
Value Delivery in Systems Engineering
Tom Gilb

Result Planning Limited
Tom.Gilb@INCOSE.org

Copyright © 2008 by Tom Gilb. Published and used by INCOSE with permission.

Abstract.
Sponsors who order and pay for systems engineering projects, must justify their money spent

based on the expected consequential effects (hereafter called ‘value’) of the systems. At one
extreme if a system met all technical requirements, but was never deployed in practice – it might
have no possibility of delivering the value expected. This paper will argue that the definition of
the expected value should form an integral part of the high level requirements of the system. It
will argue that we need specific design and implementation planning to improve the probability
that the value will be delivered and will be maintained.

The Value Delivery Problem
Sponsors who order and pay for systems engineering projects, must justify their money spent

based on the expected consequential effects (hereafter called ‘value’) of the systems.

The value of the technical system is often expressed in presentation slides and requirements

documents as a set of nice-sounding words, under various titles such as “System Objectives”,
and “Business Problem Definition”. But the problem with these is that:

• their source or authority may be undocumented and unknown
• they are probably not at all clear about exactly what will happen, where or when, or under
which conditions
• there is no contract, to pay only upon such results being delivered
• there is no specific design or architecture, to enable the technical product to achieve these goals

For example: (Real, engineering system, but doctored for anonymity)

1. Central to The Corporations business strategy is to be the world’s premier integrated

<domain> service provider.

2. Will provide a much more efficient user experience

3. Dramatically scale back the time frequently needed after the last data is acquired to time

align, depth correct, splice, merge, recompute and/or do whatever else is needed to generate the

desired products

4. Make the system much easier to understand and use than has been the case for previous

system.

5. A primary goal is to provide a much more productive system development environment

than was previously the case.

6. Will provide a richer set of functionality for supporting next-generation logging tools and

applications.

7. Robustness is an essential system requirement (see rewrite in example below)

8. Major improvements in data quality over current practices

The above example was the basis in 1999 for a project that had in 2006 spent over $100

million, for 8 years and had never delivered any value whatsoever to the corporation. There was
never any quantified or testable definition of the above. There was never any direct link from the
project activity, requirements, or architecture, to these primary top management (CEO and next
level directors) objectives. The project was doomed from the start.

Another Real (Doctored) Example: Financial Corp.

1. Reduce the costs associated with managing redundant / regionally disparate systems.

2. Single global portfolio management system.

3. Reduce overall spending with a reduction in redundant initiatives.

4. Governance structures - system agnostic.

5. All projects in project portfolio system.

6. Reduce development project spend on low priority work with better alignment between

Technology and business demand.

7. Project portfolio Framework, Business Value metrics for prioritization.

8. Reduction in cost over runs.

9. Definition criteria for project success.

 10. Metrics and exception reporting for cost management.

11. Linkage of actual costs to forecast.

12. Increase revenue with a faster time to market.

13. Knowledge management, project ramp up templates.

This project spent about $50 million, in a single year. Responsible management, impatient for
some results, discovered to their horror, through an audit, that the above primary objectives had
never been clarified or taken seriously. The responsible (‘former’) project manager had chosen to
ignore the opportunity, planned by a major component supplier, to clarify these objectives. The
project manager spent a lot of effort obtaining requirements from users, but no further effort on
these primary objectives above. Serious effort was, after the audit, then immediately spent
quantifying and taking seriously these objectives. It took a single day to draft a quantified
version. The quantified version made a clear distinction between technical objectives (system
quality – examples 2 and 5 above) and stakeholder values (making the business better, examples
8 and 12 above).

The experienced reader will recognize this type of ‘objectives’, because they are universally
written so badly. All large projects seem to have them. Maybe I just never get to see the projects
that take this top level of ‘requirements’ seriously. I suspect we have a serious management
culture problem. Management does not seem to have training or culture to quantify the top level

critical variable ‘values’ of the project. They fail to even distinguish between their management
ends and the technical means.

