
05/08/2007 03:14 PMSTSC CrossTalk - The 10 Most Powerful Principles for Quality in Software and Software Organizations - Nov 2002

Page 1 of 8http://www.stsc.hill.af.mil/crosstalk/2002/11/gilb.html

CrossTalk Only

 - Mission
 - Staff
 - Contact Us

 - Subscribe Now
 - Update
 - Cancel

 -

Home > CrossTalk Nov 2002 > Article

Nov 2002 Issue

The 10 Most Powerful Principles for Quality in
Software and Software Organizations
Tom Gilb, Result Planning Limited

The software industry knows it has a problem: The industry's maturity level with
respect to "numbers" is known to be poor. While solutions abound, knowing which solutions
work is the big question. What are the most fundamental underlying principles in successful
projects? What can be done right now? The first step is to recognize that all your quality
requirements can and should be specified numerically. This does not mean "counting bugs."
It means quantifying qualities such as security, portability, adaptability, maintainability,
robustness, usability, reliability, and performance. This article presents 10 powerful principles
to improve quality that are not widely taught or appreciated. They are based on ideas of
measurement, quantification, and feedback.

All projects have some degree of failure compared with initial plans and promises. Far too
many software projects fail totally. In the mid 1990s, the U.S. Department of Defense (DoD)
estimated that about half of its software projects were total failures [1]. The civil sector is no
better [2]. So what can be done to improve project success? This article outlines 10 key
principles of successful software development methods that characterize best practices.

These 10 principles have been selected because there is practical experience showing that
they really gain control over qualities and their costs. They have a real track record spanning
decades of practice in companies like IBM, Hewlett Packard, and Raytheon. They are not
new: They are classic. But the majority of our community is young and experientially new to
the game, so my job is to remind the industry of the things that work well. Your job is to
evaluate this information and start getting the improvements that your management wants
in terms of quality and the time and effort needed to get them.

"Those who do not learn from history, are doomed to repeat it" [3].

Principle 1: Use Feedback
The practice of gaining experience from formal feedback methods is decades old, and many
appreciate its power. However, far too many software engineers and their managers are still
practicing low feedback methods, such as waterfall project management (also known as Big
Bang or Grand Design). Even many textbooks and courses continue to present low feedback
methods. This is not done in conscious rejection of high feedback methods but from
ignorance of the many successful and well-documented projects that have detailed the value
of high feedback methods.

Methods using feedback succeed; those without feedback seem to fail. Feedback is the single
most powerful principle for software engineering. (Most of the other principles in this article
support the use of feedback.) Feedback helps you get better control of your project by
providing facts about how things are working in practice. Of course, the presumption is that
the feedback comes early enough to do some good; rapid feedback is the crux. We need to
have the project time to make use of the feedback (for example, to radically change
direction, if that is necessary). Four of the most notable rapid high-feedback methods are
discussed in the following sections:

Defect Prevention Process
The Defect Prevention Process (DPP) equates to the Software Engineering Institute's
Capability Maturity Model® (CMM®) Level 5 as practiced at IBM from 1983 to the present
[4]. The DPP is a successful way to remove the root causes of defects. In the short term
(one year) about a 50 percent defect reduction can be expected; within two to three years,
about a 70 percent reduction (compared to the original level) can be experienced; and in five
to eight years, about a 95 percent defect reduction is possible [5].

The key feedback idea is to decentralize the initial causal analysis activity by investigating
defects back to the grassroots programmers and analysts. This gives you the true causes

05/08/2007 03:14 PMSTSC CrossTalk - The 10 Most Powerful Principles for Quality in Software and Software Organizations - Nov 2002

Page 2 of 8http://www.stsc.hill.af.mil/crosstalk/2002/11/gilb.html

and acceptable, realistic change suggestions. Deeper cause analysis and measured process-
correction work can then be undertaken outside of deadline-driven projects by the more
specialized and centralized process improvement teams.

