file.php?fileId=26 will give rich illustration to this point. See for

example Maintainability, Adaptability and Usability.

We need to avoid oversimplification of qualities, when, the detailed set of sub-attributes will

give us a fair chance at getting control over the critical qualities we want to manage.

Mairainability:

Type: Complax Cuality Requiramant.

Includes: {Problem Fecognilion, Admirisiraties Delay, Toal Colaction, Problem Analysis
Charge Specilication, Qualily Coniral, Meditication Imglementation, Modification Tasting {Umt
Tasting. IMegration Tesling, Bela Testfing, Sysiam Taslirg). Recovarng].

Problem Aecognition:

Seale: Clack hours tram dafired [Faul Cocurence: Defaull: Bug Sccurs in any use o tesl of
eyadarm] unlil lauk officially recogrized by defined [Recognition Act: Delaull: Faull is ogged
alacironcaly

Administrative Dalay:

Scale; Glock hours from defined [Recognitian Act] until defined [Coreciion Action] initiased and
assigred 1o & dafired [Maintenance instanca]

Toal Caliectian:

Scale: Clock hours for dafired [Maimenarce Insance; Dedaus: Whoevar s assigned] 1o
aoqurs all dafinec [Tools: Detawt: all systems ard informaticn necessary o analyze, corecs
and gualfy coniral B cormaction)

Probiem Analysis:

Seale: Clack ima for the assigned oelined [Maintenanca Instance] to analyze tha ‘ault symp-
fams and e able to begin io iormalate & corrachon Rypothesis,

Change Specification

Leale: Glock hours needed by dafired (Malrsarance Instance) o fully ang cormacty descrige
e necassany corpolon aotions, accarding 1e currant applcable standands tor Shis,

Mare: This inclodes &y sosiional i e cormections afer qualily condral ang' J9sts,

Guality Control:

Seake: Clock haws lor quality canirel of the sormaclion hypalbasis [agairs! mlavant stancands).
Modification Implementation:

Seale: Cleck hours to carmy oul the coreclion actiily as planred, “Indudes ary necassary
caressiang as a resull of quality comral o testing.”

Moditication Testing:

Urit Testing:

Seale: Clock Pours 10 cary oul defined [Unil Tast] for @ faull cormection.
Integration Testing:

Seabe: Clock Fours 1o camy oul defined [Imegration Test] for the faull corestian,
Bt Testing:

Seale: Clock hours 1o carry ol celined [Bela Test] for the faul corecion befane official
releass af the corraction is parmitian
System Testing:
Sicale: Clock hours to camy out defined [Systam Tast] for the fault cormectian
RAenowvery:
Scale: Glack hours for dedined [Usar Type| to retum system to the sfaie & was in prior 82 the
fault ard, % a state raacy o comtinug vwith wonk

Sourca: The abave 15 a0 axtensian of some baske ideas fram freson, Edtar, Relaniisy Hand-
book, MeGirw HI0, 186G {Ineson 1966),

Figure 3: An example of Maintainability as a set of other measures of quality. [CE page 156].

Summary

Purpose [of Quality Manifesto]:
To promote a healthy view of software quality.
Gap Analysis:

To help people get to where they really need to be in order to meet their stakeholders

expectations as well as resources permit.

Justifications [for positions taken here]
1. We must take a systems-centric, not a programming-centric view of quality.

Because: Software only has quality attributes in relation to people, hardware, data, networks,

values. It cannot be isolated from the related world that decides
- which quality dimensions are of interest (critical)
- which quality levels are of value to a given set of stakeholders.

2. We must take a ‘stakeholder’ view — not customer or user or any much-too-limited
limited set of stakeholders.

Because: the qualities that must be engineered and finally present in a software system

depend on the entire set of critical stakeholders, not a on a limited few.

3. We must make a clear distinction between various ‘defect’ types, as good IEEE

engineering standards already do.

Because; we cannot afford to confuse specification defects, with their potential product

faults, and product faults with potential product malfunctions. See these definitions.

References

Gilb, Tom, Competitive Engineering [CE], A Handbook For Systems Engineering,
Requirements Engineering, and Software Engineering Using Planguage, ISBN 0750665076,

2005, Publisher: Elsevier Butterworth-Heinemann. Sample chapters will be found at
Gilb.com.

Chapter 5: Scales of Measure:

http://www.gilb.com/community/tiki-download file.php?fileId=26

Chapter 10: Evolutionary Project Management:

http://www.gilb.com/community/tiki-download file.php?fileId=77

Gilb.com: www.gilb.com. our website has a large number of free supporting papers , slides,

book manuscripts, case studies and other artifacts which would help the reader go into more
depth

For example:
Gilb, Inspection for Managers, a set of slides with facts and cases.

http://www.gilb.com/community/tiki-download file.php?fileId=88

Gilb: What’s Wrong with QFD?

http://www.gilb.com/community/tiki-download file.php?fileId=119

INCOSE Systems Engineering Handbook v. 3

INCOSE-TP-2003-002-03, June 2006 , www.INCOSE.org

Software World Conference Website:

. Bethesda Md., USA, September 15-18™ 2008
. http://www.asg509.0org/ht/display/EventDetails/i/1837

0

Source: of Quality Opinions:
http://www.qualitydigest.com/html/qualitydef.html [2001]

Biography
BIOGRAPHY

Tom Gilb is an international consultant, teacher and author.

His 9" book is ‘Competitive Engineering: A Handbook For Systems Engineering,
Requirements Engineering, and Software Engineering Using Planguage’
(August 2005 Publication, Elsevier) which is a definition of the planning language
‘Planguage’.

He works with major multinationals such as Credit Suisse, Schlumberger, Bosch,
Qualcomm, HP, IBM, Nokia, Ericsson, Motorola, US DOD, UK MOD, Symbian, Philips, Intel,
Citigroup, United Health, Boeing, Microsoft, and many smaller and lesser known others See
www.Gilb.com.

Version: start 29 oct Monday am 03:00 -->03:36, completed Tuesday AM 00:49 30" oct.