The purpose of this paper is to bring the problem to the surface, and discuss remedies for those
who want to do better.

Some Assertions
Let me make a series of assertions about the problem and its solution.

Assertion 1. When top management allows large projects to proceed, with such badly

formulated primary objectives, then they are responsible as managers for the outcome (failure).
They cannot plead ignorance.

Assertion 2. The failure of technical staff (project management) to react to the lack of

primary objective formulation by top management is also a total failure to do reasonable systems
engineering. Management might have a poor requirements culture, but we should routinely save
them from themselves.

Assertion 3. Both top managers and project personnel can be trained and motivated to clarify

and quantify critical objectives routinely. But until the poor external culture of education and
practice changes, it may take strong CEO action to make this happen in your corporation. My
experience is that no one else will fight for this.

Assertion 4. All top level system performance improvements, are by definition, variables. So,

we can expect to define them quantitatively. We can also expect to be able to measure or test the
current level of performance. Words like ‘enhanced’, ‘reduced’, ‘improved’ are not serious
systems engineering requirements terms.

For Example:
I rewrote the top level system requirement in the above example using Planguage [Gilb

2005]:

“7. Robustness is an essential system requirement.”

to be:

Rock Solid Robustness:
Type: Complex Product Quality Requirement.
Includes: {Software Downtime, Restore Speed, Testability, Fault Prevention Capability,

Fault Isolation Capability, Fault Analysis Capability, Hardware Debugging Capability}.
Example 1a: I decomposed the complex attribute Robustness into a reasonable set of 7 contributing
attributes. I then proceeded to define 3 of them initially, as in the examples below. ‘Rock Solid
Robustness’ a now formally defined system attribute, is defined as a set of 7 sub-attributes.

Software Downtime:
Type: Software Quality Requirement. Version: 25 October 2007.

Part of: Rock Solid Robustness.
Ambition: to have minimal downtime due to software failures <- HFA 6.1
Issue: does this not imply that there is a system wide downtime requirement?

Scale: <mean time between forced restarts for defined [Activity], for a defined [Intensity].>

Fail [Any Release or Evo Step, Activity = Recompute, Intensity = Peak Level] 14 days <-

HFA 6.1.1

Goal [By 2008?, Activity = Data Acquisition, Intensity = Lowest level] : 300 days ??
Stretch: 600 days.

Example 1b: the key parameter here is the ‘Scale’ of measure. All parameter concepts, such as ‘Fail’ are
formally defined in Planguage [Gilb 2005, Glossary also at www.gilb.com]. In this initial draft, I have not
defined all possible or useful parameters such as ‘Supports’, or ‘Meter’.

Restore Speed:

Type: Software Quality Requirement. Version: 25 October 2007.
Part of: Rock Solid Robustness

Ambition: Should an error occur (or the user otherwise desire to do so), the system shall be
able to restore the system to a previously saved state in less than 10 minutes. <-6.1.2 HFA.

Scale: Duration from Initiation of Restore to Complete and verified state of a defined

[Previous: Default = Immediately Previous]] saved state.

Initiation: defined as {Operator Initiation, System Initiation, ?}. Default = Any.

Goal [Initial and all subsequent released and Evo steps] 1 minute?
Fail [Initial and all subsequent released and Evo steps] 10 minutes. <- 6.1.2 HFA
Catastrophe: 100 minutes.

Example 1c: The ‘Ambition’ level statement is a high level, not too quantitatively rigorous, summary of the
requirement level we want. It is a healthy agreed prelude to more-rigorous definition. We often use the
statements made poorly by management, and cite them as the source or authority. We then process with
Scale and Goal etc. to define in an engineering manner.