There are many feedback mechanisms. For example, same-day feedback is obtained from the
people working with the specification, and early numeric process change-result feedback is
obtained from the process improvement teams.

Inspection Method
The Inspection Method originated at IBM in work carried out by M. Fagan, H. Mills
(cleanroom method), and R. Radice (CMM inventor) [6]. Originally, it primarily focused on
bug removal in code and code-design documents. Many continue to use it this way today.
However, inspection has changed character in recent years. Today, it can be used more
cost-effectively by focusing on measuring the significant defects on upstream specifications.
Furthermore, sample areas often only need to be inspected rather than processing the entire
document [7]. For example, the defect level measurement should be used to decide whether
the entire specification is fit for release downstream to be used for a go/no-go decision-
making review or for further refinement (test planning, design, or coding).

The main Inspection Method feedback components are as follows:

Feedback to author from colleagues regarding compliance with software standards.
Feedback to author about required levels of standards compliance in order to consider
their work releasable.

Evolutionary Project Management
Evolutionary Project Management (Evo, which originated in large scale within cleanroom
methods) has been successfully used on the most demanding space and military projects
since 1970 [8, 9]. The DoD changed its software engineering standard MIL-STD-2167A to an
Evo standard (MIL-STD-498), which derived succeeding public standards, (for example, the
Institute of Electrical and Electronics Engineers). The reports, (op. cit.) along with my own
experience, are that Evo results in a remarkable ability to deliver on time and on budget, or
better, compared to conventional project management methods [2].

An Evo project is consciously divided into small, early, and frequently delivered stakeholder
result-focused steps. Each step delivers benefits and builds toward satisfaction of the final
requirements. Step size is typically weekly or 2 percent of total time or budget. This results
in excellent regular and realistic feedback about the team's ability to deliver meaningful,
measurable results to selected stakeholders. The feedback includes information on design
suitability, stakeholders' reactions, requirements' trade-offs, cost estimation, time
estimation, people resource estimation, and development process aspects.

Statistical Process Control
Statistical Process Control [10], although widely used in manufacturing [11], is only used in
software work to a limited degree. Some use is found in advanced inspections [5, 12]. The
Plan Do Study Act cycle is widely appreciated as a fundamental feedback mechanism.

Principle 2: Identify Critical Measures
It is true of any system - your body, an organization, a project, software, or service product
- that there are several factors that can cause a system to die. Managers call these critical
success factors. If you analyzed systems looking for all the critical factors that cause
shortfalls or failures, you would get a list of factors needing better control. They would
include both stakeholder values (such as serviceability, reliability, adaptability, portability,
and usability) and the critical resources needed to deliver those values (i.e., people, time,
money, and data quality). For each critical factor, you would find a series of faults that
would include the following:

Failure to systematically identify all critical stakeholders and their critical needs.
Failure to define the factor measurably. Typically, only buzzwords are used and no
indication is given of the survival (failure) and target (success) measures.
Failure to define a practical way to measure the factor.
Failure to contract measurably for the critical factor.
Failure to design toward reaching the factor's critical levels.
Failure to make the entire project team aware of the numeric levels needed for the
critical factors.
Failure to maintain critical levels of performance during peak loads or on system
growth.

Our entire culture and literature of software requirements systematically fails to account for
the majority of critical factors. Usually, only a handful such as performance, financial budget,
and deadline dates are specified. Most quality factors are not defined quantitatively at all. In
practice, all critical measures should always be defined with a useful scale of measure.
However, people are not trained to do this and managers are no exception. The result is
that our ability to define critical breakdown levels of performance and manage successful

05/08/2007 03:14 PMSTSC CrossTalk - The 10 Most Powerful Principles for Quality in Software and Software Organizations - Nov 2002

Page 3 of 8http://www.stsc.hill.af.mil/crosstalk/2002/11/gilb.html

delivery is destroyed from the outset.