Testability:
Type: Software Quality Requirement.
Part of: Rock Solid Robustness

Initial Version: 20 Oct 2006
Version: 25 October 2007.
Status: Demo draft,
Stakeholder: {Operator, Tester}.
Ambition: Rapid-duration automatic testing of <critical complex tests>, with extreme

operator setup and initiation.

Scale: the duration of a defined [Volume] of testing, or a defined [Type], by a defined [Skill

Level] of system operator, under defined [Operating Conditions].

Goal [All Customer Use, Volume = 1,000,000 data items, Type = WireXXXX Vs DXX,
Skill = First Time Novice, Operating Conditions = Field, {Sea Or Desert}. <10 mins.

Design Hypothesis: Tool Simulators, Reverse Cracking Tool, Generation of simulated

telemetry frames entirely in software, Application specific sophistication, for drilling – recorded

mode simulation by playing back the dump file, Application test harness console <-6.2.1 HFA
Example 1d: notice the parameterized Scale of Measure (‘[Volume]’, ‘[Type]’), and the corresponding
definitions in the Goal statement (‘Type = WireXXXX vs. DXX’). This allows us to define highly reusable
generic scales of measure. But we can both in the scale and in the many types of benchmark, constraint
and target levels on that Scale, we can get very precise about performance levels for a specific set of
conditions (when, where, and ‘if’ (an event is true)).
 Notice the ‘Design Hypothesis’. The initial specifications, after a poorly defined requirement
(‘robustness’) massively (about 24 pages for the 8 top level requirements) specified (as if it were a
requirement) this sort of ‘design’. My point here was to show how my client could initially deal with the
outpouring of technical design ideas, at the requirement stage, by declaring them to be mere ‘hypothesis’.
Designs to be examined by estimates and testing later. But not to be considered ‘required’; as seems to be
the initial ($100 million spent on the design) case.

Note on the example: I did this example in front of, and with the help of, 3 client engineers,

while having a beer at a Corporate Conference Hotel, while waiting for my wife to get dressed

for a Dinner. It took about 45 minutes. The point was to show how easy it would have been to set

clear top level requirements; eight years earlier. A director at the same conference revealed to

me that he was the only dissenting voice amongst top management, he voted to not start the

project, and specifically because the initial requirements were unclear. He was over-ruled by the

others, including the current CEO. Does that tell you something about the management problem

we face in getting clear top-level project requirements for the essential values to be delivered?

Assertion 5. If the hardware/software systems supplier is not prepared to deal with the system

level that delivers the value from their product, then someone, internally or an external contractor
needs to undertake the project of delivering the value expected.

Figure 0: (7) Development Resources are used to run the development process.
The Development Process develops new improved (5) Solutions with enhanced (4) Product Qualities.
When the Stakeholder uses the new product with the enhanced (4) Product Qualities
it improves on their (2) Stakeholder Values. Source: Kai Gilb, www.gilb.com [Evo book and Glossary].

Assertion 6. This ‘value delivery process’ is likely to entail considerable human and

organizational aspects, and little hardware and software technology. So it may be inappropriate
work for systems engineers who are not expert in, and committed to, the social, political, and
organizational aspects of systems engineering. But of course this ‘social’ ability is a necessary
and valid component of full systems engineering – or we cannot call it ‘systems’ engineering and
exclude the social, political system aspects.

Figure 1: The Value Delivery System: some level of systems engineering has to take responsibility for final
delivery of expected value to stakeholders.

Do we need a Chief Value Officer (CVO) ?
 We seem to have a Chief Technical Officer, a Chief Financial Officer, a Chief
Information Officer. But we seem to be missing someone with primary responsibility for
delivering value to the organization and its stakeholders. Maybe we need a Chief Value Officer
(CVO) to help the CEO in this responsibility. It seems strange that we build technology that all
too often does not deliver the value that responsible management has imagined it would.

 The CVO would:

• be responsible for the ‘value accounting system’ in the same way the CFO is responsible for the
cost accounting system, and budgets.

• make sure that project investments had clear and valid value arguments (Value Budgets)

• make sure that all levels of management and technology knew how to specify values, design
for value, measure value, contract for value, and deliver value in practice.

Figure 2: do we need a CVO to make sure value is taken seriously? Up to now only the CEO has been
effective in making this happen, in my experience. The other CxO’s do not consider it part of their job.

A Value Policy: Without a CVO (yet)
The Value Manifesto:

• Really useful value, for real stakeholders will be defined measurably. No nice-sounding
emotive words please.

• Value will be seen in light of total long term costs – as a decent return on investment.

• Powerful management devices, like motivation and follow-up, will make sure that the
value for money is really delivered – or that the failure is punished, and the success is
rewarded.

• The value will be delivered evolutionarily – not all at the end.

• That is, we will create a stream of prioritized value delivery to stakeholders, at the
beginning of our value delivery projects; and continue as long as the real return on
investment is suitably large.

• The CEO is primarily responsible for making all this happen effectively. The CFO will
be charged with tracking all value to cost progress. The CTO and CIO will be charged
with formulating all their efforts in terms of measurable value for resources.

The Value Principles:
1. Value can always be articulated quantitatively, so that we can understand it, agree to it, track
it, contract for it and understand it in relation to costs.

2. Value is a result, delivered to a real set of stakeholders.

3. Value must be seen in light of lifetime total cost aspects, and must be as profitable as
alternative investments.

4. Value occurs through time, as a stakeholder experience: it is not delivered when a system to
enable it is delivered – only when that system is successfully used to extract the value.

5. Value can be delivered early, and for part of one stakeholder’s domain. This proves the value
potential, and actually improves the real organization.

6. There is never a really sufficient reason to put off value delivery until large-scale long-term
investments are made. This is just a common excuse from the many weak, ignorant, cowards
who would like to spend a lot of money before being held to account.

7. People who cannot deliver a little value early, in practice, cannot be entrusted to deliver a lot
of value for a larger investment.

8. The top management must be primarily responsible for making value delivery happen in their
organization. The specialist managers will never in practice take the responsibility, unless they
are aiming to take over the top job.

9. Value is a multiplicity of improvements, and certainly not all related to money or savings –
but we still need to quantify the value proposition in order to understand it, and manage it.

10. If we prioritize highest value for money first, then we should normally experience an
immediate and continuous flow of dramatic results, that the entire organization can value and
relate to. Be deeply suspicious of long-term visions with no short-term proof.

The Value Principles with some technical background
1. Value can always be articulated quantitatively, so that we can understand it, agree to it,

track it, contract for it and understand it in relation to costs.

 We constantly see value ideas, like the examples at the top of this paper, articulated with
a series of words. “Enhanced Agility”.

My experience is all such ‘improvement ideas’ can always be expressed quantitatively (Gilb CE
esp Ch 5). Most all managers can themselves, if asked, come up with suggested scales of
measure. And they can negotiate agreement on suitable scales of measure, for almost anything.
Common sense and experience are largely enough to get quantification ideas. But if imagination
runs out Google “<the name of your objective> metric”, and that usually gives you what you
need.

Figure 3: letting the internet advise you on quantification of anything

2. Value is a result delivered to a real set of stakeholders.

 Value is not ‘activated’ by a technical performance characteristic alone, like Usability,
security or Robustness. It is only created when it meets real people in their everyday stakeholder
situation of work: Call Center, Battlefield Analyst, Corporate Trader. It has to save them time, or
make their work better. The value created by the interaction with a stakeholder type may be
cumulated every time the system is used for some new activity, customer, transaction, or
decision. It may be cumulated by a very large number of that type of stakeholder (10,000 sales
people). And through a very long time (years).

 It is obvious from this common sense observation that value is not created by the
technical system performance characteristics (speedy response, user friendly), but by making
those technical system characteristics available in practice to as many real people, and as many
transactions, and for as long a time as possible.