Principle 3: Control Multiple Objectives
You do not have the luxury of managing qualities and costs at whim. With software
development, you cannot decide to manage just a few of the critical factors and avoid
dealing with the others. You have to deal with all the potential threats to your project,
organization, or system. You must simultaneously track and manage all the critical factors. If
not, then the forgotten factors will probably be the very reasons for project or system
failure.

I have developed the Impact Estimation (IE) method (see Table 1) to enable tracking of
critical factors; however, it does require that critical objectives and quantitative goals have
been identified and specified. Given that most software engineers have not yet learned to
specify all their critical factors quantitatively (Principle 2), this next step, tracking progress
against quantitative goals to enable control of multiple objectives (this principle), is usually
impossible.

Table 1: Example of an Impact Estimation Table
(Click on image above to show full-size version in pop-up window.)

IE is conceptually similar to Quality Function Deployment [13], but it is much more objective
and numeric. It gives a picture of reality that can be monitored [14, 15] (Table 1). It is
beyond the scope of this article to provide all the underlying detail for IE. To give a brief
outline, the percentage estimates in Table 1 are based, as far as possible, on source-quoted,
credibility- evaluated, objective, documented evidence. IE can be used to evaluate ideas
before their application, and it can also be used, as in Table 1, to track progress toward
multiple objectives during an evolutionary project. In Table 1, the Actual Difference and Total
numbers represent feedback in small steps for the chosen set of critical factors that
management has decided to monitor. If the project is deviating from plans, this will be
easily visible and can be corrected in the next step.

Principle 4: Evolve in Small Steps
Software engineering is by nature playing with the unknown. If we already had exactly what
we needed, we would reuse it. When we choose to develop software, there are many types
of risk that threaten the result. One way to deal with this is to tackle development in small
steps, one step at a time. If something goes wrong, we will immediately know it. We also
have the ability to retreat to the previous step, a level of satisfactory quality, until we
understand how to progress again.

It is important to note that the small steps are not mere development increments. The point
is that they incrementally satisfy identified stakeholder requirements (see Figure 1). Early
stakeholders might be salespeople needing a working system for demonstration, system
installers/help desk/service/testers who need to work with something, or early trial users.

05/08/2007 03:14 PMSTSC CrossTalk - The 10 Most Powerful Principles for Quality in Software and Software Organizations - Nov 2002

Page 4 of 8http://www.stsc.hill.af.mil/crosstalk/2002/11/gilb.html

Figure 1: Evolutionary vs. Waterfall Comparison
(Click on image above to show full-size version in pop-up window.)

The duration of each small step is typically a week or so. The smallest widely reported steps
are the daily builds used at Microsoft, which are useful-quality systems. They cumulate to
six- to 10-week shippable quality milestones [16].

Principle 5:A Stitch in Time Saves Nine
Quality control must be done as early as possible, from the earliest planning stages, to
reduce the delays caused by finding defects later. There needs to be strong specification
standards (such as all quality requirements must be quantified) and rigorous checking to
measure that the rules are applied in practice. When the specifications are not of some
minimum standard (like ">1 major defect/page remaining") then they must be edited until
they become acceptable, including the following:

Use inspection sampling to keep costs down, and to permit early, i.e., before
specification completion, correction and learning.
Use numeric exit from development processes such as Maximum 0.2 Majors per page.

It is important that quality control by inspection be done very early for large specifications,
for example within the first 10 pages of work. If the work is not up to standard, then the
process can be corrected before more effort is wasted. I have seen half a day of inspection
(based on a random sample of three pages) show that there were about 19 logic defects per
page in 40,000 pages of air traffic control logic design. The same managers who had
originally approved the logic design for coding carried out the inspection with my help.
Needless to say, the project was seriously late.