3. Value must be seen in light of lifetime total cost aspects, and must be as profitable as

alternative investments.

 We cannot allow ourselves to be blinded narrowly by quantified value. We must
constantly estimate, and manage the value for money: the return on investment. And if the costs
of delivering the value get out of hand, and exceed the value – it is time to either reengineer the
system or decommission it. Who will do this if not some constant CVO vigilance?

4. Value occurs through time, as a stakeholder experience: it is not delivered when ‘a

system to enable it’ is delivered – only when that system is successfully used to extract the

value.

 A conscious strategy, and conscious formal plan, must be made to deploy a technical
system so that the value is delivered. We have to deal with political problems – like power
centers (trade unions, management fiefdoms) and economic waste centers. We have to motivate
people to give up their comfortable older systems and deploy scary new ones. We have to
support the correct use by training, call centers, local consultancy, measurement and

• feedback on the technical system, is it actually delivering what we need, in order to get
people to use it at all, to use it well?

• feedback on the stakeholder environments it is deployed in: are they happy with it? Do
they have improvement suggestions? Are there undesired variations in costs and benefits?

• feedback on deployment to the entire scope of stakeholders, in relation to time plans: is
it being deployed successfully rapidly enough?

Obviously this should be the natural concern and use of true systems engineering. But in
fact, there is little in the training, the conferences, the handbooks [INCOSE SE Handbook], to
verify that systems engineering as a discipline has matured to the point where these concerns are
safely included. We are still too much ‘engineers’ (techies); and know and care too little about
value management, and the organizational and management culture part of our domain.

5. Value can be delivered early, and for part of one stakeholder’s domain. This proves the

value potential, and actually improves the real organization.

 Our systems development culture is still very much a ‘waterfall’ culture. Finish the big
system, and then deploy it [INCOSE SE Handbook 2-3, and 3-2 for example]. There was no
visible mention, in the Handbook, of a true evolutionary life cycle (even though the US DoD
adopted one for software at least long ago, DoD Mil Std 498). There is no notion of early,
frequent and gradual delivery of results to stakeholders, even though that has been practiced
successfully in many large military, space and software systems for decades [Larman]. Big Bang
is still our mentality.

I helped Douglas/Boeing to do value delivery Evolutionary projects for 25 aircraft projects in
1990. It was an unknown concept for them, but it was easily doable by every team we did it on;
in real projects. We use ‘next week’ as our measure of when we would produce some useful
value.

I know that this sounds incredible and impossible to conventional ears. But it is simple enough in
practice, and very close indeed to weaponry progress during the Second World War [Discovery
Channel!].

A Navy helicopter ship system, called LAMPS, provides a recent example.

LAMPS software was a four-year project of over 200 person-years of effort,

 developing over three million, and integrating over seven million words of

program and data for eight different processors distributed

between a helicopter and a ship,

 in 45 incremental deliveries.

Every one of those deliveries was on time and under budget.

A more extended example can be found in the NASA space program,

 where in the past ten years, FSD has managed some 7,000 person-years of software

development, developing and integrating over a hundred million bytes of program and data for

ground and space processors in over a dozen projects.

There were few late or overrun deliveries in that decade, and none at all in the past four years.”

Source: Harlan Mills [IBM Systems Journal No. 4, 1980, p. 415], Reprinted IBM SJ Vol. 38

1999, 289-295. Internet available both.

Quotation: we have extensive systems engineering experience in evolutionary delivery of systems, but it is
not reflected in what is taught, written or known in most of our SE culture today.

Figure 4: The kind of systems engineering life cycle we should be using normally to deliver value early and
frequently. And to avoid the scandalous failure rates of projects [Morris]. Source Gilb 2005, Evo Chapter
10.

6. There is never a really sufficient reason to put off value delivery until large-scale long-

term investments are made. This is just a common excuse from the many weak, ignorant,

cowards who would like to spend a lot of money before being held to account.

 There are vested interests who will happily consume public and private corporate money
forever and deliver failure or little or no real value. The consumer and their representatives seem
happy to contract for effort, but not contract for value. I cannot believe there are so many foolish
people with so much money as I have had occasion to observe in practice (example the $50 to
$100 million wasted projects at the beginning of this paper, which are in fact small by
comparision with some; like documented DoD waste in software engineering alone ($20 billion
annually, many years ago).

This is not necessary! We could avoid it by contracting for value and results. [Gilb, No Cure No
Pay]. This is hardly on the agenda, and not discussed at all in the INCOSE Handbook.

It would require two technical pieces of knowledge:

 • The ability to quantify and measure value

 • The ability to decompose large projects into much smaller increments of value delivery.

These exist, but the ‘will to contract for value’ does not. Some management leadership please!

7. People who cannot deliver a little value early in practice, cannot be entrusted to deliver a

lot of value for a larger investment.

Ericsson of Sweden, who learned to deliver mobile telephone base stations in 1990 in monthly
evolutionary steps observed this principle (Jack Järkvik). If you are going to spend
$100,000,000 before anything happens, and nothing then does. It might have been a good idea to
offer the project or supplier a mere $1 million (1%) and ask if they could create some of the
long-term projected value for that 1% of budget. If they cannot, then there is no reason to believe
they will use your $100 million wisely. If they can; do so, then feed them millions, one at a time
until it is no longer profitable!

8. The top management must be primarily responsible for making value delivery happen in

their organization. The specialist managers will never, in practice, take the responsibility,

unless they are aiming to take over the top job.

Top management, the CEO, needs to decide they are primarily responsible for value for money,
and dictate a policy of focus on ‘value for money’ (see earlier in this paper for policy ideas).

One excellent CEO client of mine who did so, Robb Wilmott of ICL UK (23,000 employees
then), turned years of losses into 14 straight years of profit for his computer company – unlike
competitors, like IBM, at the time. My observation was:

 • it only happened because the CEO threatened all other top managers with loss of power
and budget if they did not ‘quantify the value’ they were going to deliver

 • they began to think clearly about their responsibilities, perhaps for the first time

 • it helps if the CEO is an engineer, not an MBA !

Another UK CEO, pulled the same trick – about 2003. But had to fire the marketing director, and
the sales director, for refusing to really play ball. Some directors have a real fear of being
specific about what they are responsible for. Interestingly the current Chairman of this company
was one of the above-mentioned ICL Directors (Marketing) who we trained to quantify, things
like the primary new product line vision, ‘Adaptability’ of his product.

9. ‘Value’ is a multiplicity of improvements, and certainly not all related to money or

savings – but we still need to quantify the value proposition in order to understand it, and

manage it.

I strongly dislike value schemes that try to turn all values into money. Do they really think
management understands no other concept?

Peter Drucker, I think it was (Management By Objectives, in ‘The Practice of Management’),
established long ago that no corporation is driven by money alone. Thus the Balanced Scorecard,
to retain some non-financial balance, I suppose.

If the value you are aiming at is for example, ‘increased potential customer willingness to
shortlist you’, then there is an estimable money value for that, but I would be afraid of losing
focus on the short-listing, by converting this idea to money. You would need to measure the
quantity of real short-listing to manage that value, for example. I believe you need to state and
measure things directly, especially of you want to track early lead indicators of value – and keep
people focused on a dynamic and changing situation.

10. If we prioritize highest value for money first, then we should normally experience an

immediate and continuous flow of dramatic results, that the entire organization can value

and relate to. Be deeply suspicious of long-term visions with no short-term proof.

We should try to skim the cream off the top. With early realistic feedback, and changing
technology and markets, we should be able to avoid a dramatic diminishing return on investment
for some time.