In another case I facilitated (United States, 1999, jet parts supplier), eight managers
sampled two pages out of an 82-page requirements document and measured 150 major
defects per page. Unfortunately, they had failed to do such sampling three years earlier
when the project started, so they had already experienced one year of delay; they told me
they expected another year delay while removing the injected defects from the project. This
two-year delay was accurately predictable given the defect density they found and the
known average cost from major defects. They were amazed at this insight, but agreed with
the facts. In theory, they could have saved two project years by doing early quality control
against simple standards: clarity, unambiguity, and no design in requirements.

These are not unusual cases. I find them consistently all over the world. Management
frequently allows extremely weak specifications to go unchecked into costly project
processes. They are obviously not managing properly.

05/08/2007 03:14 PMSTSC CrossTalk - The 10 Most Powerful Principles for Quality in Software and Software Organizations - Nov 2002

Page 5 of 8http://www.stsc.hill.af.mil/crosstalk/2002/11/gilb.html

Principle 6: Motivation Moves Mountains
Motivation is everything! When individuals and groups are not motivated positively, they will
not move forward. When they are negatively motivated (fear, distrust, and suspicion), they
will resist change to new and better methods. Motivation is a type of method. In fact, there
are many large and small items contributing to your group's sum of motivation. We can
usefully divide the motivation problem into four categories:

The will to change.
The knowledge to change direction.
The ability to change.
The feedback about progress in the desired change direction.

Leaders (I did not say managers) create the will to change by giving people a positive and
fun challenge and the freedom and resources to succeed. During the 1980s, John Young,
CEO of Hewlett Packard, inspired his troops by saying that he thought they needed to aim to
be measurably 10 times better in service and product qualities by the end of the decade. He
did not demand it. He supported them in doing it. They reported getting about 9.95 times
better, on average, in the decade. The company was healthy and competitive during a
terrible time for many others.

The knowledge of directional change is critical to motivation; people need to channel their
energies in the right direction! In the software and systems world, this problem has three
elements, two of which have been discussed in earlier principles. They are as follows:

Measurable, quantified clarity of the requirements and objectives of the various
stakeholders (Principle 2).
Knowledge of all the multiple critical goals (Principle 3).
Formal awareness of constraints such as resources and laws.

These elements are a constant communication problem because of the following:

We do not systematically convert our directional changes into crystal clear
measurable ideas; people are unclear about the goals and there is no ability to obtain
numeric feedback about movement in the right direction. We are likely to say we need
a robust or secure system, and less likely to convert these rough ideals into concrete,
measurable, defined, agreed-upon requirements or objectives.
We focus too often on a single measurable factor (such as percent built or budget
spent) when reality demands that we simultaneously track multiple critical factors to
avoid failure and to ensure success. We do not understand what we should be
tracking, and we do not get enough rich feedback.

Principle 7: Competition Is Eternal
Our conventional project management ideas strongly suggest that projects have a clear
beginning and a clear ending. In our competitive world, this is not as wise a philosophy as
one W. Edwards Deming suggests, "Eternal process improvement is necessary as long as
you are in competition" [11]. We can have an infinite set of milestones or evolutionary steps
of result delivery and use them as we need; the moment we abandon a project, we hand
opportunity to our competitors. They can sail past our levels of performance and take our
markets.

The practical consequence is that our entire mindset must always be on setting new
ambitious numeric stakeholder value targets both for our organizational capability and our
product and service capabilities (see Figure 2).

Figure 2: The Shewhart Cycle for Learning and Improvement - the PDSA Cycle

05/08/2007 03:14 PMSTSC CrossTalk - The 10 Most Powerful Principles for Quality in Software and Software Organizations - Nov 2002

Page 6 of 8http://www.stsc.hill.af.mil/crosstalk/2002/11/gilb.html

(Click on image above to show full-size version in pop-up window.)

Continuous improvement efforts in the software and services area at IBM, Raytheon, and
others [4, 5, 18] show that we can improve critical cost and performance factors by 20 to
one, in five- to eightyear time frames. Projects must become eternal campaigns to get and
stay ahead.