Projects, at one extreme, should be practically self-funding; or at least not in need of huge initial
budgets, then overspent by factor 3.14 (Pie instead of ‘piece of cake’) before management feels
uncomfortable.

You have a lot of choice, in spite of some dependencies, to ‘cherry pick’ very high value for
money, early deliveries. Not exactly a new marketing technique – but maybe alien to our
Defence Supplier Systems Engineering mentality.

Again, if we contracted to pay them for value for money, they would be more focussed on
making it happen. This is our problem, not theirs. We fail to motivate suppliers to do the right
thing for us.

We fail to even discuss this in our systems engineering literature. We have progress payments,
but not based on value delivery, early and frequently. ‘Payment Schedules’ (sounds nice and
bureaucratic) are mentioned in the SE Handbook, but not ‘Value Payments’. We need to extend
the concept!

Summary
Top management needs to change their culture to manage the actual delivery of real value,

and not leave it to systems engineers to drive this change. Systems Engineers can execute the
value engineering and delivery – but only top management can make it happen.

 References

Gilb, Tom, Competitive Engineering, A Handbook For Systems Engineering, Requirements
Engineering, and Software Engineering Using Planguage, ISBN 0750665076, 2005, Publisher:
Elsevier Butterworth-Heinemann. Sample chapters will be found at Gilb.com.

Chapter 5: Scales of Measure:

http://www.gilb.com/community/tiki-download_file.php?fileId=26

Chapter 10: Evolutionary Project Management:

http://www.gilb.com/community/tiki-download_file.php?fileId=77

Gilb.com: www.gilb.com. our website has a large number of free supporting papers , slides, book
manuscripts, case studies and other artifacts which would help the reader go into more depth

Gilb, Tom, ‘No Cure No Pay: How to Contract for Software Services’, INCOSE Conference
2006.

http://www.gilb.com/community/tiki-download_file.php?fileId=38

INCOSE Systems Engineering Handbook v. 3

INCOSE-TP-2003-002-03, June 2006 , www.INCOSE.org

Note: I pursued all 68 uses of the word value. I would conclude that I could find no explicit reference to the stakeholder value derivation process

I am speaking about here. ‘Stakeholder value’ gave no references (stakeholder alone 139 references. Section 4.2 Stakeholder

 Requirements Definition Process. Show laudable traditional SE understanding of stakeholders and their

requirements. But does not make any remarks about deployment of technical systems over time to get the value that

might come from the technical requirements. It is weak and general with too many of its brief statements (“• Avoid

acceptance of unrealistic or competing objectives.”). The main problem being that it does not clearly distinguish

between the technical system requirements, and the consequent value delivery stream in stakeholder organizations.

Larman, Craig, and Vic Basili. “Iterative and Incremental Development: A Brief History”. IEEE Computer, June

2003

http://www2.umassd.edu/SWPI/xp/articles/r6047.pdf

Morris, Peter, The Management of Projects, 1994 Telford, London, 1997 USA.

 Peter Morris analyzed the degrees of failure of 5 decades of civil engineering projects. He
concluded that ‘there is no good project management method’, and if there was one, it would be
very iterative with feedback.

Biography

BIOGRAPHY
Tom Gilb is an international consultant, teacher and author. His 9th book is ‘Competitive

Engineering: A Handbook For Systems Engineering, Requirements

Engineering, and Software Engineering Using Planguage’ (August 2005

Publication, Elsevier) which is a definition of the planning language ‘Planguage’.

He works with major multinationals such as Bosch, Qualcomm, HP, IBM, Nokia, Ericsson,

Motorola, US DOD, UK MOD, Symbian, Philips, Intel, Citigroup* and many others. See

www.Gilb.com .

* none of whom are the source of the examples in the paper.

DRAFT 1 COMPLETED OCT 25 2007 02:58, Draft 2edited Oct 25 1200 to 1456 (added the

Planguage Example 1,Kai Gilbs stakeholder value diagram and did substantial editing)