Principle 8:Things Take Time
"It takes two to three years to change a project, and a generation to change a culture"
[11].

Technical management needs to have a long-term plan for improving the critical
characteristics of their organization and their products. Such long-term plans need the ability
to be tracked numerically and stated in multiple critical dimensions. At the same time, visible
short-term progress toward those long-term goals should be planned, expected, and tracked
(see Figure 3).

Figure 3: Cost of Quality vs. Time: Raytheon 95 - the Eight-Year Evolution of Rework
Reduction
(Click on image above to show full-size version in pop-up window.)

Principle 9:The Bad With the Good
Any method (means, solution, or design) you choose will have multiple quality and cost
impacts whether you like them or not! In order to get a correct picture of how good any
idea is for meeting our purposes, we must do the following:

Have a quantified, multidimensional specification of our requirements, our quality
objectives, and our resources (people, time, or money).
Have knowledge of the expected impact of each design idea on all these quality
objectives and resources.
Evaluate each design idea with respect to its total - expected or real - impact on our
requirements, the unmet objectives, and the unused cost budgets.

We need to estimate all impacts on our objectives. We need to reduce, avoid, or accept
negative impacts. We must avoid simplistic one-dimensional arguments. If we fail to use this
systems engineering discipline, then we will be met with unpleasant surprises of delays and
bad quality, which seem to be the norm in software engineering today. One practical way to
model these impacts is using an IE table (see Table 1).

Principle 10: Keep Your Eyes on Where You Are Going
"Perfection of means and confusion of ends seem to characterize our age," said Albert

05/08/2007 03:14 PMSTSC CrossTalk - The 10 Most Powerful Principles for Quality in Software and Software Organizations - Nov 2002

Page 7 of 8http://www.stsc.hill.af.mil/crosstalk/2002/11/gilb.html

Einstein.

To discover the real problem, we have only to ask of a specification: Why? The answer will
be a higher level of specification, nearer the real ends. There are too many designs in our
requirements!

You might say, why bother? Isn't the whole point of software to get the code written? Who
needs high-level abstractions? Cut the code! But somehow that code is late and of
unsatisfactory quality. The reason is often lack of attention to the real needs of the
stakeholders and the project. We need these high-level abstractions of what our
stakeholders need so that we can focus on giving them what they are paying us for! Our
task is to design and deliver the best technology to satisfy their needs at a competitive cost.

One day, software engineers will realize that the primary task is to satisfy their
stakeholders. They will learn to design toward stakeholder requirements (multiple
simultaneous requirements). One day we will become real systems engineers and realize
there is far more to software engineering than writing code.

Conclusion
Motivate people toward real results by giving them numeric feedback frequently and the
freedom to use any solution that gives those results. It is that simple to specify. It is that
difficult to do.

References
. 1 Jarzombek, Stanley J. "The 5th Annual Joint Aerospace Weapons Systems Support,

Sensors, and Simulation Symposium (JAWS S3)." Proceedings, 1999.
. 2 Morris, Peter W. G. The Management of Projects. Ed. Thomas Telford. London, 1994.
. 3 Santayana, George. The Life of Reason. Amherst: Prometheus Books, 1903.
. 4 Mays, Robert. Practical Aspects of the Defect Prevention Process. (Gilb, Tom, and

Dorothy Graham. Software Inspection. Addison-Wesley, 1993. Chapter 17 written by
Mays).

. 5 Dion, Raymond, et. al. The Raytheon Report. Pittsburgh: Software Engineering
Institute, 1995 www.sei.cmu.edu/publications/documents/95.reports/95.tr.017. html.

. 6 Fagan, Michael E. "Design and Code Inspections." IBM Systems Journal 15.3 (1976):
182-211. Reprinted 38.2, 3 (1999): 259-287 www.almaden.ibm.com/journal.

. 7 Gilb, Tom, and Dorothy Graham. Software Inspection. Addison-Wesley, 1993.
Japanese Translation, Aug. 1999.

. 8 Mills, Harlan D. IBM Systems Journal. 1980. Also republished IBM Systems Journal,
Nos. 2 and 3, 1999.

. 9 Cotton, Todd. "Evolutionary Fusion: A Customer-Oriented Incremental Life Cycle for
Fusion." Hewlett-Packard Journal 47.4 (Aug. 1996): 25-38.

. 10 Shewhart, Deming, Juran 1920s.

. 11 Deming, W. Edwards. Out of the Crisis. Cambridge: MIT CAES Center for Advanced
Engineering Study, 1986.

. 12 Florac, William A., Robert E. Park, and Anita D. Carleton. Practical Software
Measurement: Measuring for Process Management and Improvement. Pittsburgh:
Software Engineering Institute, 1997 www.sei.cmu.edu.

. 13 Akao, Yoji. Quality Function Deployment: Integrating Customer Requirements into
Product Design. Cambridge: Productivity Press, 1990.

. 14 Gilb, Tom. Principles of Software Engineering Management. Boston: Addison-Wesley,
1988.

. 15 Gilb, Tom. Competitive Engineering. Addison-Wesley: United Kingdom, 2000
www.resultplanning.com.

. 16 Cusumano, Michael A., and Richard W. Selby. Microsoft Secrets: How the World's
Most Powerful Software Company Creates Technology, Shapes Markets, and Manages
People. The Free Press (a division of Simon and Schuster), 1995.

. 17 Woodward, Stuart. "Evolutionary Project Management." IEEE Computer Oct. 1999:
49-57.

. 18 Kaplan, Craig, Ralph Clark, and Victor Tang. Secrets of Software Quality, 40
Innovations From IBM. McGraw Hill, 1944.

. 19 Crosby, Philip B. Quality Is Still Free: Making Quality Certain in Uncertain Times.
McGraw Hill, 1996.

About the Author
Tom Gilb has been a freelance consultant since 1960 and is the
author of nine books, including "Software Metrics," "Principles of
Software Engineering Management," "Software Inspection," and
the forthcoming "Competitive Engineering." Gilb teaches and
consults worldwide with major multinational clients including
Nokia, Ericsson, Motorola, HP, IBM, BAE Systems, Philips, Sony,
Canon, Intel, and Microsoft and does pro bono training and

Tom Gilb
Cross-Out

Tom Gilb
Inserted Text
Elseveir Butterworth-Heinemann, 2005, Oxford,UK

Tom Gilb
Cross-Out

Tom Gilb
Inserted Text
www.gilb.com

05/08/2007 03:14 PMSTSC CrossTalk - The 10 Most Powerful Principles for Quality in Software and Software Organizations - Nov 2002

Page 8 of 8http://www.stsc.hill.af.mil/crosstalk/2002/11/gilb.html

consulting for the Department of Defense, United Kingdom,
NATO, and the Norwegian Defense.

Iver Holtersvei 2
NO-1410
Kolbotn, Norway
Phone: +47 66 80 46 88
E-mail: tom@gilb.com

® Capability Maturity Model and CMM are registered in the U.S. Patent and Trademark
Office.

Privacy and Security Notice · External Links Disclaimer · Site Map · Contact Us

Please E-mail or call 801-775-5555 (DSN 775-5555) if you have any questions regarding your CrossTalk
subscription or for additional STSC information.

Webmaster: 517th SMXS/MDEA, 801-777-0857 (DSN 777-0857), E-mail

STSC Parent Organizations: 309SMXG Ogden Air Logistics Center, Hill AFB

Tom Gilb
Cross-Out

Tom Gilb
Inserted Text
Ormerudveien 4

Tom Gilb
Cross-Out

Tom Gilb
Cross-Out

Tom Gilb
Inserted Text
Ormerudveien 4

